(完整版)2-4已知单调性求参数取值范围
导数的应用——利用单调性求参数的取值范围
![导数的应用——利用单调性求参数的取值范围](https://img.taocdn.com/s3/m/a2913c5453d380eb6294dd88d0d233d4b04e3f10.png)
导数的应用——利用单调性求参数的取值范围在解题中,我们首先要确定参数的取值范围是有限的,也就是参数不能无限制地取值。
然后我们利用导数的单调性来排除一些不符合要求的取值范围,从而找到参数的合理取值范围。
为了更好地理解这个方法,我们来看一个具体的例子:问题:已知函数f(x) = ax^2 + bx + c,其中a > 0。
如果函数f(x)在定义域内是递增函数,求参数b的取值范围。
解答:首先,我们要明确函数f(x)是递增函数的定义:对于任意的x1<x2,有f(x1)<f(x2)。
我们可以通过求函数f(x)的导函数f'(x)来判断函数f(x)的单调性。
在本例中,函数f(x)的导函数为f'(x) = 2ax + b。
由于函数f(x)为递增函数,所以f'(x)应该大于0。
即对于任意的x,有f'(x)>0。
我们可以把f'(x) > 0看作是一个一次函数y = 2ax + b > 0的解。
这个一次函数的解为x < -b/2a。
也就是说,对于任意的x<-b/2a,有f'(x)>0。
这样一来,我们就可以得出结论,函数f(x)在x<-b/2a的区间上是递增函数。
但是我们并不能马上就得出参数b的取值范围是x<-b/2a。
因为函数f(x)的定义域可能不包含这个区间。
为了求出参数b的取值范围,我们需要进一步考虑函数f(x)的定义域。
对于函数f(x) = ax^2 + bx + c来说,它的定义域是所有实数集合R。
因此,对于任意实数x,函数f(x)都有定义。
由于我们已经确定了函数f(x)在x<-b/2a的区间上是递增函数,所以我们只需要确定使得这个区间包含在定义域内的参数b的取值范围即可。
如果我们假设b/2a为一个实数k,那么我们可以得出-x>k。
即对于任意的x>-k,函数f(x)是递增的。
然而,x的取值范围是所有实数,所以我们可以把任意实数k当作是b/2a。
已知函数单调性求参数取值范围
![已知函数单调性求参数取值范围](https://img.taocdn.com/s3/m/f8fbf20cae45b307e87101f69e3143323968f590.png)
技法点拨已知函数单调性求参数取值范围■欧阳丽丽摘要:利用导数根据函数单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考点,下面将这类问题举例分析。
关键词:导数;单调性;参数取值范围一、转化为不等式的恒成立问题求参数取值范围若函数f (x )在(a ,b )上单调递增,则f′(x )≥0;若函数f (x )在(a ,b )上单调递减,则f′(x )≤0,将问题转化为函数最值问题求解。
一般地,分离变量后,若得到a ≥h (x ),则只需a ≥h (x )max ;若得到a ≤h (x ),则只需a ≤h (x )min 。
注意:f (x )在(a ,b )上为增函数(减函数)的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0(f′(x )≤0)且在(a ,b )内的任一非空子区间上f′(x )≠0。
例1,已知函数f (x )=ln x -12ax 2-2x (a ≠0)在[1,]4上单调递减,求a 的取值范围。
解:因为f (x )在[1,]4上单调递减,所以当x ∈[1,]4时,f′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立。
设h (x )=1x2-2x ,x ∈[1,]4所以只要a ≥h (x )max 。
而h′(x )=2(x +1)(x +1)x 4。
当x ∈[1,]4,h′(x )>0,所以h (x )在[1,]4上单调递增。
所以当h (x )max =h (4)=-716,所以a ≥-716,即a 的取值范围是éëêöø÷-716,+∞。
评析:由f (x )在[1,]4上单调递增,得到f′(x )≤0,进而分离参数a ,构造新的函数h (x ),本题转化为求h (x )max 。
例2,已知函数f (x )=ax +1x +2在(-2,+)∞内单调递减,求实数a 的取值范围。
利用函数的单调性求参数的取值范围(使用)
![利用函数的单调性求参数的取值范围(使用)](https://img.taocdn.com/s3/m/497ca75aa1c7aa00b52acb9c.png)
例1:已知函数f (x) x3 ax2 3x 1在[2,4]上是单调递增函数, 求参数a的取值范围.
解 f '(x) 3x2 2ax 3, x [2,4]
: 则f '(x) 0在[2,4]上恒成立
即3x2 2ax 3 0,恒成立x [2,4]
方法:(分离参数)2ax 3x2 3恒成立
f '(x) ax (2a 1) 2 (ax 1)(x 2)
x
x
(1)当a 0时,f '(x) 2 x x
所以f (x)在(0,2)上递增,在(2, )上递减。
(2)当a
0时,令f
'(x)
0,
得x1
1 a
0.x2
2
结合二次函数图象知 f (x)在(0,2)上递增;
在(2, )递减。
(3)当a
即3x2 a 3 0,恒成立x [0,)
方法:(分离参数)
a 3x2 3恒成立
a (3x2 3)min a 3
练习 若函数f (x) x3 ax2 1在(0,2)内单调递减, 2: 求实数a的取值范围.
解析: f '(x) 3x2 2ax, x (0,2)
则f '(x) 0在(0,2)上恒成立
利用函数单调性求参数的 取值范围
复习
1 用导数判断函数单调性法则:
、
如果在(a,b)内,f
(x)>0,则f
(x)在此区间是增函数;
如果在(a,b)内,f (x)<0,则f (x)在此区间是减函数。
2、求函数单调区间的一般步骤 是
1、求定义 域2、求导
f'(x) 3、令f'(x)>0,求出增区间,令f'(x)<0, 求出减区间。
(易错题)高中数学高中数学选修2-2第四章《定积分》检测卷(有答案解析)(4)
![(易错题)高中数学高中数学选修2-2第四章《定积分》检测卷(有答案解析)(4)](https://img.taocdn.com/s3/m/47762b94783e0912a3162a4a.png)
一、选择题1.已知函数2(1),10()01x x f x x ⎧+-≤≤⎪=<≤则11()d f x x -=⎰( ) A .3812π- B .4312π+ C .44π+ D .4312π-+ 2.在1100x y x y ==-=,,,围成的正方形中随机投掷10000个点,则落入曲线20x y -=,1y =和y 轴围成的区域的点的个数的估计值为( )A .5000B .6667C .7500D .78543.若函数()31f x x ax x =++在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ) A .1,2⎛⎫-+∞ ⎪⎝⎭ B .1,2⎡⎫-+∞⎪⎢⎣⎭ C .13,4⎛⎫+∞ ⎪⎝⎭D .13,4⎡⎫+∞⎪⎢⎣⎭ 4.曲线xy e =在点(0,1)处的切线与坐标轴所围三角形的面积为( ) A .12B .1C .2D .3 5.3204x dx -=⎰( )A .213 B .223 C .233 D .2536.曲线3y x =在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .437.曲线x y e =,x y e -=和直线1x =围成的图形面积是( ) A .1e e --B .1e e -+C .12e e ---D .12e e -+-8.由曲线2y x =与直线2y x =+所围成的平面图形的面积为( ) A .52 B .4 C .2 D .929.已知10(31)()0ax x b dx ,,a b ∈R ,则⋅a b 的取值范围为( )A .1,9B .1,1,9C .1,[1,)9D .()1,+∞10.使函数()322912f x x x x a =-+-图象与x 轴恰有两个不同的交点,则实数a 可能的取值为( )A .8B .6C .4D .211.曲线()sin 0πy x x =≤≤与直线12y =围成的封闭图形的面积是 A .3B .23-C .π23-D .π33-12.已知t >0,若(2x ﹣2)dx=8,则t=( ) A .1B .﹣2C .﹣2或4D .4二、填空题13.已知0a >,6x x ⎫-⎪⎭展开式的常数项为15,则(0224a x x x dx -++-=⎰______.14.由直线2x y +=,曲线2y x =所围成的图形面积是________15.已知函数()()()22ln 1,0ln 1,0x x x x f x x x x x ⎧++≥⎪=⎨--+<⎪⎩,若()()()21f a f a f -+≤,则实数a 的取值范围是___________. 16.在下列命题中 ①函数1()f x x=在定义域内为单调递减函数; ②已知定义在R 上周期为4的函数()f x 满足(2)(2)f x f x -=+,则()f x 一定为偶函数;③若()f x 为奇函数,则()2()(0)aaaf x dx f x dx a -=>⎰⎰;④已知函数32()(0)f x ax bx cx d a =+++≠,则0a b c ++=是()f x 有极值的充分不必要条件;⑤已知函数()sin f x x x =-,若0a b +>,则()()0f a f b +>. 其中正确命题的序号为___________________(写出所有正确命题的序号). 17.若()()4112ax x -+的展开式中2x 项的系数为4,则21ae dx x=⎰________________ 18.由直线0x =, 23x π=,0y =与曲线2sin y x =所围成的图形的面积等于________.19.曲线21y x =-与直线2,0x y ==所围成的区域的面积为_______________. 20.已知平面区域(){}2,|04x y y x Ω=≤≤-,直线:2l y mx m =+和曲线2:4C y x =-有两个不同的交点,直线l 与曲线C 围成的平面区域为M ,向区域Ω内随机投一点A ,点A 落在区域M 内的概率为()P M ,若2(),12P M ππ-⎡⎤∈⎢⎥⎣⎦,则实数m 的取值范围是___________.三、解答题21.设函数()32f x x ax bx =++在点1x =处有极值2-.(1)求常数,a b 的值;(2)求曲线()y f x =与x 轴所围成的图形的面积. 22.已知函数1()ln ()f x x b x b R x=--∈,且曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直. (Ⅰ)求b 的值;(Ⅱ)设2()g x x =,求证()()2ln 2g x f x >-.23.已知函数()xe f x x=.(1)若曲线()y f x =与直线y kx =相切于点P ,求点P 的坐标; (2)当a e ≤时,证明:当()0,x ∈+∞时,()()ln f x a x x ≥-.24.求曲线6y x =-和y =y =0围成图形的面积.25.在(11的展开式中任取一项,设所取项为有理项的概率为α,求1x α⎰d x26.已知()ln f x x x mx =+,2()3g x x ax =-+-(1)若函数()f x 在(1,)+∞上为单调函数,求实数m 的取值范围;(2)若当0m =时,对任意(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据积分的性质将所求积分化为()0211x dx -++⎰⎰,根据微积分基本定理和定积分的求法可求得结果. 【详解】()()22321100011112100101111333x dx x x dx x x x --+=++=++=++-++=---⎰⎰, 1201x dx -⎰表示以原点为圆心,1为半径的圆在第一象限中的部分的面积,12014x dx π∴-=⎰,()()1122110143113412f x dx x dx x dx ππ--+∴=++-=+=⎰⎰⎰.故选:B . 【点睛】本题考查积分的求解问题,涉及到积分的性质、微积分基本定理和定积分的求解等知识,属于基础题.2.B解析:B 【分析】应用微积分基本定理求出对应的原函数,再由定积分定义求出空白区域面积,由正方形面积减去空白区域面积即可求出阴影部分面积,结合几何概型可推导出对应区域内的点的个数 【详解】由微积分基本定理可求出2yx 的原函数为()313F x x =,空白区域面积为31101133S x ==,故阴影部分面积212133S =-=,由几何概型可知,落入阴影部分的点数估计值为21000066673⨯≈ 故选:B 【点睛】本题考查定积分与微积分的基本定理,几何概型,属于基础题3.D解析:D【解析】由题意得()22130f x x a x =+-≥'在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即22max 13a x x ⎛⎫≥- ⎪⎝⎭,因为2213y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以2213131334,444y x a x =-<-=≥,选D. 点睛:已知函数单调性求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数单调区间取法,根据单调区间与定义区间包含关系,确定参数值或取值范围;(2)利用导数转化为导函数非正或非负恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.4.A解析:A 【解析】试题分析:'0x x y e y e x =∴=∴=时'11y k =∴=,直线方程为1y x =+,与两坐标轴交点为()()1,0,0,1-,所以三角形面积为12考点:导数的几何意义及直线方程5.C解析:C【解析】试题分析:画出函数图象如下图所示,可知()()323222002882344489128333x dx x dx x dx ⎛⎫-=-+-=-+--+=⎪⎝⎭⎰⎰⎰.考点:定积分的几何意义.6.A解析:A 【解析】 试题分析:()'323x x=,所以切线方程为13(1),32y x y x -=-=-,所以切线与x 轴、直线2x =所围成的三角形的面积()2238323S x dx =-=⎰.考点:1、切线方程;2、定积分.【易错点晴】本题易错点有三个,一个是切线方程,错解为看成过()1,1的切线方程;第二个错误是看成与y 轴围成的面积,()()2232328103232333S x dx x dx =--+-=+=⎰⎰;第三个是没有将切线与x 轴的交点求出来,导致没有办法解决题目.切线的常见问题有两种,一种是已知切点求切线方程;另一种是已知切线过一点求切线方程,两种题目都需要我们认真掌握.7.D解析:D 【解析】试题分析:根据题意画出区域,作图如下,由{x xy e y e-==解得交点为(0,1),∴所求面积为:()()1101|2x x x x S e e dx e e e e --=-=+=+-⎰ 考点:定积分及其应用8.D解析:D 【解析】试题分析:由定积分的几何意义得,293122122132221=-+=-+=--⎰)(])[(x x x dx x x s ,故选D 。
利用函数的单调性求参数的取值范围
![利用函数的单调性求参数的取值范围](https://img.taocdn.com/s3/m/c10411b4f71fb7360b4c2e3f5727a5e9846a2755.png)
利用函数的单调性求参数的取值范围函数的单调性是指在一定范围内,函数的增减性质的统一性。
对于有单调性的函数,可以通过研究函数的导数来判断参数的取值范围。
首先,我们来回顾一下导数的定义和性质。
对于函数f(x),其导数可以表示为f'(x),导数表示函数在其中一点的变化率。
导数的正负号可以告诉我们函数的单调性。
1.若在[a,b]上f'(x)≥0,则函数在[a,b]上为单调递增函数。
2.若在[a,b]上f'(x)≤0,则函数在[a,b]上为单调递减函数。
3.若在[a,b]上f'(x)>0,则函数在[a,b]上为严格递增函数。
4.若在[a,b]上f'(x)<0,则函数在[a,b]上为严格递减函数。
步骤1:确定函数的定义域,即参数的取值范围。
步骤2:求出函数的导函数。
步骤3:利用导函数的性质来判断函数的单调性。
步骤4:结合定义域和单调性判断,确定参数的取值范围。
步骤5:验证参数的取值范围是否符合要求。
下面我们通过具体例子来说明求解参数取值范围的方法。
例子:求函数f(x) = ax^2 + bx + c 在定义域上的参数a、b、c的取值范围。
步骤1:确定函数的定义域。
对于二次函数,其定义域是整个实数集R。
步骤2:求出函数的导函数。
对f(x)求导得到f'(x) = 2ax + b。
步骤3:利用f'(x)的性质来判断函数的单调性。
-若2a>0,则函数在整个定义域上递增。
-若2a<0,则函数在整个定义域上递减。
步骤4:结合定义域和单调性判断,确定参数的取值范围。
-若2a>0,则函数在整个定义域上递增,所以a>0。
-若2a<0,则函数在整个定义域上递减,所以a<0。
然后,我们可以根据b和c的取值范围来进一步限定a的取值范围。
当a>0时:根据二次函数的几何性质,对于抛物线开口朝上的情况,函数的最小值出现在顶点处,顶点的x坐标为 -b/2a,对应的y坐标为 c - b^2/4a。
利用函数的单调性求参数的取值范围(使用)
![利用函数的单调性求参数的取值范围(使用)](https://img.taocdn.com/s3/m/dc630a47804d2b160b4ec061.png)
例3:设函数f (x) 1 ax2 (2a 1)x 2 ln x.试讨论f (x)的单调区间 2
解:函数的定义域(0,)
f '(x) ax (2a 1) 2 (ax 1)(x 2)
x
x
(1)当a 0时,f '(x) 2 x x
所以f (x)在(0,2)上递增,在(2, )上递减。
解: f '( x) 3x2 6ax 2a2 , x [0,2]
则f '( x) 0在[0,2]上恒成立
即3x2 6ax 2a2 0恒成立,x [0,2]
即f '( x)min 0, x [0,2]
而f '(x)为二次函数,开口向上, 对称轴为x a
f '( x) 3x2 6ax 2a2 0, x [0,2]
2
(3)当0 a 1 时,f (x)在(0,2)和(1 ,)上为增函数;
2
a
f (x)在(2,1 )上为减函数。 a
(4)当a 1 时,f (x)在(0,1 )和(2,)上为增函数;
2
a
f (x)在(1 ,2)上为减函数。 a
练习1:
(2011辽宁理)已知函数f(x)= ln x ax2 (2 a)x,讨论函数f(x)的单调性
例1:已知函数f (x) x3 ax2 3x 1在[2,4]上是单调递增函数, 求参数a的取值范围.
解:
f '(x) 3x2 2ax 3, x [2,4]
则f '(x) 0在[2,4]上恒成立
即3x2 2ax 3 0, 恒成立x [2,4]
方法:(分离参数) 2ax 3x2 3恒成立
(典型题)高中数学高中数学选修2-2第四章《定积分》测试卷(含答案解析)(1)
![(典型题)高中数学高中数学选修2-2第四章《定积分》测试卷(含答案解析)(1)](https://img.taocdn.com/s3/m/f8ef6ced581b6bd97f19eaef.png)
一、选择题1.12201x dx -=⎰( )A .12πB .3128π+ C .368π+ D .364π+2.计算211x dx x ⎛⎫+ ⎪⎝⎭⎰的值为( )A .34B .3ln 22+ C .55ln 22+ D .3ln 2+3.已知函数sin (11)()1(12)x x f x x x-≤≤⎧⎪=⎨<≤⎪⎩,则21()f x dx -=⎰( ) A .ln 2B .ln 2-C .12-D .3cos 1-4.若2(sin cos )2x a x dx π-=⎰,则实数a 等于( )A .1-B .1C .3-D .35.22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰若 ,则s 1,s 2,s 3的大小关系为( )A .s 1<s 2<s 3B .s 2<s 1<s 3C .s 2<s 3<s 1D .s 3<s 2<s 16.由曲线2y x =与直线2y x =+所围成的平面图形的面积为( ) A .52 B .4 C .2 D .927.一物体在力(单位:N)的作用下沿与力相同的方向,从x=0处运动到(单位:)处,则力做的功为( ).A .44B .46C .48D .508.已知函数20()cos 0x f x x x ≥⎧=⎨<⎩,则12()f x dx π-⎰的值等于( )A .1B .2C .3D .49.20sin xdx π=⎰( )A .4B .2C .-2D .010.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .2311.已知11em dx x=⎰,函数()f x 的导数()()()f x a x m x a '=++,若()f x 在x a =-处取得极大值,则a 的取值范围是( ) A .1a < B .10a -<< C .1a >或0a <D .01a <<或0a <12.若函数31()log ()(01)(,0)3a f x x ax a a 且在区间=->≠-内单调递增,则实数a 的取值范围是( ). A .2[,1)3B .1[,1)3C .1[,1)(1,3]3D .(1,3]二、填空题13.()222sin 4x x dx -+-=⎰______.14.两个函数12y x =与2y x =-,它们的图象及y 轴围成的封闭图形的面积为______ 15.由曲线sin .cos y x y x ==与直线0,2x x π==所围成的平面图形的面积是______.16.已知函数()()()22ln 1,0ln 1,0x x x x f x x x x x ⎧++≥⎪=⎨--+<⎪⎩,若()()()21f a f a f -+≤,则实数a 的取值范围是___________. 17.2222(sin 4)x x x dx -+-⎰=______.18.()1||214x ex dx -+-=⎰__________________19.二项式33()a x -的展开式的第二项的系数为,则的值为______.20.2(1)x dx -=⎰________.三、解答题21.已知函数1ln(1)()x f x x++=(1)求函数的定义域;(2)判定函数()f x 在(1,0)-的单调性,并证明你的结论; (3)若当0x >时,()1kf x x >+恒成立,求正整数k 的最大值. 22.计算下列定积分. (1)1211e dx x +-⎰; (2)342x dx -+⎰.23.如图:求曲线y =e x -1与直线x =-ln 2, y =e -1所围成的平面图形面积.24.已知函数1()ln 2f x x x =-,(0,)x ∈+∞. (1)求函数()f x 的图象在点(2,(2))f 处的切线方程. (2)求函数()f x 的单调递增区间. 25.已知函数()22()x f x e x x R =-+∈. (1)求()f x 的最小值;(2)求证:x >0时,221x e x x >-+. 26.计算下列各式的值. (1) ()0sin cos d x x x π-⎰;(2)2132d x x x +-⎰.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【分析】令21y x =-,则()2210x y y +=≥,点(),x y 的轨迹表示半圆,则该积分表示该半圆与y 轴,12x =,x 轴围成的曲边梯形的面积,求出面积即可. 【详解】解:令21y x =-,则()2210x y y +=≥,点(),x y 的轨迹表示半圆,12201x dx -⎰表示以原点为圆心,2为半径的圆的上半圆与y 轴,12x =,x 轴围成的曲边梯形的面积,如图:故12201131311222612OAB BOCx dx SS ππ-=+=⨯⨯⨯=+扇形. 故选:B. 【点睛】本题考查定积分的几何意义,属基础题.2.B解析:B 【分析】根据牛顿莱布尼茨公式,即可代值求解. 【详解】根据牛顿莱布尼茨公式211x dx x ⎛⎫+ ⎪⎝⎭⎰2211()2x lnx =+1142122ln ln ⎛⎫=⨯+-+ ⎪⎝⎭ 322ln =+. 故选:B. 【点睛】本题考查牛顿莱布尼茨公式的直接应用,属基础题.3.A解析:A 【分析】将所求积分分成两段来进行求解,根据积分运算法则可求得结果. 【详解】()21212111111sin cos ln cos1cos1ln 2ln1ln 2f x dx xdx dx x x x ---=+=-+=-++-=⎰⎰⎰ 故选:A 【点睛】本题考查积分的计算问题,关键是能够按照分段函数的形式将所求积分进行分段求解.4.A解析:A 【解析】试题分析:解:因为()()()2200sin cos cos sin |cossincos0sin 022x a x dx x a x a a ππππ-=--=-----⎰=()010a ----=1a -,所以12a -=,所以, 1.a =-故选A. 考点:定积分.5.B解析:B 【解析】3221321322217ln |ln 2||,.11133x S x S x S e e e S S S ==<==<==-∴<<选B.考点:此题主要考查定积分、比较大小,考查逻辑推理能力.6.D解析:D 【解析】试题分析:由定积分的几何意义得,293122122132221=-+=-+=--⎰)(])[(x x x dx x x s ,故选D 。
(完整版)2-4已知单调性求参数取值范围
![(完整版)2-4已知单调性求参数取值范围](https://img.taocdn.com/s3/m/24b8615ade80d4d8d05a4f44.png)
【知识点4】已知单调性求参数取值范围1•思路提示:⑴对于函数在某个区间上单调递增或单调递减的问题,转化为导函数在此区间上恒为非负或非正的问题,进而转化为导数在该区间上的最值问题•⑵对于可导函数在某个区间不单调的问题,转化为导函数在此区间无实根,可结合导函数的图像给出此问题的充要条件,从而求解⑶对于只有一个极值点的导函数研究其相关问题(如在给定区间上恒为正或负以及根的分布等),往往可以类比二次函数在区间上的最值或根的分布求解例1:已知函数f(x) 3ax42(3a 1)x22(3a 1)x24x1(I )当a 时,求f (x)的极值;6(ll )若f (x)在1,1上是增函数,求a的取值范围3 2例2:已知函数f (x) x ax x 1(a R)(I )讨论函数f (x)的单调区间;3 1(ll)设函数f(x)在区间(—,-)内是减函数,求a的取值范围2 3例3:已知函数f (x) (2ax x2)e ax,其中a为常数,且a 0.(l )若a 1,求函数f (x)的极值点;(ll )若f (x)在区间C 2,2)内单调递增,求a的取值范围•3 2例4:已知函数f(x) ax bx (x R)的图像过点P( 1,2),且在点P处的切线恰好与直线x 3y 0垂直•(I )求函数f (x)的解析式;(ll)若函数f (x)在区间m,m 1上单调递增,求实数m的取值范围•例5:已知函数f(x) x3(1 a)x2a(a 2)x b(a,b R).(I )若函数f (x)的图像过原点,且在原点处的切线斜率是3,求a,b的值; (II)若函数f (x)在区间(1,1)上不单调,求a的取值范围•e x例6:设f (x) ,其中a为正实数1 ax4(I)当a 时,求f (x)的极值点;3(n)若f(x)为R上的单调函数,求a的取值范围xe例7:设f(x)—,其中a为正实数•2「3(I )当a —时,求f (x)的极值点;4(n )若f (x)为R上的单调函数,求a的取值范围1 3 12 例& 设f(x) x3 x22ax3 22(I)若f(x)在(-,)上存在单调递增区间,求3 a的取值范围.(II )当0 a 2时,f (x)在[1,4]的最小值为,求f(x)在该区间上的最大值.例9:已知a,b是实数,函数f (x) x3ax,g(x) x2bx, (x)和g (x)是f (x), g(x) 的导函数,若 f (x)g(x) 0在区间I上恒成立,则称 f (x)和g(x)在区间I上单调性一3(I)设a 0,若函数f (x)和g(x)在区间[1,)上单调性一致,求实数b 的取值范围; b ,若函数f (x)和g(x)在以a ,b 为端点的开区间上单调性一致,求a b 的最大值. 1例10 :已知函数f X -x 3 x 2 ax b 的图像在点P(0,f 0 )处的切线方程为 y 3x 2(i )求实数a,b 的值;(n )设g(x) f x — 是[21,]上的增函数。
已知函数的单调性求参数的范围
![已知函数的单调性求参数的范围](https://img.taocdn.com/s3/m/e4fdca52a88271fe910ef12d2af90242a995ab63.png)
已知函数的单调性求参数的范围若函数y =f x 在D 上单调递增,则f x ≥0在D 上恒成立若函数y =f x 在D 上单调递减,则f x ≤0在D 上恒成立 若a ≥g x 恒成立,则a ≥g x max 若a ≤g x 恒成立,则a ≤g x min 1.若函数f x =3a -1 x +1在R 上单调递增,求实数a 的取值范围解:3a -1>0⇒a >132.若函数f x =-x 2+21-m x +3在-3,+∞ 上单调递减,求实数a 的取值范围解:对称轴x =1-m ≤-3⇒m ≥43.若函数f x =2x +a 在3,+∞ 上单调递增,求实数a 的取值范围解:f x =2x +a x ≥-a 2 -2x -a x <-a 2⇒f x 在-∞,-a 2 上单调递减,在-a 2,+∞ 上单调递增所以-a 2≤3⇒a ≥-64.若函数f x =ax +1x +2在-2,+∞ 上单调递增,求实数a 的取值范围解:由f x =a x +2 +1-2a x +2=a +1-2a x +2在-2,+∞ 上递增所以反比例函数y =1-2a t在t ∈0,+∞ 上单调递增所以1-2a<0⇒a>1 25.若函数f x =x2-mx在1,+∞上单调递增,求实数m的取值范围解:函数y=x2-mx的零点为0和m所以m要和0比较大小0和m的中点为m2所以m2要和 1比较大小也即m要和0,2比较大小下面讨论①当m≤0时x≥1⇒f x =x2-mx=x2-mx 又f x 在1,+∞上单调递增所以对称轴x=m2≥1⇒m≥2,这不可能,舍去.②当0<m<2时f x =x2-mx=x2-mx x≥m-x2+mx0<x<m所以f x 在m2,m上递减因为m2<1⇒1,m⊊m2,m所以f x 在1,m上递减,矛盾,舍去③当m≥2时f x =x2-mx=x2-mx x≥m-x2+mx0<x<m所以f x 在m,+∞上递增因为m2≥1⇒1,+∞⊆m,+∞所以f x 在1,+∞ 上单调递增,合题意。
单调性(含答案)
![单调性(含答案)](https://img.taocdn.com/s3/m/285a087f783e0912a2162a8b.png)
导数的单调性考点一:求单调区间1. 求单调区间:(1 )f (x )=x 3-x 2- x ; (2)13)(f 3+-=x x x ; (3)xx x 2)(f +=; (4)x x x ln 21)(f 2-=; (5)x x x ln 23)(f 2-=; 解:(1)f '(x )=3(x+31)(x -1)∴f (x )单增区间为(-∞,-31)和(1,+∞),减区间为(-31,1); (2))),单减:(,)和(,单增:(1,1-11--)1)(1(333)(2∞+∞∴+-=-='x x x x f ; (3)),和(),单减:(,)和(,单增:(定义域:10)0,1-11--)2)(2()(,0x 2∞+∞∴-+='≠x x x x f (4)定义域:x>0,xx x x x x x )1)(1x 11)(f 2+-=-=-='(,));单减区间:(,单增区间:(1,01)(f ∞+∴x ;(5))),单减(,单增(,(定义域:33,033)(f )13)(1x 3226)(f 0,x ∞+∴+-=-='>x x x x x x ; 考点二.求含参函数的单调区间2.求单调区间:(1)已知函数2()2ln f x x a x =+.求函数()f x 的单调区间;解:函数()f x 的定义域为(0,)+∞.xa x x 22)(f 2+=': ①当-a 《0,即0a ≥时, ()0f x '>,()f x 的单调递增区间为(0,)+∞;②当-a>0,即0a <时2(()x x f x x '=. 函数()f x 的单调递减区间是;单调递增区间是)+∞.(2)已知()1x f x e ax =--求()f x 的单调增区间; 解:∵ ()x f x e a '=-(1)若0a ≤,()0x f x e a '=->恒成立,即()f x 在R 上递增若0a >,()0x f x e a '=->,∴x e a >, ln x a >.∴()f x 的单调递增区间为(ln ,)a +∞ (3)已知函数x a a e e x f x x 2)()(--=,求()f x 的单调区间.解:)(22)(2222t e a at t a ae e x f x x x =--=--=',①若a a =-2,即a=0,函数()f x 在R 上单调递增, ②若a a >-2,即a<0,在))2ln(,0(a -单调递减,在)),2(ln(+∞-a 上单调递增. ③ 若a a <-2,即a>0,在)ln ,0(a 单调递减,在),(ln +∞a 上单调递增. (4)已知函数1()ln 1()a f x x ax a R x -=-+-∈.当12a ≤时,求()f x 的单调区间. 解: ∵11ln )(--+-=x a ax x x f ,∴211()a f x a x x -'=-+221x a x ax -+--= ),0(+∞∈x , 令,1)(2a x ax x g -+-=),,0(+∞∈x当0a =时,()1, (0,)g x x x =+∈+∞-,∴(0,1)x ∈时,()0g x >,此时()0f x '<,函数()f x 单调递减, (1,)x ∈+∞时,()0g x <,此时()0f x '>,函数()f x 单调递增,当0a ≠时,由()=0f x ',解得1211,1x x a ==-, ①若11a1=-,即12a =,函数()f x 在(0,+)∞上单调递减, ②若11a1>-,即102a <<,在1(0,1), (1)a +∞-,单调递减,在1(1, 1)a -上单调递增. ③ 若11a 1<-,即a 21>(舍)或a<0,(0,1)x ∈时,()0g x >,此时()0f x '<,函数()f x 单调递减; (1,)x ∈+∞时,()0g x <,此时函数()0f x '>,函数()f x 单调递增.(5)已知函数f(x)=(x -2)e x +a(x -1)2,讨论f(x)的单调性.解:(Ⅰ) f '(x )=(x -1)e x +a (2x -2)=(x -1)(e x+2a ). x ∈R(1)当a ≥0时,在(-∞,1)上,f '(x)<0,f(x)单调递减;在(1,+∞)上,f '(x)>0,f(x)单调递增。
文档:已知单调性求参数范围问题
![文档:已知单调性求参数范围问题](https://img.taocdn.com/s3/m/ac5cd448e418964bcf84b9d528ea81c758f52e95.png)
已知单调性求参数范围问题在高中选修内容中:某函数()x f y =在指定区间上可导,如果()0x f ',则函数()x f y =在区间单调递增,如果()0x f ',则函数()x f y =在区间单调递减,如果()0x f =',则函数()x f y =在区间是常值函数。
对这个定理的理解和使用给学生造成一些麻烦。
下面我们先看几个例题:例1:(清华附中学月考试题)已知函数0)1(,ln 2)(=--=f x x b ax x f . 若函数f (x )在其定义域内为单调函数。
求a 的取值范围 解:x xa ax x fb a b a f ln 2)(,0)1(--=∴=⇒=-=, xx a a x f 2)(2-+='∴. 要使函数f (x )在定义域),0(+∞内为单调函数,则由我们課本上的定理:在),0(+∞内)(x f '恒大于0或恒小于0, 当02)(0<-='=xx f a 时,在),0(+∞内恒成立; 当时,0>a 要使01)11()(2>-+-='a a a x a x f 在),0(+∞恒成立,则01>-a a ,解得,当时,0<a 要使01)11()(2<-+-='aa a x a x f 在),0(+∞恒成立,则 所以的取值范围为或但事实上当:a=1时,()1x 2x 1x f 2+-='=21x 1⎪⎭⎫ ⎝⎛-,显然,命题成立 综上可知:的取值范围为或例2:(05年全国高考Ⅱ(22))题 已知,函数x e ax x x f )2()(2-=. (Ⅰ)当x 为何值时,f(x)取得最小值?证明你的结论;(Ⅱ)设f(x)在[-1,1]上是单调函数,求a 的取值范围.我们只分析(Ⅱ)()[]2a x )a 1(2x e x f 2x --+='因此设()=x h 2a x )a 1(2x 2--+,由我们课本定理可知:只要使或在[-1,1]上恒成立,因为,所以只可能在[-1,1]上恒成立即单调减成立则必须使()01h -且()01h解得:43a 但事实上当:43a =时,()()()32x 1x 2123x 21x x h 2+-=-+=显然成立 综上可知:43a ≥ 从上面的两个例题看出:我们在处理已知单调性求参数问题时:如果直接用课本上的定理,一定要注意验证端点值是否成立,否则将陋掉端点值的情况。
(完整版)函数的单调性例题
![(完整版)函数的单调性例题](https://img.taocdn.com/s3/m/6ffcbab92b160b4e777fcf9d.png)
1.3.1函数的单调性题型一、利用函数的图象确定函数的单调区间例1。
作出下列函数的图象,并写出函数的单调区间(1)12-=x y ; (2)322++-=x x y ;(3)2)2(1-++=x x y ; (4)969622++++-=x x x x y相应作业1:课本P32第3题. 题型二、用定义法证明函数的单调性用定义法证明函数的单调性步骤:取值 作差变形 定号 下结论 取值,即_____________________________;作差变形,作差____________,变形手段有__________、_____、_____、_______等; 定号,即____________________________________________________________; ④下结论,即______________________________________________________。
例2。
用定义法证明下列函数的单调性(1)证明:1)(3+-=x x f 在()+∞∞-,上是减函数.▲定义法证明单调性的等价形式: 设[]b a x x ,21∈、,21x x ≠,那么[])(0)()(0)()()(21212121x f x x x f x f x f x f x x ⇔>--⇔>--在[]b a ,上是增函数;[])(0)()(0)()()(21212121x f x x x f x f x f x f x x ⇔<--⇔<--在[]b a ,上是减函数.(2)证明:x x x f -+=1)(2在其定义域内是减函数;(3)证明:21)(x x f =在()0,∞-上是增函数; 法一: 作差 法二:作商(4)已知函数)(x f y =在()+∞,0上为增函数,且)0(0)(><x x f ,试判断)(1)(x f x F =在()+∞,0上的单调性,并给出证明过程;▲方法技巧归纳——判断函数单调性的方法:1、直接法:熟悉的函数,如一次函数、二次函数、反比例函数等;如,练习册P27(2)P31(上5、1)2、图象法;3、定义法;4、运算性质法:①当0>a 时,函数)(x af 与)(x f 有相同的单调性; 当0<a 时,函数)(x af 与)(x f 有相反的单调性; ②当函数)(x f 恒不等于零时,)(x f 与)(1x f 单调性相反;③若0)(≥x f ,则)(x f 与)(x f 具有相同的单调性;④若)(x f 、)(x g 的单调性相同,则)()(x g x f +的单调性与之不变; ▲即:增+增=增 减+减=减⑤若)(x f 、)(x g 的单调性相反,则)()(x g x f -的单调性与)(x f 同.▲即:增—减=增 减—增=增 注意:(1)可熟记一些基本的函数的单调性,一些较复杂的函数可化为基本函数的组合形式,再利用上述结论判断;(2))()(x g x f 与)()(x g x f 的单调性不能确定。
已知函数的单调性,怎样求参数的取值范围
![已知函数的单调性,怎样求参数的取值范围](https://img.taocdn.com/s3/m/063242ca89eb172ded63b723.png)
难 点 剖 析
已 矢 啮数 的 单 调 性, 怎 样 求 参 数 的 取 值 范
一 刘朝 辉
函数的单调性是 函数的重要性质 ,在每年的高 考 中常考不衰 ,对于 函数的单调性我们除了要掌握 如何判断并证 明函数的单调性 、求 函数的单调区间 以外 ,还要会逆 向思考掌握应用 函数单调性求参数 的取值范围问题 的解题策略。处理该问题的关键是 使用转化与化归思想 , 将未知转化为已知 , 将 复杂转 化为简单 ,从 而建立关于参数的不 等关系使问题 得 解 。下面通过实例说 明几种基本的求解方法 。
V 3
变式 : 如果 函数 ) = 2 x 2 — 1 眦在定义域 的一个 子 区间( k - 1 , k + 1 ) 上不是单调 函数 , 则 实数k 的取值 范
围是
, ( ) 在( O , 1 ) 上是增函数, Na 的取值范围是— —
解题关键分析 : 由导数知识可知, , ( ) > O H - , j , 函数
一
上恒成立 ,  ̄ P a I3 > x Z : ( i 4 . ( 0 , 1 ) 上 恒成立 , 而3 x 2 < 3 , 所 以
0≥ 3。
变式: 若函数 ) - l 。
, ( , 且n ≠1 ) 在( 一 ,
0 ) 内单调递增 , 则。 的取值范围— — 。 解: 当a > l 时, 知t = , 一 似为单调递增 的 函数才能 满足题意 , 但此 时在 ( 一 , 0 ) 上真数小于0 , 所 以
若已知函数 的单调区间容易求得 ,此时可先解 出单调区间 , 然后利用所给区间是单调 区间 的子集 , 根据集合之 间的包含关系建立不等式组解 得参 数的 取值范围即可 。 例3 已知函娄 ) = 似, 其中n ∈ R, 若函数 ) 在( 0 , 1 ) 上是增函数 , 则。 的取值范 围是— — 。 解题关键分析 : 此 函数是高次 函数 , 因为导数形 式简单 , 所 以利用导数很容易解出单调增区间 , 即所 得结果 , 只需( 0 , 1 ) 是解出单调增 区间的子集 即可 。
利用函数的单调性求参数的取值范围使用
![利用函数的单调性求参数的取值范围使用](https://img.taocdn.com/s3/m/4f2a677e5627a5e9856a561252d380eb629423f6.png)
利用函数的单调性求参数的取值范围使用在数学中,单调性指的是函数图像在定义域内的增减趋势是否保持一致。
具体而言,如果函数f(x)在一些区间上是递增的,则称它在该区间上是单调递增的;如果函数f(x)在一些区间上是递减的,则称它在该区间上是单调递减的。
假设我们面对的问题为求使函数f(x)大于等于一些给定值的参数x 的取值范围。
我们可以通过以下步骤来解决这个问题:1.首先,我们需要确定函数f(x)的单调性。
可以通过函数的导数来判断函数的增减性。
如果f'(x)大于零,那么函数f(x)在该区间上是单调递增的;如果f'(x)小于零,那么函数f(x)在该区间上是单调递减的。
2.其次,我们可以将函数f(x)大于等于给定值转化为不等式f(x)-C>=0的形式,其中C表示给定值。
例如,如果我们需要求函数f(x)大于等于0的参数x的取值范围,可以将不等式f(x)>=0转化为f(x)-0>=0。
3.接下来,我们可以利用不等式的性质来求解参数的取值范围。
对于单调递增的函数,我们可以将不等式f(x)-C>=0转化为x>=g(C)的形式,其中g(C)表示函数f(x)-C=0的解。
对于单调递减的函数,我们可以将不等式f(x)-C>=0转化为x<=g(C)的形式。
4.最后,我们可以利用函数f(x)的定义域来进一步限制参数x的取值范围。
函数f(x)的定义域表示函数f(x)的取值范围,此范围也是参数x的取值范围的一部分。
因此,我们需要将函数f(x)的定义域与参数x的取值范围进行交集运算,以得到最终的参数取值范围。
需要注意的是,在利用函数的单调性求参数的取值范围时,我们需要确保函数f(x)存在单调性。
如果函数f(x)在一些区间上既不是递增的也不是递减的,那么我们无法利用单调性来求解参数的取值范围。
举例说明:假设我们需要求函数f(x)=x^2+3x+2大于等于5的参数x的取值范围。
对数函数图形与性质(二)课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
![对数函数图形与性质(二)课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册](https://img.taocdn.com/s3/m/57b0b3a570fe910ef12d2af90242a8956aecaa51.png)
&g 1
∆= 4 − 4 ≥ 0
综上所述,实数a的取值范围 0,1
值域为全体实数,真数
要取遍所有正实数
例3.求函数f(x)=log2(4x)•log2(2x), ∈
1
4
, 4 的值域
解: f(x)= log2(4x)•log2(2x),
(1)若函数f(x)的定义域为R,求实数a的取值范围.
(2)若函数f(x)的值域为R,求实数a的取值范围.
解(1)因为f(x)的定义域为R
所以ax2+2x+1>0对任意的 ∈ 恒成立
若a=0,则2x+1>0显然对任意的 ∈ 不恒成立,不合题意
>0
若 ≠ 0, 则
解得a>1
∆= 4 − 4 < 0
2 = 4 − 2 + 3 ≥ 0 从两个方面考虑
解之得: −4,4
(1)根据a与1的关系确定 在 , 上的单调性
(2) > 在 ∈ , 时恒成立,只需() >0即可
例4:若函数y = 2 (2-ax)在 ∈[0,1]上是减函数,则的取值范围是_____
2
+ 9 > 0可知函数的定义域为R
设 = 3 u, u= 2 -2x+10
∵ u= 2 -2x+10在 −∞, 1 单调递减,在(1,+∞)单调递增
又 = 3 u单调递增
∴f(x)=log3(x2﹣2x+10)在 −∞, 1 单调递减,
在(1,+∞)单调递增
[归纳提升]
变式 .已知函数f(x)=log3(x2﹣2x−10)
专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)(新高考地区专用)(解析版)
![专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)(新高考地区专用)(解析版)](https://img.taocdn.com/s3/m/ebc53c8f482fb4daa48d4b4e.png)
专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)一、函数的单调性(一)函数的单调性和单调区间定义:1、增函数与减函数的定义:设函数)(x f y =的定义域为A ,区间A M ⊆,如果取区间M 中的任意两个值1x 、2x ,改变量012>-=∆x x x ,则当0)()(12>-=∆x f x f y 时,就称函数)(x f y =在区间M 上是增函数;当0)()(12<-=∆x f x f y 时,就称函数)(x f y =在区间M 上是减函数。
2、函数的单调性与单调区间:如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间)。
此时也说函数是这一区间上的单调函数。
在单调区间上,增函数的图像是上升的,减函数的图像是下降的。
[多选]例1-1.下列给定函数中,在区间)10(,上单调递减的函数是( )。
A 、x x f =)(B 、)1(log )(21+=x x g C 、|1|)(-=x x h D 、12)(+=x x w【答案】BC【解析】x x f =)(在)0[∞+,上是增函数,)1(log )(21+=x x g 在)1(∞+-,上是减函数,|1|)(-=x x h 在]1(,-∞上是减函数,12)(+=x x w 在R 上是增函数,则)(x g 和)(x h 在区间)10(,上单调递减的函数,选BC 。
(二)对函数单调性定义的理解1、函数的单调性是局部性质:从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,即单调区间是定义域的子集,是函数的局部特征。
函数的单调性只在定义域内讨论,可以是整个定义域,也可以是定义域的某个子区间;如果一个函数在某个区间上是单调的,那么在这个区间的子区间上也是单调的。
但在某个区间上单调,在整个定义域上不一定单调。
如函数2x y =的定义域为R ,当)0[∞+∈,x 时是增函数,当]0(,-∞∈x 时是减函数。
利用函数的单调性求参数的取值范围(使用)
![利用函数的单调性求参数的取值范围(使用)](https://img.taocdn.com/s3/m/9935917a910ef12d2bf9e739.png)
则f '( x) 0在(0,2)上恒成立
即2ax 3x 2
a 3 x, x (0,2)
2
a
(
3 2
x)max
,
x
(0,2),
a3
2020/4/4
5
分离参数法: 分离参数 构造函数g(x) 求g(x)的最值 求得参数范围
2020/4/4
6
例2:已知函数f (x) x3 3ax2 2a2 x 1在[0,2]上是单调递增函数, 求参数a的取值范围.
a 3x2 3 , 2x
3x2 3 a ( 2 x )min
令g( x) 3x2 3 , x [2,4] 2x
2020/4/4
3
练习1: 已知函数f (x) x3 ax 3x 1在[0,)上是单调递增函数, 求参数a的取值范围.
解: f '( x) 3x2 a 3, x [0,) 则f '( x) 0在[0,)上恒成立
解:f (x)的定义域为(0, )
f (x) 1 2ax (2 a) (2x+1)(ax 1)
x
x
当a 0时, f (x) 0,故f (x)在(0, )单调递增;
当a 0时,令f (x) 0,解得x 1 a
则当x (0, 1 )时,f (x) 0; x ( 1 , )时,f (x) 0
[3x2 2ax (a2 1)]min 0, x [0,) y
①
a
3
0
f ' (0) 0
a 1
o
x
②
a 3
f
0 '(a)
3
0
a 6 29
分类讨论法:
在利用函数的单调性求参数的取值范围时, 当导函数可化为二次函数形式时,应注意
(完整版)函数的单调性知识点与题型归纳
![(完整版)函数的单调性知识点与题型归纳](https://img.taocdn.com/s3/m/ac5169adb7360b4c2f3f6452.png)
设函数 y= f(x)在某区间 D 内可导.如果 f ′x()>0,则 f (x)在区间 D 内为增函数;如果 f ′x()<0,则 f(x)在区间 D 内为减函数. 注意: (补充 ) ( 1)若使得 f ′x()=0 的 x 的值只有有限个,
一、知识梳理 《名师一号》 P15 注意:
研究函数单调性必须 先求函数的定义域, 函数的单调区间是 定义域的子集 单调区间 不能并 !
知识点一 函数的单调性 1. 单调函数的定义
1
2.单调性、单调区间的定义
若函数 f(x)在区间 D 上是 增函数或减函数 ,则称函数 f(x) 在这一区间上具有 (严格的 )单调性, 区间 D 叫做 f (x)的单 调区间 .
法一:定义法
设- 1<x1<x2,
ax1 ax2 则 f(x1)-f (x2)=x1+ 1- x2+1
ax1 x2+ 1 - ax2 x1+ 1
=
x1+1 x2+ 1
a x1-x2
= x1+ 1
x2+ 1
∵- 1<x1<x2,
∴x1- x2<0, x1+1>0,x2+ 1>0.
6
∴当 a>0 时, f(x1)- f(x2)<0, 即 f(x1)<f(x2), ∴函数 y=f (x)在(-1,+ ∞)上单调递增. 同理当 a<0 时, f (x1)-f (x2)>0, 即 f(x1)>f(x2), ∴函数 y=f (x)在(-1,+ ∞)上单调递减.
[答案 ] C [解析 ] f ′x()=3x2-6a, 若 a≤0,则 f ′x() ≥0,∴ f(x)单调增,排除 A ; 若 a>0,则由 f ′x()=0 得 x= ± 2a,当 x<- 2a和 x> 2a 时,f ′x()>0,f(x)单调增,当- 2a<x < 2a时,f (x)单调减, ∴f (x)的单调减区间为 (- 2a, 2a),从而 2a=2, ∴a= 2.
(压轴题)高中数学高中数学选修2-2第四章《定积分》检测题(有答案解析)(3)
![(压轴题)高中数学高中数学选修2-2第四章《定积分》检测题(有答案解析)(3)](https://img.taocdn.com/s3/m/0ab15de352d380eb63946dc9.png)
一、选择题1.对于函数()sin x f x x =, 30,2x π⎛⎤∈ ⎥⎝⎦,下列说法错误的是( ) A .函数()f x 在区间()0,π是单调函数 B .函数()f x 只有1个极值点 C .函数()f x 在区间0,2π⎛⎫⎪⎝⎭有极大值 D .函数()f x 有最小值,而无最大值 2.若函数()31f x x ax x =++在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ) A .1,2⎛⎫-+∞ ⎪⎝⎭ B .1,2⎡⎫-+∞⎪⎢⎣⎭ C .13,4⎛⎫+∞ ⎪⎝⎭D .13,4⎡⎫+∞⎪⎢⎣⎭ 3.设若20lg ,0()3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,((1))1f f =,则a 的值是( ) A .-1 B .2 C .1 D .-24.曲线3y x =在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .435.曲线与两坐标轴所围成图形的面积为( ) A .B .C .D .6.图中阴影部分的面积用定积分表示为( )A .12d xx ⎰B .()1021d xx -⎰C .()1021d xx +⎰D .()1012d xx -⎰7.设函数2e ,10()1,01x x f x x x ⎧-≤≤⎪=⎨-<≤⎪⎩,计算11()d f x x -⎰的值为( )A .1e πe 4-+ B .e 1πe 4-+ C .e 12πe 4-+D .e 1πe 2-+ 8.由直线y= x - 4,曲线2y x =以及x 轴所围成的图形面积为( )A .15B .13C .252D .403 9.由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( ) A .2ln3-B .4ln3+C .4ln3-D .32910.函数()22,04,02x x f x x x -<⎧⎪=⎨-≤≤⎪⎩,则22()f x dx -⎰的值为( )A .6π+B .2π-C .2πD .811.120(1(1))x x dx ⎰---=( ) A .22π+B .12π+ C .122π-D .142π- 12.设21,[0,1]()1,[1,0)x x f x x x ⎧⎪-∈=⎨+∈-⎪⎩,则11()f x dx -⎰等于( )A .12π+B .122π+ C .124π+ D .14π+二、填空题13.如图所示,直线y kx =分抛物线2y x x 与x 轴所围图形为面积相等的两部分,则k的值为__________.14.直线x =0、直线y =e +1与曲线y =e x +1围成的图形的面积为_____. 15.1221sin x dx xdx π--=⎰⎰______16.计算()0cos 1x dx π⎰+=_________.17.若二项式6251x x ⎫+⎪⎪⎝⎭的展开式中的常数项为m ,则21mx dx =⎰__________.18.计算()32sin x x dx π+⎰=_________________.19.曲线21y x =-与直线2,0x y ==所围成的区域的面积为_______________. 20.从如图所示的正方形OABC 区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为__.三、解答题21.设函数()32f x x ax bx =++在点1x =处有极值2-.(1)求常数,a b 的值;(2)求曲线()y f x =与x 轴所围成的图形的面积.22.设点P 在曲线y =x 2上,从原点向A (2,4)移动,如果直线OP ,曲线y =x 2及直线x =2所围成的面积分别记为S 1、S 2.(1)当S 1=S 2时,求点P 的坐标;(2)当S 1+S 2有最小值时,求点P 的坐标和最小值.23.如图计算由直线y =6-x ,曲线8y x =以及x 轴所围图形的面积.24.已知()y f x =是二次函数,方程0f x 有两相等实根,且()22f x x '=+(Ⅰ)求()f x 的解析式.(Ⅱ)求函数()y f x =与函数241y x x =--+所围成的图形的面积.25.计算下列各式的值. (1) ()0sin cos d x x x π-⎰;(2)1x ⎰.26.已知函数1211()(1)x f x adt x t+=++⎰()1x >-. (1)若()f x 在1x =处有极值,问是否存在实数m ,使得不等式2214()m tm e f x ++-≤对任意[]1,x e e ∈-及[]1,1t ∈-恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.()2.71828e =;(2)若1a =,设2()()(1)F x f x x x =-+-. ①求证:当0x >时,()0F x <; ②设*111()12(1)n a n N n n n n =++⋅⋅⋅+∈++++,求证:ln 2n a >【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【解析】函数()sin x f x x =,可得函数()2cos sin 'x x x f x x -= ,当02x π⎛⎫∈ ⎪⎝⎭,时,由三角函数线可知, tan x x <,即不等式cos sin 0x x x -<成立,可得02x π⎛⎫∈ ⎪⎝⎭,时,()'0f x < ,函数是减函数.当,2x ππ⎛⎫∈ ⎪⎝⎭时, cos sin 0x x x -<,函数是减函数.函数在2x π= 时连续,所以函数()()sin 0,xf x x xπ=∈,的单调区间为()0π,,又当3,2x ππ⎛⎫∈ ⎪⎝⎭时, cos sin 0x x x ->,即()'0f x >,则函数在x π=时取得极小值,所以函数()f x 有最小值,而无最大值,据此可知选项C 错误,故选C. 点睛:对于①针对函数()sin x f x x =的性质,当02x π⎛⎫∈ ⎪⎝⎭,时,由三角函数线可知, tan x x <;利用商的导数运算法则及基本初等函数的导数公式,求出函数的导数()2cos sin 'x x xf x x -=,然后根据导函数的符号确定函数的单调性和函数的极值即可得到结论.2.D解析:D【解析】由题意得()22130f x x a x =+-≥'在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即22max 13a x x ⎛⎫≥- ⎪⎝⎭,因为2213y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以2213131334,444y x a x =-<-=≥,选D. 点睛:已知函数单调性求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数单调区间取法,根据单调区间与定义区间包含关系,确定参数值或取值范围;(2)利用导数转化为导函数非正或非负恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.3.C解析:C 【详解】233003|aa t dt t a ==⎰,33(1)lg10,(0),1, 1.f f a a a ===∴==故选:C4.A解析:A 【解析】 试题分析:()'323x x=,所以切线方程为13(1),32y x y x -=-=-,所以切线与x 轴、直线2x =所围成的三角形的面积()2238323S x dx =-=⎰.考点:1、切线方程;2、定积分.【易错点晴】本题易错点有三个,一个是切线方程,错解为看成过()1,1的切线方程;第二个错误是看成与y 轴围成的面积,()()22320328103232333S x dx x dx =--+-=+=⎰⎰;第三个是没有将切线与x 轴的交点求出来,导致没有办法解决题目.切线的常见问题有两种,一种是已知切点求切线方程;另一种是已知切线过一点求切线方程,两种题目都需要我们认真掌握.5.C解析:C 【解析】试题分析:,当时,,当时,,所以确定备积区间,备积函数是所以,根据定积分的公式,故选.考点:1.定积分的定义;2.定积分的应用.6.B解析:B 【解析】根据定积分的几何意义,阴影部分的面积为12xdx ⎰-()11121x dx dx -=⎰⎰.故选B.7.B解析:B 【解析】因为函数2e ,10()1,01x x f x x x ⎧-≤≤⎪=⎨-<≤⎪⎩,所以1012110()d e d 1d x f x x x x x --=+-⎰⎰⎰,其中01101e 1e d e e e 11e e xxx ---==-=-=-⎰,1201d x x -⎰表示圆221x y +=在第一象限的面积,即12π1d 4x x -=⎰,所以11e 1π()d e 4f x x --=+⎰,故选B .8.D解析:D 【详解】根据题意,画出如图所示:由直线4y x =-,,曲线2y x =x 轴所围成的面积为:424848221402(24)(4)042322xdx x x dx x x x x ⎰+⎰-+=+-+=. 故选D.9.C解析:C 【详解】由1xy y x =⎧⎨=⎩,解得11x y =⎧⎨=⎩,13xy y =⎧⎨=⎩解得133x y ⎧=⎪⎨⎪=⎩,3y y x =⎧⎨=⎩解得33x x =⎧⎨=⎩,所围成的平面图形的面积为S ,则()()1111331131(31)323ln |2S dx x x x ⎛⎫=⨯--+-=+- ⎪⎝⎭⎰,4ln 3S =-,故选C.10.A解析:A 【分析】 先求出22()f x dx -=⎰2264x dx +-⎰,再求出2204x dx π-=⎰即得解.【详解】 由题得2022220222201()(2)4(2)|42f x dx x dx x dx x x x dx ---=-+-=-+-⎰⎰⎰⎰22064x dx =+-⎰,设24(02,0)y x x y =-<≤≥,所以22+4x y =,所以24(02,0)y x x y =-<≤≥表示圆22+4x y =在第一象限的部分(包含与坐标轴的交点),其面积为14=4ππ⨯⨯. 所以2204x dx π-=⎰.所以22()6f x dx π-=+⎰.故选:A 【点睛】本题主要考查定积分的计算,意在考查学生对这些知识的理解掌握水平.11.D解析:D 【分析】 函数()1201(1)y x dx =--⎰的图象是以(1,0)为圆心,以1为半径的上半圆,作出直线y x =,则图中阴影部分的面积为题目所要求的定积分.【详解】 由题意,()()111221(1)1(1)()x x dx x dx x dx ---=--+-⎰⎰⎰,如图:1201(1)x dx --⎰的大小相当于是以(1,0)为圆心,以1为半径的圆的面积的14,故其值为4π,021011()1()|22x d x x --=-=⎰, 所以,)1112211(1)1(1)()42x x dx x dx x dx π--=--+-=-⎰⎰⎰ 所以本题选D. 【点睛】本题考查求定积分,求解本题关键是根据定积分的运算性质将其值分为两部分来求,其中一部分要借用其几何意义求值,在求定积分时要注意灵活选用方法,求定积分的方法主要有两种,一种是几何法,借助相关的几何图形,一种是定义法,求出其原函数,本题两种方法都涉及到了,由定积分的形式分析,求解它的值得分为两部分来求,()1201(1)x dx --⎰和1()x dx -⎰.12.C解析:C 【解析】 【分析】 利用()1111211()f x dx dx d x x x --+-=+⎰⎰⎰计算出定积分的值.【详解】 依题意得()10111211()f x dx dx d x x x --+-=+⎰⎰⎰202111π|π12424x x -⎛⎫=++⨯⨯=+ ⎪⎝⎭,故选C. 【点睛】本小题主要考查定积分的计算,考查运算求解能力,属于基础题.二、填空题13.【分析】根据题意求出直线与抛物线的交点横坐标再根据定积分求两部分的面积列出等式求解即可【详解】联立或由图易得由题设得即即化简得解得故答案为:【点睛】本题主要考查了定积分的运用需要根据题意求到交界处的解析:3412-【分析】根据题意求出直线与抛物线的交点横坐标,再根据定积分求两部分的面积,列出等式求解即可. 【详解】联立2y x x y kx⎧=-⇒⎨=⎩ 0x =或1x k =-.由图易得1,11x k k由题设得()()1122012kx x kx dx x x dx ---=-⎰⎰, 即232123100111111||232223k x x kx x x -⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭. 即()()()232111111123212k k k k -----=化简得()3112k -=. 解得3412k =-. 故答案为:3412- 【点睛】本题主要考查了定积分的运用,需要根据题意求到交界处的点横坐标,再根据定积分的几何意义列式求解即可.属于中档题.14.1【分析】如图所示:计算交点为计算积分得到面积【详解】依题意令e+1=ex+1得x =1所以直线x =0y =e+1与曲线y =ex+1围成的区域的面积为S 故答案为:1【点睛】本题考查了利用积分求面积意在考解析:1 【分析】如图所示:计算交点为()1,1e +计算积分()()111xe e dx ⎡⎤+-+⎣⎦⎰得到面积.【详解】依题意,令e +1=e x +1,得x =1,所以直线x =0,y =e +1与曲线y =e x +1围成的区域的面积为S ()()()1111110xx xe e dx e e dx ex e ⎡⎤=⎰+-+=⎰-=-=⎣⎦故答案为:1【点睛】本题考查了利用积分求面积,意在考查学生的计算能力.15.【分析】利用定积分的几何意义可求的值再由微积分基本定理求得的值从而可得结果【详解】根据题意等于半径为1的圆的面积的四分之一为所以则;故答案为【点睛】本题主要考查定积分的几何意义属于中档题一般情况下定解析:22π-【分析】利用定积分的几何意义可求1⎰的值,再由微积分基本定理求得sin xdx π⎰的值,从而可得结果. 【详解】根据题意,12=⎰⎰,⎰等于半径为1的圆的面积的四分之一,为21144ππ⨯⨯=,所以10242ππ=⨯=⎰, ()sin cos 2xdx x ππ=-=⎰,则10sin 22xdx ππ-=-⎰⎰;故答案为22π-.【点睛】本题主要考查定积分的几何意义,属于中档题.一般情况下,定积分()baf x dx ⎰的几何意义是介于x 轴、曲线y =()f x 以及直线,x a x b ==之间的曲边梯形面积的代数和 ,其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数,所以在用定积分求曲边形面积时,一定要分清面积与定积分是相等还是互为相反数;两条曲线之间的面积可以用两曲线差的定积分来求解.16.【解析】【分析】利用微积分基本定理直接计算即可【详解】即答案为【点睛】本题考查了定积分的运算属于基础题 解析:π【解析】 【分析】利用微积分基本定理直接计算即可. 【详解】()()()()0cos 1sin sin sin 00.0x dx x x πππππ⎰+=+=+-+=即答案为π. 【点睛】本题考查了定积分的运算,属于基础题.17.【详解】二项式的展开式的通项为令所以常数项为二项式的展开式中的常数项为则故答案为【方法点晴】本题主要考查二项展开式定理的通项与系数属于简单题二项展开式定理的问题也是高考命题热点之一关于二项式定理的命 解析:263【详解】二项式62515x x ⎛⎫+ ⎪ ⎪⎝⎭的展开式的通项为61612355r rrr T C x -+-⎛⎫= ⎪ ⎪⎝⎭,令1234r r -⇒= 所以常数项为26424511153,55C x x ⎛⎫⎛⎫⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭二项式62515x x ⎛⎫+ ⎪ ⎪⎝⎭的展开式中的常数项为3m =,则32233111126|33m x dx x dx x ===⎰⎰,故答案为263. 【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C rn r rr n T ab -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.18.【解析】解析:2192π+.【解析】()()()22323112sin cos |019292x x dx x x ππππ⎛⎫+=-=---=+ ⎪⎝⎭⎰.19.【解析】试题分析:故应填考点:定积分的计算公式及运用 解析:【解析】 试题分析:,故应填.考点:定积分的计算公式及运用.20.【解析】试题分析:由题意可知此题求解的概率类型为关于面积的几何概型由图可知基本事件空间所对应的几何度量S (Ω)=1先将y2=x 化成:联立的:因为x≥0所以解得:x=0或x=1所以曲线y=x2与所围成解析:13【解析】试题分析:由题意可知,此题求解的概率类型为关于面积的几何概型,由图可知基本事件空间所对应的几何度量S (Ω)=1, 先将y 2=x 化成:,联立的:因为x≥0,所以解得:x=0或x=1,所以曲线y=x 2与所围成的图形的面积S ,即满足所取的点落在阴影部分内部所对应的几何度量: S (A )==.则点M 取自阴影部分的概率为P (A )=考点:几何概型;定积分在求面积中的应用点评:本题考查了利用定积分求面积以及几何摡型知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题三、解答题21.(1)0,3a b ==-;(2)92. 【分析】(1)求出导函数,利用函数()32f x x ax bx =++在1x =处有极值2-,由()12f =-且()'10f =,解方程组,即可求得,a b 的值;(2)利用定积分的几何意义,先确定确定函数的积分区间,被积函数,再求出原函数,利用微积分基本定理,结合函数的对称性即可得结论. 【详解】(1)由题意知()2'32f x x ax b =++,()12f =-且()'10f =,即12,320,a b a b ++=-⎧⎨++=⎩,解得0,3a b ==-. (2)如图,由1问知()33f x x x =-.作出曲线33y x x =-的草图,所求面积为阴影部分的面积.由330x x -=得曲线33y x x =-与x 轴的交点坐标是()3,0,()0,0和)3,0,而33y x x =-是R 上的奇函数,函数图象关于原点中心对称. 所以y 轴右侧阴影面积与y 轴左侧阴影面积相等.所以所求图形的面积为()330213S x x dx ⎡⎤=-⎣⎦⎰ 4213932|4220x x ⎛⎫=--= ⎪⎝⎭. 【点睛】本题主要考查利用导数研究函数的极值、定积分的几何意义以及微积分基本定理的应用,属于中档题. 已知函数的极值()f m n =求参数的一般步骤是:(1)列方程求参数()()'0f m nf m ⎧=⎪⎨=⎪⎩;(2)检验方程的解的两边导函数符号是否相反. 22.(1)41639⎛⎫⎪⎝⎭,,(2)()22,,8423-【解析】试题分析:(1)可考虑用定积分求两曲线围成的封闭图形面积,直线OP 的方程为y=tx ,则S 1为直线OP 与曲线y=x 2当x ∈(0,t )时所围面积,所以,S 1=∫0t (tx ﹣x 2)dx ,S2为直线OP 与曲线y=x 2当x ∈(t ,2)时所围面积,所以,S 2=∫t 2(x 2﹣tx )dx ,再根据S 1=S 2就可求出t 值.(Ⅱ)由(2)可求当S 1+S 2,化简后,为t 的三次函数,再利用导数求最小值,以及相应的x 值,就可求出P 点坐标为多少时,S 1+S 2有最小值. 试题(1)设点P 的横坐标为t (0<t <2),则P 点的坐标为(t ,t2), 直线OP 的方程为y=tx S 1=∫0t (tx ﹣x 2)dx=,S 2=∫t 2(x 2﹣tx )dx=,因为S 1=S 2,,所以t=,点P 的坐标为41639⎛⎫ ⎪⎝⎭, (2)S=S 1+S 2==S ′=t 2﹣2,令S'=0得t 2﹣2=0,t=因为0<t <时,S'<0;<t <2时,S'>0所以,当t=时,S min 842-,P 点的坐标为)22,.点睛:本题考查了曲线围成的图形的面积,着重考查了定积分的几何意义和定积分计算公式等知识,属于基础题;用定积分求平面图形的面积的步骤:(1)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;(2)解方程组求出每两条曲线的交点,以确定积分的上、下限;(3)具体计算定积分,求出图形的面积.23.403【解析】 【分析】画出函数图象,找到所围成区域,分割为两个区域,分别用定积分求其面积即可. 【详解】作出直线y =6-x ,曲线y =的草图,所求面积为图中阴影部分的面积.解方程组得直线y =6-x 与曲线y =交点的坐标为(2,4),直线y =6-x 与x 轴的交点坐标为(6,0). 若选x 为积分变量,所求图形的面积S =S 1+S 2=28xdx ⎰+()626-x dx ⎰=3226202218632x x x ⎛⎫⎛⎫⨯+- ⎪ ⎪⎝⎭⎝⎭ =+=+8=.【点睛】本题主要考查了函数的图象,定积分求函数所围成区域的面积,定积分的计算,属于中档题.24.(Ⅰ)()221x x x f =++(Ⅱ)9【分析】试题分析:(1)用待定系数法设出解析式,据判别式为零,和f′(x )=2x+2确定结果;(2)利用定积分求曲边图形面积,找准积分区间和被积函数 试题(1)设()()20f x ax bx c a =++≠.240{222b ac ax b x -=+=+得:1,2,1a b c ===()221f x x x ∴=++(Ⅱ)由题2221{341y x x x y x x =++⇒=-=--+或 0x =.()()2232033241213|93S x x x x dx x x --⎛⎫⎡⎤=--+-++=--= ⎪⎣⎦⎝⎭⎰. 考点:函数与方程的综合运用;定积分 25.(1) 2;(2) π 【分析】 (1)由题得()0sin cos d (cos sin )|x x x x x ππ-=--⎰,计算即得解;(2)如图,先求出扇形ACB 的面积,再利用定积分的几何意义求解即可. 【详解】 (1)由题得()00sin cos d (cos sin )|(cos sin )(cos0sin 0)x x x x x ππππ-=--=-----⎰ =10102-++=;(2)令222(32),(1)4(13,0)y x x x y x y =+-∴-+=≤≤≥,因为32132d x x x +-⎰等于1,3,x x x ==轴和曲线ADB 所围成的曲边梯形的面积,如图扇形ACB , 扇形ACB 的面积为212=4ππ⨯⨯, 所以32132d x x x π+-=⎰.【点睛】本题主要考查定积分的计算,考查圆的方程的应用,意在考查学生对该知识的理解掌握水平.26.(1)存在,22m -≤≤;(2)①证明见解析;②证明见解析. 【分析】(1)根据微积分基本定理求得()f x ,由()10f '=,求得参数a ;利用导数求函数的在区间上的最值,结合一次不等式在区间上恒成立问题,即可求得参数m 的范围;(2)①求得()F x ',利用导数求得()F x 的单调性,即可容易证明; ②由①中所求,可得12ln()11k k k +>++,利用对数运算,即可证明. 【详解】由题可知2()ln(1)(1)f x a x x =+++,∴()221af x x x '=+++. (1)由()01f '=,可得2202a++=,8a =-. 又当8a =-时,()()()2311x x f x x +'-=+,故()f x 在区间()0,1单调递减,在()1,+∞单调递增. 故函数()f x 在1x =处取得极值,所以8a =-.∵11e <-,82(1)(3)()2211x x f x x x x --+'=++=++.∴()0f x '>,当[]1,x e e ∈-时,由上述讨论可知,()f x 单调递增, 故2min ()(1)8f x f e e =-=-+不等式2214()m tm e f x ++-≤对任意[]1,x e e ∈-及[]1,1t ∈-恒成立, 即:22222min 14()148m tm e f x m tm e e ++-≤⇔++-≤-+, 即:260m tm +-≤对[]1,1t ∈-恒成立,令2()6g t m mt =+-,(1)0g ⇒-≤,(1)0g ≤即260m m --≤,且260m m +-≤,整理得()()320m m -+≤,且()()320m m +-≤, 解得:22m -≤≤,即为所求.(2)①∵2()()(1)ln(1)F x f x x x x x =-+-=+-,∴()1xF x x-'=+ 当0x >时,()0F x '<,∴()F x 在(0,)+∞上单调递减,()(0)0F x F ∴<=即证.②由①可得:ln(1)(0)x x x +<> 令:11x k =+,得11ln(1)11k k +<++,即:12ln()11k k k +>++ ∴1112322ln ln ln 12(1)1221n n n n n n n n n n +++++⋅⋅⋅+>++⋅⋅⋅++++++++=ln 2 即证. 【点睛】本题考查由极值点求参数值,利用导数由恒成立问题求参数范围,以及利用导数证明不等式以及数列问题,属压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【知识点4】已知单调性求参数取值范围
1. 思路提示:⑴对于函数在某个区间上单调递增或单调递减的问题,转化为导函数在此区
间上恒为非负或非正的问题,进而转化为导数在该区间上的最值问题.
⑵对于可导函数在某个区间不单调的问题,转化为导函数在此区间无实根,可
结合导函数的图像给出此问题的充要条件,从而求解.
⑶对于只有一个极值点的导函数研究其相关问题(如在给定区间上恒为正或负
以及根的分布等),往往可以类比二次函数在区间上的最值或根的分布求解.
例1:已知函数422()32(31)2(31)4f x ax a x a x x =-+-++
(I )当16
a =时,求()f x 的极值; (II )若()f x 在()1,1-上是增函数,求a 的取值范围
例2:已知函数32()1()f x x ax x a R =+++∈
(I )讨论函数()f x 的单调区间;
(II )设函数()f x 在区间31(,)23
--内是减函数,求a 的取值范围.
例3:已知函数2()(2)ax f x ax x e =-,其中a 为常数,且0a ≥.
(I )若1a =,求函数()f x 的极值点;
(II )若()f x 在区间内单调递增,求a 的取值范围.
例4:已知函数32()f x ax bx =+()x R ∈的图像过点(1,2)P -,且在点P 处的切线恰好与直线30x y -=垂直.
(Ⅰ)求函数()f x 的解析式;
(II )若函数()f x 在区间[],1m m +上单调递增,求实数m 的取值范围.
例5:已知函数32
()(1)(2)(,)f x x a x a a x b a b R =+--++∈.
(Ⅰ)若函数()f x 的图像过原点,且在原点处的切线斜率是3-,求,a b 的值;
(II )若函数()f x 在区间(1,1)-上不单调,求a 的取值范围.
例6:设()1x
e f x ax
=+,其中a 为正实数 (Ⅰ)当a 43
=时,求()f x 的极值点; (Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围.
例7:设()2
x
e f x =,其中a 为正实数. (Ⅰ)当34
a =时,求()f x 的极值点; (Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围.
例8:设3211()232
f x x x ax =-++ (I)若()f x 在2(,)3+∞上存在单调递增区间,求a 的取值范围.
(II )当02a <<时,()f x 在[1,4]的最小值为163
-
,求()f x 在该区间上的最大值.
例9:已知a ,b 是实数,函数,)(,)(23bx x x g ax x x f +=+= )(x f '和)(x g '是)(),(x g x f 的导函数,若0)()(≥''x g x f 在区间I 上恒成立,则称)(x f 和)(x g 在区间I 上单调性一致
(I)设0>a ,若函数)(x f 和)(x g 在区间),1[+∞-上单调性一致,求实数b 的取值范围; (II )设,0<a 且b a ≠,若函数)(x f 和)(x g 在以a ,b 为端点的开区间上单调性一致,求a b -的最大值.
例10:已知函数()3213
f x x x ax b =-++的图像在点()0,0P f ()处的切线方程为32y x =-
(Ⅰ)求实数,a b 的值;
(Ⅱ)设()1
m g x f x x =+-()是[21,]+∞上的增函数。
(i )求实数m 的最大值;
(ii)当m 取最大值时,是否存在点Q ,使得过点Q 的直线若能与曲线()y g x =围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q 的坐标;若不存在,说明理由.
例11:设函数()()32
6322f x x a x ax =+++. (I)若()f x 的两个极值点为1x ,2x ,且121x x =,求实数a 的值;
(II )是否存在实数a ,使得()f x 是(),-∞+∞上的单调函数?若存在,求出a 的值;若不存在,说明理由.
例12:设定函数32()(0)3a f x x bx cx d a =
+++f ,且方程'()90f x x -=的两个根分别为1,4.
(Ⅰ)当a=3且曲线()y f x =过原点时,求()f x 的解析式;
(Ⅱ)若()f x 在(,)-∞+∞无极值点,求a 的取值范围。
例13:已知函数()(1)ln 15,a f x x a x a x
=++-+其中a<0,且a≠-1. (Ⅰ)讨论函数()f x 的单调性;
(Ⅱ)设函数()()()33223646,1,1x x ax ax a a e x g x e f x x ⎧-++--≤⎪=⎨⋅>⎪⎩
(e 是自然数的底数)。
是否存在a ,使()g x 在[],a a -上为减函数?若存在,求a 的取值范围;若不存在,请说明理由。
例14:已知函数42()32(31)4f x ax a x x =-++
(I )当16
a =时,求()f x 的极值; (II )若()f x 在()1,1-上是增函数,求a 的取值范围.
例15: 已知函数()2()x
f x ax bx c e =++在[]0,1上单调递减且满足()()0110.f f =,= (I)求a 的取值范围;
(II)设()()()g x f x f x '=-,求()g x 在[]0,1上的最大值和最小值.
例16:已知函数2()ln (0)f x x ax x a =-->
(I)若曲线()y f x =在点(1,(1))f 处的切线斜率为2-,求a 的值以及切线方程; (II)若()f x 是单调函数,求a 的取值范围.
例17:已知函数).0(32ln )(≠+-=a ax x a x f
(I)设1a =-,求函数)(x f 的极值;
(II)在(I)的条件下,若函数])(3
1)(23m x f x x x g +'+=(其中)(x f '为)(x f 的导 数)在区间(1,3)上不是单调函数,求实数m 的取值范围.。