[最新版]高考理科数学 《二项式定理》题型归纳与训练

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考 数学题型归纳与训练

高考理科数学 《二项式定理》题型归纳与训练

【题型归纳】

题型一 二项式定理展开的特殊项

例 在二项式5

21⎪⎭⎫ ⎝⎛-x x 的展开式中,含4x 的项的系数是( ) A .10- B .10

C .5-

D .5

【答案】B

【解析】对于()()r r r r

r r r x C x x

C T 3105525111--+-=⎪⎭⎫ ⎝⎛-=,对于2,4310=∴=-r r ,则4x 的项的系数是()101225=-C 【易错点】公式记错,计算错误。

【思维点拨】本题主要考查二项式定理的展开公式,知道什么是系数,会求每一项的系数.

题型二 求参数的值

例 若二项式n x x ⎪⎭⎫ ⎝

⎛+21的展开式中,第4项与第7项的二项式系数相等,则展开式6x 的系数为________.(用数字作答)

【答案】9

【解析】根据已知条件可得: 96363=+=⇒=n C C n n , 所以n

x x ⎪⎭⎫ ⎝

⎛+21的展开式的通项为23999912121C r r r

r r x C x x T --+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=,令26239=⇒=-r r ,所以所求系数为921292=⎪⎭⎫ ⎝⎛C . 【易错点】分数指数幂的计算

【思维点拨】本题主要考查二项式定理的展开公式,并用其公式求参数的值.

题型三 展开项的系数和

例 已知()()()()10

102210101...111x a x a x a a x -++-+-+=+,则8a 等于( ) A .180-

B .180

C .45

D .45-

【答案】B

【解析】由于()()[]1010121x x --=+,又()[]10

12x --的展开式的通项公式为: ()[]()()r

r r r r r r r x C x C T -⋅⋅⋅-=--⋅⋅=--+12112101010101,在展开式中8a 是()81x -的系数,所以应取8=r ,

∴()1802128108

8=⋅⋅-=C a . 【易错点】对二项式的整体理解

【思维点拨】本题主要对二项式定理展开式的综合考查,学会构建模型

题型四 二项式定理中的赋值

二项式()932y x -的展开式中,求:

(1)二项式系数之和;

(2)各项系数之和;

(3)所有奇数项系数之和.

【答案】(1)9

2 (2)-1 (3)2

159- 【解析】设()9927281909...32y a y x a y x a x a y x ++++=+ (1)二项式系数之和为9992919

092...=++++C C C C . (2)各项系数之和为()132 (9)

9210-=-=++++a a a a (3)由(2)知1...9210-=++++a a a a ,令1,1-==y x ,得992105...=++++a a a a ,将两式相加,得

2

15986420-=++++a a a a a ,即为所有奇数项系数之和. 【思维点拨】本题主要学会赋值法求二项式系数和、系数和,难点在于赋值

【巩固训练】

题型一 二项式定理展开的特殊项

1.在 ()10

2-x 的展开式中,6x 的系数为( ) A .41016C B .41032C C .6108C - D .61016C -

【答案】A

高考 数学题型归纳与训练

【解析】解:()4,610,210101==-∴-=-+r r x C T r r r r ,6x 的系数为()4104

410162C C =- 2.8

22⎪⎭⎫ ⎝⎛+x x 的展开式中4x 的系数是________ 【答案】1120

【解析】解:r r r r r r r x C x

x C T 316--88281+2=)2()(=,4=316∴r -,解得4=r ,所以4x 的系数为11202484=C

3.在()()6

321x x +-的展开式中,5x 的系数是________ . (用数字作答) 【答案】228-

【解析】解:()()6

321x x +-的展开式中,5x 的系数是2282226456-=-C C 题型二 求参数的值

1.已知()n

x 31+的展开式中含有2x 的系数是54,则n =________ . 【答案】4

【解析】解:()n x 31+的展开式中通项公式:()r

r n r n r x C T 311-+= ∵含有2x 的系数是54,∴r =2. ∴ 54322=n C ,可得 62=n

C ,∴()*,621N n n n ∈=÷- ,解得4=n . 2.在 6

⎪⎭⎫ ⎝⎛+x a x ()0>a 的展开式中常数项的系数是60,则a 的值为________ . 【答案】2

【解析】解:r r r r r r

r x C a x a x C T 2336661+=)()(=--,令0=2

33r -,解得r=2. ∴ 60262=C a ,a >0,解得a=2.

3.在()52x +的展开式中,3x 的系数为 .(用数字作答)

【答案】40

【解析】利用通项公式,,2551r r r r x C T -+=,令3=r ,得出3x 的系数为40235

2=C

相关文档
最新文档