金属骨架磷化技术方式及工序
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属骨架磷化技术方式及工序
所谓磷化,是指把金属工件经过含有磷酸二氢盐的酸性溶液处理,发生化学反应而在其表面生成一层稳定的不溶性磷酸盐膜层的方法,所生成的膜称为磷化膜。磷化膜的主要目的是增加涂膜附着力,提高涂层耐蚀性。磷化的方法有多种,按磷化时的温度来分,可分为高温磷化(90-98℃),中温磷化(60-75℃),低温磷化(35-55℃)和常温磷化。
为提供良好的涂装基底,要求磷化膜厚度适宜,结晶致密细小。
中、高温磷化工艺,虽然磷化速度快,磷化膜耐蚀性好,但磷化膜结晶粗大,挂灰重,液面挥发快,槽液不稳定,沉渣多,而低、常温磷化工艺所形成的磷化膜结晶细致,厚度适宜,膜间很少夹杂沉渣物,吸漆量少,涂层光泽度好,可大大改善涂层的附着力、柔韧性、抗冲击性等,更能满足涂层对磷化膜的要求。值得注意的是,过去一直认为磷化膜厚,涂装后涂层的耐蚀性高,磷化膜本身在整个涂装体系中并不单独承担多大的耐蚀作用,它主要起到使漆膜具有强粘附性,而整个涂层系统的耐蚀力则主要取决于漆膜的耐蚀力以及漆膜与磷化膜的优良配合所形成的强粘附力。
磷化液一般由主盐、促进剂和中和剂所组成。过去使用的磷化液,大多采用亚硝酸钠(NaNO2)作促进剂,效果十分年、明显,但在NaNO2在磷化液中有很大危害:一是影响磷化液的稳定性,NaNO2在酸性条件下极不稳定,在极短的时间内就分解了。因此,不得不经常添加。NaNO2的这种特性,往往引起磷化液的主盐不稳定,磷化液沉淀较多,磷化膜挂灰严重,槽液控制困难,磷化质量不稳定;二是NaNO2是世界公认的致癌物质,长期接触危害人体健康,环境污染严重。解决的方法:一是减少NaNO2的用量;二是寻找替代物。
配方:XH-1B 4%+H2O
4、钝化
磷化膜的钝化技术,在北美和欧洲国家被广泛应用,采用钝化技术是基于磷化膜自身特点决定的,磷化膜较薄,一般在1-4g/m2,最大不超过10g/m2,其自由孔隙面积大,膜本身的耐蚀力有限。有的甚至在干燥过程中就迅速生黄锈,磷化后进行一次钝化封闭处理,可以是磷化膜孔隙中暴露的金属进一步氧化,或生成钝化层,对磷化膜可以起到填充、氧化作用,使磷化膜稳定于大气之中。
5、磷化膜的干燥
对磷化膜进行干燥处理,可起到两个方面的作用,一方面是为下道工序涂漆作准备,以除去磷化膜表面的水分,另一方面是进一步提高涂装后膜的耐蚀性。
所谓磷化处理是指金属表面与含磷酸二氢盐的酸性溶液接触,发生化学反应而在金属表面生成稳定的不溶性的无机化合物膜层的一种表面的化学处理方法。所形成的膜称为磷化膜。它的成膜机理为:(以锌系为例)
a)金属的溶解过程
当金属浸入磷化液中时,先与磷化液中的磷酸作用,生成一代磷酸铁,并有大量的氢气
析出。其化学反应为;
Fe+2H3PO4=Fe (H2PO4)2+H2•↑(1)
上式表明,磷化开始时,仅有金属的溶解,而无膜生成。
b)促进剂的加速
上步反应释放出的氢气被吸附在金属工件表面上,进而阻止磷化膜的形成。因此加入氧化型促进剂以去除氢气。其化学反应式为:
3Zn(H2PO4)2+Fe+2NaNO2=Zn3(PO4)2+2FePO4+N2↑+2NaH2PO4+4H2O(2)
上式是以亚硝酸钠为促进剂的作用机理。
c)水解反应与磷酸的三级离解
磷化槽液中基本成分是一种或多种重金属的酸式磷酸盐,其分子式Me(H2PO4)2,这些酸式磷酸盐溶于水,在一定浓度及PH值下发生水解泛音法,产生游离磷酸:Me(H2PO4)2=MeHPO4+H3PO4 ( 3 )
3MeHPO4=Me3(PO4)2+H3PO4 ( 4 )
H3PO3=H2PO4-+H+=HPO42-+2H+=PO43-+3H+ ( 5 )
由于金属工件表面的氢离子浓度急剧下降,导致磷酸根各级离解平衡向右移动,最终成为磷酸根。
d)磷化膜的形成
当金属表面离解出的三价磷酸根与磷化槽液中的(工件表面)的金属离子(如锌离子、钙离子、锰离子、二价铁离子)达到饱和时,即结晶沉积在金属工件表面上,晶粒持续增长,直至在金属工件表面上生成连续的不溶于水的黏结牢固的磷化膜。
2Zn2++Fe2++2PO43-+4H2O→Zn2Fe (PO4)2•4H2O↓( 6 )
3Zn2++2PO42-+4H2O=Zn3 (PO4)2•4H2O ↓( 7 )
金属工件溶解出的二价铁离子一部分作为磷化膜的组成部分被消耗掉,而残留在磷化槽液中的二价铁离子,则氧化成三价铁离子,发生(2)式的化学反应,形成的磷化沉渣其主要成分是磷酸亚铁,也有少量的Me3(PO4)2。
磷化的分类方法有以下几种:
1 根据组成磷化液的磷酸盐分类
有磷酸锌系、磷酸锰系、磷酸铁系。此外还有在磷酸锌中加钙的锌钙系,在磷酸锌中加镍、加锰的“三元体系”磷化等。
2 根据磷化的温度分类
有高温(80度以上)磷化、中温(50~70度)磷化和低温磷化(40度以下)。
3 按磷化施工法分类
有喷淋式磷化、浸渍式磷化、喷浸结合式磷化、涂刷型磷化。
4 按磷化膜的质量分类
有重量型(7.5g/m2以上),中量型(4.3~7.5g/m2),轻量型(1.1~4.3g/m2)和特轻量型(0.3~1.1g/m2)。
铁盐磷化膜最薄,其膜重为(0.3~1.1)g/m2,属于轻量型。锌盐磷化视配方而定,可以分为轻量型、中量型或重型磷化膜。膜重范围广,在(1.0~5.0)g/m2之间。磷化成膜原理可以用过饱和理论来解释。即构成磷化膜的离子积达到该种不溶性磷酸盐的溶度积时,就在金属表面沉积形成磷化膜。磷化处理的材料主要成分为酸式磷酸盐,其分子式为Me(H2PO4)2。金属离子Me通常为锌、锰、铁等。这些酸式磷酸盐均能溶解于水。在含有氧化剂及各种添加剂的酸性磷化液中,磷酸二氢盐要发生离解,产生金属离子Me和磷酸根离子,但此时离子积未达到不溶性磷酸盐的溶度积,并不产生膜的沉积:
Me(H2PO4)2→Me2++H2PO4-
|→HPO4-+H+
|→PO4-+H+
为在适当的温度下使磷化液与被处理的金属表面接触时,发生金属的溶解反应
Fe+2H+→Fe2++H2↑
由于上式反应,铁与磷化液界面处H+不断被消耗,引起PH值上升,这就又促使了三步离解反应。于是界面处Me2+与PO43-浓度不断上升,直到[Me2+][PO43-]>Lme3(PO4)2时,就产生Me3(PO4)2不溶性磷酸盐的沉积,覆盖在金属表面,构成磷化膜。
但是,上式生成的氢气吸附在金属表面,造成所谓的阴极极化,使磷化反应懂得进程受到阻碍。因此要添加一定量达到的氧化剂作为阴极去极化剂,以保证磷化反应在规定的时间内完成。氢气被氧化剂氧化成水除掉。产生Fe2+除部分参与成膜形成Zn¬2Fe(PO4)2•4H2O外,剩余部分被氧化成Fe3+,Fe3+与PO43-结合成浓度积很小的FePO4,成为淤渣沉淀出来排除于体系外。
2 磷化膜质量评定项目与方法
1 外观目视法
好的磷化膜外观均匀完整细密、无金属亮点、无白灰。锌系磷化膜为灰色膜,铁系磷化为彩虹色膜。而铝及铝合金则为无色或彩色铝皮膜。