机械系统动力学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《机械系统动力学》

机械系统动力学中分析中的

仿真前沿

学院:机械工程学院

专业:机制一班

姓名:董正凯

学号:S12080201006

摘要

计算机及其相应技术的发展为建立机械系统仿真提供了一个有效的手段,机械系统动力学中的许多难题均可以采用仿真技术来解决,本文主要讲述了目前在机械系统动力学的分析中仿真技术主要的研究重点及其研究中主要存在的问题。

关键词:机械系统动力学仿真系统建模

机械系统动力学中分析中的仿真前沿

机械专业既是一个传统的专业,又是一个不断融合新技术、不断创新的专业。随着科技的发展,计算机仿真技术越来越广泛地应用在各个领域。基于多体系统动力学的机械系统动力学分析与仿真技术,从二十世纪七十年代开始吸引了众多研究者,已解决了自动化建模和求解问题的基础理论问题,并于八十年代形成了一系列商业化软件,到了九十年代,机械系统动力学分析与仿真技术更已能成熟应用于工业界。

目前的研究重点表现在以下几个方面:

(1)柔性多体系统动力学的建模理论

多刚体系统的建模理论已经成熟,目前柔性多体系统的建模成了一个研究热点,柔性多体系统动力学由于本身既存在大范围的刚体运动又存在弹性变形运动,因而其与有限元分析方法及多刚体力学分析方法有密切关系。事实上,绝对的刚体运动不存在,绝对的弹性动力学问题在工程实际中也少见,实际工程问题严格说都是柔性多体动力学问题,只不过为了问题的简化容易求解,不得不化简为多刚体动力学问题、结构动力学问题来处理。然而这给使用者带来了不便,同一个问题必须利用两种分析方法处理。大多商用软件系统采用的浮动标架法对处理小变形部件的柔性系统较为有效,对包含大变形部件的柔体多体系统会产生较大仿真分析误差甚至完全错误的仿真结论。最近提出的绝对节点坐标方法,是对有限元技术的拓展和较大创新,在常规有限元中梁单元、板壳单元采用节点微小转动作为节点坐标,因而不能精确描述刚体运动。绝对节点坐标法则采用节点位移和节点斜率作为节点坐标,其形函数可以描述任意刚体位移。利用这种方法梁和板壳可以看作是等参单元,系统的质量阵为一常数阵,然而其刚度阵为强非线性阵,这与浮动标架法有截然不同的区别。这种方法已成功应用于手术线的大变形仿真中。寻求有限元分析与多刚体力学的统一近年来成为多体动力学分析的一个研究热点,绝对节点坐标法在这方面有极大的潜力,可以说绝对节点坐标法是柔性多体力学发展的一个重要进展。另外,各种柔性多体的分析方法之间是否存在某种互推关系也引起了人们的注意,如两个主要分析方法:浮动标架法、绝对节点坐标法之间是否可以互推?这些都具有重大理论意义。

另外柔性多体系统动力学中由于大范围的刚体运动与弹性变形运动相互耦合,采用浮动标架法时,即便是小变形问题,由于处于高速旋转仍会产生动力刚化现象。如果仅仅采用小变形理论,将产生错误的结论,必须计及动力刚化效应。动力刚化现象已成为柔性多体动力学的一个重要研究方面。如何利用简单的补偿方法来考虑动力刚化是问题的关键。

柔性多体系统动力学中关于柔性体的离散化表达存在三种形式:基于有限元分析的模态表达,基于试验模态分析的模态表达和基于有限元节点坐标的有限元列式。有限元列式由于大大地增加了系统的求解规模使其应用受到限制,因而一般采用模态分析方法,对模态进行模态截断、模态综合,从而缩减系统的求解规模。为了保证求解精度,同时又能提高求解速度如何进行模态截断、模态综合就成了一个关键问题。再者如何充分利用试验模态分析的结果也是一个关键性研究课题,这一方面的研究还不够深入。

柔性多体系统动力学可以计算出每一时刻的弹性位移,通过计算应变可计算计算出应力。由于一般的多柔体分析程序不具备有限元分析功能,因而柔性体的应力分析都是由有限元程序处理。由于可以计算出每个柔性体的应力的变化历

史,因而可以再根据疲劳分析程序对柔性体进行寿命分析,但如何利用柔性体的应力分析结果于疲劳分析程序也是一个关键问题。

(2)接触碰撞建模问题

具有运动学约束的机械多体系统的动力学分析已经十分成熟,然而机械多体系统中纯粹的运动学约束是不存在的,如铰链间由于制造精度或者使用中由于摩损而存在间隙,以及各刚体在运动中不可避免地发生接触-碰撞,因而多体中的接触-碰撞带有普遍性,而这种现象的仿真分析确是一个难点,吸引了许多学者的注意。接触-碰撞现象可以认为系统在碰撞的瞬间构型不变,但发生碰撞的刚体动量发生改变。碰撞是一种单边约束,两刚体的外形边界不能相互侵入。对多体中接触-碰撞现象一般采取两类方法:基于冲量定理的恢复系数方法和基于罚函数的连续接触力方法。恢复系数方法的特点是计算效率高,但不易实现仿真过程的自动化,而且无法计算出发生碰撞时的接触碰撞力,速度为不连续。存在采用牛顿假设计算恢复系数和采用泊松假设计算恢复系数两种方法,牛顿假设利用速度计算恢复系数,而泊松假设利用冲量计算恢复系数。仿真中恢复系数的选取是仿真的关键,一般需通过试验获得。连续接触力方法将接触-碰撞现象处理为连续的动力学问题,速度为连续,可以计算出碰撞力,某种程度上可以较真实地模拟碰撞的过程,而恢复系数方法认为碰撞是在瞬间完成的。在接触-碰撞中都伴有摩擦,一般采用库仑定律,考虑摩擦对系统的收敛性有很大影响。柔性多体系统动力学中的接触-碰撞算法与多刚体系统相同,主要有基于经典理论冲量定律的恢复系数法和基于解析罚函数的连续力法两种。在柔性多体系统中可能需更进一步考虑弹性波的影响,弹性波对整个碰撞过程会有影响,如何判断接触-碰撞的条件、接触点的位置,这些都需要新理论的支持,目前也是柔性多体动力学的一个研究重点。

(3)多领域集成化仿真与控制

实际的机械多体系统还存在液压元件、气动元件、电子电路以及控制系统。因此仅仅考虑多(柔)刚体系统的动力学是不完善的,要全面研究系统的动态特性必须全面考虑机、电、液、气、控制耦合的多领域多体模型。如多体系统中许多外力是一个受控系统,通过控制策略的计算,经过电子线路得到控制信号并传递到液压气动系统去执行。目前这一领域已成为一个研究热点。如在航天设备中,液体火箭、充液卫星、航天飞船以及空间站等都是多体充液系统,由于航天设备精度的严格要求,液体的晃动,以及晃动控制问题成为了当前航天界的一个重要问题。此外,带油罐的地面车辆稳定性也成为车辆动力学的一个研究分支。因此充液多体系统的研究不但具有重要的理论指导意义而且具有重大的工程价值。按充液量的多少,可以区分为全充液多体系统和半充液多体系统;全充液多体系统的液体仅有旋转运动,而后者还会引发液体的晃动;在刚性腔内的液体晃动是一种自由液面的波动,可能是微幅晃动,也可能是大幅晃动或产生自由液面的破碎和液体的飞溅,这些都是强非线性现象,对系统的稳定性产生很大影响。又如柔性体的动力学控制问题,由于考虑了弹性变形,使对柔性多体系统的控制相对多刚体系统来说要复杂得多,关于柔性多体的控制有许多问题需进一步研究,由于表达刚体运动的铰链自由度与弹性自由度之间的强耦合,使其控制变得复杂,如何选取控制参数是一个极其重要的课题。由于选取不同的参考标架,因而弹性模态存在区别,虽然在动力学上没有太大的影响,但对控制参数的选取产生影响。这个问题也需要研究,研究如何最优选取控制参数。

(4)多体系统参数识别问题

相关文档
最新文档