多元统计分析--聚类分析

合集下载

应用多元统计分析聚类分析

应用多元统计分析聚类分析

应用多元统计分析聚类分析多元统计分析是一种利用多个变量对数据进行综合分析的方法,通过对各个变量之间的关系进行分析,可以帮助我们了解数据的内在规律,揭示变量之间的相互作用,为问题的解决提供依据和参考。

其中,聚类分析是多元统计分析中的一种方法,它通过将样本数据划分为不同的组别,使得组内的样本之间相似度较高,组间的样本相似度较低,从而实现数据的分类和整理。

聚类分析的过程一般可分为以下几个步骤:1.确定聚类的目标与方法:在进行聚类分析之前,需要明确分析的目标,即希望把样本分成多少个组别,以及采用什么样的分析方法。

2.选择合适的变量和数据:聚类分析需要选择一些具有代表性的变量作为分析对象,并准备好相应的数据。

这些变量可以是数值型、名义型或顺序型的,但需要注意的是,不同类型的变量需要采用不同的距离度量。

3.计算样本间的距离:通过选择合适的距离度量方法,可以度量各个样本之间的相似度或距离,常用的距离度量方法有欧氏距离、曼哈顿距离和相关系数等。

4.执行聚类分析:根据选定的聚类方法,进行聚类分析。

常用的聚类方法有层次聚类和非层次聚类两种,其中层次聚类可以进一步分为凝聚聚类和分裂聚类等。

5.判断聚类结果的合理性:根据实际情况和问题要求,对得到的聚类结果进行合理性检验。

可以通过观察不同聚类组别内的样本特征和组间的差异度,评估聚类结果的合理性。

6.解释和应用聚类结果:根据聚类分析得到的结果,可以对分类的样本进行解释和应用。

例如,可以找到各个类别的典型样本,分析其特征和规律,为问题的解决提供参考和支持。

聚类分析在实际应用中具有很广泛的应用价值。

例如,在市场细分方面,可以利用聚类分析将消费者划分为不同的群体,有针对性地开展精准营销;在医药领域中,可以通过聚类分析将疾病患者划分为不同的病种,帮助医生进行诊断和治疗方案的选择;在社会科学研究中,可以利用聚类分析将受访者划分为不同的人群,通过对不同人群的特征分析,了解社会问题背后的机制和原因。

多元统计分析中的因子分析和聚类分析

多元统计分析中的因子分析和聚类分析

在多元统计分析中,因子分析和聚类分析是两种常用的数据分析方法。

它们可以帮助我们理解数据中的潜在结构和相似性,从而揭示数据背后的规律和关系。

首先,让我们来了解一下因子分析。

因子分析是一种主成分分析方法,用于研究多个变量之间的相关性。

通过对原始数据进行因子提取,可以将一组相关的变量转换为少数几个无关的维度,这些维度被称为因子。

因子分析的核心思想是将一组相关的变量解释为共同的因素或维度,从而减少数据的复杂性。

因子分析可以帮助我们理解变量之间的内在结构,并找到隐藏在数据背后的影响因素。

聚类分析是一种无监督学习方法,用于将数据集中的对象划分为不同的群组。

聚类分析的目标是找到数据中的相似性并将其归类到同一组中。

聚类分析可以帮助我们识别数据中的模式和群组,并进行数据的分类和分析。

聚类分析可以基于数据的相似性进行聚类,也可以基于数据的距离进行聚类。

通过聚类分析,我们可以发现数据中的群组结构,并推断这些群组之间的关系。

因子分析和聚类分析在多元统计分析中扮演着不同的角色。

因子分析更侧重于变量之间的相关性和潜在结构,可以帮助我们理解变量之间的共同特征和因素。

聚类分析则更侧重于数据的相似性和群组结构,可以帮助我们找到数据中的模式和群组。

由于它们的不同特点和应用场景,因子分析和聚类分析常常被结合使用,以获得更全面的数据分析结果。

在实际应用中,因子分析和聚类分析可以用于许多领域。

在社会科学中,因子分析可以用于分析调查问卷数据,找到共同的问题维度和影响因素。

聚类分析可以用于市场细分和受众分析,帮助企业发现潜在的目标市场并制定相应的营销策略。

在医学研究中,因子分析可以用于分析疾病的症状和因素,聚类分析可以用于发现疾病的亚型和患者的分类。

综上所述,因子分析和聚类分析在多元统计分析中发挥着重要作用。

它们可以帮助我们理解数据中的潜在结构和相似性,并用于数据分类、模式识别和关联分析。

因子分析和聚类分析是数据分析中常用的工具,研究人员可以根据具体问题和数据特点选择合适的方法。

多元统计分析 第5章 聚类分析

多元统计分析 第5章 聚类分析

余弦相似性 Cosine Similarity
A document can be represented by thousands of attributes,
p (such as each recording the frequency of a particular word keywords) or phrase in the document. xi yi
feature mapping, ... Cosine measure: If d1 and d2 are two vectors (e.g., termfrequency vectors), then cos(d1, d2) = (d1 d2) /||d1|| ||d2|| ,
where indicates vector dot product, ||d||: the length of vector d
d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0) d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1) d1 d2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25 ||d1||= (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)0.5=(42)0.5 = 6.481 ||d2||= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)0.5=(17)0.5 = 4.12 cos(d1, d2 ) = 0.94

多元统计分析——基于R 语言 PPT课件-聚类分析

多元统计分析——基于R 语言 PPT课件-聚类分析
多元统计分析
——基于R语言
中国人民大学:何晓群
苏州大学:马学俊
03
聚类分析
➢学习目标:
1.了解适合用聚类分析解决的问题;
2.理解对象之间的相似性是如何测量的;
3.区别不同的距离;
4.区分不同的聚类方法及其相应的应用;
5.理解如何选择类的个数;
6.简述聚类分析的局限。
3.1 聚类分析的基本思想
3.1.1 目的
的关系越密切; 的绝对值越接近0,表示指标和指标的关系越疏远。对于间隔尺度,常用的
相似系数有夹角余弦和相关系数。
(1)夹角余弦:指标向量 1 , 2 , … , 和 1 , 2 , … , 之间的夹角余弦
ij 1 =
间隔尺度定义
σ=1
+ )个样品,它们的重心用ത , ത , ത 表示,则
1
ത = ( ത + ത )

某一类 的中心为ത ,它与新类 的距离为2 (, ) = (ത − ത )’ (ത −ത ),经证明重心法的递推
公式为:






聚类分析不仅可以用来对样品进行分类,而且可以用来对变量进行分类。对样品的分类
常称为型聚类分析,对变量的分类常称为型聚类分析。与多元分析的其他方法相比,
聚类分析的方法还是比较粗糙的,理论上也不算完善,但由于它能解决许多实际问题,所
以很受实际研究者重视,同回归分析、判别分析一起称为多元分析的三大方法。
和ഥ
间距离。
(5)离差平方和法: = σ∈ ( −ത )′ ( − ത ) , = σ∈ ( −ത )′ ( − ത ) ,

+ = σ∈ ⊔ ( −)ҧ ( − ),

多元统计分析-聚类分析

多元统计分析-聚类分析

多元统计分析-聚类分析聚类分析是⼀个迭代的过程对于n个p维数据,我们最开始将他们分为n组每次迭代将距离最近的两组合并成⼀组若给出需要聚成k类,则迭代到k类是,停⽌计算初始情况的距离矩阵⼀般⽤马⽒距离或欧式距离个⼈认为考试只考 1,2⽐较有⽤的⽅法是3,4,5,8最喜欢第8种距离的计算 欧式距离 距离的⼆范数 马⽒距离 对于X1, X2均属于N(u, Σ) X1,X2的距离为 (X1 - X2) / sqrt(Σ)那么不同的聚类⽅法其实也就是不同的计算类间距离的⽅法1.最短距离法 计算两组间距离时,将两组间距离最短的元素作为两组间的距离2.最长距离法 将两组间最长的距离作为两组间的距离3.中间距离法 将G p,G q合并成为G r 计算G r与G k的距离时使⽤如下公式 D2kr = 1/2 * D2kp + 1/2 * D2kq + β * D2pq β是提前给定的超参数-0.25<=β<=04.重⼼法 每⼀组都可以看成⼀组多为空间中点的集合,计算组间距离时,可使⽤这两组点的重⼼之间的距离作为类间距离 若使⽤的是欧⽒距离 那么有如下计算公式 D2kr = n p/n r * D2kp + n q/n r * D2kq - (n p*n q / n r*n r ) * D2pq5.类平均法 两组之间的距离 = 组间每两个样本距离平⽅的平均值开根号 表达式为D2kr = n p/n r * D2kp + n q/n r * D2kq6.可变类平均法 可以反映合并的两类的距离的影响 表达式为D2kr = n p/n r *(1- β) * D2kp + n q/n r *(1- β) * D2kq + β*D2pq 0<=β<17.可变法 D2kr = (1- β)/2 * (D2kp + D2kq) + β*D2pq8.离差平⽅和法 这个⽅法⽐较实⽤ 就是计算两类距离的话,就计算,如果将他们两类合在⼀起之后的离差平⽅和 因为若两类本⾝就是⼀类,和本⾝不是⼀类,他们的离差平⽅和相差较⼤ 离差平⽅和:类中每个元素与这⼀类中的均值距离的平⽅之和 若统⼀成之前的公式就是 D2kr = (n k + n p)/(n r + n k) * D2kp + (n k + n q)/(n r + n k) -(n k)/(n r + n k) * * D2pq⼀些性质 除了中间距离法之外,其他的所有聚类⽅法都具有单调性 单调性就是指每次聚类搞掉的距离递增 空间的浓缩和扩张 D(A)>=D(B) 表⽰A矩阵中的每个元素都不⼩于B D(短) <= D(平) <= D(长) D(短,平) <= 0 D(长,平) >= 0 中间距离法⽆法判断。

多元统计分析课件第五章_聚类分析

多元统计分析课件第五章_聚类分析
(3)按(5.12)计算新类与其它类的距离。 (4)重复(2)、(3)两步,直到所有元素。并成一类为
止。如果某一步距离最小的元素不止一个,则对应ቤተ መጻሕፍቲ ባይዱ些
最小元素的类可以同时合并。
【例5.1】设有六个样品,每个只测量一个指标,分别是1, 2,5,7,9,10,试用最短距离法将它们分类。
(1)样品采用绝对值距离,计算样品间的距离阵D(0) ,见 表5.1
一、系统聚类的基本思想
系统聚类的基本思想是:距离相近的样品(或变量)先聚成 类,距离相远的后聚成类,过程一直进行下去,每个样品 (或变量)总能聚到合适的类中。系统聚类过程是:假设总 共有n个样品(或变量),第一步将每个样品(或变量)独 自聚成一类,共有n类;第二步根据所确定的样品(或变量) “距离”公式,把距离较近的两个样品(或变量)聚合为一 类,其它的样品(或变量)仍各自聚为一类,共聚成n 1类; 第三步将“距离”最近的两个类进一步聚成一类,共聚成n 2类;……,以上步骤一直进行下去,最后将所有的样品 (或变量)全聚成一类。为了直观地反映以上的系统聚类过 程,可以把整个分类系统画成一张谱系图。所以有时系统聚 类也称为谱系分析。除系统聚类法外,还有有序聚类法、动 态聚类法、图论聚类法、模糊聚类法等,限于篇幅,我们只 介绍系统聚类方法。
在生物、经济、社会、人口等领域的研究中,存在着大量量 化分类研究。例如:在生物学中,为了研究生物的演变,生 物学家需要根据各种生物不同的特征对生物进行分类。在经 济研究中,为了研究不同地区城镇居民生活中的收入和消费 情况,往往需要划分不同的类型去研究。在地质学中,为了 研究矿物勘探,需要根据各种矿石的化学和物理性质和所含 化学成分把它们归于不同的矿石类。在人口学研究中,需要 构造人口生育分类模式、人口死亡分类状况,以此来研究人 口的生育和死亡规律。

多元统计分析期末考试考点

多元统计分析期末考试考点

多元统计分析期末考试考点The following text is amended on 12 November 2020.二名词解释1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。

将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。

使类内对象的同质性最大化和类间对象的异质性最大化3、随机变量:是指的值无法预先确定仅以一定的可能性(概率)取值的量。

它是由于随机而获得的非确定值,是概率中的一个基本概念。

即每个分量都是随机变量的向量为随机向量。

类似地,所有元素都是随机变量的矩阵称为随机矩阵。

4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量三、计算题解:答:答:题型三解答题1、简述多元统计分析中协差阵检验的步骤答:第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域;第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。

2、简述一下聚类分析的思想答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。

把相似的样品或指标归为一类,把不相似的归为其他类。

直到把所有的样品(或指标)聚合完毕.3、多元统计分析的内容和方法答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。

(1)主成分分析(2)因子分析(3)对应分析等2、分类与判别,对所考察的变量按相似程度进行分类。

《多元统计分析》第四章 聚类分析

《多元统计分析》第四章  聚类分析
记G1={1},G2={2},G3={6},G4={8},G5={11},样品间采用绝对值 距离。

G1
G2
G3
G4
G5
G1
0
G2
1
0
G3
5
4
0
G4
7
6
2
0
G5
10
9
5
3
0
G6=G1∪G2={1,2}。
6

G6
G3
G4
G5
G6
0
G3
4
0
G4
6
2
0
G5
9
5
3
0
G7=G3∪G4={6,8}。
x1:食品
x5:交通和通讯
x2:衣着
x6:娱乐教育文化服务
x3:家庭设备用品及服务 x7:居住
x4:医疗保健
x8:杂项商品和服务
分别用最短距离法、重心法和Ward方法对各地区作聚类分析。为同等
地对待每一变量,在作聚类前,先对各变量作标准化变换。
18
地区 北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东
类与类之间的距离定义为两类最远样品间的距离,即
DKL

max
iGK , jGL
dij
最长距离法与最短距离法的并类步骤完全相同,只是递推公式不同。
10
最长距离法的递推公式
DMJ maxDKJ , DLJ
11
最长距离法容易被异常值严重地扭曲。
12
3.类平均法
有两种定义。
xi*

xi
xi sii

《多元统计分析》第四章 聚类分析

《多元统计分析》第四章  聚类分析

类与类之间的距离定义为两类最远样品间的距离,即
DKL

max
iGK , jGL
dij
最长距离法与最短距离法的并类步骤完全相同,只是递推公式不同。
10
最长距离法的递推公式
DMJ maxDKJ , DLJ
11
最长距离法容易被异常值严重地扭曲。
12
3.类平均法
有两种定义。
记G1={1},G2={2},G3={6},G4={8},G5={11},样品间采用绝对值 距离。

G1
G2
G3
G4
G5
G1
0
G2
1
0
G3
5
4
0
G4
7
6
2
0
G5
10
9
5
3
0
G6=G1∪G2={1,2}。
6

G6
G3
G4
G5
G6
0
G3
4
0
G4
6
2
0
G5
9
5
3
0
G7=G3∪G4={6,8}。
xi*

xi
xi sii
,
i 1, 2,, p
其中 xi 和sii分别为xi的样本均值和样本方差。
4
绝对值距离
v
p
d x, y xi yi
i 1
v 常被形象地称作“城市街区”距离,
当我们对某城市(需考虑彼此之间
路程)的位置点进行聚类时,使用
绝对值距离一般是合适的。
5
马氏距离
3
《多元统计分析》
4.2 距离Байду номын сангаас相似系数

多元统计分析聚类分析

多元统计分析聚类分析

[ ( xi xi ) ][ ( xj x j ) ]
2 2
n
n
1
1
相似矩阵
第三节 八种系统聚类方法
(hierarchical clustering method)
系统聚类法是诸聚类分析方法中使用最多 的一种,按下列步骤进行:
将n个样品各作为一类
计算n个样品两两之间的距离,构成距离矩阵 合并距离最近的两类为一新类 计算新类与当前各类的距离。再合并、计算 ,直至只有一类为止
如果在某一步将类Gp与Gq类合并为Gr,任一类Gk和新 Gr的距离公式为:

时,由初等几何知就是上面三角形的中线。
D2(0)
G1={X1}
G1
0
G2
G3
G4
G5
G2={X2}
G3={X3} G4={X4} G5={X5}
1
6.25 36 64
0
2.25 25 49 0 12.25 30.25 0 4 0
(2)相似系数
研究样品间的关系常用距离,研究指标( 变量)间的关系常用相似系数。 相似系数常用的有:夹角余弦与相关系数
2、对指标(变量)分类(R型)
相似系数的定义
夹角余弦(Cosine)
相似矩阵
变量间相似矩阵
相关系数
ij
( x x )( x x )
1 i i j j n
64
49
30.25
4
0
D2(1)
G6
G3 0
G4
G5
G6={X1, X2}
G3={X3}
0
4
={X4}
G5={X5}
30.25
56.25

多元统计分析简介

多元统计分析简介
聚类分析可以分为:Q型(样品分类)分类、 R型(指标分类)分类。这里介绍的是Q型(样 品分类)分类。
1. 聚类分析
聚类分析前的预处理步骤:
1)确定聚类类型:对样品聚类称Q型聚类; 对变量聚类称R型聚类。
2)数据预处理 原因:实际应用所使用的样本资料中,由于不同 的变量具有不同的计量单位(或量纲),并且具 有不同的数量级,为了使具有不同计量单位和数 量级的数据能够放在一起进行比较分析,通常都 要对数据进行变换处理。
2 判别分析
逐步判别法的步骤:
1.计算各总体中各变量的均值和总均值以及似然统 计量,规定引入变量和剔除变量的临界值F进、F出。
2.逐步计算,计算全部变量的判别能力,在已入选 变量中考虑剔除可能存在的最不显著变量。在未选 入变量中选出最大判别能力的变量,对变量作F检验 通过检验则接受,否则剔除变量。直到能剔除又不 能增加新变量,逐步计算结束。
写出判别函数; 4.计算类内协方差矩阵W及总各协方差矩阵T作多个变
量的全体判别效果的检验; 5.各个变量的判别能力的检验; 6.判别新样本应属于的类别。
2 判别分析
逐步判别法
在判别问题中,当判别变量个数较多时,如果 不加选择地一概采用来建立判别函数,不仅计算量 大,还由于变量之间的相关性,可能使求解逆矩阵 的计算精度下降,建立的判别函数不稳定。因此适 当地筛选变量的问题就成为一个很重要的事情。凡 具有筛选变量能力的判别分析方法就统称为逐步判 别法。
2 判别分析
逐步判别法其基本思路类似于逐步回归分析,按 照变量是否重要逐步引入变量,每引入一个“最重要” 的变量进入判别式,同时要考虑较早引入的变量是否 由于其后的新变量的引入使之丧失了重要性变得不再 显著了(例如其作用被后引入地某几个变量的组合所 代替),应及时从判别式中把它剔除,直到判别式中 没有不重要的变量需要剔除,剩下来的变量也没有重 要的变量可引入判别式时,逐步筛选结束。也就是说 每步引入或剔除变量,都作相应的统计检验,使最后 的判别函数仅保留“重要”的变量。

多元统计分析K聚类(方法步骤分析总结)

多元统计分析K聚类(方法步骤分析总结)

K聚类一、实验过程1.将数据5.7导入至SPSS中,分析-分类-K均值聚类分析,将8个行业放到变量中,地区放到label cases中,设定聚类数=3。

2.点击“迭代”,设定最大迭代次数为10,迭代标准为0,点击继续3.点击“保存”,选择“聚类成员”及“与聚类中心的距离”4.点击“选项”,选择如下点击继续5.点击确定后,得到如下实验结果:二、实验结果分析:1. 给出初始的聚类中心2. 给出每次迭代结束后类中心的变动从表中可以看出共经历了4次迭代,即4次迭代后,聚类中心的变化为0,迭代停止。

表中,聚类一列中给出观测量所属的类别,距离列给出了观测量与所属聚类中心的距离。

综合第三个表及第四个表,可以看出将31个地区按8个产业分成3类后,北京,江苏,浙江,山东,广东为第一类。

这一类聚类中心8个产业的产值分别为1165.95,143.78,135.89,263.39,61.36,176.16,152.99,559.62亿元。

第二类包括天津和上海,剩下的24个地区为第三类。

表中给出的是三类聚类中心间的距离6. 进行单因素方差分析结果显示,8个变量在三个类别中均存在显著差异,说明结果有效。

综合上述表格,按照个产业的发展水平将中国31个地区分成3类:第一类为北京,江苏,浙江,山东,广东,属于经济发达地区。

该类中心的产值分别为1165.95,143.78,135.89,263.39,61.36,176.16,152.99,559.62亿元。

第二类为天津和上海,属于较发达地区。

该类中心的产值分别为2064.94,170.58,272.73,445.55,80.96,266.19,251.86,717.59亿元。

第三类为余下的24个地区,属于欠发达地区。

该类中心的产值分别为428.07,82.50,73.91,89.18,26.04,28.29,38.64,185.03亿元。

多元统计分析——聚类分析

多元统计分析——聚类分析

多元统计分析——聚类分析多元统计分析中的聚类分析(Cluster Analysis)是一种将相似的个体或对象归为一类的数据分析方法。

聚类分析的目的是通过寻找数据中的相似性来识别或发现存在的模式和结构,可以帮助我们理解和解释数据中的复杂性。

聚类分析在许多领域中都得到了广泛的应用,例如市场细分、社会学、生物学、医学等。

聚类分析的基本原理是将数据样本根据其相似性归为不同的组或类。

相似性可以通过计算数据之间的距离或相似度来度量。

常用的距离度量方法有欧氏距离、曼哈顿距离、闵可夫斯基距离等,相似度度量方法有相关系数、夹角余弦等。

在聚类分析中,我们通常将相似的样本放在同一类别中,不相似的样本放在不同类别中。

聚类分析可以分为两种类型:层次聚类和划分聚类。

层次聚类是一种将数据样本分层次地组织成树状结构的聚类方法。

划分聚类则是将数据样本划分为预先确定的K个不重叠的类的聚类方法。

其中最常用的层次聚类算法有聚合法和分裂法,最常用的划分聚类算法是K均值算法。

聚类分析的基本步骤包括数据准备、相似度度量、类别划分和结果解释。

在数据准备阶段,需要选择合适的变量和样本。

相似度度量是聚类分析的核心,不同的距离或相似性度量方法可能会导致不同的聚类结构。

类别划分可以根据层次聚类算法或划分聚类算法来进行。

结果解释则是对聚类结果进行分析和解释,常用的方法包括聚类矩阵、平均距离图、树状图等。

聚类分析的优势在于能够帮助我们理解数据中的结构和模式,发现数据中的共性和差异性。

聚类分析可以为我们提供有关样本之间的关系和特征的重要信息。

此外,聚类分析还可以帮助我们进行市场细分和目标市场选择、发现新的疾病群和药物靶点等。

然而,聚类分析也存在一些局限性。

首先,聚类结果可能会受到初始聚类中心选择的影响。

其次,聚类结果的解释需要结合领域知识和专家判断,可能存在主观性。

此外,聚类分析对数据的样本大小和变量数目也有一定的要求,数据的维度增加会导致计算量的增加。

多元统计分析聚类分析多元统计聚类分析论文

多元统计分析聚类分析多元统计聚类分析论文

多元统计分析聚类分析多元统计聚类分析论文多元统计分析论文—论科研经费与效益的关系[摘要]研究多元统计分析的理论,利用主成分分析和聚类分析的方法对区域经济指标体系进行分析和综合,找出实质体的数量特征和内在统计规律性。

通过实际的历史数据进行演算,证实与当时的客观实际情况相吻合,为决策部门衡量本地区的经济发展,制定科学决策提供了有利的支持。

[关键词]多元统计分析;主成分分析;聚类分析;因子分析;Study on the theory of multivariate statistical analysis, using the methods of principal component analysis and cluster analysis on the index system of regional economyFor analysis and synthesis, to find out the essence of the number of features and the internal statistical regularity. Through the historical data of calculus, that is consistent with the actual circumstances, to measure the local area for the decision-making department of economic development, and provide beneficial support to make scientific decision.1.引言在日常生活中,我们常常遇到一些计算量大,分析工作复杂度高的数据分析工作,为了能够更加简便的进行数据分析,在此给大家介绍几种多元统计分析的方法。

本文主要运用了聚类分析法,因子分析法,主成分分析法对科研经费与效益的关系进行统计分析。

《多元统计分析》第三章聚类分析

《多元统计分析》第三章聚类分析

图像处理
聚类分析可用于图像分割、目 标检测等任务,提高图像处理 的效率和准确性。
社交网络
通过聚类分析,可以发现社交 网络中的社区结构,揭示用户 之间的关联和互动模式。
聚类分析的常用方法
K-均值聚类
一种迭代算法,通过最小化每个簇内对象与簇质 心的距离之和来实现聚类。需要预先指定簇的数 量K。
DBSCAN
感谢聆听
聚类结果的优化方法
层次聚类法
通过不断合并或分裂簇来优化聚类结果,可以灵活处理不同形状 和大小的簇,但计算复杂度较高。
基于密度的聚类法
通过寻找被低密度区域分隔的高密度区域来形成簇,可以发现任意 形状的簇,但对参数敏感。
基于网格的聚类法
将数据空间划分为网格单元,然后在网格单元上进行聚类,处理速 度较快,但聚类精度受网格粒度影响。
一种基于密度的聚类方法,通过寻找被低密度区 域分隔的高密度区域来实现聚类。可以识别任意 形状的簇,且对噪声数据具有较强的鲁棒性。
层次聚类
通过计算对象之间的距离,逐步将数据集构建成 一个层次结构的聚类树。可以分为凝聚法和分裂 法两种。
谱聚类
利用图论中的谱理论进行聚类分析,将数据集中 的对象表示为图中的节点,节点之间的相似度表 示为边的权重。通过求解图的拉普拉斯矩阵的特 征向量来实现聚类。
药物发现
通过对化合物库进行聚类分析,研究人员可以发现具有相 似化学结构和生物活性的化合物,从而加速新药的发现和 开发过程。
生物信息学
在基因表达谱、蛋白质互作网络等生物信息学研究中,聚 类分析可以帮助研究人员发现基因或蛋白质之间的功能模 块和调控网络。
在社交网络中的应用案例
社区发现
聚类分析可用于识别社交网络中的社区结构,即具有相似兴趣、行为或属性的用户群体。 这有助于社交网络运营商为用户提供更加个性化的推荐和服务。

多元统计分析--聚类分析

多元统计分析--聚类分析
为了研究亚洲国家的经济发展水平和文化教育水
平,以便于对亚洲国家进行分类研究,这里我们 进行聚类分析(在World95.sav数据中筛选出亚洲 国家,使用Data→Select Cases→If condition is satisfied中选入region=3)。 详细步骤如下:
(1) 打开数据。使用菜单中File→Open命令,然后 选中要分析的数据World95.sav。
多元统计分析--聚类分析
2021/7/11
多元统计分析
何晓群
中国人民大学出版社
2021/7/11
中国人民大学六西格玛质量管理研究中心
2
第三章 聚类分析
• §3.1 • §3.2 • §3.3 • §3.4 • §3.5 • §3.6 • §3.7 • §3.8
聚类分析的思想 相似性度量 类和类的特征 系统聚类法 模糊聚类分析 K-均值聚类和有序样本聚类 计算步骤与上机实现 社会经济案例研究
38
目录 上页 下页 返回 结束
§3.7.3 计算步骤与上机实践 模糊聚类法
继续使用上面的例子,希望将亚洲国家或地区 分成3类进行分析研究。这里我们使用SPlus2000软件。
(略)
2021/7/11
中国人民大学六西格玛质量管理研究中心
39
目录 上页 下页 返回 结束
§3.8 社会经济案例研究
2021/7/11
2021/7/11
中国人民大学六西格玛质量管理研
§3.7 计算步骤与上机实践
本书以SPSS15.0软件来说明前面讲述的几种 聚类法的实现过程。具体步骤如下:
*分析所需要研究的问题,确定聚类分析所需 要的多元变量;
*选择对样品聚类还是对指标聚类; *选择合适的聚类方法; *选择所需的输出结果。 我们将实现过程用逻辑框图表示为图3.8。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/4/24
中国人民大学六西格玛质量管理研究中心20/4/24
中国人民大学六西格玛质量管理研究中心
21
目录 上页 下页 返回 结束
聚类冰柱图
2020/4/24
中国人民大学六西格玛质量管理研究中心
22
目录 上页 下页 返回 结束
§ 3.7.1 系统聚类法
多元统计分析
何晓群
中国人民大学出版社
2020/4/24
中国人民大学六西格玛质量管理研究中心
1
第三章 聚类分析
❖ §3.1 聚类分析的思想
❖ §3.2 相似性度量
❖ §3.3 类和类的特征
❖ §3.4 系统聚类法
❖ §3.5 模糊聚类分析
❖ §3.6 K-均值聚类和有序样本聚类
❖ §3.7 计算步骤与上机实现
为了研究亚洲国家的经济发展水平和文化教育水
平,以便于对亚洲国家进行分类研究,这里我们 进行聚类分析(在World95.sav数据中筛选出亚洲 国家,使用Data→Select Cases→If condition is satisfied中选入region=3)。 详细步骤如下:
(1) 打开数据。使用菜单中File→Open命令,然后 选中要分析的数据World95.sav。
2020/4/24
中国人民大学六西格玛质量管理研究中心
12
目录 上页 下页 返回 结束
§ 3.7.1 系统聚类法
在这个数据文件中,我们选择的变量(Variables(s))有 Urban(城市人口比例),Lifeexpf(女性平均寿命)、 Lifeexpm(男性平均寿命)、Literacy(有读写能力的人 所占比例)、Gdp_cap(人均国内生产总值),以Country (国家或地区)来标识(Label Cases)本例中的17个亚洲国 家或地区,并以其他5个变量进行Q型聚类分析,即对国家 进行聚类。 这里我们将原始变量标准化(在Method选项下Transform Values的Standardize空白框内,选择Z Scores),在 Statistics选项中选择Agglomeration Schedule,聚类方 法选择组内联结法(Within-group linkage),计算距离选 择平方欧氏距离,输出冰柱图和树状聚类图。得到的结果 如下:
图3.12是冰柱图,也是反映样品聚类情况的图, 如果按照设定的类数,在那类数的行上从左到 右就可以找到各类所包含的样品。比如我们希 望分为三类,最左边的类数应选3,每个样品右 边都有一列X,如果某个样品右边的X个数少于3, 那么它和前面多于3个X的样品聚为一类,如此 下去,直到找到全部三类为止。例如,Hong Kong右边的列只有两个X,那么它就与Japan和 Singapore聚为一类了,而China右边的列只有 一个X,那么从Taiwan到China又被聚为一类, 后面样品聚为另一类。
2020/4/24
中国人民大学六西格玛质量管理研究中心
10
目录 上页 下页 返回 结束
§ 3.7.1 系统聚类法
(5) 在系统聚类法中底下有四个按纽,分别是Statistics、Plots、 Method、Save。 (a)在Statistics中,有Agglomeration schedule(每一阶段聚类 的结果),Proximity matrix(样品间的相似性矩阵)。由Cluster membership可以指定聚类的个数,none选项不指定聚类个数,Single solution指定一个确定类的个数,Range of solution指定类的个数 的范围(如从分3类到分5类)。 (b)在Plots中,有Dendrogram(谱系聚类图,也称树状聚类图)、 Icicle(冰柱图)、Orientation指冰柱图的方向(Horizontal 水平方 向、Vertical垂直方向)。 (c)在Method中, Cluster可以选择聚类方法,Measure中可以选择计 算的距离。 (d)在Save中,可以选择保存聚类结果。 选好每个选项后,点“OK”就可以执行了。
§3.8 社会经济案例研究 ❖
2020/4/24
中国人民大学六西格玛质量管理研
2
究中心
§3.7 计算步骤与上机实践
本书以SPSS15.0软件来说明前面讲述的几种 聚类法的实现过程。具体步骤如下:
*分析所需要研究的问题,确定聚类分析所需 要的多元变量;
*选择对样品聚类还是对指标聚类; *选择合适的聚类方法; *选择所需的输出结果。 我们将实现过程用逻辑框图表示为图3.8。
2020/4/24
中国人民大学六西格玛质量管理研究中心
17
目录 上页 下页 返回 结束
§ 3.7.1 系统聚类法
输出结果中,表3.7表示接近度矩阵,是 反映样品之间相似性或者相异性的矩阵。 本例中由于计算距离使用的是平方欧氏 距离,所以样品间距离越大,样品越相 异,如果我们计算距离选择Pearson相关 系数,则接近度矩阵是相似性矩阵。由 表中矩阵可以看出,Bangladesh(孟加 拉国)与Cambodia(柬埔寨)的距离是 最小的,因此它们最先聚为一类。
2020/4/24
中国人民大学六西格玛质量管理研究中心
3
目录 上页 下页 返回 结束
§3.7 计算步骤与上机实践
2020/4/24
中国人民大学六西格玛质量管理研究中心
4
目录 上页 下页 返回 结束
§3.7 计算步骤与上机实践
§ 3.7.1 系统聚类法
3.7.1 系统聚类法 用SPSS软件自带的数据文件World95.sav来做一 个实例分析。
2020/4/24
中国人民大学六西格玛质量管理研究中心
5
目录 上页 下页 返回 结束
§ 3.7.1 系统聚类法
(2)在菜单中的选项中选择Analyze→Classify命令, Classify命令下有两个聚类分析命令,一是K-means cluster(K-均值聚类),二是Hierarchical cluster (系统聚类法)。这里我们选择系统聚类法。 (3) 在系统聚类法中,我们看到Cluster下有两个 选项,Cases(样品聚类或Q型聚类)和Variables (变量聚类或R型聚类)。这里我们选择对样品进行 聚类。 (4) Display下面有两个选项,分别是Statistics (统计量)、Plots(输出图形),我们可以选择所 需要输出的统计量和图形。
相关文档
最新文档