人教版A版高中数学选修4-5基本不等式
高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.2基本不等式
年销售收入为 150% 32 3- t+1 + 3 + 2t.
首 页
探究一
探究二
J 基础知识 Z 重点难点
ICHU ZHISHI
探究三
由题意,生产 x 万件化妆品正好销完,
由年利润=年销售收入-年生产成本-促销费,
-t2 +98t+35
得年利润 y=
(t≥0).
2(t+1)
-t2 +98t+35
1 2x+y 2
1
(x,y∈R+)中,用的是不等式链中的
其变形去解题,如 xy= ×(2x)y≤
2
2
2
2
1 (2x+y)
1
a+b 2
(x,y∈R+)也可以,这两种解法比较,
.但是 xy= ×(2x)y≤ ×
ab≤
2
2
2
2
可以发现,求得的最值不一样,这说明选择不同的重要不等式的变形形式,求
得的值或范围是不同的,所以我们在选择重要不等式的变形形式时,要使
论有关的不等关系,得出有关理论参数的值.
(4)作出问题结论:根据③中得到的理论参数的值,结合题目要求得出问
题的结论.
J 基础知识 Z 重点难点
首 页
ICHU ZHISHI
HONGDIAN NANDIAN
1
1.下列各式中,最小值等于 2 的是(
x
A.
y
y
+
x
B.
1
C.tanθ+θ
2
3
S 随堂练习
1
的最大值,转化为求 (2x)y 的最大值,即
人教a版高考数学(理)一轮课件:选修4-5不等式选讲
考纲解读
通过近几年的高考题可以看出, 本 部分内容的考查主要是在绝对值 不等式的几何意义和解绝对值不 等式两个方面,考查难度一般,试题 题型较为单一 .对于绝对值不等式 的证明一般会结合函数、导数等 内容考查,难度较大,属中高档题.
1.绝对值三角不等式 (1)定理 1:如果 a,b 是实数,则|a+b|≤|a|+|b|,当且仅当 ab≥0 时,等号成立. 其中不等式|a+b|≤|a|+|b|又称为三角不等式. (2)在|a+b|≤|a|+|b|中用向量 a,b 分别替换实数 a,b,则|a+b|<|a|+|b|的几 何意义是三角形的两边之和大于第三边(a,b 不共线). (3)定理 2:如果 a,b,c 是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0 时,等号成立.
(������ + 1)2 ≥ (x + 2)2 , ⇔ ������ + 2 ≠ 0, (������ + 1 + ������ + 2)(������ + 1-������-2) ≥ 0, 即 ������ ≠ -2, 解得 x≤- 且 x≠-2.
3 2
3 .设 a=2- 5,b= 5-2,c=5-2 5,则 a ,b ,c 之间的大小关系是 【答案】 c>b>a 【解析】分别由 a<0,b>0,c>0,再由 b 2-c2<0 得 b<c 判断.
5 .设 m 等于|a| ,|b| 和 1 中最大的一个,当|x|>m 时,求证: +
3 .|ax+b| ≤c,|ax+b| ≥c(c>0)型不等式的解法 (1)|ax+b| ≤c(c>0)型不等式的解法是:先化为不等式-c≤ax+b ≤c,再利用 不等式的性质求出原不等式的解集. (2)|ax+b| ≥c(c>0)的解法是:先化为 ax+b ≥c 或 ax+b ≤-c,再进一步利用不 等式的性质求出原不等式的解集.
5.5基本不等式1(1) 课件(人教A版选修4-5)
1 2 a 2
a
思考 1
当a 0, b 0, 在a b 2ab中
2 2
以 a, b分别代替a,b能得到什么结果?
a b 2 ab
基本不等式
定理2(均值定理)
如果 a , b 是正数,那么
ab
(当且仅当 a b 时取“ = ”号).
ab 2
• 如果a、b都是正数,我们就称
2
∴
x y 2 P
∵上式当 x y y 时取“=” ∴当 x y 时, 有最大值 4 S
S 2当 x y S (定值)时, xy 2
y 时, x y 有最小值2 P
1 2 ∴ xy S 4
注意:
1、最值的含义(“≥”取最小 值,“≤”取最大值)
1 例3. 若X>-1,则x为何值时 x x 1
有最小值,最小值为几?
解:∵
x 1
∴
x 1 0
1 0 x 1
1 1 1 1 2 ( x 1) 1 2 1 1 ∴x = x 1 x 1 x 1 x 1
1 1 当且仅当 x 1 x x 1 即 x 0 时 x 1 有最小值1
2
x y取最小值( a b )
2、已知 : a b c 1
1 求证: ab bc ca 3
证明:
a 2 b 2 c 2 2ab 2bc 2ca
a b c 1 2 (a b c)
1 2 2 a b 2ab 2 2 b c 2bc c 2 a 2 2ca
b2 (2)已知:a, b R , 且a 2 1, 求a 1 b 2 的最大值. 2 1 1 (3)设 为锐角,求(sin )(cos )的最小值. sin cos
5.5基本不等式1(1) 课件(人教A版选修4-5)
b2 (2)已知:a, b R , 且a 2 1, 求a 1 b 2 的最大值. 2 1 1 (3)设 为锐角,求(sin )(cos )的最小值. sin cos
作业
课本作业;P10
5、6
的最小值
x y
a b 1, x y
a b ay xb x 解: y ( x y) 1 ( x y)( ) a b x y x y
ay xb 2 ab2 ( a b) x y
ay xb 当且仅当 x y
即
x a 时 y b
变形.
已知
x, y 都是正数,求证:
1 如果积
xy
是定值 P, 那么当 x y 时,和 x y
有最小值 2 P 2 如果和 x y 是定值
S , 那么当 x y 时,积
xy
1 2 S 有最大值 4 证:∵ x, y R ∴ x y xy
x 1当 xy P (定值)时, y P 2
即(ab cd )(ac bd ) 4abcd
练习1
1. 巳知a 0, b 0, 1 1 求证 : ( a b)( ) 4. a b
2. 巳知a, b, c均为正数,求证: (a+b)(b+c)(c+a) 8abc
例2
Байду номын сангаас
求证:(1)在所有周长相同的矩形 中,正方形的面积最大;(2)在所有面 积相同的矩形中,正方形的周长最短。
ab
中的“ = ”号成立.
这句话的含义是:
当 ab 当
ab ab a b 2
ab ab 2
1.1.2.基本不等式 课件(人教A选修4-5)
a+b 如果 a,b 都是正数,我们就称 2 为 a,b 的算术平均,
ab 为 a,b 的几何平均.
4.利用基本不等式求最值 对两个正实数 x,y, (1)如果它们的和 S 是定值,则当且仅当 x=y 时,它们的 积 P 取得最 大 值; (2)如果它们的积 P 是定值,则当且仅当 x=y 时,它们的 和 S 取得最 小 值.
行证明.
(2)本题证明过程中多次用到基本不等式,然后利用同 向不等式的可加性或可乘性得出所证的不等式,要注意不 等式性质的使用条件,对“当且仅当……时取等号”这句话 要搞清楚.
[通一类] 1.设a,b,c∈R+,
求证: a2+b2+ b2+c2+ c2+a2≥ 2(a+b+c).
证明:∵a2+b2≥2ab, ∴2(a2+b2)≥(a+b)2. 又 a,b,c∈R+, ∴ a2+b2≥
每吨面粉的价格为1 800元,面粉的保管等其他费用为平
均每吨每天3元,购买面粉每次需支付运费900元. (1)求该厂多少天购买一次面粉,才能使平均每天所支付 的总费用最少? (2)某提供面粉的公司规定:当一次购买面粉不少于210 吨时,其价格可享受9折优惠,问该厂是否考虑利用此 优惠条件?请说明理由.
2
2 2 |a+b|= (a+b). 2 2
2
2 2 2 2 同理: b +c ≥ (b+c), c +a ≥ (a+c). 2 2
三式相加, 得 a2+b2+ b2+c2+ c2+a2≥ 2(a+b+c).
当且仅当 a=b=c 时取等号.
[研一题]
[例 2] 1 9 已知 x>0,y>0,且x+y=1,
[精讲详析]
本题考查基本不等式在证明不等式中的应
用,解答本题需要分析不等式的特点,先对a+b,b+c,c+ a分别使用基本不等式,再把它们相乘或相加即可.
1.1.1 不等式的基本性质 课件(人教A选修4-5)
返回
1 1 4.已知a,b,x,y都是正数,且a>b,x>y, x y 求证: > . x+a y+b 证明:因为a,b,x,y都是正数,
1 1 x y 且a>b.x>y,所以a>b, a b 所以x<y. a b 故x+1<y+1, x+a y+b x y 即 x < y .所以 > . x+a y+b
返回
2.不等式的基本性质
由两数大小关系的基本事实,可以得到不等式的一些 基本性质: (1)如果a>b,那么b<a;如果b<a,那么a>b.即 a>
b⇔b<a . (2)如果a>b,b>c,那么 a>c .即a>b,b>c⇒ a>c .
(3)如果a>b,那么a+c> b+c . (4)如果a>b,c>0,那么ac > bc;如果a>b,c<0,那么 ac < bc.
n n
n
a>
n
b (n=2k+
返回
返回
[例 1]
1 1 4 已知 x,y 均为正数,设 m= + ,n= ,试比 x y x+y
较 m 和 n 的大小.
[思路点拨]
变形 转化为因式 与0比较 两式作差 ――→ ―――→ 乘积形式
判断正负,得出大小
返回
[解]
x+y 1 1 4 4 m-n= x + y - = xy - = x+y x+y
返回
(2)a>b,c>d⇒a+c>b+d,即两个同向不等式可以相 加,但不可以 相减 ;而a>b>0,c>d>0⇒ac>bd,即已知的两 个不等式同向且两边为 正值 时,可以相乘,但不可以 相除 . (3)性质(5)、(6)成立的条件是已知不等式两边均为 正值 , 并且n∈N,n≥2,否则结论不成立.而当n取正奇数时可放宽 条件,a>b⇒a >b (n=2k+1,k∈N),a>b⇒ 1,k∈N+).
5.3 证明不等式的基本方法 课件(人教A版选修4-5)
= (a b)(lg a lg b) ∵ a b 与 lg a lg b 同号,∴ (a b)(lg a lg b) >0
(a lg a b lg b) (b lg a a lg b) 0 a lg a b lg b b lg a a lg b,
2.非负实数 x1、x2,且 x1+x2≤1, 求证: 1 x1 1 x2 ≥ 1 x1 x2 1
证明: x1 ≥ 0, x2 ≥ 0, x1 x2 ≤1, 1 x1 ≥ 0,1 x2 ≥ 0,1 x1 x2 ≥ 0 要证 1 x1 1 x2 ≥ 1 x1 x2 1,
只要证 a 2 ab b2 ab ,只要证 a 2 2ab b2 0 . ∵ a b 0 ,∴ (a b)2 0 即 a 2 2ab b2 0 得证.
注:分析法的思维特点是:执果索因.对于思路不 明显,感到无从下手的问题宜用分析法探究证明途径. 另外,不等式的基本性质告诉我们可以对不等式做这 样或那样的变形,分析时贵在变形,不通思变,变则通! (如课本第 24 页例 3)
∵ a , b 是正数,且 a b ,∴ a b 0 , (a b)2 >0
∴ (a3 b3 ) (a2b ab2 ) >0,∴ a 3 b3 a 2b ab2
注:比较法是证明不等式的基本方法,也是 最重要的方法,另外, 有时还可作商比较(如课本 第 22 页例 3).
am a . 求证: bm b 4.(课本第 24 页例 2)已知 a1 , a2 ,, an R ,且 a1a2 an 1 ,
求证: (1 a1 )(1 a2 )(1 an ) ≥ 2n 5.(课本第 26 页习题 2.2 第 9 题)已知 a 1 , b 1 , 求证: 1 ab a b
第一讲 不等式和绝对值不等式 知识归纳 课件(人教A选修4-5)
对于不等式恒成立求参数范围问题,常见类型及其解法
如下:
(1)分离参数法:
运用“f(x)≤a⇔f(x)max≤a,f(x)≥a⇔f(x)min≥a”可解决恒成立
中的参数范围问题.
(2)更换主元法:
不少含参不等式恒成立问题,若直接从主元入手非常 困难或不可能时,可转换思维角度,将主元与参数互换,
常可得到简捷的解法.
5 ②当- ≤x≤2 时, 2 3 原不等式变形为 2-x-2x-5>2x,解得 x<- . 5 5 3 ∴解集为{x|- ≤x<- }. 2 5 ③当 x>2 时,原不等式变形为 x-2-2x-5>2x, 7 解得 x<- ,∴原不等式无解. 3 3 综上可得,原不等式的解集为{x|x<- }. 5
2|≤1+2|y-2|+2≤5,即|x-2y+1|的最大值为5.
答案:5
3.(2011· 陕西高考)若不等式|x+1|+|x-2|≥a对任意x∈R 恒成立,则a的取值范围是________.
解析:令 f(x)=|x+1|+|x-2|= -2x+1x≤-1, 3-1<x<2, 2x-1x≥2, ∴f(x)≥3. ∵|x+1|+|x-2|≥a 对任意 x∈R 恒成立,∴a≤3.
[解析]
x+3z 由 x-2y+3z=0 得 y= , 2
2 2 y2 x +9z +6xz 6xz+6xz 则xz= ≥ =3, 4xz 4xz
当且仅当 x=3z 时取“=”.
[答案]
3ቤተ መጻሕፍቲ ባይዱ
1 1 1 [例 3] 设 a, c 为正实数, b, 求证:3+ 3+ 3+abc≥2 3. a b c 1 [证明]因为 a,b,c 为正实数,由平均不等式可得 3+ a
高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.1不等式的基本性质
探究四
探究一不等式的基本性质
对于考查不等式的基本性质的选择题,解答时,一是利用不等式的相关
性质,其中,特别要注意不等号变号的影响因素,如数乘、取倒数、开方、平
方等;二是对所含字母取特殊值,结合排除法去选正确的选项,这种方法一般
要注意选取的值应具有某个方面的代表性,如选取 0、正数、负数等.
J 基础知识 Z 重点难点
几乎都有类似的前提条件,但结论会根据不同的要求有所不同,因而这需要
根据本题的四个选项来进行判断.选项 A,还需有 ab>0 这个前提条件;选项
B,当 a,b 都为负数时不成立,或一正一负时可能也不成立,如 2>-3,但 22>(-3)2
1
a
b
不正确;选项 C,c2+1>0,由 a>b 就可知c2+1 > c2 +1,故正确;选项 D,当 c=0 时不
A.P≥Q
B.P>Q
C.P≤Q
1
−
a+1+ a
解析:P-Q=( a + 1 − a)-( a − a-1)=
a-1- a+1
=
D.P<Q
.
( a+1+ a)( a+ a-1)
∵a≥1,∴ a-1 < a + 1,即 a-1 − a + 1<0.
又∵ a + 1 + a>0, a + a-1>0,
a-1- a+1
格依据不等式的性质和运算法则进行运算,是解答此类问题的基础.在使用
不等式的性质中,如果是由两个变量的范围求其差的范围,一定不能直接作
不等式的证明课件3(人教A版选修4-5)
2
2
a b c d
2 2 2
0 不等式显然成立
c
2
a
2
b
2
2
d
2
2
0
原不等式即证
2 2 2
ac
2 2 2
bd
2
2
a
2 2
b
2 2
c
2
2
2
d
2 2
2
2
即证 a c b d 2 abcd a c b d a d b c 即证 2 abcd a d b c 即证 ad bc 0
21 25
因 为 21 25 成 立 ,
所以( 3 7) (2 5 ) 成 立 ,
2 2
即证明了 3
7 2 5
证明某些含有根式的不等式时,用综合法比较困 难。例如,在例9中我们很难想到从”21<25“入手。 在不等式的证明中,分析法占有重要位置。我们常用 分析法探索证明的途径,然后用综合法的形式写出证 明过程。这是解决数学问题的一种重要思想。
而此式显然成立
原不等式
C 1
C 12
C 成立
练习3
1 求证
6
7 2
2
5
(2)已知:a1,a2,b1,b2∈R+,求证:
( a1 b1 ) ( a 2 b 2 )
≥
a1 a 2 b1b 2
1 1 1
3 求 证
1
a a
2 2
例3:若a、b、c是不全相等得正数
2
为了证明上式成立,只需证明
即证 1 1 42 , 因此只需证明 4
5.1不等式的基本性质 课件(人教A版选修4-5)
性质是求解和证明不等式的基础. 例1(1) 已知a > b, c < d , 求证:a-c > b-d (2) 已知a>b> 0,c>d>0, 求证:ac>bd
c c (3) 已知a>b> 0, c <0, 求证: a b
1 1 思考 已知 a>b, 试判断 与 的大小关系. a b 1 1 性质 a b, ab 0 ; a b 1 1 a b, ab 0 . a b
(1) a b b a (对称性) (2) a b, b c a c (传递性) (3) a b a c b c (加法法则) (i ) a b c a c b.
(ii ) a b, c d a c b d
B. 必要不充分条件
D. 既不充分也已知a > 0,a2-2ab+c2 =0,bc>a2,试 比较a、b、c的大小。
1. 设a, b是两个实数,它们在数轴上所对应 的点分别为A, B,那么, 当点A在点B的左 边时, a<b; 当点A在点B的右边时, a>b。 A a a< b B b
x
B b a>b
A a
x
2. 关于实数a, b的大小关系,有以下事实:
a b ab0 a b ab0 a b ab0
c 例2 已知a>b>c,且a+b+c =0, 则 的取值 a (-2,-0.5) 范围是___________。 思考 已知 f(x) =ax2 +c,且 - 4≤f(1)≤ -1, -1≤f(2)≤5,求f(3)的取值范围。 [-1, 20] 练习 1.对于实数a, b, c,给出下列命题: (1)若a>b,则ac2>bc2; (2)若ac2>bc2,则a>b; (3)若a>b,c<d,则a+c<b+d; (4)若a>b,c>d,则ac>bd; (5)若a<b<0,则 a2>ab>b2 (2) 、(5) 其中,正确命题的序号是________________.
1.1.2 基本不等式 课件(人教A选修4-5)
3 (2)设 0<x< ,求函数 y=4x(3-2x)的最大值; 2 1 9 (3)已知 x>0,y>0,且 + =1,求 x+y 的最小值. x y
[思路点拨]
根据题设条件,合理变形,创造能用基
本不等式的条件,求最值.
2x 2 [解] (1)∵x>0,∴f(x)= 2 = . 1 x +1 x+x 1 1 1 ∵x+x≥2,∴0< ≤ . 1 2 x+x ∴0<f(x)≤1,当且仅当x=1时取“=”.即f(x)值域 为(0,1] 3 (2)∵0<x< ,∴3-2x>0. 2 2x+3-2x 2 9 ∴y=4x(3-2x)=2[2x(3-2x)]≤2[ ]= . 2 2 3 当且仅当2x=3-2x,即x= 时,等号成立. 4 9 ∴y=4x(3-2x)的最大值为 . 2
(1)将y表示为x的函数;
(2)试确定x,使修建此矩形场地围墙的总费用最小,并 求出最小总费用.
解:(1)如题图所示,设矩形的另一边长为a m. 则y=45x+1 由已知xa=360,得a= x 3602 所以y=225x+ x -360(x>0). (2)∵x>0, 3602 ∴225x+ x ≥2 225×3602=10 800. 3602 ∴y=225x+ x -360≥10 440, 3602 当且仅当225 x= 时,等号成立. x 即当x=24 m时,修建围墙的总费用最小,最小总费 用是10 440元.
a2 b2 c2 ∴( b +b)+( c +c)+( a +a) ≥2(a+b+c). a2 b2 c2 即 b + c + a ≥a+b+c. a2 b2 c2 当且仅当 b =b, c =c, a =a, 即a=b=c时取等号.
选修4-5高中数学基本不等式
数学·选修4-5(人教A版)1.1不等式1.1.2 基本不等式一层练习1.设x,y∈R,且x+y=5,则3x+3y的最小值为( ) A.10 B.6 3C.4 6 D.18 3答案:D2.下列不等式一定成立的是( )A.lg(x2+14)>lg x(x>0)B.sin x+1sin x≥2(x≠kπ,k∈Z) C.x2+1≥2|x|(x∈R)D.1x2+1>1(x∈R)不等式和绝对值不等式解析:应用基本不等式:x ,y ∈R +,x +y 2≥xy (当且仅当x =y 时取等号)逐个分析,注意基本不等式的应用条件及取等号的条件.当x >0时,x 2+14≥2·x ·12=x ,所以lg x 2+14≥lg x (x >0),故选项A 不正确;运用基本不等式时需保证一正二定三相等,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确;由基本不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确.答案:C3.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b>2abD.b a +a b≥2解析:∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误. 对于B,C,当a <0时,b <0时,明显错误. 对于D,∵ab >0,∴b a +a b ≥2b a ·ab=2. 答案:D二层练习4.(2013·福建卷)若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0]C .[-2,+∞) D.(-∞,-2]解析:利用基本不等式转化为关于x +y 的不等式,求解不等式即可. ∵2x +2y ≥22x +y ,2x +2y =1, ∴22x +y ≤1, ∴2x +y ≤14=2-2,∴x +y ≤-2,即(x +y )∈(-∞,-2]. 答案:D5.(2013·山东卷)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当zxy取得最小值时.x +2y -z 的最大值为( ) A .0 B.98 C .2 D.94解析:含三个参数x ,y ,z ,消元,利用基本不等式及配方法求最值. z =x 2-3xy +4y 2(x ,y ,z ∈R +),∴z xy =x 2-3xy +4y 2xy =x y +4y x -3≥2x y ·4yx-3=1. 当且仅当x y =4yx ,即x =2y 时“=”成立,此时z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2. ∴当y =1时,x +2y -z 取最大值2. 答案:C6.(2013·山东卷)设正实数x 、y ,z 满足x 2-3xy +4y 2-z =0,则当xyz取得最大值时,2x +1y -2z的最大值为( )A .0B .1. C.94D .3解析:含三个参数x ,y ,z ,消元,利用基本不等式及配方法求最值. z =x 2-3xy +4y 2(x >0,y >0,z >0), ∴xy z =xy x 2-3xy +4y 2=1x y +4y x-3≤14-3=1. 当且仅当x y =4yx,即x =2y 时等号成立,此时z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴2x +1y -2z =22y +1y -22y 2=-1y 2+2y =-⎝ ⎛⎭⎪⎫1y -12+1,∴当y =1时,2x +1y -2z 的最大值为1. 答案:B7.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72 B .4 C.92 D .5解析:∵a +b =2,∴a +b2=1,∴1a +4b =1a +4b ⎝⎛⎭⎪⎫a +b 2=52+⎝ ⎛⎭⎪⎫2a b +b 2a ≥52+22a b ·b 2a =92⎝ ⎛⎭⎪⎫当且仅当2a b =b 2a ,即b =2a 时,等号成立,故y =1a +4b 的最小值为92. 答案:C8.(2013·天津卷)设a +b =2,b >0,则12|a |+|a |b 的最小值为________.解析:分a >0和a <0,去掉绝对值符号,用均值不等式求解. 当a >0时,12|a |+|a |b =12a +a b =a +b 4a +a b =14+⎝ ⎛⎭⎪⎫b 4a +a b ≥54; 当a <0时,12|a |+|a |b =1-2a +-a b =a +b -4a +-a b =-14+⎝⎛⎭⎪⎫b -4a +-a b ≥-14+1=34. 综上所述,12|a |+|a |b 的最小值是34.答案:349.(2013·天津卷)设a +b =2,b >0.则当a =______时,12|a |+|a |b取得最小值.解析:利用已知条件将常数“1”代换,然后利用均值不等式求最值,同时对a 的正负进行分类讨论,得到a 的值. 由于a +b =2,所以12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b,由于b >0,|a |>0时,所以b 4|a |+|a |b ≥2b 4|a |·|a |b =1,因此当a >0时,12|a |+|a |b 的最小值是14+1=54;当a <0时,12|a |+|a |b 的最小值是-14+1=34,故12|a |+|b |a 的最小值为34,此时⎩⎨⎧b 4|a |=|a |b ,a <0,即a =-2.答案:-2三层练习10.若正数x ,y 满足x +3y =5xy .则3x +4y 的最小值是( ) A.245 B.285C .5D .6解析:将已知条件进行转化,利用基本不等式求解. ∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫1y +3x =153xy +4+9+12y x =135+15⎝ ⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12yx=5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5.答案:C11.(2013·上海卷)设常数a >0,若9x +a 2x ≥a +1对一切正实数x 成立,则a 的取值范围是______.答案:⎣⎢⎡⎭⎪⎫15,+∞12.设x ,y ∈R 且xy ≠0,则(x 2+1y 2)(1x2+4y 2)的最小值为________.解析:⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时,等号成立. 答案:913.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/时)f (x )=x ·v (x )可以达到最大,并求出最大值(精确到1辆/时).解析:(1)由题意:当 0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b .再由已知得⎩⎨⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎨⎧60,0≤x ≤20,13-x ,20<x ≤200.(2)依题意并由(1)可得f (x )=⎩⎨⎧60x ,0≤x ≤20,13x-x ,20<x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1200; 当20<x ≤200时,f (x )=13x (200-x )≤13⎣⎢⎡⎦⎥⎤x +-x 22=100003,当且仅当x =200-x ,即x =100时,等号成立.所以当x =100时,f (x )在区间(20,200]上取得最大值100003.综上,当x =100时,f (x )在区间[0,200]上取得最大值100003≈3333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/时.1.在公式a 2+b 2≥2ab 及a +b 2≥ab 的应用中,应注意三点:(1)a 2+b 2≥2ab 和a +b 2≥ab 成立的条件是不同的,前者只要求a ,b 都是实数,而后者要求a ,b 都为正数,例如,(-1)2+(-3)2≥2(-1)×(-3)成立,而-+-2≥--不成立.(2)关于不等式c ≥d 及c ≤d 的含义.不等式“c ≥d ”的含义是“或者c >d ,或者c =d ”,等价于“c 不小于d ”,即若c >d 或c =d 有一个正确,则c ≥d 正确.不等式“c ≤d ”读作c 小于或等于d ,其含义是“c <d 或者c =d ”,等价于“c 不大于d ”,即若c <d 或c =d 中有一个正确,则c ≤d 正确.(3)这两个公式都是带有等号的不等式,因此,对定理“当a ,b ∈R 时,a 2+b 2≥2ab 当且仅当a =b 时等号成立”的含义要搞清楚.它的含义是: ①当a =b 时,a 2+b 2=2ab ; ②当a 2+b 2=2ab 时,a =b ; ③当a ≠b 时,a 2+b 2>2ab ; ④当a 2+b 2>2ab 时,a ≠b .对基本不等式:a ,b 为正数,则a +b 2≥ab 当且仅当a =b 时等号成立,作类似理解.2.解题时要注意考查“三要素”:①函数中的相关项必须都是正数;②变形后各项的和或积有一个必须是常数;③当且仅当各项相等时,“=”号才能取到,可简化为“一正二定三相等”.求函数最值时,常将不满足上述条件的函数式进行“拆”、“配”等变形,使其满足条件,进而求出最值.有些题目,尽管形式上是x +p x型的式子,即两数之积为常数,但由于定义域的限制,不能使等号成立,如y =x +1x (x ≥5)的最小值,尽管x +1x ≥2,当x =1x 时,即x =1时取“=”号,而x=1不在其定义域[5,+∞)内,因此不能使用基本不等式.这时可利用函数单调性来解:f (x )=ax +bx (a >0,b >0),在⎝ ⎛⎦⎥⎤0,b a ,⎣⎢⎡⎭⎪⎫-b a ,0内是减函数,在 ⎣⎢⎡⎭⎪⎫ba ,+∞,⎝⎛⎦⎥⎤-∞,-b a 内是增函数.函数图象如下图所示.另外,在证明或应用基本不等式解决一些较为复杂的问题时,需要同时或连续使用基本不等式,要注意保证取等号条件的一致性.。
人教A版选修4-5证明不等式的基本方法
ba
ba
2、分析法:(执果索因)
从要证的结论出发,逐步寻求使它成立的充
分条件,直至所需条件为已知条件或一个明显成 立的事实(定义、公理或已证的定理、性质等), 从而得出要证的命题成立,这种证明方法叫做分 析法.这是一种执果索因的思考和证明方法.
用分析法证明不等式的逻辑关系:
B B1 B2 Bn A
a+b+c
即 aabbcc abc 3 .
补充例题 :已知a 2,求证 : loga (a 1) log(a1) a.
分析:由于不等式两边对数的底数不同,故不宜采用作 差比较法,解答本题可采用作商比较法.
证明: a 2, a 1 1,loga a 1 0,loga1 a 0.
由于
loga a 1
下面给出证明.将不等式两边相减,得 b m b
a m a m(b a) b m b b(b m)
a b,b a 0,又 a,b,m都是正数,
m(b a) 0,b(b m) 0
m(b a) 0 ,即 a m a 0, a m a ,
b(b m)
bm b
bm b
例4、已知a,b,c 0,求证:a2b2 b2c2 c2a2 abc. abc
分析 : 要证的不等式可以化为 a2b2 b2c2 c2a2 abc(a b c),即 a2b2 b2c2 c2a2 a2bc b2ac c2ab. 观察上式,左边各项是两个字母的 平方之积,右边各项涉及三个字母, 可以考虑用x2 ( y2 z2 ) 2x2 yz.
证明: b2 c2 2bc,a 0,a(b2 c2 ) 2abc c2 a2 2ac,b 0,b(c2 a2 ) 2abc
a2 b2 2ab,c 0,c(a2 b2 ) 2abc
3.1不等式的基本性质(1)(人教A版选修4-5)
• = (x -1)2 [2 (x + 1/2)2 + 1/2] • x∈R ∴ 2 (x + 1/2)2 + 1/2 >0 • 若x≠1 那么 (x -1)2 > 0则 2x4+1 > 2x3+x2 • 若 x =1 那么(x -1)2 = 0 则 2x4+1 = 2x3+x2 • 综上所述: 若 x = 1 时 2x4+1 = 2x3+x2 • 求差比较大小 若 x≠1 时 2x4+1 > 2x3+x2 分四步进行:①作差;②变形;③定号; ③下结论。
• 2.比较 (x2 +2)2 与 x4+5x2 +2的大小
• 3. 比较 x3 与 x2-x + 1的大小.
【典型例题】
例3、比较以下两个实数的大小:
1 * (1)16 与18 ; ( 2) 与2 n (n N ) n1 n
18 16
(3)比较a b 和a b 的
a b b a
2
(3)
a
2
b
(4)
2 2
a
b
• • • • • • • • • • •
小结
主要内容 基本理论: a - b > 0 <=> a > b a - b = 0 <=> a = b a - b < 0 <=> a < b 基本理论四大应用之一:比较实数的大小. 一般步骤: 作差-变形-判断符号—下结论。 变形是关键: 1°变形常用方法:配方法,因式分解法。 2°变形常见形式是:变形为常数;一个常数与几 个平方和;几个因式的积。
2.
高中数学人教新课标A版选修4-5第一讲 不等式和绝对值不等式二绝对值不等式
将│2x-1│≤3两边除以2,得
x1 3, 22
它的解集是数轴上到坐标为
1 2
的点
的距离不大于 3 的点集合.
2
探究
如何求解│x-a│+│x-b│≥c和 │x-a│+│x-b│ ≤c型不等式?
提示
思路一:对几何意义作分析; 思路二:把含绝对值的不等式转化 为不含绝对值的不等式; 思路三:从函数的观点处理。
如果当a,b是实数,则 a b a b ,
当且仅当ab≥0时,等号成立.
定理1 (很重要)
探究
如果把定理1中的实数a,b分别换为向 量a,b能得出什么结果?你能解释它的几 何意义吗?
(1)当向量a,b不共线时,向量a+b,a,b构成 三角形.
因此:a b a b .
其几何意义是三角形的两边之和大于 第三边(如下图)。
可以得到 x x1 a和 x x1 a的解集。
例3 解不等式│2x-1│≤3
分析 可以把 (2x-1) 看成一个整体X, 即所解不等式就是 X 2.
解: 由 2 x 1 3得:-3 ≤2x-1 ≤3 解得-1≤x ≤2 因此,原不等式的解集 为{x│-1≤x ≤2}
思考
该题解的几何解释是什么?
解法二: 作函数y=x2-2x的图像. │x2-2x│<3 表示函数图像中在直线 y=-3 和直线 y=3 之间相应部分的自变量的集合.
解方程x2-2x=3得x1=-1,x2=3 即不等式的解集是(-1,3).
2.求函数y=│x-4│+ │x-6│的最小值.
解: y=│x-4│+ │x-6│ = │x-4│+ │6-x│
0 a b a+b
1.1.1.不等式的基本性质 课件(人教A选修4-5)
[例 2]
[研一题] 下列命题中正确的是
(
)
(1)若 a>b,c>b,则 a>c; a (2)若 a>b,则 lgb>0; (3)若 a>b,c>d,则 ac>bd; 1 1 (4)若 a>b>0,则a<b; a b (5)若 c>d,则 ad>bc;
(6)若a>b,c>d,则a-d>b-c. A.(1)(2) C.(3)(6) B.(4)(6) D.(3)(4)(5)
2
1 1 2 ∴作差,得(x+1)(x + x+1)-(x+ )(x +x+1) 2 2
2
x 1 2 2 =(x+1)(x +x+1)- (x+1)-(x+1)(x +x+1)+ (x +x+1) 2 2
2
1 2 1 2 1 = (x +x+1)- (x +x)= >0, 2 2 2 x 1 2 ∴(x+1)(x + +1)>(x+ )(x +x+1). 2 2
[通一类] x 1 2 2 1.x∈R,比较(x+1)(x + +1)与(x+ )· +x+1)的大小. (x 2 2 x x 2 2 解:因为(x+1)(x + +1)=(x+1)· +x+1- )=(x+ (x 2 2
x 1)(x +x+1)- (x+1), 2
2
1 2 1 2 (x+ )(x +x+1)=(x+1- )(x +x+1) 2 2 1 2 =(x+1)(x +x+1)- (x +x+1). 2
[例 3] 已知 60<x<84,28<y<33.求 (1)x-y 的取值范围; x (2)y 的取值范围. [精讲详析] 本题考查不等式性质的灵活应用. 解答问
题(1)需要先求出-y 的取值范围,然后利用不等式的同向 1 可加性解决; 解答问题(2)需要先求出y 的取值范围, 然后利 用不等式的有关性质求解.
人教A版 选修4-5 基本不等式(经典)
3 3 3
当且仅当a b c时, 等号成立.
若a, b, c R*,
a b c 3abc,
3 3 3
a b c 3 abc
3
Hale Waihona Puke abc abc 3
3
推广:n个正数的算术—几何平均不等式:
若a1 , a2 , a3 , , an R , 则 a1 a2 a3 an n a1a2 a3 an , n 当且仅当a1 a2 a3 an时, 等号成立.
2
6.a 2, b 3, 1 求a b 的最小值 (a 2)(b 3)
求下列式子的最大值
4 2
7. y x (2 x )(0 x 2);
8.若θ为锐角,
2θ的最大值. 求y=sinθcos
9.已知a, b, c R ,
1 1 1 a 求证: b c 9 a b c
2 3
6S 6
6S 答 : 当长方体的长宽高都等 于 时 6 S 6S 体积的最大值为 36
小结:这节课我们讨论了: 一、利用基本不等式求某些函数的最值; 二、利用基本不等式证明不等式 注: 1、利用基本不等式求某些函数的最 值时“一正二定三相等”这三个条件缺 一不可; 2、不能直接利用定理时,要善于转化变 形,通过变形达到化归的目的; 3、多次运用基本不等式时注意等号成立 的条件。
人教版A版高中数学选修4-5排序不等式
6.设a1,a2,…,an为实数,且a1≤a2≤a3≤…≤an,用排 序不等式证明:a1c1+a2c2+…+ancn≤a+a+…+a,其中c1, c2,…,cn为a1,a2,…,an的任一排列.
证明:∵a1≤a2≤…≤an, 由乱序和≤顺序和,即得 a1c1+a2c2+…+ancn≤a1·a1+a2·a2+…+an·an, ∴a1c1+a2c2+…+ancn≤a21+a22+…+a2n.
又因 1>212>312>…>n12, 故由排序不等式,得
a1+2a22+3a32+…+nan2≥b1+b222+b332+…+bnn2
≥1×1+2×212+3×312+…+n·n12
=1+12+13+…+1n.
点评:在证明不等式的过程中,往往将“n个互不 相同的正整数”进行排序,这种排序并不失一般性,是 证明中常常使用的一个技巧.本题较难之处是如何想到 构造新的排列b1,b2,…,bn,这需要考生从正确的方向 进行分析,根据分析的发展逐步想到,充分利用问题的 条件,挖掘条件背后更深的内容,为使用已有经典不等 式创造条件.
这个和数就是问题的数学模型,现要考虑t1,t2,…,t10 满足什么条件时这个和数最小.
解析:等待总时间(分钟)是10t1+9t2+…+2t9+t10.
根据排序不等式,当t1<t2<…<t9<t10时总时间取最小 值.这就是说,按水桶的大小由小到大依次接水,10人等候的 总时间最少,这个最少的总时间是10t1+9t2…+2t9+t10,其中t1 <t2<…<t9<t10.
二层练习
7.已知 a,b,c 为正数,a≥b≥c,求证:
(1)b1c≥a1c≥a1b;
(2)ba3c53+ab3c53+ac3b5 3≥1a+1b+1c.
证明:(1)∵a≥b>0,∴1a≤1b, 又∵c>0,∴1c>0,∴b1c≥c1a, 同理∵b≥c>0,∴1b≤1c, ∵a>0,∴1a>0,∴c1a≥a1b,∴b1c≥a1c≥a1b;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= 2cos2θ1+2sin2θ·12
≤
12·2cos2θ+21+2sin2θ2=3 4 2.
当 2cos2θ=1+2sin2θ,即 θ=π6时,
x= 23,y= 22时,
x
1+y2取得最大值3
4
2 .
答案:3 4 2
已知 a,b 是正数,求证:
(1)
a2+2 b2≥a+2 b;
பைடு நூலகம்
(2) ab≥1a+2 1b.
13.某种汽车购买时费用为10万元,每年的保险、汽油 费用共9 000元,汽车的年维修费以等差数列递增,第一年为 2 000元,第二年为4 000元,…,如果把汽车的所有费用(包 括购车款)平摊到运行后的每一年,叫做年平均消耗.问这种 汽车使用几年后报废最合算(即汽车的年平均消耗最低)?
解析:设这种汽车使用 n 年报废,这 n 年中的年平均消 耗为 y 万元,则
为( D )
A.10
B.6 3
C.4 6
D.18 3
5.函数 y=x2+3xx+1(x<0)的值域是( B )
A.(-1,0)
B.[-3,0)
C.[-3,-1] D.(-∞,0)
6.已知 0<a<b<1,P=log12a+2 b,Q=12(log12a+log12b),
M=12log12(a+b),则 P,Q,M 的大小关系是( B )
不等式
基本不等式
1.会用基本不等式证明一些简单问题. 2.能够利用两项的平均值不等式求一些特定函数的极值,
从而学会解决简单的应用问题.
1.定理1:如果a,b∈R,那么a2+b2≥2ab(当且仅 当a=b时取“=”).
练习1:利用定理1有:x2+32≥____6_x___其中符号成 立的条件是:x=______3__.
年平均
x 2
件货储存在仓库里,库存费以每件20元计算,要
使一年的运费和库存费最省,每次进货量x应是多少?
分析:应用基本不等式或函数y=x+k 解决实际问 x
题的一般步骤:
①设变量,定函数;②建立函数关系式;③在定义 域内求最值;④写出正确答案.
解析:设一年的运费和库存费共 y 元, 由题意知:y=50x000×50+x2×20 =25×x105+10x≥2 25×106=104, 此时25×x 105=10x⇒x=500,ymin=10000, 答:每次进货 500 件,一年的运费和库存费最省.
①当a=b时,a2+b2=2ab;
②当a2+b2=2ab时,a=b;
③当 a≠b 时,a2+b2>2ab; ④当 a2+b2>2ab 时,a≠b. 对基本不等式:a,b 为正数,则a+2 b≥ ab当且仅当 a=b 时等号成立,作类似理解. 2.解题时要注意考察“三要素”:①函数中的相关项 必须都是正数;②变形后各项的和或积有一个必须是常数; ③当且仅当各项相等时,“=”号才能取到,可简化为“一 正二定三相等”.求函数最值时,常将不满足上述条件的函 数式进行“拆”、“配”等变形,使其满足条件,进而求出
y=10+0.9n+12nnn+1×0.2=1n0+1n0+1≥3. 当且仅当1n0=1n0,即 n=10 时,取“=”,所以,这种 汽车使用 10 年后报废最合算.
1.在公式 a2+b2≥2ab,及a+2 b≥ ab的教学中, 应强调以下几点:
(1)a2+b2≥2ab 和a+2 b≥ ab成立的条件是不同的, 前者只要求 a,b 都是实数,而后者要求 a,b 都为正数, 例如,(-1)2+(-3)2≥2(-1)×(-3)成立,而-1+2 -4 ≥ -1×-4不成立.
中项, ab看做是 a、b 的等比中项,那么定理又可叙述为: 两个正数的等差中项不小于它们的等比中项.
现给出这一定理的一种几何解释.
以 a+b 长的线段为直径作圆,在直径 AB 上取点 C, 使 AC=a,CB=b.过点 C 作垂直于直径 AB 的弦 DD′, 连结 AD,DB,易证 Rt△ACD∽Rt△DCB,则
证明:(1)左边= a2+b2+4 a2+b2≥
a2+b2+2ab 4
=
a+4b2=a+2 b=右边,即原不等式成立.
(2)右边=1a+2 1b≤2
2= 1 ab
ab=左边,
即原不等式成立.
一商店经销某种货物,根据销售情况,年进
货量为5万件,分若干次等量进货(设每次进货x件),每进
一次货运费50元,且在销售完该货物时,立即进货,现以
跟踪训练
设 x≥0,y≥0,x2+y22=1,则 x 1+y2的最大值为__________.
分析:∵x2+y22=1 是常数, ∴x2 与y22的积可能有最大值. ∴可把 x 放到根号里面去考虑,即化为 x21+y2, 注意到 x2 与 1+y2 的积,应处理成 2x2·1+2y2.
解析:法一:∵x≥0,y≥0,x2+y22=1,
最值.有些题目,尽管形式上是 x+px型的式子,即两数之积 为常数,但由于定义域的限制,不能使等号成立,如 y=x+1x (x≥5)的最小值,尽管 x+1x≥2,当 x=1x时,即 x=1 时取“=” 号,而 x=1 不在其定义域[5,+∞)内,因此不能使用基本不等式. 这时可利用函数单调性来解:f(x)=ax+bx(a>0,b>0),
在0, ba,- ba,0内是减函数,在 -∞,- ba内是增函数.
ba,+∞,
函数图象如下图所示.
另外,在证明或应用基本不等式解决一些较为复杂的 问题时,需要同时或连续使用基本不等式,要注意保证取 等号条件的一致性.
3.定理 2 可叙述为:两个正数的算术平均数不小于 它们的几何平均数.如果把a+2 b看做是正数 a、b 的等差
11.(2011 年湖南卷)设 x,y∈R,且 xy≠0,
则x2+y12x12+4y2的最小值为________.
解析:∵x,y∈R 且 xy≠0,
∴x2+y12x12+4y2=5+x21y2+4x2y2≥5+2×2=9,
当且仅当x21y2=4x2y2 即 xy=± 22时,取得最小值 9. 答案:9
一层练习
1.下列不等式中正确的是( D )
A.若 a,b∈R,则ba+ba≥2 ba·ba=2 B.若 x,y 都是正数,则 lg x+lg y≥2 lg xlg y C.若 x<0,则 x+4x≥-2 x·4x=-4 D.若 x<0,则 2x+2-x≥2 2x·2-x=2
2.“a>0 且 b>0”是“a+2 b≥ ab”的( A )
2.定理 2:如果 a,b 是正数,那么a+2 b≥ ab(当且 仅当 a=b 时取“=”).
练习 2:如果 x,y 是正数,那么x+2 y___≥_____ xy(当且 仅当 x=y 时取“=”).
3.a+2 b≥ ab的几何解释 如下图所示,以 a+b 为直径作圆,在直径 AB 上取 一点 C,过 C 作弦 DD′⊥AB 则 CD2=CA·CB=ab,
(2)关于不等式c≥d及c≤d的含义
不等式“c≥d” 的含义是“或者c>d,或者c=d”,等价 于“c不小于d”,即若c>d或c=d有一个正确,则c≥d正确.
不等式“c≤d”读作c小于或等于d,其含义是“c<d或者 c=d”,等价于“c不大于d”,即若c<d或c=d中有一个正确, 则c≤d正确.
(3)这两个公式都是带有等号的不等式,因此,对定理 “当a,b∈R时,a2+b2≥2ab当且仅当a=b时等号成立”的 含义要搞清楚.它的含义是:
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件
3.下列函数中,最小值为 2 的是( D )
A.y=2x+2x
B.y=
x2+2+
1 x2+2
C.y=sin x+sec x,x∈(0,2π)
D.y=7x+7-x
二层练习
4.设 x,y∈R,且 x+y=5,则 3x+3y 的最小值
8.若
x≠0 ,则
f(x)
=
2
-
3x2
-
12 x2
的
最
____大____
值
是
___-__1_0__,取得最值时 x 的值是__±___2___.
9.log 2x+log 2y=4,则 x+y 的最小值是____4____.
三层练习
10. (2013·广州二模) 设a>0,b>0,则以下不等式中,不恒成立的 是B
12.求下列函数的最值: (1)已知 x<0,求 2x+1x的最大值; (2)已知 0<x≤14,求 x+1x最小值.
解析:(1)由 x<0 得-x>0,
得-2x+-1x≥2 -2x-1x=2 2, 所以 2x+1x≤-2 2, 当且仅当-2x=-1x,
即 x=- 22时,2x+1x取最大值-2 2. (2)由函数的单调性,可以证明,y=x+1x在0,41上是减 函数,所以 f(x)=x+1x≥f41=147, 即 x+1x的最小值是147.
∴x 1+y2= x21+y2=
2x2·1+2 y2
≤
2x2+12+2y2= 2x2+y222+12=3 4 2,
当且仅当 x2=1+2y2,即 x= 23,y= 22时,
x
1+y2取得最大值3
4
2 .
法二:令{ x=cos θ y= 2sin θ 0≤θ≤π2,
则 x 1+y2=cos θ 1+2sin2θ
已知x,y都是正数,和x+y是定值3,那么当x=y时, 积xy有最________值________.
(1)2 P
(2)14S2
练习 3:小
20
大
9 4
已知,x,y∈R+,且 x+4y=1, 求1x+1y的最小值.
解析:∵1x+1y=(x+4y)(1x+1y)=
5+4xy+xy≥5+2 4xy·xy=9, 当且仅当4xy=xy且 x+4y=1, 即 x=13,y=16时等号成立. ∴1x+1y的最小值为 9.