正弦函数和余弦函数的图像与性质.ppt

合集下载

《正弦余弦函数图像》课件

《正弦余弦函数图像》课件

可以使用数学软件或绘图工具绘制余 弦函数的图像。
图像具有对称性,关于y轴对称,且在 每个周期内有两个峰值和两个谷值。
图像描述
余弦函数的图像是一个周期性的波形 ,形状类似于拱门。
01
正弦与余弦函数的 对比
定义与性质对比
定义
周期性
奇偶性
振幅与相位
正弦函数是三角函数的一种, 定义为直角三角形中锐角的对 边与斜边的比值;余弦函数是 三角函数的另一种,定义为直 角三角形中锐角的邻边与斜边 的比值。
三角函数计算
在数学和物理领域,经常需要使 用正弦和余弦函数来进行三角函 数计算,解决实际问题。
01
习题与思考
基础习题
总结词
考察基础概念和图像绘制
详细描述
针对正弦和余弦函数的定义、性质和图像绘制进行基础习题练习,包括选择题、填空题和简答题等题 型,帮助学生巩固基础知识,提高解题能力。
进阶思考题
总结词
课程目标:掌握正弦 余弦函数图像的绘制 方法,理解其在生活 中的应用
学习目标
01
02
03
04
掌握正弦余弦函数的基本概念 和性质
学会使用数学软件绘制正弦余 弦函数图像
了解正弦余弦函数在生活和科 学领域中的应用实例
提高数学思维能力和分析能力
01
正弦函数图像
正弦函数的定义
总结词
周期性、波动性
详细描述
详细描述
可以使用多种工具绘制正弦函数的图像,如几何画板、Excel和手动画图。在几何画板中,可以自定义参数,观 察不同参数下图像的变化。在Excel中,可以使用其图表功能绘制正弦函数图像。手动画图则要求具备一定的绘 图技巧和理论知识。
01
余弦函数图02

三角函数的图象与性质 (共44张PPT)

三角函数的图象与性质 (共44张PPT)

(
)
3 3 A.-2,2 3 3 3 3 C. - , 2 2
解析: 当 故
π π 1 π π 5π x∈0,2 时, 2x- ∈- 6, 6 , sin2x-6 ∈-2,1, 6
上是减函数 - π , 0 C.在[0,π]上是增函数,在
)
π π π π D.在2,π和-π,-2上是增函数,在-2,2 上是减函数
3.(2015· 皖南八校模拟)函数 f(x)=cos 2x+2sin x 的最大值与最小值 的和是 A.-2 3 C.- 2
4.求函数 y=cos x+sin
2
π x|x|≤4 的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
sin 2x>0, 解析:由 2 9-x ≥0,
π kπ<x<kπ+ ,k∈Z, 2 得 -3≤x≤3.
π π ∴-3≤x<- 或 0<x< . 2 2 ∴函数 y=lg(sin 2x)+ 9-x
2
π π 的定义域为-3,2 ∪0,2 .
2
π 1- 5 x通法]
1.三角函数定义域的求法 求三角函数定义域实际上是构造简单的三角不等式(组),常借 助三角函数线或三角函数图象来求解.
2.三角函数值域的不同求法 (1)利用 sin x 和 cos x 的值域直接求;

正弦、余弦函数的图像和性质PPT优质课件

正弦、余弦函数的图像和性质PPT优质课件

作三角函数图象
描几点何法法:作查图三的角关函键数是表如得何三利角用函单数位值圆,描中点角(xx的,s正in弦x),线连,线巧. 妙地
如移:动x 到 直3 角查坐表标y系内s,i从n3而确0.8定对6应6的0点 (x,sinx).
y
描点 (3 ,0.866)0
1-
y
P
-Hale Waihona Puke 023 2
2
x
1 -
3
O M 1x
2020/12/10
9
练习:(1)作函数 y=1+3cosx,x∈[0,2π]的简图 (2)作函数 y=2sinx-1,x∈[0,2π]的简图
(1) y
x
2020/12/10
10
四川省天全中学数学组
2005.03
2020/12/10
11
余弦曲线
-
-
y-
1
-
6
4
2
o
-1
2
4
6
由于 ycox scosx)(sin [(x) ]sin x()
几何法:作三角函数线得三角函数值,描点(x,sinx),连线
如: x
3

3
的正弦线 MP ,
平移定点 (x, MP)
2020/12/10
5
函数 y six ,n x 0 ,2图象的几何作法
y
作法: (1) 等分
(2) 作正弦线
1-
P1
p
/ 1
(3) 平移 (4) 连线
6
o1
M -11A
o 6
3
正 弦 函 数、余 弦 函数的图象和性质
2020/12/10
1

正弦函数、余弦函数的图象和性质PPT课件.ppt

正弦函数、余弦函数的图象和性质PPT课件.ppt

1






7 4 3 5 11
6
6 3 2 3 6 2

2 0

2
5


11
6 32 3 6


x

5
6
-1



3
sin(2k +x)= sinx (k Z)
y y=sinx (xR)
1
2 0
-1
2 3 4 5
6 x
二、正弦函数的“五点画图法”
(2)y= - cosx, x [0, 2 ]
解:(1)按五个关键点列表
x
0
2

3
2
2
sinx 0 1 0 -1 0
1+sinx 1 2
1
0
1
y
2

y=1+sinx x [0, 2 ]
1●



o


3
2
x
2
2
(2)按五个关键点列表
x
0
2

3
2
2
cosx 1 0 -1 0 1
y
y=sinx的图象
1
2 0 3 2 3
2 -1 2
2
4 5
y=cosx的图象
6 x
余弦函数的“五点画图法”
(0,1)、(
2
,0)、( ,-1)、( 3 2
,0)、(2, 1)
y
1●

o



3
2

高中数学课件-正弦余弦函数的图象和性质

高中数学课件-正弦余弦函数的图象和性质
4 ,2 , 2 ,0, 0,2 , 2 ,4 ,……与y=sinx,x∈[0,2π]的图象相同
y
正弦、余弦函数y=sinx,y=cosx的图象
1-
-
-
6
4
-
-
2
o
2
-
-
4
6
-
x
-1-
因为终边相同的角的三角函数值相同,所以y=cosx的图象在……,
4 ,2 , 2 ,0, 0,2 , 2 ,4 ,……与y=cosx,x∈[0,2π]的图象相同
-
y cos x, x ? R (3) 连线(用光滑的曲线顺次连结五个点 )
1-
余弦函-1 -数
图象的最高点 (0,1)
与x轴的交点的图(2,1象)
-
6
-
4
-
2 24-3--o119-- 29244--33--92999
-
-
4
-
6
x
-
-1
o
6
3
2
2 3
5 6
7 6
4 3
3
5
11
2
2
3
6
(
如何作出简图? 有什么性质特征?
正弦函数.余弦函数的图象和性质
y
正弦函数 y sin x, x R 的图象
它们的形状相同,且都夹在两 条平行直线y=1与y=-1之间。 但它们的位置不同,正弦曲线 交y轴于原点,余弦曲线交y轴
于点(0,1).
1-
-
-
-
-
-
-
6
4
2
o
2
-
4
6
x
-1-
因为终边相同的角的三角函数值相同,所以y=sinx的图象在……,

沪教版(上海)高中数学高一下册6.1正弦函数和余弦函数的图像与性质(课件)

沪教版(上海)高中数学高一下册6.1正弦函数和余弦函数的图像与性质(课件)

探究一
1.你能设计出一个利用正弦线作出函数 y=sinx,x∈[0,2π]的图像的方法吗?
提示:作图的关键是如何确定对应的(x,sinx)。
y
P
利用正弦线作正弦函
数图像的主要步骤是:
Q
O1
Ax
1、等分;2、作正弦线;
3、移线;4、连线
探究二
2.如何利用函数y sinx,x0,2 的图像
作出函数y sin x, x R的图像呢?
正弦函数和余弦 函数的图像与性质
Graphs and Properties of Sine and Cosine Functions
问题:
1. 当x R时 y sin x及 y cos x能不能构成函数? 为什么?
2. 什么是正弦线?
y P
Q
O1
A
设单位圆与x轴的正 半轴交于A,与角α 的终边交于P,过P x 点作x轴的垂线,垂 足为Q,则QP叫做角α 的正弦线。
探究三
1.用五点法作 y sin x, x 0,2 的图像
与x轴的三个交点:(0,0), ( ,0), (2 ,0)
最高点( ,1)和最低点(3 ,-1)
2
2
2y
1-

0•
2

1 -
-
3 2

2
x
探究三
2.用五点法作函数 y cos x, x 0,2 的图像
分析:五个关键点,注意:相邻两点横坐标的差
2
探究四
(1)X为何值时,sinx>0?
正弦曲线
y y sinx , xR
1 2
x
-2 3 -
o 3 2 5 3
4

3.3.1正弦函数、余弦函数的图象与性质_课件-湘教版必修2PPT

3.3.1正弦函数、余弦函数的图象与性质_课件-湘教版必修2PPT

预习测评
1.正弦曲线上最高点的纵坐标是
π A. 2
B.π
C.12
D.1
答案 D
2.y=1+sin x,x∈[0,2π)的图象与直线y=
交点
( ).
3 2
有______个
( ).
A.1
B.2
C.3
D.0
答案 B
3.在[0,2π]上,f(x)=cos x的零点有________个 ( ).
A.0
B.1
(3)找横坐标:把x轴上从0~2π(2π≈6.28)这一段分成12等份. (4)找纵坐标:将正弦线对应平移,即可找出相应的12个点. (5)连线:用平滑的曲线将12个点依次从左到右连接起来,即 得y=sin x,x∈[0,2π]的图象.
我们通过图象的平移作正弦函数y=sin x,x∈R的图 象.因为终边相同的角的三角函数值相等,所以函数y= sin x,x∈[2kπ,2(k+1)π],k∈Z且k≠0的图象与函数y= sin x,x∈[0,2π]的图象的形状完全一样,只是位置不同, 于是我们只要将函数y=sin x,x∈[0,2π]的图象向左、右 平移(每次平移2π个单位长度),就可以得到正弦函数y= sin x,x∈R的图象,正弦函数y=sin x,x∈R的图象叫做 正弦曲线. 下图是正弦曲线y=sin x,(x∈R)的图象:
典例剖析
题型一 “五点法”作图 【例1】作出下列函数0,2π];
(2)y=-1-cos x,x∈[0,2π].
解 (1)利用“五点法”作图
列表:
x
0
π 2
π
3π 2

sin x 0 1 0 -1 0
1-sin x 1 0 1 2 1
描点作图,如图所示:

正弦、余弦函数的图象和性质ppt

正弦、余弦函数的图象和性质ppt

定 义 域: 值 域:
最 值:
周 期:
奇 偶 性:
单 调 性:
例题讲解:
例1:求使下列函数取得最大值的自变量x的集合, 并说出最大值是什么 (1)y cos x 1, x R;
(2)y
sin 2 x, x R.
例2:求下列函数的定义域: 1 (1) y 1 sin x (2)
正弦、余弦函数的图象和性质
X
正弦函数的图象
-4 -3 -2 -
y
正弦曲线
1
o
-1

234源自56x定义域:R [-1,1] 值 域: 正弦函数 y sin x, x R
2 (2)当且仅当 x 2k , k Z 时,取得最小值-1。 2
(1)当且仅当 x
周期函数:
一般地,对于函数f(x),如果存在一个非零常数T,使得当x 取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就 叫做周期函数。非零常数T叫做这个函数的周期。
知 2 , 4 ,, 2 , 4 ,2k (k Z , k 0) 都是 这两个函数的周期。 对于一个周期函数f(x),如果在它所有的周期中存在一个 最小的正数,那么这个最小的正数就叫做f(x)的最小正周 期。 根据上述定义可知:正弦函数、余弦函数都是周期函数, 2k (k Z , k 0)都是它的周期,最小正周期是2
y cos x
例3:求函数y=-cosx的单调区间
解:由y=-cosx的图象可知:
y 1
2
o -1
2

3 2
2
x
单调增区间为 [2k ,(2k 1) ](k Z )
单调减区间为 [(2k 1) , 2k ]( k Z )

正弦,余弦函数的图像PPT教学课件

正弦,余弦函数的图像PPT教学课件

y= sinx,x[0, 2]

y=
cosx,x[
2
,
3 2
]的简图:
x
0 2
20
csionsx
10
01
3
3
2
2
22
-01
0-1
10
向左y平移 个单位长度 22
1
o
2
-1
3
2
2
y= cosx,x[ , 3 ]
22
y=sinx,x[0, 2]
2
x
正弦、余弦函数的图象
几何画法
小 1. 正弦曲线、余弦曲线 五点法 结
2 ,0)
( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0)
正弦、余弦函数的图象
y
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
正弦函数的图象 y=cosx=sin(x+ ), xR
2
正弦曲 线
形状完全一样 只是位置不同
余弦函数的图象
y
余弦曲
-4 -3
-2
(0,11)
正弦、余弦函数的图象
X
正弦、余弦函数的图象
三角函数
三角函数线
正弦函数 余弦函数 正切函数
-1
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
O
M A(1,0) x
注意:三角 函数线是有 向线段!
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象?
途径:利用单位圆中正弦、余弦线来解决。

《正余弦函数图像》课件

《正余弦函数图像》课件

余弦函数基本概念介绍
定义与特点
余弦函数是周期性变化的函数,描述了单位圆上一个点的横坐标随角度变化而变化的规律。
公式
余弦函数公式为y = A * cos(B * (x - C)) + D,其中A、B、C、D分别影响振幅、周期、相位 和纵坐标偏移。
图像特征
余弦函数图像呈现周期性的波浪曲线,对称于x轴和y轴,振幅与A值相关。
《正余弦函数图像》PPT 课件
本课程将介绍正弦函数和余弦函数的基本概念,探索它们的图像及性质,比 较分析两者的图像,并以小测验来巩固所学知识。最后给出结论和参考资料。
正弦函数基本概念介绍
1 定义与特点
正弦函数是周期性变化的函数,描述了单位圆上一个点的纵坐标随角度变化而变化的规 律。
2 公式
正弦函数公式为y = A * sin(B * (x - C)) + D,其中A、B、C、D分别影响振幅、周期、相 位和纵坐标偏移。
相似性
正弦函数和余弦函数都是周 期性的函数,呈现波动或波 浪形状的图像。
差异性
相位差:正弦函数和余弦函 数的图像相位差90度。
振幅:正弦函数图像纵向的 上下震动幅度,而余弦函数 图像横向的左右震动幅度。
应用
正弦函数常用于描述周期性 变化的现象,如音波、电流 等;余弦函数通常用于描述 旋转变化的现象,如天体运 动等。
余弦函数图像及性质
1
调节振幅
2
余弦函数图像的振幅可以通过改变A
的值来调节,振幅表示纵向的上下震
动幅度。
3
波动与震动
余弦函数图像呈现连续的波动曲线, 每个周期具有相同的形状,与正弦函 数的图像相位差90度。
平移与初始位置
改变C的值可以使整个图像左右平移, 影响图像的起始位置。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

, 0), (2 ,1)
2
2
并注意-4 曲线的“凹凸”变化.
课堂练习
1.作函数 y sin x 与 y sin x 1在 [0, 2 ]
上的大致图像. 2.指出1.中各图像与正弦函数图像的位置关系.
3.作函数 y cos x, x [ , ]的大致图像.
4.利用3.解不等式:cos x sin x, x [ , ]
-2
五个关键点:(0, 0), ( ,1), ( , 0), (3 , 1), (2 , 0)
2
2
利用五个关-4键点作简图的方法称为“五点法”
10
三、余弦函数的图像
根据诱导公式
cos
8
x
sin(

x) 可知余弦函数
y

cos
6
x的图像可由
y

2 sin
x
的图像向左平移
2
4
个单位得到.

1
2
2
-10
3-5
0
2
1
-2
余弦函数的值域是[1,1] -4
当且仅当 x 2k , k Z 时, -6
余弦函数取得最大值1;-8
5
2
35
x10
2
yP
OM x
当且仅当 x 2k , k-10 Z 时,
余弦函数取得最小值-1-1.2例1.求下列函数的源自大值与最小值,及取到最值6
课堂练习答案
12
1. y sin x, x [0, 2 ] y4
10
x
0
2

3 2
2
2 8
5
-10
-5
sin x 0 1 0 1 0
O
6 -2
y sin x 1, x [0, 2 ] y4 -4
x
0
2

3
2
2
2 -6
sin x 0 1 0 1 0
15
-10
y y cos x
2
y sin x
1
2 -5
O

5 2
3 10 x
1
-2
余弦函数 y cos x, x R的图像叫做余弦曲线
-4
4
例2.试画出余弦函数在区间[0, 2 ] 上的图像.
y
2
1
O 1

3
2 2
5
2
x 10
-2
五个关键点:(0,1),
(

, 0), ( , 1), (3
知道作函数 y sin x 图像上一个点,
就可作出一系列的点,例如 , , , ,11
y
632 6
x O



2 5

7 4 3 5 11 2
632 3 6
6 32 3 6
10
二、正弦函数的图像
正弦函数 y sin x在8区间[0, 2 ]上的图像.
最后将函数 y sin x6在区间[0, 2 ] 上的图像左右
y2 1
2 -5
O

5 2
3 10 x
1
-2
正弦函数的值域是[1,1]
yP
当且仅当
x

2k
-4

,k
Z
时,
2
正弦函数取得最大值-6 1;
OM x
当且仅当 x 2k -8 , k Z 时,
2
正弦函数取得最小值-10 -1.
二、余弦函数的值域与最4 值
y 2
5 2
时的自变量 x
(1) y 2cos
的值.
x (2)
y

(sin
x

3
)2

2
2
解:(1) 当 x 2k , k Z 时,ymax 2
当 x 2k , k Z 时,ymin 2
(2)视为 y (u 3)2 2,u sin x

u
2 1,即 x
正弦函数和余弦函数的定义域是 R 正弦函数和余弦函数的值域是[1,1]
二、正弦函数的图像
正弦函数 y sin x在区间[0, 2 ]上的图像.
思考 如何利用正弦线确定点(x0 , sin x0 ) 的坐标?
y
P
S (x0 , sin x0 )
O' M A O
x
二、正弦函数的图像
正弦函数 y sin x在区间[0, 2 ]上的图像.
12
x 0 -15



-10
2
2
cos x 1 0 1 0 1
-5 O

2
2
-2
x5
3 -4
4.根据上图可知,解集为[ , ] 44
-6
第六章 三角函数
6.1.1 正弦函数和余弦函数的图像与性质
6.1.2 正弦函数和余弦函数的图像与性质
4
一、正弦函数的值域与最值
当u

2k


2
,即
x

k

8
,k
Z
时,ymax
1
当 u 2k ,即x k 3 , k Z 时,
2
8
ymin 1
例2.求下列函数的最大值与最小值,及取到最值
时的自变量 x 的值.
(1) y sin(2x ) (2) y 3sin x cos x
4
解:(2) y 3 sin 2x ,视为 y 3 sin u,u 2x
2
2
当u

2k

2
,即 x

k

4
,kZ
时,ymax
2k

2
,k
Z
时,ymax

17 4
当u
1,即
x

2k


2
,k
Z
时,ymin


7 4
例2.求下列函数的最大值与最小值,及取到最值
时的自变量 x 的值.
(1) y sin(2x ) (2) y 3sin x cos x
解:(1)视为
y

4 sin
u,
u

2x


4
第六章 三角函数
5.6.4 正弦定理、余弦定理和解斜三角形
6.1.1 正弦函数和余弦函数的图像与性质
一、正弦函数和余弦函数的概念 实数集与角的集合可以建立一一对应的关系, 每一个确定的角都对应唯一的正弦(余弦)值.
因此,任意给定一个实数 x ,有唯一确定的值
sin x(cos x) 与之对应.
函数 y sin x 叫做正弦函数 函数 y cos x叫做余弦函数
平移(每次2个单位),就可以得到 y sin x, x R
4
的图像.
y
2
1
2 -5
O

5 2
3 10 x
1
-2
正弦函数 y sin x, x R 的图像叫做正弦曲线
-4
4
例1.试画出正弦函数在区间[0, 2 ] 上的图像.
y2
1
3
2 2
O
5
x
10
1
2
-5
O-8
sin x 1 1 2 1 0 1
-2
-10
5 2 x
10

5 2 x
10
10
课堂练习答案
2. y sin x 与 y sin x 的图像关于8 x 轴对称;
y sin x 1的图像为 y sin x 的6图像向上平移1
个单位.
4
y
3. y cos x, x [ , ]
相关文档
最新文档