2017“希望杯”四年级 第1试试题

合集下载

第十三届小学“希望杯”全国数学邀请赛(四年级)1试

第十三届小学“希望杯”全国数学邀请赛(四年级)1试
3cm a S长方形 = 长 × 宽 b C
SA块 = 3a (cm2) SB块 = 3×3 = 9 (cm2)
3cm
A
B
SC块 = 3b (cm2)
S = SA块+ SB块+ SC块 = 3a + 9 + 3b =90(cm2) a + b = (90-9) ÷ 3 = 27 (cm) C长方形 = 2×(a + b ) = 2×27=54 (cm)
乌龟在兔子睡前跑了 : 900 ÷ 15= 60 (米)
兔子休息期间乌龟爬行了 : 1000 – 60 = 940 (米)
11.任意一个一位数奇数与任意一个一位数偶数相乘, 不同的乘积有 个。
一位数奇数 : 一位数偶数 : 1、3、5、7、9 2、4、6、8
任意一位数奇数×任意一位数偶数的乘积有 :
5 × 4 = 20(个) ∵ 1×6 = 3×2 3×6 = 2×9
∴不同的乘积有:20 - 2 = 18(个)
12.一个长方形的相框长为40厘米,宽为32厘米,放 入一张长32厘米,宽为28厘米的相片,则相框中没有 被照片覆盖的部分的面积是 平方厘米。
32 S长方形 = 长 × 宽 40
40× 32 - 28 × 32 = (40 - 28 ) × 32 = 12 × 32
9.图2由16个1×1的小正方形组成,图中△ABC的面积 是 。 A A B a
S正方形=4×4=16
B
b c
C
Sa块 = 4×2 ÷ 2 = 4 Sb块 = 3×2 ÷ 2 = 3 Sc块 = 4×1 ÷ 2 = 2
C
S直角三角形 = 两个直角边长度的乘积 ÷ 2
S△ABC = 16 – ( 4 + 3 + 2 ) = 7

希望杯数学竞赛第一届至十三历届四年级全部试题与答案打

希望杯数学竞赛第一届至十三历届四年级全部试题与答案打

教育精品资料目录1.第一届小学“希望杯”全国数学邀请赛〔第1试〕 (2)2. 第一届小学“希望杯”全国数学邀请赛〔第2试〕 (5)3. 第二届小学“希望杯”全国数学邀请赛〔第1试〕 (7)4. 第二届小学“希望杯”全国数学邀请赛〔第2试〕 (10)5. 第三届小学“希望杯”全国数学邀请赛〔第1试〕 (12)6. 第三届小学“希望杯”全国数学邀请赛〔第2试〕 (15)7. 第四届小学“希望杯”全国数学邀请赛〔第1试〕 (17)8. 第四届小学“希望杯”全国数学邀请赛〔第2试〕 (20)9. 第五届小学“希望杯”全国数学邀请赛〔第1试〕 (22)10. 第五届小学“希望杯”全国数学邀请赛〔第2试〕 (24)11. 第六届小学“希望杯”全国数学邀请赛〔第1试〕 (26)12. 第六届小学“希望杯”全国数学邀请赛〔第2试〕 (28)13. 第七届小学“希望杯”全国数学邀请赛〔第1试〕 (30)14. 第七届小学“希望杯”全国数学邀请赛〔第2试〕 (34)15. 第八届小学“希望杯”全国数学邀请赛〔第1试〕 (37)16. 第八届小学“希望杯”全国数学邀请赛〔第2试〕 (39)17. 第九届小学“希望杯”全国数学邀请赛〔第1试〕 (41)18. 第九届小学“希望杯”全国数学邀请赛〔第2试〕 (43)19. 第十届小学“希望杯”全国数学邀请赛〔第1试〕 (45)20. 第十届小学“希望杯”全国数学邀请赛〔第2试〕 (47)21.第一届---第八届“希望杯”全国数学邀请赛参考答案 (53)第一届小学“希望杯”全国数学邀请赛〔第1试〕四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C 中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

第十五届小学“希望杯”全国数学邀请赛试卷(四年级第1试)

第十五届小学“希望杯”全国数学邀请赛试卷(四年级第1试)

2017年第十五届小学“希望杯”全国数学邀请赛试卷(四年级第1试)每小题10分,共120分1.(10分)计算:19×75+23×25=.2.(10分)定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.3.(10分)是三位数,若a是奇数,且是3的倍数,则最小是.4.(10分)三个连续自然数的乘积是120,它们的和是.5.(10分)已知x,y是大于0的自然数,且x+y=150,若x是3的倍数,y是5的倍数,则(x,y)的不同取值有对.6.(10分)如果8×(2+1÷x)=18,则x=.7.(10分)观察以下的一列数:11,17,23,29,35,…若从第n个数开始,每个数都大于2017,则n=.8.(10分)图中由20个方格组成,其中含有A的正方形有个.9.(10分)图中由12个面积为1的方格组成,则图中和阴影梯形面积相同的长方形有个.10.某学习小组数学成绩的统计图如图,该小组的平均成绩是分.11.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.12.10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是.13.如图,把一个边长是5cm的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向移动其中的4个长方形,则所得图形的周长是cm.14.在一个长方形内画三个圆,这个长方形最多可被分成部分.15.2017年3月19日是星期日,据此推算,2017年9月1日是星期.16.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.17.甲,乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C 时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是米.18.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是.19.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子个.20.有一笔钱,用来给四(1)班的学生每人买一个笔记本,若每本3元,则可多买6本;若每本5元,则差30元.若用完这笔钱,恰好给每人买一个笔记本,则共买笔记本个,其中3元的笔记本个.2017年第十五届小学“希望杯”全国数学邀请赛试卷(四年级第1试)参考答案与试题解析每小题10分,共120分1.(10分)计算:19×75+23×25=2000 .【分析】将75拆分成3×25,然后利用乘法的分配律,把后面的23加在一起,刚好是80×25【解答】解:19×75+23×25=19×3×25+23×25=57×25+23×25=25×(57+23)=25×80=2000故答案是:2000【点评】本题考查了四则运算的巧算,本题突破点是:将75拆分成3×25,然后利用乘法的分配律求出答案2.(10分)定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=21 .【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.【解答】解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.3.(10分)是三位数,若a是奇数,且是3的倍数,则最小是102 .【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.【解答】解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,又因为是3的倍数,所以可得:1+0+c的和是3的倍数,所以,c最小是2,则,最小是102.故答案为:102.【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.4.(10分)三个连续自然数的乘积是120,它们的和是15 .【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.【解答】解:120=2×2×2×3×5=(2×2)×(2×3)×5,2×2=4,2×3=6,5,即,三个连续自然数的乘积是120,这三个数是4、5、6,所以,和是:4+5+6=15.故答案为:15.【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.5.(10分)已知x,y是大于0的自然数,且x+y=150,若x是3的倍数,y是5的倍数,则(x,y)的不同取值有9 对.【分析】首先根据5的整除特性可知尾数是0或者5,那么150和5的倍数差依然是尾数是0或者5的数字枚举即可.【解答】解:根据5的整除特性可知尾数是0或者5.那么150减去这个数字尾数还是0或者5.可以找到尾数是0或者5的数字是3的倍数.30,60,90,120,15,45,75,105,135共9个数字满足条件.对应的数字就有9对.故答案为:9.【点评】本题是考察数的整除特性,关键在于找到尾数是0或5的数字是3的倍数,枚举即可解决问题.6.(10分)如果8×(2+1÷x)=18,则x= 4 .【分析】8×(2+1÷x)=18运用逆推的方法,先用18除以8求出小括号里面算式的结果,再减去2得到差,求出1÷x的结果,再用1除以求出的差,即可得到x的值.【解答】解:8×(2+1÷x)=182+1÷x=18÷82+1÷x=2.251÷x=2.25﹣21÷x=0.25x=1÷0.25x=4故答案为:4.【点评】解决本题根据加减法之间的互逆关系,以及乘除法之间的互逆关系,从结果向前推算,得出x的值.7.(10分)观察以下的一列数:11,17,23,29,35,…若从第n个数开始,每个数都大于2017,则n=336 .【分析】观察以下的一列数:11,17,23,29,35,…可以看出规律是相邻的数:后面的比前面的大6;求第n个数开始每个数都大于2017,则n=.【解答】解:11=5+6×117=5+6×223=5+6×329=5+6×4…第n个数=5+6×n所以有:5+6n>20176n>2012n>335 (2)n=336;故答案为:336.【点评】等差数列规律题,求第n项的数字.8.(10分)图中由20个方格组成,其中含有A的正方形有13 个.【分析】按题意,可以分类讨论,只有一个方格的正方形,含有四个方格的正方形,含有九个方格的正方形,含有16个方格的正方形,再数一下含有A的正方形即可得出结果.【解答】解:根据分析,①只有一个方格的正方形且含有A的有:1个;②含有4个方格且含有A的正方形有:4个;③含有9个方格且含有A的正方形有:6个;④含有16个方格且含有A的正方形有:2个;综上,含有A的正方形共有:1+4+6+2=13个.故答案是:13【点评】本题考查了排列组合奇组合图形的计数,突破点是:分类讨论找到含有A的正方形,算出个数的总数.9.(10分)图中由12个面积为1的方格组成,则图中和阴影梯形面积相同的长方形有10 个.【分析】设小方格的边长是1,则梯形的上底是1,下底是2,高是2,根据梯形的面积公式,求出阴影部分的面积是3,长方形是有3个小方格拼成的,再分别找出横看和竖看各有多少个这样的长方形,再相加即可.【解答】解:设小方格的边长是1,则梯形的面积是:(1+2)×2÷2=3×2÷2=3也就是长方形的面积是3;1×1=1,一个小方格的面积是1,那么长方形是有3个小方格拼成的,竖着看每列都是3个小方格,一共有4列,所以有4个长方形符合要求;横着看,每行前三个小方格可以组成1个面积是3的长方形,后3个小方格也可以组成面积是3的长方形,所以每行都有2个面积是3的长方形;横着一共是:3×2=6(个)4+6=10(个)答:图中和阴影梯形面积相同的长方形有 10个.故答案为:10.【点评】解决本题先设出方格的边长,得出阴影部分的面积,再找出与之面积相等的长方形的个数即可.10.某学习小组数学成绩的统计图如图,该小组的平均成绩是90 分.【分析】求出总分及相应的人数,即可求出相应的平均数.【解答】解:由题意,该小组的平均成绩是(85×6+89×3+95×5+98×1)÷(6+3+5+1)=90,故答案为90.【点评】本题考查平均数问题,考查学生的计算能力,正确求出总分及相应的人数是关键.11.今年,小军5岁,爸爸31岁,再过8 年,爸爸的年龄是小军的3倍.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.【解答】解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).12.10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是 6 .【分析】本题主要考察等差数列.【解答】解:设最小的数为x,则剩余自然数依次为x+1,x+2,…,x+9,由题可得2(4x+1+2+3)+15=6x+4+5+6+7+8+9,化简后是8x+27=6x+39∴x=6,【点评】本题可以借助列方程,设最小的数为x,一一用x表示其他连续自然数,根据等量关系就可求解.13.如图,把一个边长是5cm的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向移动其中的4个长方形,则所得图形的周长是40 cm.【分析】本题考察图形边长的平移.【解答】解:画出移动后的图,所得图形的周长是5×2+(5+1×2+2×2+3×2+4×2+5)=10+30=40cm.【点评】本题主要抓住平移后的图形每条边边长为多少即可求解.14.在一个长方形内画三个圆,这个长方形最多可被分成15 部分.【分析】在一个长方形内画三个圆,要使这个长方形被分成的部分最多,就要使圆与圆,圆与长方形之间的交点尽量多,据此画图即可.【解答】解:画图如下:所以,这个长方形最多可被分成 15部分.故答案为:15.【点评】本题考查了图形的划分,关键是明确如何使交点尽量多.15.2017年3月19日是星期日,据此推算,2017年9月1日是星期五.【分析】先求3月19日到9月1日经过了多少天,再求这些天里有几周,还余几天,再根据余数判断.【解答】解:3月19日到3月31日共:31﹣19=12(天)4、6月30天,5、7、8月31天,一共:30×2+31×3+12+1=60+93+13=166(天)166÷7=23(周)…5(天)所以3月19日是星期日,9月1日是星期五.答:2017年9月1日是星期五.故答案为:五.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.16.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是107 .【分析】本题主要考察等差数列中最小的项.【解答】解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.17.甲,乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C 时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是144 米.【分析】由题目中的已知条件,得出甲乙的速度比,进而又得出他们的路程比,这样求出甲到达中点后再与乙共行240米,甲行的路程即CD之间的距离.【解答】解:由题意知“甲走360米时乙正好走240米”,甲、乙的速度比是360:240=3:2相同时间内,甲、乙的路程比等于他们的速度比即3:2甲乙共行240米,甲行的路程是240×3÷(2+3)=144(米)故:CD的距离是144米.【点评】解此题的突破口就是能得出他们的速度比,之后就可轻松解答了.18.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是6:13 .【分析】6时53分﹣6时45分=8分钟,设从家到学校若每分钟走60米,x分钟到学校,则若每分钟走75米,x﹣8分钟到学校,因为从家到学校的距离一定,根据“速度×时间=路程”列方程解答即可.【解答】解:设从家到学校若每分钟走60米,x分钟到学校,6时53分﹣6时45分=8分钟60x=(x﹣8)×7560x=75x﹣60015x=600x=40;6时53分﹣40分=6时13分;答:洋洋从家里出发的时刻是6:13.故答案为:6:13.【点评】此题考查列方程解应用题,本题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.19.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子118 个.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.【解答】解:假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:(31﹣1×2)÷(2×2﹣3)=29÷1=29(次)3×29+31=87+31=118(个)答:袋中原有黑子 118个.故答案为:118.【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.20.有一笔钱,用来给四(1)班的学生每人买一个笔记本,若每本3元,则可多买6本;若每本5元,则差30元.若用完这笔钱,恰好给每人买一个笔记本,则共买笔记本24 个,其中3元的笔记本15 个.【分析】若每本3元,则多3×6=18元,则总人数为(18+30)÷(5﹣3)=24人,总钱数有5×24﹣30=90元,进而可得结论.【解答】解:由题意得若每本3元,则多3×6=18元,则总人数为(18+30)÷(5﹣3)=24人,总钱数有5×24﹣30=90元,若钱用完刚好买24本,则3元的笔记本有(24×5﹣90)÷(5﹣3)=15个,故答案为24,15.【点评】本题考查分配盈亏问题,考查学生的计算能力,属于中档题.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 16:51:11;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。

6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。

7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。

9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

这时四个组的书一样多。

这说明甲组原来有书本。

10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。

11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。

12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。

13.甲、乙、丙三人中只有1人会开汽车。

甲说:“我会开。

”乙说:“我不会开。

”丙说:“甲不会开。

”三人的话只有一句是真话。

会开车的是。

14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。

回校后,小明补给小光28元。

小明、小光各带了元,每本书价元。

希望杯四年级组题附答案.doc

希望杯四年级组题附答案.doc

第十五届 (2017 年)小学“希望杯”全国数学邀请赛四年级培训题1.计算: 2017×2071+2077×2017-2037×2017- 2111×2017.2.计算: 9999×2222+3333×3334.3.比较大小: A=2016×2018, B=2017×2017, C=2015×2019.4.定义新运算: a b= b b b ,求 (1 4) (2 3).a个5.一个自然数,各个数位上的数字之和是74,这个数最小是多少 ?6.一个三位数被 3 除余 1,被 5 除余 3,被 7 除余 5,这个数最大是多少 ?7.一个整除算式,被除数比商大126,除数是 7,求被除数 .8.一个三位数,它的各位数字之和是 20,十位数字比个位数字大 1,如果将百位数字与个位数字对调,得到的三位数比原三位数大 198,求原数 .9.在从 1 开始的 n 个连续的自然数中,去掉其中的一个数,余下各数的和是 2017,求去掉的数 .10.若干个数的平均数是 17,加入一个新数 2017 后,这组数的平均数变成 21,原来共有多少个数 ?11.用 2,0,1,7 这四个数字可以组成多少个没有重复数字的四位偶数?12.已知 a,b,c 是三个质数,且 a < b < c,a + b ×c = 93,求 a, b,c.13.a,b,c 是彼此不同的非0 自然数,若 a + b + c = 6,求四位奇数aabc中最小的那个 .14.a,b,c 是彼此不同的非0 自然数,若 a + b + c = 6,求四位数aabc中最大的那个 .15.三位数abc是质数, a,b,c 也是质数,cba是偶数,ab是 5 的倍数,求三位数abc .16.求被 7 除,余数是 3 的最小的三位数 .17.求被 7 除,余数是 4 的最大的四位数 .18.将分别写有数字3,7,8 的三张卡片排成三位数a bc ,使它是43的倍数,求 abc .19.已知 a,b,c 是不同的质数,且三位数abc 能同时被3,7整除,求 abc .20.用写有 2,3,5,7 的四张纸片可以排成多少个小于1000 的质数 ?21.四位数abbc可被两位数ac整除,若 a < c, a + c = 5,求 b.22.在下面的算式里加上一对括号,使算式成立.1×2×3+4×5+6+7+8+9=100.23.在等号左边添上适当的运算符号、括号,使等式成立.9 9 9 9 = 8.24.从 1 至 9 的自然数中选择 8 个数填入下面的方框中,使得计算结果尽量大,那么这个结果最大是多少 ?□÷□×(□+□)-□×□-□+□25.在图 1 的算式中, A, B, C,D 代表 0~9 中四个各不相同的数字,且 A 是最小的质数,求四位数 ABCD.图126.在如 2 的算式中,“希”、“望”、“杯”三个字分代表 0~9 中三个不同的数字,求“希望杯”代表的数 .227.a,b,c,d,e 都是自然数,且 0 < c < b < a < d < e ≤9,若如 3 的算式成立,求abc .328.求 99 9 ×99 9 +199 9 末尾有多少个 0?2016个 92016个 92016 个 929.求2 20103201142012520136201472015的末位数字.30.根据下面一列数的律,求第2017 个数 .2, 4, 6,8,10,⋯.31.找律,填数:1, 1, 2,3,5,8,13,21, (), (),(),⋯32.把数字 1~12 填到 4 的圈中,使每个上的数字之和相等.433.同一平面内的 2 条直最多有 1 个交点, 3 条直最多有 3 个交点, 10 条直最多有多少个交点 ?34.按照律,写出上、下两条横上填的数.12 43 6 94 8 12 165 10 15 __ 256 12 18 __ 30 3635.如 5,察前面两个正方形中数之的关系,根据律求第三个正方形中“ ?”代表的数 .536.正方体骰子上 1 和 6 相对,2 和 5 相对,3 和 4 相对,把它放在水平桌面上 (如图6),将骰子向右翻滚 90°,然后在桌面上按逆时针方向旋转 90°,则完成一次变换 (如图 7),若骰子的初始位置为图 6,那么完成 23 次变换后,朝上一面的数字是什么 ?图 6图737.有一串数字,任何相邻的 4 个数之和都是 22,若从左边起第 2,5,12 个数分别是 3,7,8,求第 11 个数 .38.小伟和小明交流暑假中的活动情况,小伟说:“我参加了夏令营,外出一个星期,这七天的日期数之和是84. ”小明说:“我假期到舅舅家住了七天,日期数的和再加月份数也是 84. ”那么,小伟出发的日期和小明回家的日期分别是几号 ?39.某个月中星期一多于星期二,而星期日多于星期六,那么这个月有多少天,这个月的 5 日是星期几 ?40. 6 位同学数学考试的平均成绩是 93 分,他们的成绩是互不相同的整数,且最高分是 99 分,最低分是 75 分,求按分数从高到低居第三位的同学的得分.41.为了表扬好人好事,需核实一件事,厂方找了A, B,C,D 四人 . A说:“是 B 做的 . ”B说:“是 D 做的 . ”C说:“不是我做的 . ”D说:“B说的不对 . ”若这四人中只有一人说了实话,问:这件事是谁做的 .42.晶晶家门牌号码满足:(1)若是 4 的倍数,则它就是60~69 中的数;(2)若不是 5 的倍数,则它就是70~79 中的数;(3)若不是 8 的倍数,则它就是80~89 中的数 .求晶晶家的门牌号码 ?43.数一数,图 8 中有多少个三角形 ?图 844.数一数,图 9 中包含“☆”的长方形 (包含正方形 )有多少个 ?图 945.数一数,图 10 中有多少个三角形 ?图 1046.数一数,图 11 中有多少个长方形 (包含正方形 )?图1147.数一数,在图 12 中的不同位置可以画出多少个图13 所示的图形 ?(方向可以旋转)图 12图1348.图 14 由 10 个相同的小正方形组成,请用三种方法把它分割成两个大小相等、形状相同的部分 (沿图中的线分割 ).图1449.将图 15 中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法 ?图1550.小聪学玩魔方,向小笨拜师学艺 .小笨首先出了一道题考他 .从图 16 的四个图形中,每个小正方形都标上了颜色 .若要求一个正方体两个相对面上的颜色都一样,那么下列 4 个展开图有几个是正确的 ?图1651.从图 17 中任意选择四个点,可组成多少个不同的正方形 ?(不同的点组成的正方形视为不同的正方形 )图1752.有 5 根小木棒的长度分别为 1cm, 1cm,2cm,3cm,5cm.从中任取 3 根,不同的长度和有几种 ?53.一个长方形的长和宽都是整数,且它的面积和周长恰好在数值上相等,那么长方形的长和宽分别是多少 ?(不需写过程 )54.如图 18,已知 AD=100,BD=65,AC=75,求 BC.图1855.如图 19,两个完全相同的等腰三角形中各有一个正方形,图甲中的正方形面积为 48 平方厘米,求图乙中的正方形面积 .图1956.两个边长为 8 厘米的正方形如图 20 重叠,若图中阴影部分的面积为 24 厘米,那么所拼成的大长方形周长是多少厘米 ?图2057.图 21 中的正六边形被分为 12 个相同的小三角形,每个小三角形的面积为 1. 问:图中面积等于 3 的梯形有多少个 ?图2158.图 22 中有 20 个相同的小三角形,它们的面积都是 1,问图中面积为 3 的梯形有多少个 ?图2259.图 23 的 3 个图中,网格小正方形的边长都是1,求各图中阴影部分的面积.图 2360.如图 24,从边长是 8 的正方形上裁掉两个边长是 2 的正方形和两个腰长是 4 的等腰直角三角形,求余下部分的面积 .图 2461.一张长方形纸片,长是10 厘米,宽是7 厘米 .把它的右上角往下折叠,如图25 所示,再把左下角往上折叠如图26 所示,求未盖住部分 (阴影部分 )的面积 .图 25图2662.一个长方形,若长增加 3,宽增加 2,则面积增加 33;若长增加 1,宽增加 3,则面积增加 26,求原长方形的周长 .63.如图 27,在长是12 的线段上画两个正方形,已知两个正方形的面积的差是48,求其中大正方形的面积.图 2764.如图 28,长方形边长是 12,宽是 6. 把长分成三等份,宽分成两等份,再将长方形内某点与分割点连接,求阴影部分面积 .图 2865.在一条直路的一侧等距离地植了128 棵树,路的两端都有树 .若第 3 棵树和第7 棵树相距 20 米,求这条路的长 .66.有一个报时钟,每敲响一下,声音可持续 2 秒且每两次敲响的时间间隔相同.如果敲响 5 下,那么从敲响第一下到最后一下持续声音结束,一共需要26 秒.现在敲响 10 下,从敲响第一下到最后一下持续声音结束,一共需要多少秒?67.楠楠 6 岁时,爸爸 36 岁,再过多少年,爸爸的年龄是楠楠年龄的 4 倍?68.今年父亲的年龄是兄弟年龄和的 2 倍,是兄弟年龄差的 8 倍.父子三人年龄和是48 岁,长兄和弟弟今年各几岁 ?69.今年,李林和爸爸的年龄的和是 50 岁, 5 年后,爸爸的年龄比李林年龄的 3 倍小 4 岁,爸爸比李林大几岁 ?70.妈妈像女儿这样大时,女儿才两岁,当女儿长到妈妈现在这样大时,妈妈 86 岁,求妈妈现在的年龄 .71.两棵树上一共有25 只鸟,先是左边树上的鸟有一半飞到了右边树上,然后右边树上的 8 只鸟又飞到了左边树上,这时左边树上的鸟比右边树上多 3 只. 请问最开始左边树上有几只鸟?72.有甲、乙、丙、丁四个书库,共有图书 24000 本.从甲书库调运 1500 本书到乙书库,然后从乙书库调运 1800 本书到丙书库,再从丙书库调运 2200 本书到丁书库,最后从丁书库调运 1700 本书到甲书库 . 此时,甲、乙、丙、丁书库的图书数量相等 . 求甲书库原来有图书多少本 ?73.小肯同学去肯德基用餐,先买了一份“豪华午餐”,吃完后又买了一个“脆皮甜筒”,一共花了180 角.若以角计费,“豪华午餐”的价格末尾有个0,如果把0 去掉,正好是“脆皮甜筒”价格的一半 . 两样各花了多少元 ?74.一桶油连桶重 19 千克,用了一半油以后,再连桶一称,共重 12 千克 . 求原来油和桶各重多少 ?75.小笨和小聪练习打字,两分钟内,小笨比小聪多打49 个字,又比小聪的3 倍多 7 个字 . 问:两分钟内,小聪和小笨分别打了多少字?76.小笨和小聪买了 60 包方便面,小聪比小笨每周少吃 4 包,二人恰好用了 6 周吃完了所有的方便面 . 求小笨每周吃多少包方便面 ?77.甲、乙、丙三数之和为 177,乙比丙的两倍少 4,甲比丙的 3 倍多 7,求甲、乙、丙三数 .78.某单位请小王临时帮忙,规定 12 天报酬是人民币 660 元和一个 MP4 播放器 . 可是小王工作了七天后,因有急事不能继续,结果这个单位根据每天平均值给小王一个 MP4 播放器和人民币 150 元 . 问:一个 MP4 播放器价值多少元 ?79.小明今年得压岁钱 1650 元,比小亮的 2 倍少 150 元,求小亮今年得压岁钱多少元 ?80.麦当劳餐厅推出“夏日冰饮第二杯半价”活动,贝贝同学买了 2 杯“麦旋风”,共花了 18 元. 那么一杯“麦旋风”原价多少元 ?81.小王对小李说:“你给我 100 元,我的钱是你的 2 倍 . ”小李对小王说:“你给我 20 元,我的钱是你的 5 倍 . ”原来两人各有多少钱 ?82.小明、小刚和小丽为灾区儿童捐书,小明比小刚多捐了 7 本,小刚比小丽多捐了13 本,小明捐的本数是小丽的 3 倍,求三人一共捐了多少本书 ?83.A,B,C, D 四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了 4 次,得到下面四个数: 23,26,30, 33. 求 A , B,C,D 的平均数 . 84.有一群小朋友分一堆苹果,如果减少 1 人,每人可分得 8 个;如果增加 2 人,每人可分得 6 个 . 求实际有多少个小朋友 ?85.有一群小朋友分一堆苹果,如果每人分 5 个,就会剩下 4 个苹果,这时离开了 3 个小朋友,那么每人分 6 个还会剩 4 个. 问:原来一共有多少个苹果 ?86.张丽正在读一本 181 页的故事书,可是她不小心把书合上了,只记得刚读完的连续两页页码之和为 81,如果张丽每天读 30 页,那么剩下的几天能读完 ?87.小华有 8 个练习本,小明有 7 个练习本,小强没有,他付了 10 元从小华和小明购买了一些后,三人有相同数量的练习本 .若每个练习本的价格都相同,则小华应得几元钱 ?88.甲、乙、丙 3 人手机都使用了“畅聊卡”,并获得了赠送一个月基础话费的优惠,一个月后三人均超过了基础话费,甲付了 70 元,乙付了 50 元,丙付了 30 元.3 人通话时长共计 90 小时,如果一个人通话 90 小时,要付 350 元,那么丙通话了多少小时 ?89.运 1200 吨水泥,甲、乙两个车队共同运输需要运 30 次,若甲车队每次可比乙车队多运 10 吨,则甲车队独立运输需要运几次 ?90.一个牧民年初买了一头母羊,每年能生 2 只公羊, 4 只母羊,每只小母羊两年后,每年又可以生 6 只羊,其中 2 只公羊,4 只母羊 .这样从今年开始到第 3 年底,一共有多少只羊 ?91.小明家 2013 年初买了一头母羊,每年春天生 2 只公羊和 3 只母羊,每只小母羊从第三年头起,每年春天生 2 只公羊和 3 只母羊 .那么从 2013 年开始到 2017 年夏天,小明家共有只羊 ?92.有一根木棍上有两种刻度,第一种刻度将木棍分成10 等份,第二种刻度将木棍分成 12 等份,如果沿每条刻度线将木棍锯断,请问木棍共被锯成多少段?93.和尚分馒头: 100 个和尚分 100 个馒头,大和尚每人分 3 个,小和尚每 3 个人分 1 个,刚好分完 .大、小和尚各有多少人 ?94.3 名同学去参加数学竞赛,共 10 道题,答对一道题得 10 分,答错一道题扣 3 分 .这3 个同学都回答了所有的问题,小笨得了87 分,小聪得了74 分,香香得了9 分,问,他们一共答对了几道题 ?95.今有鸡兔同笼,有33 个头,有 108 只脚,求鸡和兔各多少只?96.两列火车同时从北京和沈阳相对开出,从北京开出的火车每小时行 59 千米,从沈阳开出的火车每小时行 64 千米,6 小时后两车相遇 . 北京到沈阳的铁路线长多少千米 ?97.南京长江大桥是新中国第一座自己设计,建造的铁路、公路两用桥 .清晨,一列长228 米的火车,以每秒 20 米的速度通过南京长江大桥,共用了 350 秒 .那么桥的全长是多少米 ?98.甲、乙两人分别从 A 、B 两地同时以 30 千米 / 时、 20 千米 /时速度相向而行,相遇后继续前行各自到达 B、A 两地后立即返回,到第二次相遇时相遇点,该点离第一次相遇点 40 千米,求 A 、B 两地相距多少千米 ?99.红红和明明的家相距 380 米,两人同时从家中出发,在同一条笔直的路上行走,红红每分钟走 65 米,明明每分钟走 55 米, 3 分钟后两人相距多少米 ?100.甲、乙两地是一条电车线路两端的发车站,每隔一定时间两站同时发出一辆电车,每辆电车每隔 4 分钟都会遇到一辆迎面开来的电车,上午 10 点时,小明、小强两人分别从甲、乙车站同时出发,相向而行,小明每 5 分钟遇到一辆迎面开来的电车,小强每 6 分钟遇到一辆迎面开来的电车,如果电车行驶全程需 42 分钟,求小明和小强相遇的时刻 ?参考答案1. 0 42. 852. 33330000 43. 163. B>A>C 44. 144.4. 6561 45. 275. 299999999 46. 616. 943 47. 217. 147 48. 如图8.5879.6310.49911.1012.a=2 b=7 c=1313. 1123 49. 1814. 3321 50. 315. 257 51. 2016. 101 52. 717. 9993 53. 3,6 或 4,418. 387 54. 4019. 357 或 735 55. 54 平方厘米20. 10 56. 42 厘米21. 5 57. 1222. 1×2×(3+4) ×5+6+7+8+9=100. 58. 1623. (9 ×9-9) ÷9=8 59. 图 1:3;图 2:3;图 3: 324. 131 60. 4025. 2016 61. 1226. 167 62. 2227. 543 或 542 或 532 63. 6428. 4032 64. 3029. 1 65. 63530. 4034 66. 5631. 34,55,89 67. 432. 本题答案不唯一 . 68. 10, 633. 45 69. 2834. 20,24 70. 5835. 9 71. 1236. 6 72. 580037. 4 73. 3 元; 15 元38. 14 74. 14 千克, 5 千克39. 30 天,星期四75. 21, 7040. 97 76. 741. C 77. 甲=94,乙 =54,丙 =2921希望课堂——一个真正帮助孩子学懂数学的课堂78. 564 90. 4379. 900 91. 16180. 12 92. 2081. 小王 60 元,小李 180 元93. 大和尚 25 人,小和尚 75 人82. 63 94. 2083. 28 95. 兔子 21 只,鸡 12 只84. 10 96. 73885. 94 97. 677286. 5 98. 10087. 6 99. 可能相距20 米,740 米,410 米,88. 26 或 350 米89. 48 100. 10 点 45 分22。

2017年第15届希望杯四年级第1试试题及参考答案

2017年第15届希望杯四年级第1试试题及参考答案

2017年小学第十五届“希望杯”全国数学邀请赛四年级第1试试题以下每题6分,共120分。

1、计算:19×75+23×25=。

2、定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=。

3、abc是三位数,若a是奇数,且abc是3的倍数,则abc最小是。

4、三个连续自然数的乘积是120,他们的和是。

5、已知x,y是大于0的自然数,且x+y=150,若x是3的倍数,y是5的倍数,则(x,y)不同取值有个。

6、如果8×(2+1÷x)=18,则x=。

7、观察以下的一列数:11,17,23,29,35,……若从第n个数开始,每个数都大于2017,则n=。

8、图1由20个方格组成,其中含A的正方形有个。

9、图2由12个面积是1的方格组成,则图中和阴影梯形面积相等的长方形有个。

10、某学习小组数学成绩的统计图如图3,该小组平均成绩是分。

11、今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍。

12、10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的两倍大15,则这10个数中最小的数是。

13、如图4,把一个边长是5cm的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向和长度移动其中的4个长方形,则所得图形的周长是 cm。

14、在一个长方形内画三个圆,这个长方形最多可以被分成部分。

15、2017年3月19日是星期日,据此推算,2017年9月1日是星期。

16、观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是。

17、甲、乙两人分别从AB两地同时出发,相向而行,甲到达AB中点C时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在点D相遇时,CD的距离是米。

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。

6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。

7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。

9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

这时四个组的书一样多。

这说明甲组原来有书本。

10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。

11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。

12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。

13.甲、乙、丙三人中只有1人会开汽车。

甲说:“我会开。

”乙说:“我不会开。

”丙说:“甲不会开。

”三人的话只有一句是真话。

会开车的是。

14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。

回校后,小明补给小光28元。

小明、小光各带了元,每本书价元。

小学四年级希望杯试题第一试

小学四年级希望杯试题第一试

小学四年级希望杯试题第一试1.1只青蛙1张嘴,2只眼睛4条腿:2只青蛙2张嘴,4只眼睛8条腿:______只青蛙______张嘴,32只眼睛______条腿。

2.在113379902,113379904,113379906,113379908这四个数中,恰好等于六个22的乘积的数是______。

3.2021×2021+2021×2021-2021×2021-2021×2021=______。

4.除法算式□÷□=20…8中,被除数最小等于______。

5.用数字1,2,3可以组成6个没有重复数字的三位数,这6个数的和是______。

6.图中,不含“A”的正方形有______个。

7.把0,1,2,3,4,5,6,7,8这九个数字填入下图的九宫格中,把每行、每列以及每条对角线上的三个数相加,得到8个和,这8个和再相加所得到的和最大是______。

8.如图所示的除法算式中,每个□各代表一个数字,则被除数是______。

9.放寒假了,叔叔送给强强一本有许多个故事的书,强强计划每天看同样个数的故事,用20天可看完。

但强强在看书时发现故事很有趣,实际每天比原计划多看3个故事,结果提前4天看完了故事书。

这本故事书一共有______个故事。

10.欢欢对乐乐说:“我比你大8岁,2年后,我的年龄是你的年龄的’3倍。

”欢欢现在______岁。

11.琪琪画了—幅画,请爷爷、奶奶.爸爸和妈妈评分。

爷爷和奶奶评分的平均分是94分,奶奶和爸爸评分的平均分是90分,爸爸和妈妈评分的平均分是92分,那么爷爷和妈妈评分的平均分是______分。

12.养牛场有2021头黄牛和水牛,其中母牛1105头,黄牛1506头,公水牛200头,那么母黄牛有______头。

13.在一段时间里,时针、分针、秒针转动的圈数之和恰好是1466圈,那么这段时间有______秒。

14.甲、乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B 地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地。

小学四年级希望杯历年数学竞赛试题和答案解析1_14届[最新[全套](完整版)]

小学四年级希望杯历年数学竞赛试题和答案解析1_14届[最新[全套](完整版)]

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。

6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。

7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。

9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

这时四个组的书一样多。

这说明甲组原来有书本。

10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。

11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。

12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。

13.甲、乙、丙三人中只有1人会开汽车。

甲说:“我会开。

”乙说:“我不会开。

”丙说:“甲不会开。

”三人的话只有一句是真话。

会开车的是。

14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。

回校后,小明补给小光28元。

小明、小光各带了元,每本书价元。

2017年四年级希望杯奥数试卷【含答案】

2017年四年级希望杯奥数试卷【含答案】

2017年四年级希望杯奥数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 下列哪个数是质数?A. 12B. 13C. 14D. 153. 下列哪个数是合数?A. 11B. 12C. 13D. 144. 下列哪个数是奇数?A. 10B. 11C. 12D. 135. 下列哪个数既是偶数又是合数?A. 15B. 16C. 17D. 18二、判断题(每题1分,共5分)1. 2是最大的偶数。

()2. 所有的偶数都是合数。

()3. 所有的奇数都是质数。

()4. 1是质数。

()5. 9是合数。

()三、填空题(每题1分,共5分)1. 4 + 5 = ____2. 9 4 = ____3. 7 × 6 = ____4. 15 ÷ 5 = ____5. 2 + 3 + 4 + 5 + 6 = ____四、简答题(每题2分,共10分)1. 请写出前五个偶数。

2. 请写出前五个奇数。

3. 请写出前五个质数。

4. 请写出前五个合数。

5. 请写出前五个自然数的和。

五、应用题(每题2分,共10分)1. 小明有5个苹果,他吃掉了2个,还剩下几个苹果?2. 小红有3个橘子,她再买2个,一共有几个橘子?3. 一辆火车每小时行驶60公里,行驶3小时后,一共行驶了多少公里?4. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。

5. 一个正方形的边长是5厘米,求这个正方形的周长。

六、分析题(每题5分,共10分)1. 请分析偶数和奇数的区别。

2. 请分析质数和合数的区别。

七、实践操作题(每题5分,共10分)1. 请用纸和剪刀制作一个正方形。

2. 请用纸和剪刀制作一个长方形。

八、专业设计题(每题2分,共10分)1. 设计一个简单的加法电路,输入两个1位二进制数,输出它们的和。

2. 设计一个简单的减法电路,输入两个1位二进制数,输出它们的差。

2017年第十五届小学“希望杯”全国数学邀请赛培训试卷(四年级)后附答案解析

2017年第十五届小学“希望杯”全国数学邀请赛培训试卷(四年级)后附答案解析

2017年第十五届小学“希望杯”全国数学邀请赛培训试卷(四年级)一、解答题(共14小题,满分0分)1.计算:2017×2071+2077×2017﹣2037×2017﹣2111×2017.2.计算:9999×2222+3333×3334.3.比较大小:A=2016×2018,B=2017×2017,C=2015×2019.4.定义新运算⊗:a⊗b=,求(1⊗4)⊗(2⊗3).5.一个自然数,各个数位上的数字之和是74,这个数最小是多少?6.一个三位数被3除余1,被5除余3,被7除余5,这个数最大是多少?7.一个整除算式,被除数比商大126,除数是7,求被除数.8.一个三位数,它的各位数字之和是20,十位数字比个位数字大1,如果将百位数字与个位数字对调,得到的三位数比原三位数大198,求原数.9.在从1开始的n个连续的自然数中,去掉其中的一个数,余下各数的和是2017,求去掉的数.10.若干个数的平均数是17,加入一个新数2017后,这组数的平均数变成21,原来共有多少个数?11.用2,0,1,7这四个数字可以组成多少个没有重复数字的四位偶数?12.已知a,b,c是三个质数,且a<b<c,a+b×c=93,求a,b,c.13.a,b,c是彼此不同的非0自然数,若a+b+c=6,求四位奇数中最小的那个.14.a,b,c是彼此不同的非0自然数,若a+b+c=6,求四位数中最大的那个.2017年第十五届小学“希望杯”全国数学邀请赛培训试卷(四年级)(1)参考答案与试题解析一、解答题(共14小题,满分0分)1.计算:2017×2071+2077×2017﹣2037×2017﹣2111×2017.【分析】这道算式是四个乘积加减而成,每部分都有相同的因数2017,因此可以采用乘法分配律进行计算.【解答】解:2017×2071+2077×2017﹣2037×2017﹣2111×2017=2017×(2071+2077﹣2037﹣2111)=2017×0=0【点评】此题采用的乘法分配律达到简便计算的效果.2.计算:9999×2222+3333×3334.【分析】把9999变成3333×3,再利用乘法的分配律计算.【解答】解:9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=3333×10000=33330000.【点评】此题考查简便运算,根据数的特点,灵活选择简便方法进行计算.3.比较大小:A=2016×2018,B=2017×2017,C=2015×2019.【分析】本题先把算是变形,再根据平方差公式解答即可.【解答】解:A=2016×2018=(2017﹣1)×(2017+1)=2017×2017﹣1C=2015×2019=(2017﹣2)×(2017+2)=2017×2017﹣4则,2017×2017>2017×2017﹣1>2017×2017﹣4即,B>A>C.【点评】解答本题还可以根据两个因数的和一定,两个因数越接近,积越大来解答.4.定义新运算⊗:a⊗b=,求(1⊗4)⊗(2⊗3).【分析】a⊗b=表示a个b的连乘的积,据此解答即可.【解答】解:(1⊗4)⊗(2⊗3)=(4)⊗(3×3)=(4)⊗(9)=9×9×9×9=6561【点评】解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算.5.一个自然数,各个数位上的数字之和是74,这个数最小是多少?【分析】要使这个数最小,首先考虑各个数位上是9,余数写在最高位上即可求解.【解答】解:74÷9=8…2,所以这个数最小是299999999.【点评】本题考查了数字问题和极值问题的综合应用,一个自然数各个数位上的数字之和一定,除了最高位,其余数位上的数字为9时最小.6.一个三位数被3除余1,被5除余3,被7除余5,这个数最大是多少?【分析】从题意推断,这个数被3、5、7整除都少2,即这个数最小是3、5、7的公倍数少2,因为3、5、7三个数两两互质,先求出这三个数的最小公倍数,即这三个数的连乘积;再求出三位数中3、5、7的最大公倍数,然后减去2即可.【解答】解:3×5×7=1051000÷105=9 (55)所以,这个数最大是105×9﹣2=945﹣2=943答:这个三位数最大是943.【点评】明确这个数比3、5、7的公倍数少2,是解答此题的关键.7.一个整除算式,被除数比商大126,除数是7,求被除数.【分析】被除数比商大126,除数是7,说明被除数是商的7倍,则126就相当于商的7﹣1=6倍,然后根据差倍公式求出商,再进一步求出被除数即可.【解答】解:126÷(7﹣1)×7=126÷6×7=147答:被除数是147.【点评】本题考查了差倍问题,关键是根据被除数、除数和商之间的关系得出被除数是商的7倍,再根据“差÷倍数差=较小数”解答即可.8.一个三位数,它的各位数字之和是20,十位数字比个位数字大1,如果将百位数字与个位数字对调,得到的三位数比原三位数大198,求原数.【分析】设个位是a,十位a+1,百位20﹣a﹣a﹣1=19﹣2a.根据题意列出方程:100a+10a+19﹣2a﹣100(19﹣2a)﹣10a﹣a=198,解这个方程,求出个位数字,然后再求十位与百位数字,解决问题.【解答】解:设原数个位为a,则十位为a+1,百位为19﹣2a根据题意列方程100a+10a+19﹣2a﹣100(19﹣2a)﹣10a﹣a=198解得a=7,则a+1=8,19﹣2a=5;答:原数为587.【点评】解决位值问题,一般要用字母表示各位数字,通过解方程求得.9.在从1开始的n个连续的自然数中,去掉其中的一个数,余下各数的和是2017,求去掉的数.【分析】利用从1开始的n个连续的自然数的和要大于2017,从1开始的连续若干个自然数的和等于(1+最大数)×个数÷2,验算可得结论.【解答】解:因为去掉一个数后,余下各数的和是2017,所以从1开始的n个连续的自然数的和要大于2017,从1开始的连续若干个自然数的和等于(1+最大数)×个数÷2,验算可知,当n=63时,(1+63)×63÷2=2016<2017,(不符合)当n=64时,(1+64)×64÷2=2080,(符合) 2080﹣2017=63,所以去掉的数是63.【点评】本题考查因数与倍数,考查学生的计算能力,利用从1开始的连续若干个自然数的和等于(1+最大数)×个数÷2是关键.10.若干个数的平均数是17,加入一个新数2017后,这组数的平均数变成21,原来共有多少个数?【分析】若增加的数是17,那么这组数的平均数不变,2017﹣17=2000,求出2000使这组数(包括增加的数)的平均数增加的个数,可得这组数的个数,即可得出结论.【解答】解:根据平均数的定义,若增加的数是17,那么这组数的平均数不变,2017﹣17=2000,2000使这组数(包括增加的数)的平均数增加(21﹣17),则这组数的个数是 2000÷(21﹣17)=500,500﹣1=499.所以原来共有499个数.【点评】本题考查平均数问题,考查学生的计算能力,正确运用平均数的定义是关键.11.用2,0,1,7这四个数字可以组成多少个没有重复数字的四位偶数?【分析】先排个位,只能从2和0中选,有2种选法;当个位上是0时,共有3×2×1×1=6个;当个位上是2时,因为0不能放在千位上,共有2×2×1×1=4个;然后把两个得数相加即可.【解答】解:根据分析可得,当个位上是0时,共有:3×2×1×1=6(个)当个位上是2时,共有:2×2×1×1=4(个)综上所述,共有:6+4=10(个)答:用2,0,1,7这四个数字可以组成10个没有重复数字的四位偶数.【点评】本题考查了排列组合中的分步和分类计数原理;要注意0不能放在最高位.12.已知a,b,c是三个质数,且a<b<c,a+b×c=93,求a,b,c.【分析】a+b×c=93,93是奇数,所以根据数的奇偶性可得a=2,则b×c=93﹣2=91=13×7,据此进一步解答即可.【解答】解:因为a+b×c=93,93是奇数,所以根据数的奇偶性可得a、b、c中必有偶数,因为a最小,所以a=2,则b×c=93﹣2=91=13×7,又因为a<b<c,所以b=7,c=13.答:a=2,b=7,c=13.【点评】本题考查了数的奇偶性和质数的意义的综合应用,解答的突破口是根据“奇数+偶数=奇数”确定最小的偶质数是2.13.a,b,c是彼此不同的非0自然数,若a+b+c=6,求四位奇数中最小的那个.【分析】a+b+c=6,因为a,b,c是彼此不同的非0自然数,所以1+2+3=6,要使是最小的四位奇数,则a=1,b=2,c=3;据此解答即可.【解答】解:因为a+b+c=6,a,b,c是彼此不同的非0自然数,所以可得:1+2+3=6,要使是最小的四位奇数,则a=1,b=2,c=3,所以,四位奇数中最小是1123;答:四位奇数中最小的那个是1123.【点评】本题考查了数字问题和极值问题的综合应用,本题关键是确定三个数的取值.14.a,b,c是彼此不同的非0自然数,若a+b+c=6,求四位数中最大的那个.【分析】a+b+c=6,因为a,b,c是彼此不同的非0自然数,所以1+2+3=6,要使是最大的四位数,则a=3,b=2,c=1;据此解答即可.【解答】解:因为a+b+c=6,a,b,c是彼此不同的非0自然数,所以可得:1+2+3=6,要使是最大的四位数,则a=3,b=2,c=1,所以,四位数中最大是3321;答:四位数中最大的那个是3321.【点评】本题考查了数字问题和极值问题的综合应用,本题关键是确定三个数的取值.。

希望杯数学竞赛第一届至十历届四年级全部试题与答案(打印版)

希望杯数学竞赛第一届至十历届四年级全部试题与答案(打印版)

目录1.第一届小学“希望杯”全国数学邀请赛(第1试) (2)2. 第一届小学“希望杯”全国数学邀请赛(第2试) (5)3. 第二届小学“希望杯”全国数学邀请赛(第1试) (7)4. 第二届小学“希望杯”全国数学邀请赛(第2试) (10)5. 第三届小学“希望杯”全国数学邀请赛(第1试) (13)6. 第三届小学“希望杯”全国数学邀请赛(第2试) (16)7. 第四届小学“希望杯”全国数学邀请赛(第1试) (18)8. 第四届小学“希望杯”全国数学邀请赛(第2试) (21)9. 第五届小学“希望杯”全国数学邀请赛(第1试) (23)10. 第五届小学“希望杯”全国数学邀请赛(第2试) (26)11. 第六届小学“希望杯”全国数学邀请赛(第1试) (28)12. 第六届小学“希望杯”全国数学邀请赛(第2试) (30)13. 第七届小学“希望杯”全国数学邀请赛(第1试) (32)14. 第七届小学“希望杯”全国数学邀请赛(第2试) (36)15. 第八届小学“希望杯”全国数学邀请赛(第1试) (39)16. 第八届小学“希望杯”全国数学邀请赛(第2试) (41)17. 第九届小学“希望杯”全国数学邀请赛(第1试) (44)18. 第九届小学“希望杯”全国数学邀请赛(第2试) (46)19. 第十届小学“希望杯”全国数学邀请赛(第1试) (48)20. 第十届小学“希望杯”全国数学邀请赛(第2试) (50)21.第一届---第八届“希望杯”全国数学邀请赛参考答案 (53)第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

2017希望杯四年级100题及解析

2017希望杯四年级100题及解析
于是b=7,c=13.
13、a,b,c是彼此不同的非0自然数,若a+b+c=6,求四位奇数 中最小的那个.
文字解析
因为a,b,c是彼此不同的非0自然数,且a+b+c=6,
所以这三个数只能是1,2,3,由1,2,3构成的型的奇数有:
1123,2213,2231,3321,
比较可知最小的=1123.
14、a,b,c是彼此不同的非0自然数,若a+b+c=6,求四位数 中最大的那个.
故可以组成10个没有重复数字的四位偶数.
12、已知a, b, c是三个质数,且a<b<c, a+b×c=93,求a:_____,b:______,c:_______.
文字解析
因为a+b×c=93,所以a和b×c是一个奇数和一个偶数,而b和c是大于2的质数,所以b×c是奇数,a为偶数,因此a=2,所以b×c=93-2=91=7×13,
文字解析
同第13题,可得的最大值=3321.
15、三位数 是质数, a, b, c也是质数, 是偶数, 是5的倍数,求三位数 .
文字解析
因为cba是偶数,a是质数,所以a=2.因为是5的倍数,b是质数,所以b=5.
因为c也是质数,所以=257或253.但是253=11×23,不是质数,所以=257.
当n=64时,(1+64)×64÷2=2080,(符合)
2080-2017=63,
所以去掉的数是63.
10、若干个数的平均数是17,加入一个新数2017后,这组数的平均数变成21,原来共有多少个数?
文字解析
根据平均数的定义,若增加的数是17,那么这组数的平均数不变,
2017-17=2000,

2017希望杯四年级100题及解析

2017希望杯四年级100题及解析

1、计算:2017×2071+2077×2017-2037×2017-2111×2017.文字解析:原式=2017×(2071+2077-2037-2111)=2017×(2071+2077-2037-2111)=0.2、计算:9999×2222+3333×3334.文字解析:9999×2222+3333×3334=3333×3×2222+3333×3334=3333×(3×2222)+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=33330000.3、比较大小:A=2016×2018,B=2017×2017,C=2015×2019.________>________>__________.文字解析:A=2016×(2017+1)=2016×2017+2016;B=2017×(2016+1)=2016×2017+2017;C=2015×2019=(2016-1)×2019=2016×2019-2019=2016×(2017+2)-2019=2016×2017+2016×2-2019=2016×2017+2013;可知A=2016×2017+2016,B=2016×2017+2017,C=2016×2017+2013, 故B>A>C.4、定义新运算 : ,求(1 4) (2 3) .文字解析1 4=4,2 3=3×3=9,(1 4) (2 3) =4 9=9×9×9×9=6561.5、一个自然数,各个数位上的数字之和是74,这个数最小是多少?文字解析要使这个数最小,就要使它的数位尽可能少,即每个数位上的数尽量大.因为每个数位上的数最大是9,且74÷9=8……2,所以最多有8个数位上是9,这时应有一个数位上的数是2,要使这个数最小,2应该在最高位,即这个数最小是299999999.6、一个三位数被3除余1,被5除余3,被7除余5,这个数最大是多少?文字解析由题意可知,这个数加上2以后能同时被3,5,7整除.能同时被被3,5,7整除的最小的数是3×5×7=105,因为105×9=945,105×10=1050,945-2=943,1050-2=1048,所以这个数最大是943.7、一个整除算式,被除数比商大126,除数是7,求被除数.文字解析因为被除数÷7=商,所以被除数是商的7倍,于是126 (被除数-商)是商的(7-1)倍,所以商=126÷(7-1)=21.可得被除数是7×21=147.8、一个三位数,它的各位数字之和是20,十位数字比个位数字大1,如果将百位数字与个位数字对调,得到的三位数比原三位数大198,求原数.文字解析设原数的个位数字是a,则十位数字是a+1,百位数字是19-2a.根据题意100a+10(a+1) +19-2a-100(19-2a)-10(a+1)-a=198,所以a=7,则a+1=8,19-2a=5,所以原来的三位数是587.9、在从1开始的n个连续的自然数中,去掉其中的一个数,余下各数的和是2017,求去掉的数.文字解析因为去掉一个数后,余下各数的和是2017,所以从1开始的n个连续的自然数的和要大于2017,从1开始的连续若干个自然数的和等于(1+最大数)×个数÷2,验算可知,当n=63时,(1+63)×63÷2=2016<2017,(不符合)当n=64时,(1+64)×64÷2=2080,(符合)2080-2017=63,所以去掉的数是63.10、若干个数的平均数是17,加入一个新数2017后,这组数的平均数变成21,原来共有多少个数?文字解析根据平均数的定义,若增加的数是17,那么这组数的平均数不变,2017-17=2000,2000使这组数(包括增加的数)的平均数增加(21-17),则这组数的个数是2000÷(21-17)=500,500-1=499.所以原来共有499个数.另解设原有x个数,则解得x=499,即原来共有499个数.11、用2,0,1,7这四个数字可以组成多少个没有重复数字的四位偶数?文字解析个位为0的有6个:1270,1720,2170,2710,7120,7210;个位为2的有4个:1702,7102,1072,7012.故可以组成10个没有重复数字的四位偶数.12、已知a, b, c是三个质数,且a<b<c, a+b×c=93,求a:_____,b:______,c:_______.文字解析因为a+b×c=93,所以a和b×c是一个奇数和一个偶数,而b和c是大于2的质数,所以b×c是奇数,a为偶数,因此a=2,所以b×c=93-2=91=7×13,于是b=7,c=13.13、a,b,c是彼此不同的非0自然数,若a+b+c=6,求四位奇数中最小的那个. 文字解析因为a,b,c是彼此不同的非0自然数,且a+b+c=6,所以这三个数只能是1,2,3,由1,2,3构成的型的奇数有:1123,2213,2231,3321,比较可知最小的=1123.14、a,b,c是彼此不同的非0自然数,若a+b+c=6,求四位数中最大的那个.文字解析同第13题,可得的最大值=3321.15、三位数是质数, a, b, c也是质数, 是偶数,是5的倍数,求三位数.文字解析因为cba是偶数,a是质数,所以a=2.因为是5的倍数,b是质数,所以b=5. 因为c也是质数,所以=257或253.但是253=11×23,不是质数,所以=257.16、求被7除,余数是3的最小的三位数.文字解析由100÷7=14……2,知(100+1)÷7=14……3,故被7除余数是3的最小的三位数是101.17、求被7除,余数是4的最大的四位数.文字解析由9999÷7=1428……3,知(9999-6)÷7=1427……4,故被7除,余数是4的最大的四位数是9993.18、将分别写有数字3,7,8的三张卡片排成三位数,使它是43的倍数,求.文字解析用写有3,7,8的三张卡片可排成6个不同的三位数:783,873,387,837,378,738.验算知仅有387是43的倍数.19、已知a,b, c是不同的质数,且三位数能同时可被3,7整除,=_____或_____或________.(从小到大填入)文字解析由是3的倍数,且a,b,c是不同的质数,知a,b,c可能是(1)2,3,7;或(2)3,5,7当(1)成立时,可能是237,273,327,372,732,723,经验算,知道=273.当(2)成立时,可能是357,375,537,573,735,753,经验算,知道=357或735.20、用写有2,3,5,7的四张纸片可以排成多少个小于1000的质数?文字解析1位的有:2,3,5,7,4个;2位的有:23,37,53,73,4个;3位的有:257,523,2个. 共4+4+2=10(个).21、四位数可被两位数整除,若a<c,a+c=5,求b.文字解析依题意,知a=1,c=4或a=2,c=3.若a=1,c=4,则==1004+110b,=14,÷= =71+7b+,5+6b应是7的倍数,可知b=5,此时÷=1554÷14=111.(成立) 若a=2,c=3,则÷=÷23=(87+4b)+.2+18b应是23的倍数,可知b=5.此时÷=2553÷23=111.(成立)综上可知,b=5.22、在下面的算式里加上一对括号,使算式成立:括号应加在数字______前和数字______后。

2017年“希望杯”四年培训题100题汇总(含答案)

2017年“希望杯”四年培训题100题汇总(含答案)

第十五届(2017年)小学“希望杯”全国数学邀请赛四年级培训题1.计算:2017×2071+2077×2017-2037×2017-2111×2017.2.计算:9999×2222+3333×3334.3.比较大小:A=2016×2018,B=2017×2017,C=2015×2019.4.定义新运算:a⊗⊗ b= a ⨯⋅⋅⋅⨯⨯b b b 个,求(1 ⊗ 4) ⊗ (2 ⊗ 3).5.一个自然数,各个数位上的数字之和是74,这个数最小是多少?6.一个三位数被3 除余1,被5 除余3,被7 除余5,这个数最大是多少?7.一个整除算式,被除数比商大126,除数是7,求被除数.8.一个三位数,它的各位数字之和是20,十位数字比个位数字大1,如果将百位数字与个位数字对调,得到的三位数比原三位数大198,求原数.9.在从1 开始的n 个连续的自然数中,去掉其中的一个数,余下各数的和是2017,求去掉的数.10.若干个数的平均数是17,加入一个新数2017 后,这组数的平均数变成21,原来共有多少个数?11.用2,0,1,7 这四个数字可以组成多少个没有重复数字的四位偶数?12.已知a,b,c 是三个质数,且a < b < c,a + b ×c = 93,求a,b,c.13.a,b,c 是彼此不同的非0 自然数,若a + b + c = 6,求四位奇数aabc 中最小的那个.14.a,b,c 是彼此不同的非0 自然数,若a + b + c = 6,求四位数aabc 中最大的那个.15.三位数abc 是质数,a,b,c 也是质数,cba 是偶数,ab 是5 的倍数,求三位数abc .16.求被7 除,余数是3 的最小的三位数.17.求被7 除,余数是4 的最大的四位数.18.将分别写有数字3,7,8 的三张卡片排成三位数abc,使它是43 的倍数,求abc .19.已知a,b,c 是不同的质数,且三位数abc 能同时被3,7 整除,求abc .20.用写有2,3,5,7 的四张纸片可以排成多少个小于1000 的质数?21.四位数abbc 可被两位数ac 整除,若a < c,a + c = 5,求b.22.在下面的算式里加上一对括号,使算式成立. 1×2×3+4×5+6+7+8+9=100.23.在等号左边添上适当的运算符号、括号,使等式成立.9 9 9 9 = 8.24.从1 至9 的自然数中选择8 个数填入下面的方框中,使得计算结果尽量大,那么这个结果最大是多少?25.在图1 的算式中,A,B,C,D 代表0~9 中四个各不相同的数字,且A 是最小的质数,求四位数ABCD。

2020年第十五届小学数学“梦想杯”全国数学邀请赛试卷(四年级第1试)

2020年第十五届小学数学“梦想杯”全国数学邀请赛试卷(四年级第1试)

2017年第十五届小学“希望杯”全国数学邀请赛试卷(四年级第1试)每小题10分,共120分1.(10分)计算:19×75+23×25=.2.(10分)定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.3.(10分)是三位数,若a是奇数,且是3的倍数,则最小是.4.(10分)三个连续自然数的乘积是120,它们的和是.5.(10分)已知x,y是大于0的自然数,且x+y=150,若x是3的倍数,y是5的倍数,则(x,y)的不同取值有对.6.(10分)如果8×(2+1÷x)=18,则x=.7.(10分)观察以下的一列数:11,17,23,29,35,…若从第n个数开始,每个数都大于2017,则n=.8.(10分)图中由20个方格组成,其中含有A的正方形有个.9.(10分)图中由12个面积为1的方格组成,则图中和阴影梯形面积相同的长方形有个.10.某学习小组数学成绩的统计图如图,该小组的平均成绩是分.11.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.12.10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是.13.如图,把一个边长是5cm的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向移动其中的4个长方形,则所得图形的周长是cm.14.在一个长方形内画三个圆,这个长方形最多可被分成部分.15.2017年3月19日是星期日,据此推算,2017年9月1日是星期.16.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.17.甲,乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是米.18.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是.19.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子个.20.有一笔钱,用来给四(1)班的学生每人买一个笔记本,若每本3元,则可多买6本;若每本5元,则差30元.若用完这笔钱,恰好给每人买一个笔记本,则共买笔记本个,其中3元的笔记本个.2017年第十五届小学“希望杯”全国数学邀请赛试卷(四年级第1试)参考答案与试题解析每小题10分,共120分1.(10分)计算:19×75+23×25=2000.【分析】将75拆分成3×25,然后利用乘法的分配律,把后面的23加在一起,刚好是80×25【解答】解:19×75+23×25=19×3×25+23×25=57×25+23×25=25×(57+23)=25×80=2000故答案是:2000【点评】本题考查了四则运算的巧算,本题突破点是:将75拆分成3×25,然后利用乘法的分配律求出答案2.(10分)定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=21.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.【解答】解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.3.(10分)是三位数,若a是奇数,且是3的倍数,则最小是102.【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.【解答】解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,又因为是3的倍数,所以可得:1+0+c的和是3的倍数,所以,c最小是2,则,最小是102.故答案为:102.【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.4.(10分)三个连续自然数的乘积是120,它们的和是15.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.【解答】解:120=2×2×2×3×5=(2×2)×(2×3)×5,2×2=4,2×3=6,5,即,三个连续自然数的乘积是120,这三个数是4、5、6,所以,和是:4+5+6=15.故答案为:15.【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.5.(10分)已知x,y是大于0的自然数,且x+y=150,若x是3的倍数,y是5的倍数,则(x,y)的不同取值有9对.【分析】首先根据5的整除特性可知尾数是0或者5,那么150和5的倍数差依然是尾数是0或者5的数字枚举即可.【解答】解:根据5的整除特性可知尾数是0或者5.那么150减去这个数字尾数还是0或者5.可以找到尾数是0或者5的数字是3的倍数.30,60,90,120,15,45,75,105,135共9个数字满足条件.对应的数字就有9对.故答案为:9.【点评】本题是考察数的整除特性,关键在于找到尾数是0或5的数字是3的倍数,枚举即可解决问题.6.(10分)如果8×(2+1÷x)=18,则x=4.【分析】8×(2+1÷x)=18运用逆推的方法,先用18除以8求出小括号里面算式的结果,再减去2得到差,求出1÷x的结果,再用1除以求出的差,即可得到x的值.【解答】解:8×(2+1÷x)=182+1÷x=18÷82+1÷x=2.251÷x=2.25﹣21÷x=0.25x=1÷0.25x=4故答案为:4.【点评】解决本题根据加减法之间的互逆关系,以及乘除法之间的互逆关系,从结果向前推算,得出x的值.7.(10分)观察以下的一列数:11,17,23,29,35,…若从第n个数开始,每个数都大于2017,则n=336.【分析】观察以下的一列数:11,17,23,29,35,…可以看出规律是相邻的数:后面的比前面的大6;求第n个数开始每个数都大于2017,则n=.【解答】解:11=5+6×117=5+6×223=5+6×329=5+6×4…第n个数=5+6×n所以有:5+6n>20176n>2012n>335 (2)n=336;故答案为:336.【点评】等差数列规律题,求第n项的数字.8.(10分)图中由20个方格组成,其中含有A的正方形有13个.科技新闻网:##科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料,我们是国内外最新的科技新闻网。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“希望杯”全国数学邀请赛
四年级第1试试题
每小题6分,共120分.
1.计算:19752325⨯+⨯=______________________.
2.定义新运算:()a b a b b =+⨯△,a b a b b =⨯+□,如:
14(14)420=+⨯=△,141448=⨯+=□.
按从左到右的顺序计算:123=△□__________.
3.abc 是三位数,若a 是奇数,且abc 是3的倍数,则abc 最小是__________.
4.三个连续自然数的乘积是120,它们的和是__________.
5.已知x ,y 是大于0的自然数,且150x y +=.若x 是3的倍数,y 是5的倍数,则(x ,y )的不同取值有__________对.
6.如果8(21)18x ⨯+÷=,则x =__________.
7.观察以下的一列数:11,17,23,29,35,…
若从第九个数开始,每个数都大于2017,n =__________.
8.图1由20个方格组成,其中含有A 的正方形有__________个.
图1图2
9.图2由12个面积为1的方格组成,则图中和阴影梯形面积相同的长方形有__________个.
10.某学习小组数学成绩的统计图如图,该小组的平均成绩是__________分.
11.今年,小军5岁,爸爸31岁,再过__________年,爸爸的年龄是小军的3倍.
12.10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是__________.
13.如图,把一个边长是5cm的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向和长度移动其中的4个长方形,则所得图形的周长是__________cm.
14.在一个长方形内画三个圆,这个长方形最多可被分成__________部分.
15.2017年3月19日是星期日,据此推算,2017年9月1日是星期__________.
16.观察7512
=⨯+,这里,7,12和17被叫做“3个相邻的被5 =⨯+,12522
=⨯+,17532
除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是__________.17.甲,乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是_____米.18.洋洋从家出发去学校,若每分钟走60米,则她6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家出发的时刻是__________.
19.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3
20.有一笔钱,用来给四(1)班的学生每人买一个笔记本,若每本3元,则可多买6本;若每本5元,则差30元.若用完这笔钱,恰好给每人买一个笔记本,则共买笔记本__________个,其
中3元的笔记本__________个.。

相关文档
最新文档