浅谈主成分分析与因子分析,基本思想,主要性质,应用举例,计算步骤,主要区别

合集下载

主成份分析和因子分析

主成份分析和因子分析

. 16
主成分的贡献率
对于第k个主成分,其对方差的贡献率为 k
p
i
i1
前k个主成分贡献率的累计值称为累计贡献 率。
. 17
主成分个数的确定
通常有两种方式: 1、根据大于1的特征值的个数确定主成 分的个数; 2、根据主成分的累计贡献率确定主成分 的个数,使累计贡献率>85%或者其他值。
特征向量
这是根据 SPSS的结果 在Excel计算出 的特征向量 [aij] 。
根据这个表可 以写出4个主成 分的表达式。
简历格式 外貌 研究能力 兴趣爱好 自信心 洞察力 诚信度 推销能力 工作经验 工作魄力 志向抱负 理解能力 潜能 求职渴望度 适应力
1 0.162 0.213 0.040 0.225 0.290 0.315 0.158 0.324 0.134 0.315 0.318 0.331 0.333 0.259 0.236
F1 a11x1 a12 x2 a1p xp F2 a21x1 a22 x2 a2 p xp
Fp ap1x1 ap2 x2 app xp
把原始变量的值代入主成分表达式中,可
以计算出主成分得分。
注意在计算主成分得分时需要先对原始变 量进行标准化。
得到的主成分得分后,可以把各个主成分 看作新的变量代替原始变量,从而达到降 维的目的。
主成分分析的几何意义
第一主成分的效果与椭圆的形状有关。椭圆越 扁平,n个点在F1轴上的方差就相对越大,在 F2轴上的方差就相对越小,用第一主成分代替 所有样品造成的信息损失就越小。
. 10
主成分分析的几何意义
x 2
F
1
F
2

原始变量 不相关时, 主成分分 析没有效 果。

因子分析与主成分分析

因子分析与主成分分析

主成分分析一、主成分分析的基本思想主成分分析(principal component analysis)是Hotelling 于1933年首先提出来的。

它是利用降维的思想,把多指标转化为少数几个综合指标的多元统计分析方法。

在实际问题的研究中,为了全面分析问题,我们往往选择许多个变量去观测,而这些变量甚至会多到十几个或几十个,因为每个变量都在不同程度上反映所研究的问题的信息。

但变量个数太多常常会增加对问题分析的复杂性,而且也给合理地分析和解释问题带来困难,所以人们自然希望选取的变量个数较少且得到的信息没有减少。

一般来说,虽然每个变量都提供了一定的信息,但实际上,众多变量间有一定的相关关系,当两个变量有一定的相关关系时,可以解释为这两个变量反映的信息有一定的重迭。

于是,从数学上考虑,就是要求有这样一种数学方法:将原来提出的所有p个变量综合成尽可能少的q 个变量,并且要求这q个综合变量既能充分反映原来的p个变量所反映的信息,又能使这q个综合变量间互不相关。

如加工一件上衣,要测量身长、袖长、领围、胸围、腰围、肩宽、背宽等十几项指标,但事实上,加工厂仅根据衣长、型号几项综合指标变能加工出适合大多数人的衣服。

如n个样本,p个变量Y=UX,此处,y1、y2…yp互不相关二、主成分分析的几何意义为了方便我们在二维空间里讨论主成分的几何意义,设有n个被试,每个被试有两个观测变量x1和x2,样本点所散布的情况如图,无论是沿着x1轴方向或x2轴方向都有较大的离散性,其离散的程度可以分别用变量x1的方差和变量x2的方差定量地表示。

显然,如果只考虑其中任何一个损失的信息都较大。

(回归)如果我们将坐标轴同时按逆时针方向旋转一个角度得到新坐标轴y1和y2,即Y=UX由于n个点在y1轴上的方差最大,因此将二维空间上点用y1这个综合变量来代替,损失的信息最小,称其为第一主成分,起到降维的效果,这样简化了结构,抓住了主要矛盾。

三、主成分分析的一般数学模型1、将原始变量标准化即对每一个变量标准化,使每一变量的平均值为0,标准差为1由于不同变量的单位不同,平均值差异很大,综合后其意义不明确因子分析12.1基本概念与方法一、因子分析的基本概念因子分析是最初是应用在教育心理学上,英国心理学家C.Spearman 于1904年发表了对学生考试成绩分析的著名文章,可以认为是因子分析方法的开始。

因子分析与主成分分析的基本原理与应用

因子分析与主成分分析的基本原理与应用

因子分析与主成分分析的基本原理与应用因子分析与主成分分析是统计学中常用的多元分析方法,用于降低数据维度、提取主要信息、捕捉变量间关系等。

本文将介绍因子分析与主成分分析的基本原理,并探讨它们在实际应用中的价值。

一、因子分析的基本原理与应用因子分析是一种用于推断观测变量背后的潜在因子结构的统计技术。

其基本原理是将多个相关的变量归纳为更少的无关因子来解释数据的变异。

使用因子分析,可以将多个变量聚合为更少的综合因子,从而简化数据分析过程。

在实际应用中,因子分析可以在不丢失太多信息的情况下,提取数据中最重要的变量。

例如,在心理学研究中,通过对大量问卷数据进行因子分析,可以将众多心理特征综合为几个核心因子,如情绪、认知、个性等。

这有助于研究者更好地理解心理特征间的关系,简化测量过程,提高数据分析效率。

二、主成分分析的基本原理与应用主成分分析是一种多元统计方法,其目的是将原始变量转化为少数几个无关的主成分,以解释数据的方差。

其基本原理是通过线性变换,将原始变量投影到一个新的坐标系中,使得变换后的变量间不相关。

主成分分析在许多领域有着广泛的应用。

例如,在金融领域,主成分分析可以应用于资产组合管理,通过将多个相关的金融指标转化为少数几个主成分,帮助投资者降低风险、优化投资组合。

在生物医学领域,主成分分析可以用于基因表达数据的降维与分类,从而帮助研究者鉴别不同类型的肿瘤、发现潜在的治疗靶点等。

三、因子分析与主成分分析的区别与联系尽管因子分析与主成分分析在某些方面有相似之处,但它们之间仍存在一些区别。

主要的区别在于其目标和假设。

因子分析更关注于数据背后的潜在结构与因子之间的关系,认为潜在因子是直接影响观测变量的原因。

而主成分分析更注重于减少数据维度、解释数据的变异,将原始变量变换为无关的主成分。

主成分分析假设没有测量误差而因子分析则允许变量间存在测量误差。

尽管两者有所区别,但由于其相似的思想和方法,因子分析与主成分分析常常被用来相互验证或者联合应用。

主成分分析与因子分析的异同比较及应用

主成分分析与因子分析的异同比较及应用

主成分分析与因子分析的异同比较及应用一、相似之处:1.降低数据维度:主成分分析和因子分析都是降维方法,通过将原始变量进行线性组合,生成一组新变量,减少原始数据的维度。

2.揭示变量之间的关系:主成分分析和因子分析都可以揭示数据中变量之间的相关性和潜在结构,更好地理解变量之间的关系。

3.数据依赖:主成分分析和因子分析都依赖原始数据的线性关系。

二、主成分分析的特点和应用:1.数据探索:主成分分析可以用于对数据进行探索性分析,揭示数据中的模式和变量之间的关系。

2.特征选择:主成分分析可以用于提取最相关的变量,帮助选择最能代表数据信息的特征。

3.数据压缩:通过保留主要的主成分,主成分分析可以将数据压缩成较低维度,减少存储和计算的开销。

4.降噪:主成分分析可以通过去除与主成分相关较小的维度,减少噪声的影响。

三、因子分析的特点和应用:因子分析的目标是通过找到能够解释原始变量间共同方差的不可观测因子,来揭示变量背后的潜在结构。

因子分析的原理是通过将多个变量通过线性函数关系表示为少数几个潜在因子的和。

因子分析可以用于以下场景:1.变量间关系建模:因子分析可以用于建立变量之间的概念模型,识别变量的共同因子、独特因子和测量误差。

2.假设测试:因子分析可以用于检验变量之间的因果关系,以验证一些假设。

3.变量缩减:通过识别共同的因子,并组合成新的因子变量,因子分析可以减少数据集的维度。

4.数据恢复:因子分析可以通过基于因子提取的结果,恢复原始变量的丢失信息。

四、主成分分析与因子分析的区别:1.目标:主成分分析的目标是将原始变量转化为一组新的不相关的维度,以解释数据方差最大化;而因子分析的目标是将原始变量转化为一组潜在因子,以解释变量间的共同方差。

2.变量假设:主成分分析假设所有变量是观测变量的线性组合,而因子分析假设所有变量既有观测变量,也有不可观测的因子变量。

3.因素解释:主成分分析的主要解释对象是方差,因而主成分的解释目标是能够包含尽可能多的方差;而因子分析的解释对象是共同方差,因而因子的解释目标是能够解释原始变量之间的共同方差。

数据分析中的因子分析与主成分分析

数据分析中的因子分析与主成分分析

数据分析中的因子分析与主成分分析在当今信息爆炸的时代,数据分析已经成为了各行各业中不可或缺的一部分。

在数据分析的过程中,因子分析和主成分分析是常用的两种统计方法。

它们可以帮助我们理解数据背后的隐藏规律和关联性。

本文将介绍因子分析和主成分分析的基本概念、应用场景以及它们之间的区别。

一、因子分析因子分析是一种用于探索多个变量之间关系的统计方法。

它的基本思想是将多个相关的变量归纳为少数几个潜在因子,从而简化数据的复杂性。

通过因子分析,我们可以找到隐藏在数据背后的共性因素,并将其用较少的变量来代表。

在因子分析中,我们需要确定两个重要的概念:因子载荷和公因子。

因子载荷表示变量与因子之间的相关性,取值范围为-1到1。

而公因子则是指影响多个变量的共同因素。

通过因子分析,我们可以得到每个变量对于每个公因子的因子载荷,从而得知变量之间的相关性以及它们与公因子的关系。

因子分析在实际应用中有着广泛的用途。

例如,在市场调研中,我们可以利用因子分析来确定消费者对于某个产品的偏好因素;在心理学研究中,我们可以通过因子分析来探索人们的个性特征。

因子分析的结果可以帮助我们更好地理解数据,为进一步的分析提供基础。

二、主成分分析主成分分析是一种用于降维的统计方法。

它的目标是通过线性组合将原始变量转化为一组新的互相无关的变量,即主成分。

主成分分析通过保留原始数据的大部分信息,同时减少数据的维度,从而达到简化数据和减少冗余的目的。

在主成分分析中,我们首先需要计算协方差矩阵。

然后,我们通过求解协方差矩阵的特征值和特征向量,得到主成分。

特征值表示主成分的重要性,而特征向量则表示主成分的方向。

通过选择特征值较大的主成分,我们可以保留较多的原始数据信息。

主成分分析在实际应用中也有着广泛的用途。

例如,在金融领域,我们可以利用主成分分析来构建投资组合,降低风险;在图像处理中,我们可以利用主成分分析来提取图像的特征。

主成分分析可以帮助我们更好地理解数据的结构,发现数据中的重要特征。

因子分析、主成分分析

因子分析、主成分分析

通过主成分分析,可以研究多个变量之间的相关性,揭示变量
之间的内在联系。
多元回归分析
03
在多元回归分析中,主成分分析可以用来消除变量间的多重共
线性,提高回归分析的准确性和稳定性。
金融数据分析
风险评估
在金融数据分析中,主成分分析可以用来评估投资组合的风险, 通过提取主要因子来反映市场的整体波动。
市场趋势分析
主成分分析案例:金融数据分析
总结词
主成分分析用于金融数据分析中,能够 降低数据维度并揭示主要经济趋势。
VS
详细描述
在金融领域,主成分分析被广泛应用于股 票、债券等资产组合的风险评估和优化。 通过对大量金融数据进行主成分分析,可 以提取出几个关键主成分,这些主成分代 表了市场的主要经济趋势。投资者可以利 用这些信息进行资产配置和风险管理。
特征提取
主成分分析能够提取出数据中的 主要特征,突出数据中的主要变 化方向,有助于揭示数据的内在 规律。
数据可视化
降低数据维度后,数据的可视化 变得更加容易,有助于直观地理 解和分析数据。
多元统计
多元数据描述
01
主成分分析可以用来描述多元数据的总体特征,提供对多元数
据分布的整体理解。
多元相关分析
02
目的
通过找出影响观测变量的潜在结构, 更好地理解数据的意义,简化复杂数 据的分析,并解决诸如多重共线性等 问题。
因子分析的原理
1 2 3
基于相关性
因子分析基于观测变量之间的相关性,通过找出 这些相关性背后的公因子来解释变量之间的依赖 关系。
降维
通过提取公因子,将多个观测变量的复杂关系简 化为少数几个潜在因子的线性组合,实现数据的 降维。

主成分分析和因子分析的区别

主成分分析和因子分析的区别

主成分分析和因子分析的区别一、二者在SPSS中的实现(一)、因子分析在SPSS中的实现进行因子分析主要步骤如下:1. 指标数据标准化(SPSS软件自动执行);2. 指标之间的相关性判定;3. 确定因子个数;4. 综合得分表达式;5. 各因子Fi命名;例子:对沿海10个省市经济综合指标进行因子分析(一)指标选取原则本文所选取的数据来自《中国统计年鉴2003》中2002年的统计数据,在沿海10省市经济状况主要指标体系中选取了10个指标:X1——GDP X2——人均GDPX3——农业增加值X4——工业增加值X5——第三产业增加值X6——固定资产投资X7——基本建设投资X8——国内生产总值占全国比重(%)X9——海关出口总额X10——地方财政收入图1:沿海10个省市经济数据(二)因子分析在SPSS中的具体操作步骤运用SPSS统计分析软件Factor过程[2]对沿海10个省市经济综合指标进行因子分析。

具体操作步骤如下:1. Analyzeà Data Reductionà Factor Analysis,弹出Factor Analysis对话框2. 把X1~X10选入Variables框3. Descriptives: Correlation Matrix框组中选中Coefficients等选项,然后点击Continue,返回Factor Analysis对话框4. 点击“OK”图2:Factor Analyze对话框与Descriptives子对话框SPSS在调用Factor Analyze过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS不会直接给出标准化后的数据,如需要得到标准化数据,则需调用Descriptives过程进行计算。

我们可以通过AnalyzeàDescriptive Statisticsà Descriptives对话框来实现:弹出Descriptives 对话框后,把X1~X10选入Variables框,在Save standardized values as variables 前的方框打上钩,点击“OK”,经标准化的数据会自动填入数据窗口中,并以Z开头命名。

第十三讲-主成分分析和因子分析

第十三讲-主成分分析和因子分析
(X X)(Y Y) n1
协方差
r (X X)(Y Y) lXY Pearson 相关系数 (X X)2 (Y Y)2 lXXlYY
r (X X) (Y Y) (X X)2 (Y Y)2
r 1 n1
XX SX
YY SY
标准化后的协方差
19
3. 求出矩阵R的全部特征值(eigenvalue) i, 第i个主成分的组合系数ai1, ai2, , aim满 足方程组: (r11- i) ai1+ r12 ai2+ + r1m aim =0 r21 ai1+ (r22- i) ai2+ + r2m aim=0 rm1 ai1+ rm2 ai2+ + (rmm- i) aim =0
23
2.主成分的贡献率与累积贡献率
(原始指标值标准化)
m
m
m
Var (Xi ) Var (Zi ) i m(指标个数)
i1
i1
i1
贡献率
i m i
i m
i1
(i 1, 2 ,,m)
累积贡献率
k i (k m)
i1 m
24
3.主成分个数的选取 (1)前k个主成分的累积贡献率>70%。 (2)主成分Zi的特征值i ≥ 1。 (3)结合专业知识判断。
1982 176 120 14 159 14 36 34 3
1983 123 153 16 183 19 57 16 6
1984 186 134 28 177 28 56 58 2
1985 211 156 35 124 33 77 45 7
1986 197 165 29 155 47 86 39 5

数据分析中的因子分析和主成分分析

数据分析中的因子分析和主成分分析

数据分析中的因子分析和主成分分析在数据分析领域,因子分析和主成分分析是两种常用的多变量分析方法。

它们可以用来处理大量的数据,找出数据的内在规律,并将数据简化为更少的变量。

本文将介绍因子分析和主成分分析的定义、应用以及它们在数据分析中的区别和联系。

一、因子分析因子分析是一种用于研究多个变量之间的潜在因素结构及其影响的统计方法。

它通过将多个观测变量转化为少数几个无关的因子,来解释变量之间的相关性。

因子分析的基本思想是将多个相关观测变量归因于少数几个潜在因子,这些潜在因子不能被观测到,但可以通过观测变量的变化来间接地推断出来。

因子分析通常包括两个主要步骤:提取因子和旋转因子。

提取因子是指确定能够解释原始变量方差的主要共性因子,常用的方法有主成分分析法和最大似然估计法。

旋转因子是为了减少因子之间的相关性,使得因子更易于解释。

常用的旋转方法有正交旋转和斜交旋转。

因子分析的应用非常广泛,可以用于市场研究、社会科学调查、心理学、金融等领域。

例如,在市场研究中,因子分析可以用来确定消费者购买行为背后的潜在因素,从而更好地理解市场需求。

二、主成分分析主成分分析是一种通过线性变换将原始变量转化为一组线性无关的主成分的统计方法。

主成分是原始变量的线性组合,具有较大的方差,能够尽可能多地解释原始数据。

主成分分析的主要思想是将原始变量投影到一个新的坐标系中,使得新坐标系上的第一主成分具有最大方差,第二主成分具有次最大方差,以此类推。

通过选择解释原始数据方差较多的前几个主成分,我们可以实现数据的降维和主要信息提取。

主成分分析在数据降维、特征提取和数据可视化等领域有广泛的应用。

例如,在图像处理中,主成分分析可以用来压缩图像数据、提取重要特征,并且可以在保留图像主要信息的同时减少存储空间的需求。

三、因子分析和主成分分析的区别和联系因子分析和主成分分析在某些方面有相似之处,但也存在明显的区别。

首先,因子分析是用于研究多个观测变量之间的潜在因素结构,而主成分分析是通过线性变换将原始变量转化为一组线性无关的主成分。

主成分分析与因子分析的比较

主成分分析与因子分析的比较

主成分分析与因子分析的比较一、主成分分析方法1、主成分分析介绍主成分分析是将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法,又称主分量分析。

在实际问题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。

但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。

人们自然希望变量个数较少而得到的信息较多。

在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。

主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映问题的信息方面尽可能保持原有的信息。

信息的大小通常用离差平方和或方差来衡量。

主成分分析的基础思想是将数据原来的p 个指标作线性组合,作为新的综合指标(123,,,p F F F F )。

其中1F 是“信息最多”的指标,即原指标所有线性组合中使()1Var F 最大的组合对应的指标,称为第一主成分;2F 为除1F 外信息最多的指标,即()'12,j i Cov F F a a =∑且()2Var F 最大,称为第二主成分;依次类推。

易知123,,,p F F F F 互不相关且方差递减。

实际处理中一般只选取前几个最大的主成分(总贡献率达到85%),达到了降维的目的。

2、主成分确定的原则假设某个总体共有n 个样本,而每个样本测得p 项指标:X 1,X 2,X 3……X p ,得到原始数据()11121212221212p p p n n np x x x x x x X X X X x x x ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦其中11211n x x X x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 1,2,3,i p = 。

将数据矩阵X 的p 个向量12p X X X 作线性组合'111121211'212122222'1122,,,p p p p p p p pp p p F a X a X a X a X F a X a X a X a X F a X a X a X a X ⎧==++⎪==++⎪⎨⎪⎪==++⎩简写成'1122,i i i pi p i F a X a X a X a X ==++ 其中1,2,3,i p =设均值()E X u =,协方差阵()D X =∑。

主成分分析与因子分析的比较与应用

主成分分析与因子分析的比较与应用

主成分分析与因子分析的比较与应用在数据分析领域,主成分分析(Principal Component Analysis,PCA)和因子分析(Factor Analysis,FA)是常用的降维技术。

它们可以帮助我们理解数据之间的关系、提取相关特征以及简化数据集。

本文将比较主成分分析和因子分析的不同之处,并探讨它们在实际应用中的具体用途。

一、主成分分析主成分分析是一种无监督学习方法,用于将高维数据转换为低维数据。

主成分分析的目标是找到一组新的低维变量,称为主成分,它们能够解释原始数据中最大的方差。

主成分分析的基本思想是将数据投影到方差最大的方向上,以便保留尽可能多的信息。

主成分分析的步骤如下:1. 标准化数据:将原始数据进行标准化处理,使得各个特征的均值为0,方差为1。

2. 计算协方差矩阵:通过计算特征之间的协方差矩阵,了解各个特征之间的相关性。

3. 计算特征值和特征向量:通过对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。

4. 选择主成分:按照特征值从大到小的顺序,选择最大的k个特征值对应的特征向量作为主成分。

5. 数据转换:将原始数据投影到所选主成分上,得到降维后的数据集。

主成分分析在实际应用中具有广泛的用途。

例如,在图像处理中,主成分分析可用于图像压缩和降噪;在金融领域,主成分分析可用于投资组合优化和资产定价;在生物科学中,主成分分析可用于基因表达数据的分析等。

二、因子分析因子分析也是一种常用的无监督学习方法,其目标是通过观察变量之间的共同变异性,识别潜在的影响因素或隐含变量。

因子分析的基本思想是将多个观测变量解释为少数几个潜在因子的线性组合,从而减少原始数据的维度。

因子分析的步骤如下:1. 建立模型:选择适当的因子分析模型,包括确定因子个数和选择因子旋转方法。

2. 估计参数:使用最大似然估计等方法,对模型中的参数进行估计。

3. 因子旋转:为了使得因子更易于解释,通常需要对因子进行旋转,常见的旋转方法有方差最大旋转和直角旋转等。

主成分及因子分析方法

主成分及因子分析方法

确定cij的步骤如下: 1)假设已经确定了η1; 2) 欲确定η2,满足:
max Var(η1T X )
s.t. η1Tη1 = 1
T max Var(η 2 X ) T s.t. η 2 η 2 = 1
η1Tη 2 = 0 (正交)
主成分分析
计算步骤: 1)计算样本相关系数矩阵R的特征根和特征向量 特征值 特征向量 2)各主成分
主成分的性质
定义:第k个主成分Yk与原始变量Xi的相关系数:
ρ Yk , X i ) (
被称为因子负荷量。
性质1 ρ Yk , X i ) = u ki λk / σ ii , k , i = 1, 2,..., p。 ( 性质2 性质3
∑ ρ( Y , X )σ
2 i =1 p k i 2 k =1 k i
1、计算相关系数矩阵R
R=corrcoef(X)
1.0000 0.8674 0.8360 0.3622 0.3367 0.7520 0.4569
0.1938 -0.0122 0.7746 0.0336 0.7271 0.1842 0.0227
1.0000 0.9042 0.1324 0.4219 0.5451 0.1631 -0.0525 -0.1275 0.6806 1.0000 0.0136 0.2503 0.4716 0.0642 -0.1767 1.0000 0.5900 0.3914 0.8557 1.0000 0.2055 0.4932 1.0000 0.5980 1.0000 0.8576
因子分析
1、基本思想 、
例如:如何反映物价的变动情况? 对各种商品的价格做全面调查固然可以达到目的,但不可取。 实际上,某一类商品中其价格之间存在明显的相关性,只要 选择几种主要商品的价格或对这几种商品的价格进行综合— —综合商品的价格(因子),就足以反映某一类物价的变动 情况。只要抓住少数几个主要因子(代表经济变量间的相互 依赖的一种经济作用),就可以帮助我们对复杂的经济问题 进行分析和解释。

主成分分析与因子分析的异同比较及应用

主成分分析与因子分析的异同比较及应用

到降维的目的,我们只提取前几个主成分,由于前三个主成 ) 法的异同 ( 数据来源于 #$$! 年 《 中国统计年鉴 》 。 指标解释: 分的累计方差贡献率已达到 -ON 以上, 所以决定用三个新变 *! —食品,*# —衣着,*% —家庭设备用品及服务,*+ —医疗保 量来代替原来的八个变量。但这三个新变量的表达还不能从 健, *& —交通和通讯, *" —娱乐教育文化服务, *, —居住, *- — 输出窗口中直接得到,因为 “ LCH<C/4/= Q0=:;* ”是指因子载 荷矩阵,每一载荷量表示主成分与对应变量的相关系数,从 结果中可以看到第一个主成分与 *! A *% A *+ A *& A *" A *, A *- 的相关 性较强,第二个主成分与 *# 的相关性较强,而第三个主成分 与每个变量的相关性都不太强。为了得到三个主成分的表达 式, 以便求得分, 还需进一步操作。 将前三个因子载荷矩阵输入到数据编辑窗口 ( 为变量 +、 , 然后利用 “ 0!A 0#A 0% ) M:0/8DC:H 5 6 9CH<B=4@ A 在对话框中输 ” 入“ , 即可得到特征向量 R! 。同理, 可 R! S .! T ’UV( &) !O" ) 打开 “ 选中 /BHF4: CD D09=C:8, 输入 %、 G*=:09=;C/@ 对话框, 得 R# , 主成分表达式为: R% 。于是, 3! S $) %O- W 3*! X $) !+" W 3*# X $) %-! W 3*% X $) %%% W 3*+ X $) %,, W 3*& X $) +!& W 3*" X $) #OO W 3*, X $) + W 3*!"#$% &$’($)*+ ,-.%$()+/

浅谈主成分分析与因子分析方法的联系与区别

浅谈主成分分析与因子分析方法的联系与区别

浅谈主成分分析与因子分析方法的联系与区别2011NO.22 China New Technologies and Products 中国新技术新产品社会科学1问题的提出在现实生活或科学研究过程中,影响某一事物的特征或该事物发展规律的因素是多元化的,我们在对这些影响因素对于事物的影响进行研究过程中,该事物的某一特征作为统计学意义上的因变量,而影响因素则作为自变量。

为了更加全面的对事物的特征或发展规律进行反映,需要综合与其相关各种影响因素进行评价,即在研究过程中对于影响事物特征或发展规律的因素需要更多的引入,对其进行综合分析和评价。

然而,多变量大样本资料尽管可以对事物特征或发展规律提供更加全面的信息,但同时带来了多重共线性等问题,使得影响因素所反映的信息重复,影响统计结果的真实性和科学性。

对此,降维思想成为解决这一问题的有效方式。

主成分分析和因子分析方法都是运用降维的思想,将多变量信息归纳为少数几个相互无关的的综合变量以反映原来数据的大部分信息。

近年来,主成分分析和因子分析方法作为一种统计分析方法在科学研究中的应用十分广泛,运用其进行多变量分析的学术文献越来越多。

然而,在实际使用过程中,常常出现一些将两种方法进行混淆的错误,由此产生的统计分析结果在科学性上大打折扣。

因子分析方法是主成分分析方法的推广和发展,两种方法之间既存在共同之处,也有着显著的差别,有必要对两种方法之间的联系和区别进行严格区分,并针对实际问题选择恰当的分析方法。

2两者的联系与区别2.1两者的联系主成分分析和因子分析方法都属于多元统计分析中处理降维的统计方法。

在数理统计的基本原理上,两者都是基于多变量的相关系数矩阵,在确保较少信息缺失的前提下(一般小于或等于15%),用少数几个不相关综合变量概括多个变量的信息(多个变量之间存在较强的相关性)。

即用少数不相关的综合变量尽可能全面的反映多个原始变量的信息,消除了原始变量的相关性,可信度得到提高,统计结果可以有效地解释现实问题。

因子分析与主成分分析

因子分析与主成分分析

因子分析与主成分分析因子分析和主成分分析是统计学中常用的降维技术,它们在数据分析和模式识别等领域中广泛应用。

本文将介绍因子分析和主成分分析的基本概念与原理,并对它们的应用进行探讨。

一、因子分析的概念与原理因子分析是一种用于发掘多个变量之间潜在关联性的方法。

当我们面对大量变量时,往往希望找到其中的共性因素来解释观测数据。

因子分析通过将变量进行降维,将原始变量解释为共同的因子或构念,从而减少信息冗余,提取数据的主要特征。

因子分析的核心思想是假设多个观测变量是由少数几个潜在因子所共同决定的。

这些潜在因子无法直接观测,但可以通过观测变量的线性组合进行间接估计。

通过因子分析,我们可以得到因子载荷矩阵,它描述了每个观测变量与潜在因子之间的关系强度。

二、主成分分析的概念与原理主成分分析是一种常用的无监督学习方法,用于降维和数据压缩。

与因子分析类似,主成分分析也采用线性组合的方式将原始变量映射到一个低维的特征空间。

主成分分析的目标是找到一组新的变量,称为主成分,它们能够最大程度地保留原始数据中的信息。

主成分分析的步骤如下:1. 标准化数据:将原始数据标准化,使得变量的均值为0,方差为1,以消除变量尺度差异的影响。

2. 计算协方差矩阵:计算标准化后的数据的协方差矩阵,用于评估各个变量之间的相关性。

3. 特征值分解:对协方差矩阵进行特征值分解,得到特征值和特征向量。

4. 选择主成分:根据特征值大小,选择要保留的主成分数量。

5. 计算主成分:将原始数据投影到所选择的主成分上,得到降维后的数据。

三、因子分析与主成分分析的应用1. 数据降维:因子分析和主成分分析可以用于降低数据集的维度,减少冗余信息。

在机器学习和数据挖掘中,高维数据集的处理往往会面临计算复杂度和过拟合等问题,降维技术可以有效解决这些问题。

2. 变量选择:通过因子分析和主成分分析,可以识别出对观测数据具有重要影响的变量。

这对于特征选择和模型建立有重要意义,可以提高模型的解释性和泛化能力。

主成分分析与因子分析的比较与应用

主成分分析与因子分析的比较与应用

主成分分析与因子分析的比较与应用引言:主成分分析(Principal Component Analysis,简称PCA)和因子分析(Factor Analysis)是常用的数据降维技术,可以用于分析数据之间的关系、提取重要特征等。

本文将对主成分分析和因子分析进行详细比较,并探讨它们的应用。

一、主成分分析主成分分析是一种无监督学习方法,用于将高维数据降低到低维空间。

其主要目标是找到一组最能代表原始数据信息的变量,称为主成分。

主成分具有以下特点:1. 无相关性:主成分之间相互独立,不存在相关性;2. 有序性:主成分按重要性排序,越靠前的主成分解释数据方差越多;3. 降维效果:通过选择前几个主成分,可以实现数据降维的效果。

主成分分析的步骤如下:1. 数据标准化:对原始数据进行标准化处理,确保各个变量具有相同的量纲;2. 构造协方差矩阵:计算各个变量之间的协方差,得到协方差矩阵;3. 特征值分解:对协方差矩阵进行特征值分解,得到特征值和特征向量;4. 选择主成分:按照特征值从大到小的顺序选择前几个主成分;5. 得分计算:计算原始数据在主成分上的投影得分;6. 降维表示:使用选取的主成分对原始数据进行降维表示。

二、因子分析因子分析也是一种数据降维技术,其目标是通过矩阵变换找到潜在的共同因子,用于解释原始数据的方差-协方差结构。

因子分析的特点包括:1. 因子解释:因子表示原始数据的共同因素,可以提取出潜在的数据模式;2. 因子相关性:因子之间可以存在相关性,反映变量之间的内在关系;3. 因子旋转:通过因子旋转可以使因子具有更好的解释性和可解释性。

因子分析的步骤如下:1. 数据标准化:对原始数据进行标准化处理,确保各个变量具有相同的量纲;2. 提取因子:通过主成分分析或最大似然估计等方法提取因子;3. 因子旋转:对提取的因子进行旋转,使得因子具有更好的解释性;4. 因子得分计算:计算各个样本在因子上的得分;5. 因子载荷计算:计算变量与因子之间的相关性;6. 解释方差:根据因子载荷矩阵解释原始数据的方差。

因子分析与主成分分析的区别与应用

因子分析与主成分分析的区别与应用

因子分析与主成分分析的区别与应用因子分析与主成分分析是统计学中常用的多变量分析方法,用于降维和提取数据中的主要信息。

虽然它们都可以用于数据分析,但在方法和应用上存在一些区别。

本文将介绍因子分析与主成分分析的区别,并讨论它们各自的应用。

一、因子分析与主成分分析的定义因子分析是一种用于研究多个观测变量之间的内在相关性结构的统计技术。

它通过将多个变量组合为少数几个“因子”来解释数据的方差。

每个因子代表一组相关性高的变量,可以帮助我们理解数据背后的潜在结构。

主成分分析是一种通过将原始变量转换为线性组合(即主成分)来降低多维数据维度的技术。

它通过找到数据中的最大方差方向来确定主成分,并逐步提取主成分,以解释数据的最大方差。

主成分分析可以帮助我们发现数据中的主要特征。

二、因子分析与主成分分析的区别1. 目的不同:因子分析的目的是确定一组能够最好地描述观测数据之间关系的因子,并解释数据中的方差。

因子分析更加关注变量之间的共同性和相关性,希望通过较少的因子来解释数据。

主成分分析的目的是通过寻找数据中的主要结构和主要特征来降低数据的维度。

主成分分析着重于方差的解释,通过线性组合来减少变量数量,提取出主要成分。

2. 基本假设不同:因子分析基于观察变量之间的共同性,假设观测变量是由一组潜在因子决定的。

它假设每个观测变量都与每个因子有一个固定的因子载荷。

主成分分析假设原始变量之间是线性相关的,并且通过线性变换,可以找到解释大部分数据方差的新变量。

3. 输出结果不同:因子分析输出因子载荷矩阵,该矩阵显示每个因子与每个观测变量之间的关系。

因子载荷表示每个因子对每个变量的贡献程度,可用于解释观测变量之间的共同性。

主成分分析输出的是主成分,每个主成分是原始变量的线性组合。

主成分按照解释的方差大小排序,因此前几个主成分更能代表原始数据的方差。

三、因子分析与主成分分析的应用因子分析的应用广泛,可以用于心理学、社会科学、市场调研等领域。

数据分析中的主成分分析和因子分析比较

数据分析中的主成分分析和因子分析比较

数据分析中的主成分分析和因子分析比较在数据分析领域,主成分分析(Principal Component Analysis,PCA)和因子分析(Factor Analysis)是常用的降维技术。

它们可以帮助我们理解和处理高维数据,找到其中的主要特征与隐藏结构。

本文将对主成分分析和因子分析进行比较,并探讨它们的应用场景和优缺点。

一、主成分分析(PCA)主成分分析是一种广泛应用于数据降维的统计方法。

其主要目标是将原始变量转换为一组无关的主成分,这些主成分按重要性递减排列。

主成分分析的基本思想是通过线性变换,将原始变量映射到一个新的坐标系中,在新的坐标系下保留下最重要的特征。

主成分分析的步骤如下:1.标准化数据:将原始数据进行标准化处理,确保各变量具有相同的尺度和方差。

2.计算相关系数矩阵:计算标准化后的数据的相关系数矩阵,用于度量变量之间的线性关系。

3.计算特征值和特征向量:通过对相关系数矩阵进行特征值分解,得到特征值和对应的特征向量。

4.选择主成分:按照特征值降序排列,选择前k个特征值对应的特征向量作为主成分。

5.映射数据:将原始数据映射到主成分空间,得到降维后的数据。

主成分分析的优点包括:1.降维效果好:主成分分析能够有效地降低数据维度,减少冗余信息,保留主要特征。

2.无信息损失:主成分之间相互无关,不同主成分之间不会出现信息重叠。

3.易于解释:主成分分析的结果可以通过特征向量进行解释,帮助我们理解数据背后的规律和因果关系。

二、因子分析(Factor Analysis)因子分析是一种用于解释变量之间相关性的统计方法。

它假设多个观察变量共同受到一个或多个潜在因子的影响。

通过因子分析,我们可以发现隐藏在多个观察变量背后的共同因素,并将原始数据转换为更少数量的因子。

因子分析的基本思想是通过寻找协方差矩阵的特征值和特征向量,找到一组潜在因子,使得在这组因子下观察变量之间的协方差最小。

因子分析的步骤如下:1.设定因子个数:根据实际情况和需要,设定潜在因子的个数。

浅谈主成分分析与因子分析基本思想主要性质应用举例计算步骤主要区别

浅谈主成分分析与因子分析基本思想主要性质应用举例计算步骤主要区别

浅谈主成分分析与因子分析1、主成分分析主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标来代替原来指标,同时根据实际需要从中可取几个较少的综合指标尽可能多地反映原来指标的信息。

这种将多个指标化为少数互相无关的综合指标的统计方法叫做主成分分析,也是数学上处理降维的一种方法。

主成分分析的一般目的是:(1)变量的降维;(2)主成分的解释。

1.1基本思想主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。

通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。

最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。

因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。

如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1,F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。

这些主成分不仅不相关,而且他们的方差依次递减。

1.2计算步骤设有n个样品,每个样品观测P个指标,将原始数据写成矩阵。

(1)将原始数据标准化,即将每个指标的原始数据减去这个指标的均值后,再除以这个指标的标准差。

(2)建立变量的相关系数阵:。

(3)求R的特征根及相应的单位特征向量。

在解决实际问题时,一般不是取p个主成分,而是根据累计贡献率的大小取前k个,称第一主成分的贡献率为,这个值越大,表明第一主成分综合信息的能力越强。

前k 个主成分的累计贡献率达到85%,表明取前k 个主成分基本包含了全部测量指标所具有的信息。

1.3算法原理(1)对资料阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n p p x x x x x x X ...................................1221111标准化,得⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n p p a a a a a a A ................................1221111 其中2)(1/)(j ij j ij ij x x n X x a --= i=1,2……n, j=1,2,……P 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈主成分分析与因子分析1、主成分分析主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标来代替原来指标,同时根据实际需要从中可取几个较少的综合指标尽可能多地反映原来指标的信息。

这种将多个指标化为少数互相无关的综合指标的统计方法叫做主成分分析,也是数学上处理降维的一种方法。

主成分分析的一般目的是:(1)变量的降维;(2)主成分的解释。

1.1基本思想主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。

通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。

最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。

因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。

如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1,F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。

这些主成分不仅不相关,而且他们的方差依次递减。

1.2计算步骤设有n个样品,每个样品观测P个指标,将原始数据写成矩阵。

(1)将原始数据标准化,即将每个指标的原始数据减去这个指标的均值后,再除以这个指标的标准差。

(2)建立变量的相关系数阵:。

(3)求R的特征根及相应的单位特征向量。

在解决实际问题时,一般不是取p个主成分,而是根据累计贡献率的大小取前k个,称第一主成分的贡献率为,这个值越大,表明第一主成分综合信息的能力越强。

前k个主成分的累计贡献率达到85%,表明取前k个主成分基本包含了全部测量指标所具有的信息。

1.3算法原理(1)对资料阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n p p x x x x x x X ...................................1221111标准化,得⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n p p a a a a a a A ................................1221111 其中2)(1/)(j ij j ij ij x x n X x a --= i=1,2……n, j=1,2,……P 。

(2)求出相关矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=pp n p p r r r r r r R ................................1221111 ∑∑∑===----=ni k ik n i j ij k ik n i j ij jk a a a a a a a a r 12121)()(/)()(式中i 为标本编号,j,k=1,2,…P 。

其中,∑==ni ij j a n a 11。

此相关矩阵为一对称矩阵,所以在下面的计算中取上三角阵R 上=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡pp p p r r r r r r (22211211)(3)求出R 上的特征及特征向量。

求R 上矩阵的特征值及特征向量有许多方法,特征方程法、迭代法等(4)求出主成分。

将求出的特征值按大小依次排列,使得p λλλ>>>...21,根据%85/11≥∑∑==p i i m i i λλ原则确定m ,并依次排列特征向量12,,....m u u u 就可得出我们所需的主成分。

1.4主要性质主成分性质主要包括以下几点:(1)设p个n维随机向量X1,X2….Xp 协方差矩阵为∑,∑的特征值为λ1≥λ2≥…≥λp >0,相应的单位特征向量为:12p μμμ,,...,则x的主成分可表示为:Fi=μ’iX=μi1X1+μi2X2+…+μipXp, i=1,2,…,p记μi=(μi1,μi2,…μip)T(2)p个主成分均值为0,且p个主成分不相关。

(3)主成分的方差之和与原始变量的方差之和相等,也就是说,经过变化后,变量间的变异性没有改变,信息没有损失。

(4) 称1k k p ii λαλ==∑为第k个主成分的方差贡献率,称111k i m i i p i i i λαλ====∑∑∑为前k个主成分的累积方差贡献率。

在解决实际问题时,一般不是取p个主成分,而是根据累计贡献率的大小取前k个。

如果前k个主成分的累积贡献率达到85%,明取前k个主成分基本包含了全部测量指标所具有的信息,这样即减少了变量的个数有利于对实际问题的分析和研究。

(5) 若Fi=μ’iX是数据矩阵x的主成分则1Y k X ρ=,i=1,2,...p) 是Yi 与Xk 的相关系数。

1.5主成分分析方法应用实例实例:对流域系统的主成分分析下表给出了某流域系统57个流域盆地的9项变量指标。

其中,x1代表流域盆地总高度(m ),x2代表流域盆地山口的海拔高度(m ),x3代表流域盆地周长(m ),x4代表河道总长度(m ),x5代表河道总数,x6代表平均分叉率,x7代表河谷最大坡度(度),x8代表河源数,x9代表流域盆地面积(km2)。

分析过程:① 将表3.5.1中的原始数据作标准化处理,然后将它们代入相关系数公式计算,得到相关系数矩阵(表3.5.2)。

②由相关系数矩阵计算特征值,以及各个主成分的贡献率与累计贡献率(见表3.5.3)。

由表3.5.3可知,第一,第二,第三主成分的累计贡献率已高达86.5%,故只需求出第一、第二、第三主成分z1,z2,z3即可。

z3上的载荷。

2、因子分析因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。

它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。

对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。

2.1基本思想因子分析的基本思想是通过变量(或样品)的相关系数矩阵(对样品是相似系数矩阵)内部结构的研究,找出能控制所有变量(或样品)的少数几个随机变量去描述多个变量(或样品)之间的相关(相似)关系,但在这里,这少数几个随机变量是不可观测的,通常称为因子。

然后根据相关性(或相似性)的大小把变量(或样品)分组,使得同组内的变量(或样品)之间相关性(或相似性)较高,但不同组的变量相关性(或相似性)较低。

2.2计算步骤(1)将原始数据标准化,以消除变量间在数量级和量纲上的不同;(2)求标准化数据的相关矩阵;(3)求相关矩阵的特征值和特征向量;(4)计算方差贡献率与累积方差贡献率;(5)确定因子:设F1,F2,…,Fp 为p 个因子,其中前m 个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m 个因子来反映原指标。

2.3算法原理因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。

它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。

对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。

因子分析的数学模型如下:(1)符号与假定设有n 个样本,每个样本观测p 个变量,记:原始变量矩阵为X : , 公共因子变量矩阵为F: , 特殊因子矩阵为E : ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p x x x X ......21⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=q F F F F ......21⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p e e e E (21)假定因子模型具有以下性质:1. E(x)=0,cov(x)=∑2. E(F)=0,cov(F)=I3. E(E)=0,cov(e)=diag(σ12,σ22,…,σp2)4. Cov(F,E)=0若用矩阵形式表示,则为:X=AF+E式中的A ,称为因子载荷矩阵,并且称ij a 为第i 个变量在第j 个公共因子上的载荷,反映了第i 个变量在第j 个公共因子上的相对重要性。

可以证明因子载荷ij a 为第i 个变量i x 与第j 个公共因子j F 的相关系数,即反映了变量与公共因子的关系密切程度,ij a 越大,表明公共因子j F 与变量i x 的线性关系越密切。

模型中F1,F2,…,Fm 叫做主因子或公共因子,它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量。

公共因子的含义,必须结合具体问题的实际意义而定。

1e ,2e ,…,p e 叫做特殊因子,是向量x 的分量i x (i=1,2,…,p)所特有的因子,各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的。

模型中载荷矩阵A 中的元素(ij a )是为因子载荷。

因子载荷ij a 是i x 与j F 的协方差,也是i x 与j F 的相关系数,它表示i x 依赖j F 的程度。

可将ij a 看作第i 个变量在第j 公共因子上的权,ij a 的绝对值越大(|ij a |£1),表明i x 与j F 的相依程度越大,或称公共因子j F 对于i x 的载荷量越大。

为了得到因子分析结果的经济解释,因子载荷矩阵A 中有两个统计量十分重要,即变量共同度和公共因子的方差贡献。

因子载荷矩阵A 中第i 行元素之平方和记为2i h ,称为变量i x 的共同度。

它是全部公共因子对i x 的方差所做出的贡献,反映了全部公共因子对变量i x 的影响。

2i h 大表明x 的第i 个分量i x 对于F 的每一分量F1,F2,…,Fm 的共同依赖程度大。

p p pp p p p p p p p e F a F a F a x e F a F a F a x e F a F a F a x ++++=++++=++++=............ (22112)22221212112121111将因子载荷矩阵A 的第j 列(j=1,2,…,m)的各元素的平方和记为2j g ,称为公共因子j F 对x 的方差贡献。

2j g 就表示第j 个公共因子j F 对于x 的每一分量i x (i=1,2,…,p)所提供方差的总和,它是衡量公共因子相对重要性的指标。

2j g 越大,表明公共因子j F 对x 的贡献越大,或者说对x 的影响和作用就越大。

如果将因子载荷矩阵A 的所有2j g (j=1,2,…,m)都计算出来,使其按照大小排序,就可以依此提炼出最有影响力的公共因子。

相关文档
最新文档