污水生物脱氮技术研究现状

合集下载

《SBR工艺生物脱氮及外加碳源效果研究》范文

《SBR工艺生物脱氮及外加碳源效果研究》范文

《SBR工艺生物脱氮及外加碳源效果研究》篇一一、引言随着工业和城市化的快速发展,水体富营养化问题日益严重,其中氮污染成为水环境治理的重要难题。

SBR(Sequencing Batch Reactor,序批式活性污泥法)工艺作为一种高效的污水处理技术,具有操作灵活、适应性强等优点,广泛应用于污水处理领域。

生物脱氮作为SBR工艺的重要环节,其效果直接影响到出水水质。

同时,外加碳源作为一种强化生物脱氮的手段,也被广泛研究。

本文旨在研究SBR工艺生物脱氮及外加碳源的效果,为实际工程应用提供理论依据。

二、SBR工艺生物脱氮原理及研究现状SBR工艺是一种按间歇方式运行的处理工艺,通过周期性改变反应条件,实现污水的高效处理。

生物脱氮是SBR工艺的核心环节,主要通过硝化与反硝化作用实现。

硝化作用由自养型好氧菌完成,将氨氮氧化为硝酸盐;反硝化作用由异养型厌氧菌完成,将硝酸盐还原为氮气。

两者结合,实现生物脱氮的目的。

近年来,SBR工艺生物脱氮的研究主要集中在优化运行参数、提高脱氮效率等方面。

然而,在实际应用中,由于进水氮负荷、水温、pH值等因素的影响,SBR工艺的生物脱氮效果往往难以达到预期。

因此,有必要研究外加碳源对SBR工艺生物脱氮的影响。

三、外加碳源对SBR工艺生物脱氮的影响外加碳源是指向污水处理系统中投加有机碳源,以提高反硝化过程的电子供体浓度,从而促进反硝化速率。

常见的外加碳源包括甲醇、乙酸钠、葡萄糖等。

研究表明,外加碳源可以显著提高SBR工艺的生物脱氮效果。

一方面,外加碳源为异养型厌氧菌提供了充足的电子供体,加速了反硝化速率;另一方面,外加碳源可以改善污泥的活性,提高污泥对氮的去除能力。

此外,外加碳源还可以调节系统的pH值,有利于硝化与反硝化过程的进行。

四、实验方法与结果分析1. 实验方法本实验采用SBR工艺,分别设置外加碳源组(甲醇)和对照组(无外加碳源),在相同条件下运行一定周期。

通过监测进出水的氨氮、硝酸盐氮等指标,分析SBR工艺的生物脱氮效果及外加碳源的影响。

《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加快,城市污水处理成为环境保护领域亟待解决的问题。

传统的污水处理方法虽然能够满足基本需求,但面对日益增长的城市人口和日益复杂的污水成分,传统的处理技术已经难以满足当前的环保要求。

因此,新型生物脱氮除磷技术的研究与进步对于改善水质、保护生态环境具有十分重要的意义。

本文旨在梳理近年来城市污水处理中新型生物脱氮除磷技术的研究进展。

二、生物脱氮技术研究(一)发展概况生物脱氮技术主要通过微生物的作用,将污水中的氮素转化为无害的氮气排放到大气中。

近年来,研究者们通过优化反应器设计、改进微生物菌群以及调控环境因素等手段,推动了生物脱氮技术的进步。

(二)技术分类目前,生物脱氮技术主要包括厌氧-好氧(A/O)工艺、同步硝化反硝化(SND)技术、短程硝化反硝化等。

这些技术通过不同的反应过程和微生物活动,实现了高效脱氮的效果。

(三)研究进展随着研究的深入,新型生物脱氮技术如微氧脱氮技术、基于膜生物反应器的脱氮技术等逐渐崭露头角。

这些技术不仅提高了脱氮效率,还降低了能耗和运行成本。

三、生物除磷技术研究(一)发展概况生物除磷技术主要通过微生物的代谢活动,将污水中的磷素去除或转化为易于回收的形态。

近年来,随着对微生物除磷机制的了解加深,除磷技术的效率也得到了显著提高。

(二)技术分类常见的生物除磷技术包括聚磷菌(PAOs)除磷工艺、厌氧-好氧(A/O)结合除磷等。

这些技术通过调控微生物的生长环境和代谢过程,实现了对污水中磷的高效去除。

(三)研究进展新型的生物除磷技术如基于微藻的除磷技术、电化学辅助生物除磷技术等逐渐成为研究热点。

这些技术不仅提高了除磷效率,还为后续的磷资源回收提供了可能。

四、新型生物脱氮除磷技术的优势与挑战(一)优势新型生物脱氮除磷技术相比传统技术,具有更高的处理效率、更低的能耗和运行成本。

同时,这些技术还能够实现对氮、磷等营养元素的回收利用,具有良好的经济和环境效益。

污水生物脱氮除磷工艺的现状与发展

污水生物脱氮除磷工艺的现状与发展
向作 了展望 。
为 氨 态 氮 的 基 础 上 ,利 用 硝 化 菌 和 反 硝化 菌 的 作 用 ,在 好 氧 条 件 下将 氨 氮通 过反 硝化 作 用 转 化 为
亚硝态氮 、硝态氮。在 缺氧条件下通过反 硝化作 用将 硝氮 转化 为氮 气 ,达 到从 废水 中脱氮 的 目
的 。废 水 中氮 的去 除 还 包 括 靠 微 生 物 的 同化 作 用 将氮转化 为细胞原 生质成分 。主要过 程如下 : 氨 化 作 用 是 有 机 氮 在 氨 化 菌 的作 用 下 转 化 为 氨 氮 。
硝 化 作 用 是 在 硝 化 菌 的作 用 下 进 一 步 转 化 为 硝
酸盐 氮 。其 中亚 硝 酸菌 和 硝 酸菌 为 好 氧 自养 菌 , 以 无 机 碳 化合 物 为碳 源 ,从 N 4 N z H+ O- 或 的氧 化 反 应 中获取 能 量 [ 。其 中硝 化 的最佳 温度 在纯培 养 中为 2 ~5℃, 土壤 中为 3~ O℃, 53 在 04 最佳 p H值 偏 碱性 。 反硝化 作 用是反 硝化 菌 ( 多数是 异养 型兼 性厌 氧 大 菌 ,O< .m / ) D O5 gL 在缺 氧 的条 件下 , 以硝酸 盐氮 为 电
关键词 : 生物脱 氮除磷 ; 富营养化 ; 工艺; 发展趋 势
Ab t a t Me h ns o se tr b oo i a i o e n h s h r s rmo a a i u s d o f t e t d t n l nto e n sr c : c a im fwa twae il gc ln t g n a d p o p o u e v lw s d s s e .S me o h r i o a i g n a d r c a i r p o p o u mo a r c s e e ei t d c da c r i gt eo d r f p c n me Me n i e u u ed v lp n e d i f l h s h r s e v l o e s s r r u e c o d n t r e a ea dt . a whl t t r e e o me tr n s nt s ed r p w no oh os i eh f t i h i w r r s e td B s do e n r d c ino p o e si w s u r a dta c a i o b oo i a h s h r s e v l h u db e p n d e e o p c e . a e nt t u t f r c s ,t a t o w r t p h i o o p f h me h n s f ilg c p o p o u mo a o l ed e e e , m l r s a dmo e o u u d e nt e c o i l o t le h oo y n r c s f wo l r b a n r c n lg . b o h mi c ot Ke r s bo o ia i o e n h s h r s e v l e t p i ain t c n l g ;r n s y wo d : il gc l t g na dp o p o u mo a; ur hc t ;e h oo t d nr r o o y e

污水处理中的生物脱氮技术

污水处理中的生物脱氮技术
优化反应条件
通过控制生物反应器的温度、pH值、溶解氧等参数,优化微生物 的生长和代谢环境,提高脱氮效率。
投加营养物质
针对缺乏某些必要营养物质的废水,适当投加必要的营养物质,促 进微生物的生长和代谢,提高脱氮效率。
降低运行成本的研究
优化工艺流程
01
通过改进和优化生物脱氮技术的工艺流程,降低能耗和物耗,
环保可持续
生物脱氮技术是一种环境友好的处理方法,不会产生二次 污染,且微生物资源可循环利用,符合可持续发展的要求 。
降低处理成本
相较于传统的物化处理方法,生物脱氮技术具有较低的运 行成本和较高的处理效率,有助于降低污水处理成本。
对未来研究的建议
深入研究微生物种群
进一步了解参与硝化、反硝化的微生物种群及其代谢机制,有助 于优化生物脱氮工艺,提高脱氮效率。
开发新型生物脱氮技术
针对不同水质、不同处理要求的污水处理场景,开发新型、高效的 生物脱氮技术,以满足不断变化的污水处理需求。
强化实际应用研究
加强生物脱氮技术在污水处理厂的实际应用研究,积累运行数据, 为技术的推广应用提供实践依据。
THANKS
THANK YOU FOR YOUR WATCHING
通过控制反应条件,如溶解氧的浓度和有机物的投加量,可以实现同步硝 化反硝化,提高脱氮效率。
同步硝化反硝化可以简化工艺流程,减少设备和投资成本,因此在污水处 理领域具有广泛的应用前景。
03
生物脱氮技术的主要方法
活性污泥法
总结词
一种常用的生物脱氮技术,通过微生物的作用将污水中的氨氮转化为氮气。
详细描述
活性污泥法利用微生物的硝化作用将污水中的氨氮氧化成硝酸盐或亚硝酸盐, 再通过反硝化作用将硝酸盐或亚硝酸盐还原成氮气,从而达到脱氮的目的。该 方法操作简单,处理效果好,但能耗较高。

《2024年污水生物脱氮除磷工艺的现状与发展》范文

《2024年污水生物脱氮除磷工艺的现状与发展》范文

《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着城市化进程的加速和工业化的推进,污水处理成为环境保护和可持续发展的关键环节。

在污水处理过程中,氮、磷等营养物质的去除尤为关键,因为这些物质会直接导致水体富营养化,影响水生态系统的平衡。

其中,污水生物脱氮除磷工艺因其高效、经济的特点,成为当前污水处理领域的研究热点。

本文将详细介绍污水生物脱氮除磷工艺的现状及其发展趋势。

二、污水生物脱氮除磷工艺的现状1. 传统生物脱氮除磷工艺传统的生物脱氮除磷工艺主要包括活性污泥法、生物膜法等。

这些工艺通过微生物的作用,将污水中的氮、磷等营养物质转化为无害物质,从而达到净化水质的目的。

然而,这些工艺在处理过程中存在能耗高、污泥产量大等问题,限制了其应用范围。

2. 新型生物脱氮除磷工艺针对传统工艺的不足,科研人员不断探索新型的生物脱氮除磷工艺。

其中,短程硝化反硝化、厌氧氨氧化、同步脱氮除磷等工艺在实验室阶段取得了显著成果。

这些新型工艺具有能耗低、污泥产量少等优点,为污水处理提供了新的思路。

3. 实际应用情况目前,各种生物脱氮除磷工艺在实际应用中取得了良好的效果。

例如,某些城市采用新型的同步脱氮除磷工艺,实现了氮、磷的高效去除,同时降低了能耗和污泥产量。

此外,一些工业园区也采用生物脱氮除磷工艺处理废水,有效减轻了对周边水环境的污染。

三、污水生物脱氮除磷工艺的发展趋势1. 工艺优化与创新未来,随着科研技术的不断发展,污水生物脱氮除磷工艺将进一步优化和创新。

科研人员将探索更加高效的微生物种类和反应机制,以提高氮、磷的去除效率。

同时,针对不同地区、不同行业的污水处理需求,开发适应性强、操作简便的工艺。

2. 能源回收与资源化利用在污水处理过程中,通过生物脱氮除磷等工艺产生的能量和资源将得到充分利用。

例如,利用微生物在反应过程中产生的能量,实现污水的能源自给或供电;同时,将处理后的污水用于农业灌溉、景观用水等,实现水资源的循环利用。

污水处理中的深度脱氮技术研究

污水处理中的深度脱氮技术研究

污水处理中的深度脱氮技术研究一、引言在现代城市化的进程中,污水处理是一个不可忽视的环境问题。

其中,氮污染是造成水体富营养化的主要原因之一。

因此,深度脱氮技术的研究和应用愈发重要。

本文旨在探讨污水处理中的深度脱氮技术及其研究进展。

二、深度脱氮技术概述深度脱氮技术是指将污水中的氮元素有效去除至环境规定的排放标准以下的处理技术。

具体而言,常见的深度脱氮技术包括物理方法、化学方法和生物方法。

1. 物理方法物理方法主要利用分离技术和吸附技术进行污水中氮元素的去除。

例如,膜分离技术能够有效去除溶解性氮,通过不同孔径大小的膜将氮分子滞留在膜上,实现脱氮。

此外,吸附技术利用吸附剂对氮分子进行吸附,从而实现去除。

2. 化学方法化学方法主要利用化学反应将氮元素转化为其他形式从而去除。

常见的化学方法包括硝化反应和反硝化反应。

硝化反应将污水中的氨氮氧化为亚硝酸盐或硝酸盐,而反硝化反应将亚硝酸盐或硝酸盐还原为氮气释放到大气中。

3. 生物方法生物方法主要利用生物活性物质对污水中的氮元素进行处理。

传统的生物方法包括厌氧氨氧化和硝化反硝化工艺。

而近年来兴起的深度脱氮技术中,反硝化产物的再利用成为了研究热点。

通过微生物对反硝化产物的利用,可以将氮元素进一步去除达到更高的脱氮效果。

三、深度脱氮技术的研究进展随着环境问题的加剧和技术的不断进步,深度脱氮技术在污水处理领域得到了广泛应用和研究。

1. 新型吸附剂的应用新型吸附剂的研发成为了深度脱氮技术的重要方向。

例如,一些基于石墨烯、金属氧化物等材料制备的吸附剂具有较大的比表面积和优异的吸附性能,能够高效地去除污水中的氮元素。

2. 微生物技术的创新微生物技术在深度脱氮技术中发挥着重要作用。

新型生物载体的开发以及基因工程技术的应用为深度脱氮提供了新的途径。

例如,一些研究人员通过改良微生物株的代谢途径,使其对反硝化产物有更高的利用能力,从而实现更高效的脱氮效果。

3. 联合技术的应用深度脱氮技术的研究也逐渐向联合技术发展。

污水处理中的生物脱氮技术应用

污水处理中的生物脱氮技术应用

城市污水处理
总结词
城市污水处理是生物脱氮技术应用的重 要领域之一,通过生物脱氮技术可以有 效处理城市污水中含有的氮污染物,提 高水质并降低水体富营养化的风险。
VS
详细描述
城市污水中含有一定量的氮污染物,如生 活污水、雨水等。生物脱氮技术通过硝化 和反硝化作用,可以有效去除这些污染物 ,降低水体富营养化的风险,提高水质并 保障城市居民的用水安全。
02
CATALOGUE
生物脱氮技术应用场景
生活污水处理
总结词
生活污水处理是生物脱氮技术的重要应用领域,通过生物脱氮技术可以有效去 除生活污水中含有的氮污染物,达到净化水质的目的。
详细描述
生活污水中含有大量的氮污染物,如氨氮、硝态氮等,这些污染物对人体健康 和生态环境造成危害。生物脱氮技术通过微生物的硝化和反硝化作用,将氮污 染物转化为无害的氮气排出,从而达到净化水质的效果。
03
CATALOGUE
生物脱氮技术应用案例
某生活污水处理厂生物脱氮技术应用
总结词
成功应用、高效去除
详细描述
某生活污水处理厂采用生物脱氮技术,通过合理设计缺氧、好氧反应器,成功实现了对总氮的高效去 除。经过处理后的出水总氮浓度低于排放标准,满足了环保要求。
某工业废水处理厂生物脱氮技术应用
总结词
针对性强、效果显著
04
CATALOGUE
生物脱氮技术的发展趋势和挑战
生物脱氮技术的发展趋势
高效低耗
随着环保要求的提高,生物脱氮 技术正朝着高效、低能耗的方向 发展,以提高脱氮效率并降低运
行成本。
智能化控制
利用现代信息技术和人工智能技术 ,实现生物脱氮过程的智能化控制 ,提高处理效果和稳定性。

《2024年A2O污水处理工艺研究进展》范文

《2024年A2O污水处理工艺研究进展》范文

《A2O污水处理工艺研究进展》篇一一、引言随着工业化和城市化的快速发展,水资源的污染问题日益严重,其中污水处理成为环境保护领域的重要课题。

A2O(厌氧-缺氧-好氧)污水处理工艺作为一种有效的污水处理技术,因其处理效率高、操作简便、成本低廉等优点,得到了广泛的应用和关注。

本文旨在探讨A2O污水处理工艺的研究进展,分析其技术特点、应用现状及未来发展趋势。

二、A2O污水处理工艺概述A2O污水处理工艺是一种生物脱氮除磷的污水处理技术,通过厌氧、缺氧、好氧三个阶段的交替运行,实现对污水的有效处理。

该工艺通过不同阶段的微生物活动,达到去除有机物、氮、磷等污染物的目的。

A2O工艺具有较好的处理效果和适应性,适用于各种规模的污水处理厂。

三、A2O污水处理工艺研究进展1. 技术特点分析A2O污水处理工艺具有以下技术特点:(1)处理效率高:通过厌氧、缺氧、好氧三个阶段的协同作用,实现对污水的有效处理,去除率较高。

(2)操作简便:工艺流程相对简单,操作方便,易于维护。

(3)成本低廉:相比其他污水处理技术,A2O工艺具有较低的运行成本和投资成本。

(4)适应性强:适用于各种规模的污水处理厂,可处理不同来源的污水。

2. 应用现状分析A2O污水处理工艺在全球范围内得到了广泛应用。

研究人员在提高处理效率、降低能耗、优化运行管理等方面取得了显著成果。

此外,针对不同地区、不同来源的污水,研究人员还开展了大量的实际应用研究,为A2O工艺的推广应用提供了有力支持。

3. 最新研究成果近年来,针对A2O污水处理工艺的研究不断深入,取得了一系列重要成果。

例如,研究人员通过优化运行参数、改进设备结构等手段,提高了A2O工艺的处理效率;同时,针对污泥处理、资源回收等问题,开展了一系列研究工作,为A2O工艺的可持续发展提供了新的思路和方法。

四、未来发展趋势与展望随着环保要求的不断提高和技术的不断进步,A2O污水处理工艺将迎来新的发展机遇。

未来,A2O工艺将朝着以下方向发展:1. 智能化运行管理:通过引入物联网、大数据等先进技术手段,实现A2O工艺的智能化运行管理,提高处理效率和稳定性。

《2024年污水生物脱氮除磷工艺的现状与发展》范文

《2024年污水生物脱氮除磷工艺的现状与发展》范文

《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着城市化进程的加速和工业的迅猛发展,大量生活污水和工业废水被排放到水环境中,造成了严重的环境问题。

为了有效减少污水对环境的危害,人们研发了多种污水处理技术。

其中,污水生物脱氮除磷工艺因具有较好的处理效果和较低的运行成本,得到了广泛的应用。

本文将就污水生物脱氮除磷工艺的现状及其发展进行详细探讨。

二、污水生物脱氮除磷工艺的现状1. 工艺概述污水生物脱氮除磷工艺是一种基于微生物作用,利用活性污泥法等生物处理技术,将污水中的氮、磷等营养元素去除的工艺。

该工艺主要利用微生物的代谢作用,将污水中的氮、磷转化为无害物质,从而达到净化水质的目的。

2. 国内外应用现状目前,国内外广泛应用的污水生物脱氮除磷工艺主要包括A/O法、A2/O法、氧化沟法等。

这些工艺在我国污水处理领域得到了广泛应用,特别是在城市污水处理厂和工业废水处理中。

此外,一些新型的生物脱氮除磷技术,如MBR(膜生物反应器)技术、超声波强化生物脱氮除磷技术等也在逐步推广应用。

三、工艺运行机制与原理污水生物脱氮除磷工艺主要依靠活性污泥中的微生物完成。

在反应过程中,微生物通过吸附、吸收、代谢等作用,将污水中的氮、磷等营养元素转化为无害物质。

具体来说,脱氮过程主要通过氨化、硝化和反硝化等步骤实现;除磷过程则主要通过聚磷菌的过量摄磷和释磷实现。

四、工艺发展及挑战1. 技术发展随着科技的不断进步,污水生物脱氮除磷工艺也在不断发展和完善。

新型的生物反应器、高效的微生物菌剂、智能化的控制系统等技术手段的应用,使得污水处理效率得到了显著提高。

同时,一些新型的污水处理理念和技术,如低碳、低能耗、资源化等也得到了广泛关注。

2. 面临的挑战尽管污水生物脱氮除磷工艺取得了显著的成果,但仍面临一些挑战。

如:如何进一步提高处理效率、降低运行成本;如何解决污泥处理与处置问题;如何应对复杂多变的水质等。

此外,一些新兴污染物(如微塑料、新型有机污染物等)也对传统污水处理技术提出了新的挑战。

生物脱氮新技术研究进展

生物脱氮新技术研究进展

生物脱氮新技术研究进展随着环境保护意识的不断提高,生物脱氮技术作为一种环保节能的新型污水处理技术,越来越受到人们的。

本文将介绍生物脱氮新技术的研究背景和意义、研究进展、优缺点和发展前景,以期为相关领域的研究提供参考。

生物脱氮是指利用微生物或植物等生物手段,通过硝化和反硝化作用将废水中的氨氮和硝酸盐等含氮化合物转化为无害的氮气,从而达到废水治理和资源化的目的。

生物脱氮技术主要包括活性污泥法、生物膜法、反硝化菌法等。

这些技术均利用微生物菌群进行硝化和反硝化作用,将废水中的氨氮转化为氮气。

近年来,随着生物技术的不断发展,生物脱氮新技术也层出不穷。

下面介绍几种生物脱氮新技术的研究进展。

短程硝化反硝化技术是指在同一个反应器内,通过控制反应条件,使硝化作用和反硝化作用相继进行。

该技术可以大幅度减少反应器体积,提高反应效率,同时还可以降低能耗。

研究结果表明,短程硝化反硝化技术对氨氮和总氮的去除率均高于传统的活性污泥法。

厌氧氨氧化技术是指利用厌氧微生物将氨氮和亚硝酸盐转化为氮气的过程。

该技术的反应条件温和,无需曝气供氧,具有较高的氮去除率和能源利用率。

研究结果表明,厌氧氨氧化技术对高浓度氨氮废水的处理效果较好,但在低浓度氨氮废水处理中可能受到抑制。

悬浮生长植物脱氮技术是指利用水生植物如荷花、水葫芦等吸收废水中的氨氮,并通过植物体内的转化作用将其转化为氮气。

该技术具有投资少、操作简单、无需外加能源等优点,在低浓度氨氮废水中具有较好的处理效果。

研究结果表明,悬浮生长植物脱氮技术可以降低废水中的氨氮浓度,同时还可以改善水体生态环境。

生物脱氮新技术在氨氮和总氮的去除率、反应效率、能源利用率等方面均优于传统活性污泥法等生物脱氮技术。

但是,这些新技术尚存在一些缺点,如短程硝化反硝化技术需要控制精确的反应条件,厌氧氨氧化技术对废水的预处理要求较高,悬浮生长植物脱氮技术仅适用于低浓度氨氮废水的处理。

因此,在实际应用中,需要根据具体情况选择适合的生物脱氮技术。

污水处理中的生物脱氮技术

污水处理中的生物脱氮技术

污水处理中的生物脱氮技术污水处理是保护水资源和环境的重要举措之一。

而生物脱氮技术作为一种高效节能的污水处理方法,已经得到了广泛的应用和研究。

本文将重点介绍污水处理中的生物脱氮技术原理、应用案例以及未来发展趋势。

一、生物脱氮技术原理生物脱氮技术是指利用微生物将废水中的氮化合物转化为气态氮的过程。

常见的脱氮技术包括硝化-反硝化和厌氧反硝化。

其中,硝化过程是将氨氮先转化为亚硝酸盐氮,再通过细菌作用转化为硝酸盐氮。

而反硝化过程则是将硝酸盐氮还原为氮气。

厌氧反硝化技术是针对无氧环境下,通过厌氧细菌将硝酸盐氮还原为氮气。

二、生物脱氮技术的应用案例1. 活性污泥法活性污泥法是一种常见的生物脱氮技术,通过在好氧条件下,利用生物膜中的硝化细菌和反硝化细菌,将废水中的氨氮转化为氮气。

这种技术适用于中小型污水处理厂和城市污水处理厂。

2. 等温厌氧反硝化技术等温厌氧反硝化技术是近年来快速发展的生物脱氮技术之一。

该技术通过通过将反硝化与厌氧条件相结合,在相对温和的条件下提高了反硝化的效率。

这种技术适用于低温环境下的污水处理。

3. 全自动生物脱氮系统全自动生物脱氮系统是一种集成化的生物脱氮技术。

该系统通过自动控制设备,实现了对污水处理过程中关键参数的监测和调控。

这种技术具有稳定性高、运行成本低、操作简便等优点,被广泛应用于大型污水处理厂。

三、生物脱氮技术的发展趋势1. 高效节能随着能源问题的日益凸显,未来的生物脱氮技术将更加注重能源的高效利用。

例如,利用厌氧颗粒污泥技术可以在反硝化过程中产生较低的剩余物,提高能源利用效率。

2. 微生物多样性研究生物脱氮技术中的微生物扮演着重要的角色。

因此,未来的研究将更加关注微生物多样性的研究,进一步优化脱氮效果。

3. 优化污水处理工艺将生物脱氮技术与其他污水处理工艺相结合,可以进一步提高脱氮效果。

例如,与生物脱磷技术相结合,可以实现对污水中氮磷的同步去除,提高污水处理的效率。

总之,生物脱氮技术作为一种高效节能的污水处理方法,持续得到广泛研究和应用。

新型污水生物脱氮除磷工艺研究进展

新型污水生物脱氮除磷工艺研究进展

新型污水生物脱氮除磷工艺研究进展摘要:近些年来,伴随城镇规模的扩大,城镇生活污染源占比急剧上升,而污水收集系统的建设推进相对缓慢,污水处理技术滞后于当前的社会发展需求,导致水体富营养化日益严峻,其中以氮、磷为主要的水资源富营养化因素。

传统脱氮除磷污水处理工艺难以满足日趋严重的污水处理需求开发适宜的脱氮除磷新型污水处理工艺技术拥有很大的市场前景。

基于此,本文探讨了研究生物脱氮除磷处理污水新工艺的意义,介绍了关于生物脱氮除磷新型污水工艺的整体研究进展,仅供参考。

关键词:新型工艺;污水处理;生物脱氮除磷近年来,我国富营养化水体占比超过80%[1],排入水中的氮、磷等物质给藻类植物提供了充足的生长条件,导致水体溶解氧下降,限制水生生物的生存环境,严重危害了自然水生态系统,带给野生动植物、家畜、人类巨大的影响和危害。

很多国家均严格限制了氮磷排放标准,并循环利用水资源,以防水体继续恶化,我国排水质量评价体系也从单一考核氨氮、磷酸盐向总氮总磷转变。

当前,国内应用型污水处理技术依旧较为落后,以至于出水中的氮磷难以较好地被去除,无法达到A级标准。

下一步,需要积极研究、改进脱氮除磷工艺,尤其应关注污水生物脱氮除磷新型工艺的国内外研究进展,推动新技术的应用落地。

一、生物脱氮除磷处理污水新工艺的研究意义人类为了存活下来并不断向前发展,则必须依赖水这种很重要的资源。

随着工农业不断向前发展、民众生活品质的稳步提高工业废水以及城镇生活污水的总体排放量都在急剧增大。

然而,生活及工业污水处理设施的巨大缺口使得国内水环境污染愈加严重,大量没有处理达标的高氮磷污水直接排入水体引起了严峻的水体富营养化现状问题部分水系难以发挥正常功能并且带来了严重的经济损失。

近年来逐步增加的污水处理能力从一定程度上改善了水体污染现象但是却远远跟不上水污染防治的需求以至于水环境质量每况愈下[2]。

而相较于传统化学、物理脱氮除磷工艺而言,生物脱氮除磷新型工艺能够明显提高出水水质与脱氮除磷效率,有效减少运行费用、降低能源消耗。

《2024年城市污水生物脱氮技术变革_厌氧氨氧化的研究与实践新进展》范文

《2024年城市污水生物脱氮技术变革_厌氧氨氧化的研究与实践新进展》范文

《城市污水生物脱氮技术变革_厌氧氨氧化的研究与实践新进展》篇一城市污水生物脱氮技术变革_厌氧氨氧化的研究与实践新进展城市污水生物脱氮技术变革:厌氧氨氧化的研究与实践新进展一、引言随着城市化进程的加速,城市污水问题日益突出,其中氮污染成为水环境治理的重要难题。

城市污水生物脱氮技术作为解决这一难题的关键手段,近年来得到了广泛关注。

其中,厌氧氨氧化技术以其独特的优势,在污水处理领域展现出巨大的应用潜力。

本文将就城市污水生物脱氮技术中的厌氧氨氧化技术进行研究与实践的新进展进行探讨。

二、城市污水生物脱氮技术概述城市污水生物脱氮技术主要利用微生物的作用,通过硝化与反硝化等过程,将污水中的氮元素从水中去除。

该技术具有处理效率高、运行成本低等优点,是当前污水处理领域的主要技术手段。

三、厌氧氨氧化技术原理及特点厌氧氨氧化技术是一种在厌氧条件下,利用厌氧氨氧化菌将氨氮直接氧化为氮气的生物脱氮技术。

该技术具有以下特点:一是无需外加有机碳源,以氨氮为电子供体,降低了处理成本;二是反应过程中不产生硝酸盐或亚硝酸盐等中间产物,减少了二次污染的风险;三是适应性强,可在高氨氮浓度、低溶解氧等条件下运行。

四、厌氧氨氧化技术研究进展近年来,随着对厌氧氨氧化技术的深入研究,该技术在反应器设计、菌种培养、工艺优化等方面取得了重要突破。

研究学者们通过改进反应器结构,提高了厌氧氨氧化反应的传质效率和处理能力;同时,通过筛选和培养高效的厌氧氨氧化菌种,进一步提高了反应的速率和效率。

此外,针对不同来源和特性的污水,研究学者们还探索出了多种组合工艺,如厌氧氨氧化与膜生物反应器结合、与活性污泥法联合等,提高了污水的处理效果。

五、厌氧氨氧化技术应用实践新进展目前,厌氧氨氧化技术已在国内外多个污水处理项目中得到应用。

实践表明,该技术在处理高氨氮浓度、低碳源的污水方面具有显著优势。

例如,某城市污水处理厂采用厌氧氨氧化技术后,出水氮含量显著降低,达到了国家排放标准;同时,该技术的运行成本相比传统生物脱氮技术降低了约XX%。

《2024年污水生物脱氮除磷工艺的现状与发展》范文

《2024年污水生物脱氮除磷工艺的现状与发展》范文

《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着工业化和城市化的快速发展,水体富营养化问题日益严重,其中氮、磷等营养物质的排放是主要污染源之一。

污水生物脱氮除磷工艺作为一种经济、高效的污水处理技术,受到了广泛关注。

本文将重点介绍污水生物脱氮除磷工艺的现状及其发展。

二、污水生物脱氮除磷工艺概述污水生物脱氮除磷工艺是一种利用微生物的作用,通过生化反应将污水中的氮、磷等营养物质去除的工艺。

该工艺主要包括硝化、反硝化、聚磷菌的过量吸磷等过程,通过这些过程实现污水中氮、磷的有效去除。

三、污水生物脱氮除磷工艺的现状1. 工艺类型与特点目前,污水生物脱氮除磷工艺主要包括传统活性污泥法、A2/O工艺、MBR工艺、SBR工艺等。

这些工艺各有特点,如传统活性污泥法处理效果好,但能耗较高;A2/O工艺脱氮除磷效果好,对水质变化适应能力强。

在实际应用中,需根据实际情况选择合适的工艺。

2. 实际应用情况目前,污水生物脱氮除磷工艺已在全球范围内得到广泛应用。

在我国,该工艺在污水处理厂、工业废水处理等领域发挥了重要作用。

然而,仍存在一些问题,如能耗高、污泥产量大等,需要进一步优化和改进。

四、污水生物脱氮除磷工艺的发展1. 技术创新与优化随着科技的不断进步,新的技术手段和材料不断应用于污水生物脱氮除磷工艺中。

例如,利用新型生物反应器、高效微生物菌剂等提高处理效果,降低能耗和污泥产量。

同时,通过对现有工艺的优化和改进,提高工艺的稳定性和可靠性。

2. 集成化与智能化发展未来,污水生物脱氮除磷工艺将更加注重集成化和智能化发展。

通过将不同工艺进行集成,实现一体化处理,提高处理效率。

同时,利用智能化技术手段,实现对污水处理过程的实时监测和调控,提高工艺的稳定性和处理效果。

3. 政策与标准支持政府对污水处理和环境保护的重视程度不断提高,出台了一系列政策和标准,为污水生物脱氮除磷工艺的发展提供了有力支持。

未来,随着政策和标准的不断完善和落实,该工艺将得到更广泛的应用和推广。

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《污水生物脱氮除磷工艺优化技术综述》篇一一、引言随着城市化进程的加快和工业的迅速发展,污水排放量日益增加,水体富营养化问题日趋严重。

其中,氮、磷等营养物质的过量排放是导致水体污染的主要原因之一。

因此,污水处理中的脱氮除磷技术显得尤为重要。

本文旨在综述污水生物脱氮除磷工艺的优化技术,分析现有技术的优缺点,探讨未来技术的发展方向。

二、污水生物脱氮除磷技术概述污水生物脱氮除磷技术主要通过微生物的作用,将污水中的氮、磷等营养物质转化为无害的物质,以达到净化水质的目的。

该技术主要分为生物脱氮技术和生物除磷技术两部分。

生物脱氮技术主要通过硝化、反硝化等过程去除氮;生物除磷技术则通过聚磷菌的富集和排放来去除磷。

三、现有生物脱氮除磷工艺及优缺点分析1. 传统A2/O工艺:A2/O工艺是一种常用的生物脱氮除磷工艺,具有同步脱氮除磷的效果。

但其运行过程中存在碳源竞争、泥龄矛盾等问题,导致处理效果不稳定。

2. 短程硝化反硝化工艺:该工艺通过控制硝化过程,使硝化反应停留在亚硝酸盐阶段,从而减少反硝化过程的能耗和污泥产量。

但该工艺对运行条件要求较高,控制难度较大。

3. 强化生物除磷工艺:通过投加碳源或优化运行条件,提高聚磷菌的除磷效率。

该工艺除磷效果好,但增加了运行成本。

四、生物脱氮除磷工艺优化技术1. 新型反应器技术:如组合式反应器、流态化床反应器等,通过优化反应器结构,提高微生物与污水的接触效率,从而提高脱氮除磷效果。

2. 强化生物脱氮技术:通过投加特定菌种、优化运行参数等方式,提高硝化、反硝化反应速率,降低能耗。

3. 生物膜法技术:利用生物膜的高效吸附和生物降解作用,提高脱氮除磷效果。

同时,生物膜法能够降低污泥产量,减少二次污染。

4. 智能控制技术:通过引入智能控制系统,实时监测和调整污水处理过程中的各项参数,如pH值、溶解氧浓度等,以实现最优的脱氮除磷效果。

五、未来发展趋势与展望1. 高效、低耗的脱氮除磷技术将成为未来研究的重要方向。

生物脱氮技术在城市污水处理中的应用及工艺优化

生物脱氮技术在城市污水处理中的应用及工艺优化

生物脱氮技术在城市污水处理中的应用及工艺优化摘要:随着改革开放带来的经济发展和城镇化建设,我国居民生活水平有了明显的改善,伴随城镇化进程不断推进随之而来的问题就是许多城市的污水、排水设备和设施不够完善,导致当地的水污染情况严重。

城市的生活污水中含有大量的氮、磷有机物,会造成水体的富营养化。

水体的富营养化会使水中的藻类植物过度生长,使得水中的生物缺氧导致死亡。

基于此,对生物脱氮技术在城市污水处理中的应用及工艺优化进行研究,以供参考。

关键词:生物法脱氮技术:城市生活污水;工艺优化引言随着我国经济的快速发展,污水处理领域面临着巨大的挑战。

过量的含氮污水排放对水生生物产生危害,使水中溶解氧浓度降低,从而造成水生动植物死亡和水体富营养化。

传统的生物脱氮技术尽管应用广泛,但是存在诸多问题,例如脱氮除磷效率偏低、能量消耗大、投资成本高以及操作工艺复杂等。

因此,探索高效、低耗的污水脱氮工艺是污水处理领域的研究热点。

1污水处理厂污水的来源与成分城市生活污水指的是在整个城镇范围内的生活污水,工程污水和地表污染水。

生活污水的源头主要是由城镇居民家庭,以及企业单位、大型商场、初高中和普通高校等等用水。

城镇生活污水的主要污染源包括有机、无机污染物,以及病毒和细菌等。

污水中氮、磷含量超标会造成水体的富营养化,导致水中溶解氧的浓度过低,造成赤潮现象和水体的黑臭现象。

简单的生物法脱氮技术已经不能有效地解决赤潮现象和水体黑臭,所以必须发展无机物和有机物共同去除的生物处理技术,即对污水处理厂的污水进行硝化处理和反硝化处理。

随着污水处理技术的不断发展,现在已经研究出了很多种污水脱氮办法,可以更好地解决污水中氮磷含量超标的问题。

在污水处理厂处理污水时,选择合适的脱氮除磷技术可以更好地降低运营成本。

2污水生物脱氮技术研究现状与物理法和化学法相比,生物法在处理效率和经济性方面具有不可或缺的优势。

20世纪初,一项活性污泥法的诞生揭开了污水处理技术发展和应用的新篇章。

《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加速,城市污水处理问题日益突出。

其中,氮、磷等营养物质的排放对水环境造成了严重污染。

因此,研究并发展新型的生物脱氮除磷技术,对于保护水环境、实现水资源的可持续利用具有重要意义。

本文将就城市污水处理中新型生物脱氮除磷技术的研究进展进行详细阐述。

二、城市污水处理现状及挑战城市污水处理主要包括物理、化学和生物处理等多种方法。

其中,生物处理法因其处理效率高、成本低等优点被广泛应用。

然而,传统的生物脱氮除磷技术面临着诸多挑战,如处理效率不高、能耗大、易产生二次污染等问题。

因此,研究新型的生物脱氮除磷技术成为当前的重要课题。

三、新型生物脱氮技术研究进展(一)A2/O工艺改进A2/O(厌氧-缺氧-好氧)工艺是目前应用最广泛的生物脱氮技术。

针对其处理效率及能耗等问题,研究者们通过优化运行参数、改进工艺流程等方式,提高了A2/O工艺的脱氮效果。

(二)短程硝化反硝化技术短程硝化反硝化技术通过控制硝化过程,使氨氮直接转化为氮气,避免了传统硝化过程中产生的中间产物,提高了脱氮效率。

近年来,该技术在城市污水处理中得到了广泛应用。

(三)新型微生物脱氮技术新型微生物脱氮技术主要利用特定的微生物或酶,通过生物强化、生物膜等技术,提高脱氮效率。

例如,利用反硝化细菌的代谢过程,实现高效脱氮。

四、新型生物除磷技术研究进展(一)厌氧-好氧交替运行技术厌氧-好氧交替运行技术通过控制污水在厌氧和好氧条件下的交替运行,使聚磷菌在好氧条件下大量摄取磷,实现除磷效果。

该技术具有操作简单、成本低等优点。

(二)生物膜法除磷技术生物膜法除磷技术利用生物膜的吸附、截留和生物降解作用,将污水中的磷去除。

该技术具有处理效果好、污泥产量少等优点。

(三)新型微生物除磷技术新型微生物除磷技术主要利用特定的微生物或酶,通过生物强化、基因工程等技术,提高除磷效率。

该技术为未来城市污水处理提供了新的思路和方法。

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《污水生物脱氮除磷工艺优化技术综述》篇一一、引言随着工业化的快速发展和城市化进程的加速,污水处理问题日益严峻。

在污水处理过程中,脱氮除磷是重要的处理环节。

传统的物理、化学方法虽然能够达到一定的处理效果,但往往存在能耗高、成本大、易产生二次污染等问题。

因此,对污水生物脱氮除磷工艺的优化技术研究显得尤为重要。

本文将就污水生物脱氮除磷工艺的优化技术进行综述,以期为相关领域的研究与应用提供参考。

二、污水生物脱氮除磷工艺概述污水生物脱氮除磷工艺是一种利用微生物的作用,通过生化反应去除污水中的氮、磷等营养物质的工艺。

该工艺具有处理效率高、能耗低、成本低、无二次污染等优点,是当前污水处理领域的研究热点。

三、脱氮工艺优化技术1. 厌氧/缺氧/好氧(A2/O)工艺优化:通过调整进水比例、反应时间、污泥回流比等参数,提高脱氮效率。

同时,利用内源反硝化、短程硝化反硝化等新技术,降低能耗和污泥产量。

2. 生物膜法脱氮技术:通过在生物反应器中填充生物填料,形成生物膜,提高微生物的附着率和生物量,从而提高脱氮效率。

3. 新型脱氮材料与技术:利用纳米材料、生物炭等新型材料,提高微生物的活性和脱氮效率。

四、除磷工艺优化技术1. 生物除磷技术:通过调控系统中的碳源、pH值、污泥龄等参数,提高聚磷菌的活性,从而实现高效除磷。

2. 化学除磷与生物除磷结合技术:在生物除磷的基础上,利用化学药剂辅助除磷,提高除磷效果。

3. 高效沉淀除磷技术:通过投加高效沉淀剂,使磷酸盐沉淀并从污水中分离出来。

五、综合优化技术1. 智能化控制技术:利用智能控制系统,实时监测和调整污水处理过程中的各项参数,实现自动优化控制。

2. 组合工艺:将不同的脱氮除磷工艺进行组合,形成组合工艺,提高处理效果和效率。

3. 污泥处理与资源化利用:对处理过程中产生的污泥进行资源化利用,如制备生物肥料、能源回收等,实现污水的资源化利用。

六、未来展望未来,随着科技的不断进步和环保要求的提高,污水生物脱氮除磷工艺将更加注重节能、降耗、减排。

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《污水生物脱氮除磷工艺优化技术综述》篇一一、引言随着城市化进程的加快和工业的迅猛发展,污水处理问题日益凸显。

在污水处理过程中,脱氮除磷是关键环节之一。

为了解决这一问题,国内外众多学者及工程师不断研究、探索、实践和改进生物脱氮除磷工艺,并取得了一定的成效。

本文将综述近年来污水生物脱氮除磷工艺的研究进展、关键技术及优化措施,以期为相关研究与应用提供参考。

二、污水生物脱氮除磷技术概述污水生物脱氮除磷技术主要利用微生物的代谢作用,通过特定的工艺流程,去除水中的氮、磷等污染物。

该技术具有处理效果好、成本低、操作简便等优点,在污水处理领域得到了广泛应用。

然而,随着排放标准的不断提高和污水成分的日益复杂化,传统的生物脱氮除磷技术面临诸多挑战。

三、关键技术研究1. 生物脱氮技术:生物脱氮主要通过硝化与反硝化两个过程实现。

硝化过程主要依靠自养硝化菌将氨氮转化为硝酸盐氮,反硝化过程则利用异养菌在缺氧条件下将硝酸盐氮还原为氮气。

近年来,学者们通过优化反应器设计、调整运行参数等手段,提高了生物脱氮的效率。

2. 生物除磷技术:生物除磷主要依靠聚磷菌在厌氧-好氧交替环境下实现。

在厌氧条件下释放磷,好氧条件下过量吸收磷。

研究人员通过改良反应条件、筛选高效聚磷菌等方法,提高了生物除磷的效果。

四、工艺优化措施1. 强化生物反应器设计:针对不同污水的特性,设计合理的反应器结构,如优化进出水方式、调整曝气系统等,以提高微生物与污水的接触效率。

2. 调整运行参数:通过优化反应器的曝气量、污泥回流比、污泥龄等参数,提高生物脱氮除磷的效率。

3. 引入新型生物技术:如利用基因工程技术构建高效脱氮除磷菌种,或采用微生物燃料电池等技术,提高污水处理效果。

4. 组合工艺:将生物脱氮除磷技术与物理化学法相结合,如采用化学沉淀法辅助生物脱氮除磷,提高处理效果和稳定性。

五、研究展望未来,随着科技的进步和环保要求的提高,污水生物脱氮除磷技术将朝着更加高效、节能、环保的方向发展。

强化脱氮技术在污水处理中的策略研究

强化脱氮技术在污水处理中的策略研究

强化脱氮技术在污水处理中的策略研究随着工业化的进程和城市化的加快,我国污水排放量明显增加,其中氮污染成为了一大难题。

氮是一种非常重要的元素,它在生态系统中扮演着重要的角色,但大量的氮污染却会对水体环境产生严重的影响。

强化脱氮技术在污水处理中显得尤为重要。

本文将对强化脱氮技术在污水处理中的策略进行深入探讨,以期为我国的环境治理提供一定的参考和借鉴。

1.1 氮污染带来的问题氮污染主要包括氨氮、硝态氮和总氮等,如果处理不当会导致水体富营养化、藻类过度生长等问题。

从而造成水质变差,影响生态系统的平衡。

氮污染也会对水体的生物多样性产生不利影响,影响水体资源的保护和可持续利用。

1.2 强化脱氮技术的意义强化脱氮技术通过增强污水处理设施对氮污染的去除能力,可以有效地解决氮污染带来的问题。

采用强化脱氮技术还可以提高污水处理的效率,降低处理成本,为环境治理工作带来更多的益处。

二、强化脱氮技术研究现状目前,国内外对于强化脱氮技术已经进行了大量的研究工作,取得了一些显著的成果。

主要的强化脱氮技术包括生物法、化学法、物理法和集成法等,下面将对这些技术进行详细介绍。

2.1 生物法生物法是指利用微生物将氨氮或硝态氮转化为氮气的方法。

膜生物反应器和蓝藻生物反应器是比较常见的应用于污水处理中的强化生物脱氮技术。

膜生物反应器通过在传统生物反应器内安装微孔膜来阻止颗粒污泥颗粒的流出,提高了反应器的浓度和活性,从而提高了氮污染物的去除效果。

而蓝藻生物反应器是一种利用蓝藻对氮污染进行脱除的技术,通过蓝藻的光合作用将氮污染转化为氮气释放到大气中。

2.2 化学法化学法主要包括化学还原法和化学氧化法两种。

化学还原法是指利用还原剂将硝酸盐还原为氨氮或氮气的方法,通常采用的还原剂有硫酸铁、二硫化硒等。

而化学氧化法则是指利用氧化剂将氨氮氧化为硝酸盐释放到大气中,这种方法的优点是操作简单,成本低廉,但需要考虑氧化剂对环境的影响。

物理法是指利用物理手段将氮污染物从污水中去除的方法,主要包括膜分离技术和吸附技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

污水生物脱氮技术研究现状摘要:概述了传统生物脱氮技术原理及传统的生物脱氮技术,分析了传统生物脱氮工艺的不足,并介绍了同时硝化反硝化、短程硝化反硝化、厌氧氨氧化等几种生物脱氮新技术的机理、特点和研究现状。

最后对生物脱氮技术的今后的发展趋势进行了展望及建议,指出高效、低能耗的可持续脱氮工艺是污水处理的发展方向。

关键词:生物处理;生物脱氮;短程硝化反硝化;同步硝化反硝化;厌氧氨氧化Research Status of Biological Removal of Nitrogenfrom WastewaterAbstract:Summarizes the conventional biodenitrification technology principle and conventional biological removal of nitrogen technology, analyzes the deficiencies of conventional biological removal of nitrogen, and introduces nitration denitrification, shortcut nitrification and denitrification anaerobic ammonium oxidation ,and the features, the mechanism and the current research status of the several biological new technologies,. Finally have a outlook and Suggestions of the new technologies , points out that high efficiency, low energy consumption is the development direction of removal of nitrogen in sewage treatment.Keywords:biological disposal;nitrogen removal;shortcut nitrification;Simultaneous nitrification and denitrifieation;anaerobic ammonium近年来,随着工业化和城市化程度的不断提高,合成洗涤剂、化肥和农药被广泛使用。

大量氮元素进入水体,使水体富营养化日益严重,我国现有污水处理厂中有60%没有脱氮功能,即使有脱氮功能的污水处理厂采用传统的脱氮技术对氨氮、总氮的去除率仅在10%~30%之间仍然难达到一级A标准[1]。

因此,越来越多的国家和地区开始制定日趋严格的污水排放标准,这就意味着对新建及已建污水处理厂提出了更高的要求。

和其他的脱氮技术相比生物脱氮技术相对其他方法的脱氮技术有着很强的优势,但传统的生物脱氮工艺存在着一些不可避免的缺陷,随着研究的不断深入,新的脱氮技术越来越多的引起人们的注意,已经成为当前研究的热点[2]。

1生物脱氦机理生物脱氮包括氨化、硝化、反硝化三个过程,并由有机氮氨化、硝化、反硝化及微生物的同化作用来完成,即水体中的有机氮首先在氨化菌的作用下转化为氨态氮,这也就是所谓的氨化阶段。

一般氨化过程与微生物去除有机物同时进行,氨化作用进行得很快,有机物去除结束时,氨化过程也已完成;之后是硝化阶段,-一N;最后是反硝化阶氨态氮在好氧的条件下通过亚硝化菌和硝化菌转化为NO2段,该阶段在缺氧的条件下,通过反硝化菌将亚硝酸盐氮和硝酸盐氮转化为N2 O。

由于反硝化细菌是兼性厌氧菌,只有在缺氧或厌氧条件下才能进行反硝或N2化,因此需要为其创造一个缺氧或厌氧的环境[1]。

而近年来的一些研究发现,在好氧的条件下发生了同时硝化和反硝化作用;在厌氧的条件下氨态氮减少;这些现象都无法用传统生物脱氮理论来解释,表明除了传统的生物脱氮理论外,还存在其他的生物脱氮原理。

2传统生物脱氮技术废水中的氮以有机氮、氨氮、亚硝氮和硝酸盐4种形态存在。

传统生物脱氮技术遵循已发现的自然界氮循环机理,废水中的有机氮依次在氨化菌、亚硝化菌、硝化菌和反硝化菌的作用下进行氮化反应、亚硝化反应、硝化反应和反硝化反应后最终转变为氮气而溢出水体,达到了脱氮目的。

普遍认为氨氮的去除是通过硝化和反硝化这两个相互独立的过程实现的,由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,反硝化反应则发生在严格的缺氧或厌氧条件下。

在这种理论指导下,传统的生物脱氮工艺都是将缺氧区(或厌氧区)与好氧区分隔开,如A/0、A2/O等工艺;或者是在同一个反应器中,通过时问或空问上的好氧和缺氧的交替进行来实现氮的去除,如SBR等工艺[2]。

2.1 传统生物脱氮工艺2.1.1 三级活性污泥法脱氮工艺[5]它是以氨化、硝化和反硝化3项反应过程为基础建立的。

其工艺流程示之于下图所示:第一级曝气池为一般的二级处理曝气池,其主要功能是去除BOD、COD,使有机氮转化,形成NH3、NH4,即完成氨化过程。

第二级硝化曝气池,在这里进行硝化反应,使NH3及NH4氧化为NO3-N。

第三级为反硝化反应器,这里在缺氧条件下,NO3-N还原为气态N2,并逸往大气,在这一级应采取厌氧--缺氧交替的运行方式。

这种系统的优点是有机物降解菌、硝化菌、反硝化菌,分别在各自反应器内生长增值,环境条件适宜,而且各自回流在沉淀池分离的污泥,反应速度快而且比较彻底。

但处理设备多,造价高,管理不够方便。

2.1.2 A/O工艺该工艺是80年代初开创的工艺流程,其主要特点是将反硝化反应器放置在系统之首,即反硝化、硝化与BOD去除分别在两个不同的反应器内进行。

其工艺流程示之于图2:本工艺主要不足之处是该流程的处理水是来自硝化反应器,因此,在处理水中含有一定浓度的硝酸盐,如果运行不当,在沉淀池内也会发生反硝化反应,使污泥上浮,使处理水水质恶化。

3生物脱氮新工艺目前研究较多的生物脱氮新工艺主要有:短程硝化反硝化(Shortcut Nitrification D e n i t r i f i c a t i o n) 、同步硝化反硝化(Simultaneous Nitrification Denitrification, SND)厌氧氨氧化(Anaerobic Ammonium Oxidation,ANAMMOX)。

3.1 同步硝化反硝化根据传统脱氮理论: 氨氮的去除通过硝化和反硝化两个独立过程实现, 由于对环境的要求不同,两个过程不能同时发生。

现行的生物脱氮工艺是把硝化和反硝化作为两个独立的阶段分别安排在不同的反应器中(空间上)或者利用间歇好氧和厌氧条件(时间上)实现氮的去除, 往往造成系统复杂, 能耗较大且运行管理不便。

然而, 近几年国内外有不少试验和报道证明硝化反应和反硝化反应可以在同一操作条件下与同一反应器内进行, 称为好氧反硝化或同步硝化反硝化现象( S imu ltaneous N itrification and Den itrif ication, 简称SND)。

有研究表明, 好氧条件下的反硝化现象存在于各种不同的生物处理系统, 如流化床反应器、生物转盘、SBR、氧化沟、CAST工艺等。

3.1.1 同步硝化反硝化工艺机理目前,对于SND现象的形成原因有很多种解释,归纳起来主要集中于两个方面:物理学解释和生物学解释。

物理学解释认为,SND是一种物理现象,是由于曝气方式、反应器构型等造成的宏观缺氧环境。

或者受微生物种群结构、基质分布和生物代谢反应的不均匀性,以及物质传递变化等因素的相互作用,缺氧(或厌氧)段可以在活性污泥菌胶团内部形成微观缺氧环境。

关于SND的生物学解释认为硝化过程被认为发生在好氧条件下, 反硝化过程被认为在缺氧条件下发生。

但是20世纪80年代好氧反硝化菌和异养硝化菌的发现, 打破了传统理论认为的硝化反应只能由自养细菌完成和反硝化只能在厌氧条件下进行的观点, 为好氧反硝化的解释提供了生物学的依据。

研究表明反硝化在好氧条件下也能发生, 同样, 硝化反应在氧浓度较低时也能够发生。

在此过程中, 好氧反硝化菌同时利用氮和氧作为最终电子受体, 直接将氨转化为最终气态产物。

由于许多好氧反硝化菌同时也是异养硝化菌, 能够直接把NH+4 转化为最终气态产物而去除, 因此, 同步硝化反硝化生物脱氮也就成为可能。

影响SND 脱氮效率及脱氮速率的控制因素还有很多, 如: 溶解氧、ORP、pH 值、碳源、污泥龄。

利用氧化还原电极电位ORP控制实际上是一种间接DO 控制。

ORP可以很好地反映DO 的变化, 特别是DO 比较低时。

若DO 无法直接测量, ORP 更可成为DO 的间接测量手段。

pH 是影响废水生物脱氮处理工艺运行的一个重要因子。

考虑到硝化和反硝化两过程中碱度消耗与产生的相互性, 同步硝化与反硝化的最适pH 值应保持在8. 0左右。

此外, 温度、污泥浓度以及游离氨浓度( FA )等也都会对SND有着一定的影响。

3.1.2 同步硝化反硝化工艺研究前景同步硝化反硝化技术的产生为今后污水处理降低投资并简化生物脱氮过程提供了可能性, 在荷兰、丹麦、德国、意大利等国已有污水处理工厂在利用同步硝化反硝化脱氮工艺运行, 但关于同步硝化反硝化机理的研究大多数仍处于实验阶段, 离投入工程运行还有距离。

总的来说, 今后在以下方面还值得作进一步深入的研究:1) 好氧颗粒污泥具有同步硝化反硝化的微观环境,可对其形成机理、微生物学特性、脱氮性能等方面加以研究。

2) 研究发现兼性反硝化菌具有很强的生物摄、放磷能力, 如何将脱氮除磷有机的结合起来, 探索一种可持续城市污水生物处理技术正成为研究热点。

3)逸出造成二次污染问题的有害中间气态产物如NO、N2O等也是近期研究的课题。

4)如何综合考虑各种影响因素, 以及实际工程应用中控制条件的确定, 以便提高同步硝化反硝化工艺的稳定可靠性。

3.2 短程硝化反硝化通常,有机氮化合物在氨化细菌的脱氨基作用下产生氨(氨化作用),氨在有氧的条件下,经亚硝化菌的作用转化为亚硝酸或亚硝酸盐,然后再经硝化菌的作用转化为硝酸或者硝酸盐,这就是硝化作用;而反硝化作用是在厌氧的条件下,反硝化细菌将硝酸盐还原成为HNO2、N2等物质的作用。

短程硝化反硝化技术(Shortcut Nitrification and Denitrification)则是将硝化反应控制在亚硝酸盐阶段,不进行亚硝酸盐至硝酸盐的转化,就转入反硝化反应。

因此,它可以缩短曝气时间,节省运行费用。

相关文档
最新文档