中考数学解析汇编30 动手操作型问题

合集下载

安徽中考数学总复习专题方案设计与动手操作型问题课件

安徽中考数学总复习专题方案设计与动手操作型问题课件

点评 本题主要考查了利用轴对称设计图案以及轴 对称图形、中心对称图形的性质熟练利用扇形面积 公式是解题关键.
3.认真观察下图的4个图中阴影部分构成的图案回答 下列问题:
1请写出这四个图案都具有的两个共同特征.
特征1: 都是轴对称图形

特征2: 都是中心对称图形

2请在下图中设计出你心中最美丽的图案使它也具备你 所写出的上述特征.
3操作型问题:大体可分为三类即图案设计类、图形拼 接类、图形分割类等.对于图案设计类一般运用中心 对称、轴对称或旋转等几何知识去解决;对于图形拼 接类关键是抓住需要拼接的图形与所给图形之间的内 在关系然后逐一组合;对于图形分割类一般遵循由特 殊到一般、由简单到复杂的动手操作过程.
1.2014·绍兴将一张正方形纸片按如图步骤①②沿
专题三 方案设计与动手操作型问题
要点梳理
方案设计型问题是设置一个实际问题的情景给出若 干信息提出解决问题的要求寻求恰当的解决方案有 时还给出几个不同的解决方案要求判断其中哪个方 案最优.方案设计型问题主要考查学生的动手操作 能力和实践能力.方案设计型问题主要有以下几种 类型:
要点梳理
1讨论材料合理猜想——设置一段讨论材料让考生进 行科学的判断、推理、证明; 2画图设计动手操作——给出图形和若干信息让考生 按要求对图形进行分割或设计美观的图案;
污/台
m
m-3
月处理污水量吨/台
220
180
1求m的值;
解:(1)由 90 万元购买 A 型号的污水处理设备的台数与用 75 万元购买 B 型号的污水处理设备的台数相同,即可得: 9m0=m7-5 3,解得 m=18,经检验 m=18 是原方程的解, 即 m=18
2由于受资金限制指挥部用于购买污水处理设备的资金不超过165万元问 有多少种购买方案并求出每月最多处理污水量的吨数. 设买A型污水处理设备x台则B型10-x台根据题意得: 18x+1510-x≤165解得x≤5由于x是整数则有6种方案当 x=0时y=10月处理污水量为1800吨当x=1时y=9月处理污水量为220+

中考总复习数学专题复习三 动手操作问题

中考总复习数学专题复习三 动手操作问题

小题则需要利用对称、勾股定理等几何性质进行求值, 解题中要充分应用对称变换的性质,即在变换前后图形 的形状、大小都不发生改变,如线段的长度、角的大小 保持不变.
【自主作答】(1)正方形,100;(2)图略;(3)83 cm2.
◎针对练 1 (2020·安徽)在数学探究活动中,敏敏进 行了如下操作:如图,将四边形纸片 ABCD 沿过点 A 的直线折叠,使得点 B 落在 CD 上 的点 Q 处,折痕为 AP;再将△PCQ,△ADQ 分别沿 PQ,AQ 折叠,此时点 C,D 落在 AP 上的同一 点 R 处.请完成下列探究:
(1)∠PAQ 的大小为 30 ; (2)当四边形 APCD 是平行四边形时,QABR的值为
3.
【解析】(1)由折叠的性质可得∠B=∠AQP,∠DAQ =∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR, ∠D=∠ARQ,∠C=∠QRP.∵∠QRA+∠QRP=180°, ∴∠D+∠C=180°.∴AD∥BC.∴∠B+∠DAB=180°. ∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°. ∴∠AQP=90°.∴∠B=∠AQP=90°.∴∠DAB=90°. ∴∠DAQ=∠QAP=∠PAB=30°故答案为 30.(2)由折
第三步:如图③,将 MN 左侧纸片绕 G 点按顺时针 方向旋转 180°,使线段 GB 与 GE 重合,将 MN 右侧纸 片绕 H 点按逆时针方向旋转 180°,使线段 HC 与 HE 重合,拼成一个与三角形纸片 EBC 面积相等的四边形纸 片.
(注:裁剪和拼图过程均无缝且不重叠)
则拼成的这个四边形纸片的周长的最小值为
状是
,它的面积为
cm2;
(2)将图②中的纸片沿折线 AG 对折,使 AF 与 AE 边 重合,F 点落在 H 点处,如图③所示;再沿 HG 将△HGE 剪去,余下的部分如图④所示.

2020年中考数学专题复习教学案--动手操作题(附答案)

2020年中考数学专题复习教学案--动手操作题(附答案)
【分析与解答】本题开放性较强,可以充分发挥我们的想象力,答案千变万化,如图15就是一种作图方案:以O为位似中心把Rt△OAB放大2倍→沿y轴翻折→向右平移4个单位→向上平移5个单位.
同步测试4
(2020最新模拟·南宁)已知 在平面直角坐标系中的位置如图16所示.画出 绕点 按顺时针方向旋转 .
【答案】旋转后的图形如图17.
动手操作题
近年来中考数学试题加强了对学生动手操作能力的考查,出现了一类新题型--动手操作题.这类试题能够有效地考查学生的实践能力、创新意识和直觉思维能力.解决这类问题需要通过观察、操作、比较、猜想、分析、综合、抽象和概括等实践活动和思维过程,灵活运用所学知识和生活经验,探索和发现结论,从而解决问题.
5.将任意三角形剪切可以拼成一个与此三角形面积相等的矩形.
方法如下(如图23—1):
请你类似上面图示的方பைடு நூலகம்,解答下列的问题:
(1)对任意三角形(如图23—2),设计一种与上例不同的方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形.
(2)对任意四边形(如图23—3),设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.
【答案】1.
类型二:图形拼接型动手操作题
图形拼接问题,就是将已知的若干个图形重新拼合成符合条件的新图形.
例2(2020最新模拟·安徽)如图5,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).请画出拼成的矩形的简图.
【分析与解答】我们观察图5中的4块图形各边之间的对应关系,找出能拼接在一起的边,如图6就是一种拼接方法.
中考数学试题中动手操作题可分为图形折叠型动手操作题、图形拼接型动手操作题、图形分割型动手操作题和作图型动手操作题等四种类型.

聊城市中考数学专题复习讲义动手操作

聊城市中考数学专题复习讲义动手操作

中考数学专题:动手操作题(含答案)操作型问题是指通过动手测量、作图(象)、取值、计算等实验,猜想获得数学结论的探索研究性活动,这类活动完全模拟以动手为基础的手脑结合的科学研究形式,需要动手操作、 合情猜想和验证,不但有助于实践能力和创新能力的培养,更有助于养成实验研究的习惯, 符合新课程标准特别强调的发现式学习、探究式学习和研究式学习,鼓励学生进行“微科 研”活动,培养学生乐于动手、 勤于实践的意识和习惯, 切实提高学生的动手能力、实践能力的指导思想. 类型之一折叠剪切问题折叠中所蕴含着丰富的数学知识,解决该类问题的基本方法就是,根据“折叠后的图形再展开,则所得的整个图形应该是轴对称图形”,求解特殊四边形的翻折问题应注意图形在变换前后的形状、大小都不发生改变,折痕是它们的对称轴.折叠问题不但能使有利于培养我 们的动手能力,而且还更有利于培养我们的观察分析和解决问题的能力.1. 将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形. 将纸片展开,得到的图形是3. 如下左图:矩形纸片 ABCD AB=2,点E 在BC 上,且AE=EC 若将纸片沿 AE 折叠,点B 恰好落在AC 上,则AC 的长是.4. 如上右图,在正方形纸片 ABCD 中,对角线 AC BD 交于点0,折叠正方形纸片 ABCD 使AD落在BD 上,点A 恰好与BD 上的点F 重合.展开后,折痕 DE 分别交AB AC 于点E 、G.连接GF.下列结论:①/ AGD=112.5 :②tan△ 0GD ④四边形 AEFG 是菱形;⑤BE=20G 其中正确结论的序号是类型之二 分割图形问题分割问题通常是先给出一个图形(这个图形可能是规则的,也有可能不规则)你用直线、线段等把该图形分割成面积相同、形状相同的几部分。

解决这类问题的时 候可以借助对称的性质、面积公式等进行分割。

5.如图所示的方角铁皮, 要求用一条直线将其分成面积相等的两部分,请你设计两种不同的分割方案(用铅笔画图,不写画法,保留作图痕迹或简要的文 字说明).6. 如图1 , △ ABC 中,/ C =90 ,请用直尺和圆规作一条直线, 把厶ABC 分割成两个等腰三角形(不写作法,但须保留作图痕迹)A C D匚口-0-H2.如图,把一张长方形纸片对折,折痕为-----------AB 再以AB 的中点0为顶点把平角/ AOB三等分,沿平角的三等分线折叠,将折叠 A ----------------后的图形剪出一个以 0为顶点的等腰三角 后得到的平面图形- -定是 A.正三角形 B .正方形 C .正五边形 D .正六边形/ AED=2(2)已知内角度数的两个三角形如图 2、图3所示•请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请写出分割成的两个等腰三角形顶角的度数.示,在6X 6的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点, 以格点为顶点的图形称为格点图 形,如图①中的三角形是格点三角形.(1) 请你在图①中画一条直线将格点三角形分割成两部分,将这两部分重新拼成两个不同图① 图② 图③类型之二 拼合图形问题拼图是几个图形按一定的规则拼接在一起的一种智 力游戏,此类试题不仅可以考查学生的观察能力、空间想象能力、判断能力和综合分析能力,通过拼图也能加强同学们对图形的直观认识,能更好地判定所求图形的具体特征7.如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形, 这个新的图形可以是下列图形中的()A.三角形 B .平行四边形 C.矩形D .正方形8.如图(1)是一个等腰梯形,由6个这样的等腰梯形恰好可以拼出如图形.对于图(1)中的等腰梯形,请写出它的内角的度数或腰与底边 长度之间关系的一个正确结论:9. 从下列图中选择四个拼图板,可拼成一个矩形,正确的选择方案为.(只填写拼图板的代码)10. 如图,方格纸中有一透明等腰三角形纸片,按图中裁剪线将这个纸片裁剪成三部分.请你将这三部分小纸片重新分别拼接成; (1) 一个非矩形的平行四边形;(2 )一个等腰梯形;(3) 一个正方形.请 在图中画出拼接后的三个图形,要求每张三角形纸片的顶点与小方 格顶点重合.11.如的格点四边形,并将这两个格点四边形分别画在图②,图③中; (2 )直接写出这两个格点四边形的周长.图I 图2 E3(2)所示的一个菱非矩形的平行四边形等緩梯形正方形」一- 一 T Mln类型之四探索性问题此类题目常涉及到画图、测量、猜想证明、归纳等问题,它与初中代数、几何均有联系•此类题目对于考查学生注重知识形成的过程,领会研究问题的方法有一定的作用,也符合新课改的教育理念.12•小华将一张矩形纸片(如图1)沿对角线CA剪开,得到两张三角形纸片(如图2),其中/ ACB=z,然后将这两张三角形纸片按如图3所示的位置摆放,△ EFD纸片的直角顶点D 落在△ ACB纸片的斜边AC上,直角边DF落在AC所在的直线上.(1 )若ED与BC相交于点G 取AG的中点M连接MB MD当厶EFD纸片沿CA方向平移时(如图3),请你观察、测量MB MD的长度,猜想并写出MB与MD的数量关系,然后证明你的猜想;(2)在(1)的条件下,求出/ BMD的大小(用含a的式子表示),并说明当a =45°时,△ BMD是什么三角形?(3)在图3的基础上,将△ EFD纸片绕点C逆时针旋转一定的角度(旋转角度小于90°),此时△ CGD变成A CHD同样取AH的中点M,连接MB MD(如图4),请继续探究MB与MD 的数量关系和/ BMD的大小,直接写出你的猜想,不需要证明,并说明a为何值时,△ BMD为等边三角形•【答案】①④⑤.5.【解析】通过计算可以得知整个图形的面积为 可以把图形面积一分为二。

中考数学操作型问题专题复习

中考数学操作型问题专题复习

中考数学操作型问题专题复习初三第二轮复习专题二:操作型问题【知识梳理】操作型问题主要借助三角板、纸片等工具进行图形的折与展、割与补、平移与旋转等变换,通过动手操作和理性的思考,考查学生的空间想象、推理和创新能力。

解决这类问题需要通过观察、操作、比较、猜想、分析、综合、抽象和概括等实践活动和思维过程,灵活运用所学知识和生活经验,探索和发现结论,从而解决问题.关键是抓住图形变化中的不变性。

【课前预习】1、如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形,以上图形一定能被拼成的有 ( )A.1个 B.2个 C.3个 D.4个2.如图,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,那么展开后三角形的周长是 ( )A.2+ B.2+2 C.12 D..将两个形状相同的三角尺放置在一张矩形纸片上,按如图所示画线得到四边形ABCD,则四边形ABCD的形状是_______.【例题精讲】例1、动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图①所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q 也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为______.例2、如图,在一块正方形ABCD木板上需贴三种不同的墙纸,正方形EFCG部分贴A型墙纸,△ABE部分贴B型墙纸,其余部分贴C型墙纸.A型、B型、C型三种墙纸的单价分别为每平方米60元、80元、40元.【探究1】如果木板边长为2米,FC=1米,则一块木板用墙纸的费用需________元;【探究2】如果木板边长为1米,求一块木板需用墙纸的最省费用;【探究3】设木板的边长为a(a为整数),当正方形EFCG的边长为多少时,墙纸费用最省?如果用这样的多块木板贴一堵墙(7×3平方米)进行装饰,要求每块木板A型的墙纸不超过1平方米,且尽量不浪费材料,则需要这样的木板多少块?例3、如下图,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片如图②,量得它们的斜边长为10 cm,较小锐角为30°,再将这两张三角形纸片摆成如图③的形状,使点B、C、F、D在同一条直线上,且点C与点F重合(在图③至图⑥中统一用F表示).小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.(1)将图③中的△ABF沿BD向右平移到图④的位置,使点B与点F重合,请你求出平移的距离.(2)将图③中的△ABF绕点F顺时针方向旋转30°到图⑤的位置,A1F交DE于点G,请你求出线段FG的长度. (3)将图③中的△ABF沿直线AF翻折到图⑥的位置,AB1交DE于点H,请证明:AH=DH.例4.如图所示,有一张长为5,宽为3的矩形纸片ABCD,要通过适当的剪拼,得到一个与之面积相等的正方形.(1)该正方形的边长为______(结果保留根号);(2)现要求只能用两条裁剪线,请你设计一种裁剪的方法,在图中画出裁剪线,并简要说明剪拼的过程.【巩固练习】1、七巧板是我们祖先的一项卓越创造,用它可以拼出多种图形.请你用七巧板中标号为①②③的三块板(如图①)经过平移、旋转拼成图形.(1)拼成矩形,在图②中画出示意图;(2)拼成等腰直角三角形.在图③中画出示意图.注意:相邻两块板之间无空隙,无重叠;示意图的顶点画在小方格的顶点上.2、如图,△ABC是直角三角形,∠ACB=90°.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).①作△ABC的外接圆,圆心为O;②以线段AC为一边,在AC的右侧作等边△ACD;③连接BD,交⊙O于点E,连接AE.(2)综合与运用:在你所作的图中,若AB=4,BC=2,则:①AD与⊙O的位置关系是_______.②线段AE的长为_______.【课后作业】班级姓名一、必做题:1、如图,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形,又能拼成三角形和梯形的是( )2、如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;…,根据以上操作,若要得到2 011个小正方形,则需要操作的次数是( )A.669 B.670 C.671 D.6723、如图,从边长为(a+4) cm的正方形纸片中剪去一个边长为(a+1) cm的正方形(a0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ) A.(2a2+5a)cm2 B.(3a+15) cm2 C.(6a+9)cm2 D.(6a+15)cm24、请将含60°顶角的菱形分割成至少含一个等腰梯形且面积相等的六部分,用实线画出分割后的图形.5.如图,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0).(1)请直接写出点A关于y轴对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A,B、C为顶点的平行四边形的第四个顶点D的坐标.6、如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°,正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.(1)请在所给的图中,用尺规画出点A在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S.二、选做题:7、在二行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点),在每一种翻动方式中,骰子不能后退.开始时骰子如图①那样摆放,朝上的点数是2;最后翻动到如图②所示的位置,此时骰子朝上的点数不可能是下列数中的( )A.5 B.4 C.3 D.18、正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=b(b2a),且边AD和AE在同一直线上.小明发现:当b=a时,如图①,在BA上选取中点G,连接FG和CG,移动△FAG和△CBG的位置可构成正方形FGCH. (1)类比小明的剪拼方法,请你就图②和图③两种情形分别画出剪拼成一个新正方形的示意图.⑵要使(1)中所剪拼的新图形是正方形须满足BG:AE= .9、阅读下面的材料:小伟遇到这样一个问题,如图①,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O.若梯形ABCD的面积为1,试求以AC、BD、AD+BC的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题,他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC、BD、AD+BC的长度为三边长的三角形(如图②).请你回答:图②中△BDE的面积等于_______.参考小伟同学思考问题的方法,解决下面的问题:如图③,△ABC的三条中线分别为AD、BE、CF.(1)在图③中利用图形变换画出并指明以AD、BE、CF的长度为三边长的一个三角形(保留画图痕迹);(2)若△ABC的面积为1,则以AD、BE、CF的长度为三边长的三角形的面积等于_______.。

2023年中考数学总复习:动手操作与运动变换型问题

2023年中考数学总复习:动手操作与运动变换型问题

2023年中考数学总复习:动手操作与运动变换型问题【中考展望】1.对于实践操作型问题,在解题过程中学生能够感受到数学学习的情趣与价值,经历“数学化”和“再创造”的过程,不断提高自己的创新意识与综合能力,这是《全日制义务教育数学课程标准(实验稿)》的基本要求之一,因此,近年来实践操作性试题受到命题者的重视,多次出现.2.估计在今年的中考题中,实践操作类题目依旧是出题热点,仍符合常规题型,与三角形的全等和四边形的性质综合考查.需具备一定的分析问题能力和归纳推理能力.图形的设计与操作问题,主要分为如下一些类型:1.已知设计好的图案,求设计方案(如:在什么基本图案的基础上,进行何种图形变换等).2.利用基本图案设计符合要求的图案(如:设计轴对称图形,中心对称图形,面积或形状符合特定要求的图形等).3.图形分割与重组(如:通过对原图形进行分割、重组,使形状满足特定要求).4.动手操作(通过折叠、裁剪等手段制作特定图案).解决这样的问题,除了需要运用各种基本的图形变换(平移、轴对称、旋转、位似)外,还需要综合运用代数、几何知识对图形进行分析、计算、证明,以获得重要的数据,辅助图案设计.另外,由于折叠操作相当于构造轴对称变换,因此折叠问题中,要充分利用轴对称变换的特性,以获得更多的图形信息.必要时,实际动手配合上理论分析比单纯的理论分析更为快捷有效.从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的.动态问题一般分两类,一类是代数综合题,在坐标系中有动点,动直线,一般是利用多种函数交叉求解.另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考查.所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分.【方法点拨】实践操作问题:解答实践操作题的关键是要学会自觉地运用数学知识去观察、分析、抽象、概括所给的实际问题,揭示其数学本质,并转化为我们所熟悉的数学问题.解答实践操作题的基本步骤为:从实例或实物出发,通过具体操作实验,发现其中可能存在的规律,提出问题,检验猜想.在解答过程中一般需要经历操作、观察、思考、想象、推理、探索、发现、总结、归纳等实践活动过程,利用自己已有的生活经验和数学知识去感知发生的现象,从而发现所得到的结论,进而解决问题.动态几何问题:第1页共25页。

2019年最新中考数学专题复习:动手操作与运动变换型问题-知识讲解(基础)及答案解.析

2019年最新中考数学专题复习:动手操作与运动变换型问题-知识讲解(基础)及答案解.析

中考冲刺:动手操作与运动变换型问题—知识讲解(基础)【中考展望】1.对于实践操作型问题,在解题过程中学生能够感受到数学学习的情趣与价值,经历“数学化”和“再创造”的过程,不断提高自己的创新意识与综合能力,这是《全日制义务教育数学课程标准(实验稿)》的基本要求之一,因此,近年来实践操作性试题受到命题者的重视,多次出现.2.估计在今年的中考题中,实践操作类题目依旧是出题热点,仍符合常规题型,与三角形的全等和四边形的性质综合考查.需具备一定的分析问题能力和归纳推理能力.图形的设计与操作问题,主要分为如下一些类型:1.已知设计好的图案,求设计方案(如:在什么基本图案的基础上,进行何种图形变换等).2.利用基本图案设计符合要求的图案(如:设计轴对称图形,中心对称图形,面积或形状符合特定要求的图形等).3.图形分割与重组(如:通过对原图形进行分割、重组,使形状满足特定要求).4.动手操作(通过折叠、裁剪等手段制作特定图案).解决这样的问题,除了需要运用各种基本的图形变换(平移、轴对称、旋转、位似)外,还需要综合运用代数、几何知识对图形进行分析、计算、证明,以获得重要的数据,辅助图案设计.另外,由于折叠操作相当于构造轴对称变换,因此折叠问题中,要充分利用轴对称变换的特性,以获得更多的图形信息.必要时,实际动手配合上理论分析比单纯的理论分析更为快捷有效.从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的.动态问题一般分两类,一类是代数综合题,在坐标系中有动点,动直线,一般是利用多种函数交叉求解.另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考查.所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分.【方法点拨】实践操作问题:解答实践操作题的关键是要学会自觉地运用数学知识去观察、分析、抽象、概括所给的实际问题,揭示其数学本质,并转化为我们所熟悉的数学问题.解答实践操作题的基本步骤为:从实例或实物出发,通过具体操作实验,发现其中可能存在的规律,提出问题,检验猜想.在解答过程中一般需要经历操作、观察、思考、想象、推理、探索、发现、总结、归纳等实践活动过程,利用自己已有的生活经验和数学知识去感知发生的现象,从而发现所得到的结论,进而解决问题.动态几何问题:1、动态几何常见类型(1)点动问题(一个动点)(2)线动问题(二个动点)(3)面动问题(三个动点)2、运动形式平移、旋转、翻折、滚动3、数学思想函数思想、方程思想、分类思想、转化思想、数形结合思想4、解题思路(1)化动为静,动中求静(2)建立联系,计算说明(3)特殊探路,一般推证【典型例题】类型一、图形的折叠1.如图所示,一个平行四边形纸片ABCD中,E,F分别为BC,CD边上的点,将纸片沿AE,EF折叠,使B,C 的对应点B′,C′及点E在同一直线上,则∠AEF=________.【思路点拨】纸片沿AE折叠,折叠前后的两个图形关于直线AE对称,所以△AEB与△AEB′全等,对应角相等.同理沿EF 折叠的两个三角形的对应角也相等.【答案】∠AEF=90°.【解析】解: 由轴对称的性质,知∠AEB=∠AEB′,∠CEF=∠C′EF,而∠AEB+∠AEB′+∠CEF+∠C′EF=180°.所以∠AEF-∠AEB′+∠C′EF=90°.【总结升华】图形的折叠实质上就是轴对称的一种变形应用.解题时应抓住折叠前后的图形全等找出对应关系.举一反三:【变式】如图所示,已知四边形纸片ABCD ,现需将该纸片剪拼成一个与它面积相等的平行四边形纸片,如果限定裁剪线最多有两条,能否做到:________ (用“能”或“不能”填空).若填“能”,请确定裁剪线的位置,并说明拼接方法;若填“不能”,请简要说明理由.【答案】解:能.如图所示,取四边形ABCD 各边的中点E ,F ,G ,H ,连接EG ,FH ,交点为O .以EG ,FH 为裁剪线,EG ,FH 将四边形ABCD 分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四部分,拼接时图中的Ⅰ不动,将Ⅱ,Ⅳ分别绕E ,H 旋转180°,将Ⅲ平移,拼成的四边形OO 1O 2O 3即为所求.沿CA 方向平移,将点C 平移到点A 位置.类型二、实践操作2.如图,在等腰梯形ABCD 中AB ∥CD,AB =高CE =对角线AC 、BD 交于H ,平行于线段BD 的两条直线MN 、RQ 同时从点A 出发沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、G ;当直线RQ 到达点C 时,两直线同时停止移动.记等腰梯形ABCD 被直线MN 扫过的面积为1S ,被直线RQ 扫过的面积为2S ,若直线MN 平移的速度为1单位/秒,直线RQ 平移的速度为2单位/秒,设两直线移动的时间为x 秒.(1)填空:∠AHB =____________;AC =_____________; (2) 若213S S =,求x ;(3) 若21S mS =,求m 的变化范围.【思路点拨】(1) 如例2图-1所示,平移对角线DB,交AB的延长线于P.则四边形BPCD是平行四边形,BD=PC,BP=DC因为等腰梯形ABCD,AB∥CD,所以AC=BD. 所以AC=PC.又高CE=AB=所以AE=EP=所以∠AHB=90°AC=4;⑵直线移动有两种情况:32x<<及322x≤≤,需要分类讨论.①当32x<<时, 有2214S AGS AF⎛⎫==⎪⎝⎭. ∴213S S≠②当322x≤≤时,先用含有x的代数式分别表示1S,2S,然后由213S S=列出方程,解之可得x的值; (3) 分情况讨论:①当32x<<时, 214SmS==.②当322x≤≤时,由21S mS=,得()222188223xSmS x--===2123643x⎛⎫--+⎪⎝⎭.然后讨论这个函数的最值,确定m的变化范围. 【答案与解析】解: (1) 90°,4;(2)直线移动有两种情况:302x <<和322x ≤≤. ①当302x <<时,∵MN ∥BD,∴△AMN ∽△ARQ,△ANF ∽△AQG. 2214S AG S AF ⎛⎫== ⎪⎝⎭. ∴213S S ≠ ②当322x ≤≤时, 如例2图-2所示,CG =4-2x,CH =1,14122BCDS ∆=⨯⨯=. ()22422821CRQ x S x ∆-⎛⎫=⨯=- ⎪⎝⎭2123S x =,()22882S x =-- 由213S S =,得方程()22288233x x --=⨯, 解得165x =(舍去),22x =. ∴x =2. (3) 当302x <<时,m =4 当322x ≤≤时, 由21S mS =,得()2288223x m x --==2364812x x -+-=2123643x ⎛⎫--+ ⎪⎝⎭. M 是1x 的二次函数, 当322x ≤≤时, 即当11223x ≤≤时, M 随1x 的增大而增大. 当32x =时,最大值m =4. 当x =2时,最小值m =3.∴3≤m ≤4. 【总结升华】本题是一道几何代数综合压轴题,重点考查等腰梯形, 相似三角形的性质,二次函数的增减性和最值及分类讨论,由特殊到一般的数学思想等的综合应用.解题时,(1)小题,通过平移对角线,将等腰梯形转化为等腰三角形,从而使问题得以简化,是我们解决梯形问题常用的方法. (2) 小题直线移动有两种情况:302x <<及322x ≤≤,需要分类讨论.这点万不可忽略,解题时用到的知识点主要是相似三角形面积比等于相似比的平方.(3) 小题仍需要分情况讨论.对于函数2123643m x ⎛⎫=--+ ⎪⎝⎭,讨论它的增减性和最值是个难点. 讨论之前点明我们把这个函数看作“M 是1x的二次函数”对顺利作答至关重要.3.已知等边三角形纸片ABC 的边长为8,D 为AB 边上的点,过点D 作DG ∥BC 交AC 于点G ,DE ⊥BC 于点E ,过点G 作GF ⊥BC 于点F ,把三角形纸片ABC 分别沿DG 、DE 、GF 按图①所示方式折叠.点A 、B 、C 分别落在A ′、B ′、C ′处.若点A ′、B ′、C ′在矩形DEFG 内或其边上.且互不重合,此时我们称A B C '''△ (即图中阴影部分)为“重叠三角形”.(1)若把三角形纸片ABC 放在等边三角形网格图中(图中每个小三角形都是边长为l 的等边三角形),点A 、B 、C 、D 恰好落在网格图中的格点上,如图②所示,请直接写出此时重叠三角形A ′B ′C ′的面积;(2)实验探究:设AD 的长为m ,若重叠三角形A ′B ′C ′存在,试用含m 的代数式表示重叠三角形A ′B ′C ′的面积,并写出m 的取值范围(直接写出结果,备用图供实验探究使用).【思路点拨】本题是折叠与对称类型操作题,折叠实质为对称变换,故轴对称的性质运用是解本类型题的关键.另外,本题对新概念“重叠三角形”的理解正确才能求得m 的取值范围. 【答案与解析】解:(1)重叠三角形A ′B ′C理由:如题图,△A ′B ′C ′是边长为2的等边三角形.122⨯=(2)用含m 的代数式表示重叠三角形A ′B ′C 2)m -,m 的取值范围是83≤m <4. 理由:如图(1),AD =m ,则BD =GC =8-m , 由轴对称的性质知DB ′=DB =8-m .DA ′=DA =m . ∴A ′B ′=DB ′-DA ′=8-m —m =2(4-m),由△ABC 是等边三角形及折叠过程知AA ′B ′C ′是等边三角形.2(4))m m -=-.212(4)))2A B C S m m m '''=⨯--=-△.以下求m 的取值范围:如图(1),若B ′与F 重合,则C ′与E 重合.由折叠过程知BE =EB ′=EF . CF =FC ′=FE .∴BE =EF =FC =83. ∵∠B =60°,BD =2BE =163, 168833AD =-=,即83m =.若83m <,如图(2),点B ′、C ′落在矩形DEFG 外,不合题意.∴83m ≥. 又由A ′B ′=2(4-m)>0,得m <4.∴m的取值范围是84 3m≤<.【总结升华】亲自操作实验有助于突破难点.举一反三:【高清课堂:图形的设计与操作及运动变换型问题例2 】【变式】阅读下面问题的解决过程:问题:已知△ABC中,P为BC边上一定点,过点P作一直线,使其等分△ABC的面积.解决:情形1:如图①,若点P恰为BC的中点,作直线AP即可.情形2:如图②,若点P不是BC的中点,则取BC的中点D,联结AP,过点D作DE∥AP交AC于E,作直线PE,直线PE即为所求直线.问题解决:如图③,已知四边形ABCD,过点B作一直线(不必写作法),使其等分四边形ABCD的面积,并证明.【答案】解:如图③,取对角线AC的中点O,联结BO、DO、BD,过点O作OE∥BD交CD于E,∴直线BE即为所求直线类型三、动态数学问题4.如图①,有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′.(1)如图②,将△ACD沿A′C′边向上平移,使点A与点C′重合,连接A′D和BC,四边形A′BCD是形;(2)如图③,将△ACD的顶点A与A′点重合,然后绕点A沿逆时针方向旋转,使点D、A、B在同一直线上,则旋转角为度;连接CC′,四边形CDBC′是形;(3)如图④,将AC边与A′C′边重合,并使顶点B和D在AC边的同一侧,设AB、CD相交于E,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由.【思路点拨】(1)利用平行四边形的判定,对角线互相平分的四边形是平行四边形得出即可;(2)利用旋转变换的性质以及直角梯形判定得出即可;(3)利用等腰梯形的判定方法得出BD∥AC,AD=CE,即可得出答案.【答案与解析】解:(1)平行四边形;证明:∵AD=AB,AA′=AC,∴A′C与BD互相平分,∴四边形A′BCD是平行四边形;(2)∵DA由垂直于AB,逆时针旋转到点D、A、B在同一直线上,∴旋转角为90度;证明:∵∠D=∠B=90°,A,D,B在一条直线上,∴CD∥BC′,∴四边形CDBC′是直角梯形;故答案为:90,直角梯;(3)四边形ADBC是等腰梯形;证明:过点B作BM⊥AC,过点D作DN⊥AC,垂足分别为M,N,∵有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′.∴△ACD≌△A′BC′,∴BM=ND,∴BD∥AC,∵AD=BC,∴四边形ADBC是等腰梯形.【总结升华】此题主要考查了图形的剪拼与平行四边形的判定和等腰梯形的判定、直角梯形的判定方法等知识,熟练掌握判定定理是解题关键.举一反三:【高清课堂:图形的设计与操作及运动变换型问题例1 】【变式】△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小,使变换后得到的△DEF与△ABC对应边的比为1∶2,则线段AC的中点P变换后对应的点的坐标为______.【答案】(322,)或(3-2-2,).5.如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).【思路点拨】根据图②判断出AB、BC的长度,过点B作BE⊥AD于点E,然后求出梯形ABCD的高BE,再根据t=2时△PAD 的面积求出AD的长度,过点C作CF⊥AD于点F,然后求出DF的长度,利用勾股定理列式求出CD的长度,然后求出AB、BC、CD的和,再根据时间=路程÷速度,计算即可得解.【答案】(4+2).【解析】解:由图②可知,t在2到4秒时,△PAD的面积不发生变化,∴在AB上运动的时间是2秒,在BC上运动的时间是4-2=2秒,∵动点P的运动速度是1cm/s,∴AB=2cm,BC=2cm,过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,则四边形BCFE是矩形,∴BE=CF,BC=EF=2cm,∵∠A=60°,∴BE=ABsin60°=2×=,AE=ABcos60°=2×=1,∴×AD×BE=3,即×AD×=3,解得AD=6cm,∴DF=AD-AE-EF=6-1-2=3,在Rt△CDF中,CD===2,所以,动点P运动的总路程为AB+BC+CD=2+2+2=4+2,∵动点P的运动速度是1cm/s,∴点P从开始移动到停止移动一共用了(4+2)÷1=4+2(秒).故答案为:(4+2).【总结升华】本题考查了动点问题的函数图象,根据图②的三角形的面积的变化情况判断出AB、BC的长度是解题的关键,在梯形的问题中,作过梯形的上底边的两个顶点的高线是常见的辅助线.。

中考数学专题复习动手操作问题

中考数学专题复习动手操作问题

中考数学专题复习——动手操作问题一、知识网络梳理在近几年的中考试题中,为了体现教育部关于中考命题改革的精神,出现了动手操作题.动手操作题是让学生在通过实际操作的基础上设计有关的问题.这类题对学生的能力有更高的要求,有利于培养学生的创新能力和实践能力,体现新课程理念.操作型问题是指通过动手测量、作图(象)、取值、计算等实验,猜想获得数学结论的探索研究性活动,这类活动完全模拟以动手为基础的手脑结合的科学研究形式,需要动手操作、合情猜想和验证,不但有助于实践能力和创新能力的培养,更有助于养成实验研究的习惯,符合新课程标准特别强调的发现式学习、探究式学习和研究式学习,鼓励学生进行“微科研”活动,提倡要积极引导学生从事实验活动和实践活动,培养学生乐于动手、勤于实践的意识和习惯,切实提高学生的动手能力、实践能力的指导思想.因此.实验操作问题将成为今后中考的热点题型.题型1动手问题此类题目考查学生动手操作能力,它包括裁剪、折叠、拼图,它既考查学生的动手能力,又考查学生的想象能力,往往与面积、对称性质联系在一起.题型2证明问题动手操作的证明问题,既体现此类题型的动手能力,又能利用几何图形的性质进行全等、相似等证明.题型3探索性问题此类题目常涉及到画图、测量、猜想证明、归纳等问题,它与初中代数、几何均有联系.此类题目对于考查学生注重知识形成的过程,领会研究问题的方法有一定的作用,也符合新课改的教育理论。

二、知识运用举例(一)动手问题例1、将正方形纸片两次对折,并剪出一个菱形小洞后展开铺平,•得到的图形是()例2.把一张长方形的纸片按如图所示的方式折叠,EM、FM为折痕,折叠后的C点落在B′M或B′M的延长线上,那么∠EMF的度数是()A.85°B.90°C.95°D.100°例3、如图(1)所示,用形状相同、大小不等的三块直角三角形木板,恰好能拼成如图(2)所示的四边形ABCD,若AE=4,CE=3BE,•那么这个四边形的面积是___________(二)证明问题例4、如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图3至图6中统一用F表示)(图1)(图2)(图3)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH ﹦DH(图4)(图5)(图6)(三)探索性问题例6、在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).图1 图2 图3 请解答以下问题:(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论.(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP ?(3)设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系. 设直线BM'为y kx=,当M BC'∠=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上(E、F分别为AB、CD中点)?为什么?三、知识巩固训练1、如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B'位置,A点落在A'位置,若AC⊥A'B',则∠BAC的度数是。

30中考数学压轴题之 “动手操作与方案设计问题”

30中考数学压轴题之 “动手操作与方案设计问题”
可以拼成四种四边形,如图所示. 如图①,两对角线之和为 10+10=20(cm);
如图②,AA′= 162+62=2 73,
∴两对角线和为(2 73+6)cm;
如图③,BC= 122+82=4 13,∴两对角线和为(4 13+8); 如图④,∵12×AB×OC′=12×AC′×BC′,
解析:
(1)当 1≤x≤8 时,每平方米的售价应为:
y=4000-(8-x)×30=30x+3760 (元/平方米),
当 9≤x≤23 时,每平方米的售价应为:
y=4000+(x-8)×50=50x+3600(元/平方米). ∴y=3500xx+ +33766000( (19≤≤xx≤≤82) 3),
方案设计型问题是设置一个实际问题的情景,给出若干信息,提出解决问题的要求,寻 求恰当的解决方案,有时还给出几个不同的解决方案,要求判断其中哪个方案最优。方案 设计型问题主要考查考生的动手操作能力和实践能力。方案设计型问题,主要有以下几种 类型:
(1)讨论材料,合理猜想——设置一段讨论材料,让考生进行科学的判断、推理、证明; (2)画图设计,动手操作——给出图形和若干信息,让考生按要求对图形进行分割或设计 美观的图案; (3)设计方案,比较择优——给出问题情境,提出要求,让考生寻求最佳解决方案。
180
(1)求m的值; (2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元, 问有多少种购买方案?并求出每月最多处理污水量的吨数。
解析:
(1)由 90 万元购买 A 型号的污水处理设备的台数与用 75 万元购买 B
型号的污水处理设备的台数相同,即可得:
90 75 m =m-3,解得
利用方程(组)、不等式、函数进行方案设计 图形剪拼类方案设计 图形有关的方案设计 实际应用型的方案设计 立体图形与平面图形之间的相互转化

中考数学试题分项版解析汇编第期专题操作性问题含解析3

中考数学试题分项版解析汇编第期专题操作性问题含解析3

专题13 操作性问题一、选择题1.(2017浙江衢州第7题)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线,则对应选项中作法错误的是( )A .①B .②C .③D .④ 【答案】C.考点:基本作图.2. (2017湖北武汉第10题)如图,在Rt ABC ∆中,90C ∠=o,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C . 6D .7 【答案】C【解析】试题解析:①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.故选C.考点:画等腰三角形.3.(2017甘肃兰州第13题)如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(0.5DE BC==米,,,A B C三点共线),把一面镜子水平放置在平台上的点G处,测得15CG=米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得3CG=米,小明身高 1.6EF=米,则凉亭的高度AB约为( )A.8.5米B.9米C.9.5米D.10米【答案】A.【解析】试题解析:由题意∠AGC=∠FGE,∵∠ACG=∠FEG=90°,∴△ACG∽△FEG,∴AC CG EF GD∴151.53AC=∴AC=8,∴AB=AC+BC=8+0.5=8.5米. 故选A .点:相似三角形的应用.4.(2017浙江嘉兴第9题)一张矩形纸片ABCD ,已知3AB =,2AD =,小明按所给图步骤折叠纸片,则线段DG 长为( )A .2B .22C .1D .2【答案】A .考点:矩形的性质. 二、填空题1. (2017浙江衢州第14题)如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是 .【答案】a+6.考点:图形的拼接.2. (2017浙江衢州第16题)如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限。

中考数学专题复习:操作性问题【多套合集,原卷+解析版】

中考数学专题复习:操作性问题【多套合集,原卷+解析版】

【答案】(1)答案见解析;(2)答案见解析. 【解析】 试题分析:(1)根据等腰直角三角形的性质即可解决问题.
考点:作图—应用与设计作图. 8 .( 2016 甘 肃 省 兰 州 市 ) 如 图 , 已 知 ⊙O , 用 尺 规 作 ⊙O 的 内 接 正 四 边 形 ABCD .( 写 出 结 论 , 不 写 作 法 , 保 留 作 图 痕 迹 , 并 把 作 图 痕 迹 用 黑 色 签 字 笔 描黑)


【答案】到线段两个端点的距离相等的点在线段的垂直平分线上(A、 B 都在线段 PQ 的垂 直平分线 上).
理由:如图,∵PA=PQ,PB=PB,∴点 A、点 B 在线段 PQ 的垂直平分线上,∴直线 AB 垂
.
.
.
.
直平分线段 PQ,∴PQ⊥AB.
考点:作图—基本作图. 2.(2016 四川省凉山州)如图,在边长为 1 的正方形网格中,△ABC 的顶点均在格点上, 点 A、B 的坐标分别是 A(4,3)、B(4,1),把△ABC 绕点 C 逆时针旋转 90°后得到 △A1B1C. (1)画出△A1B1C,直接写出点 A1、B1 的坐标; (2)求在旋转过程中,△ABC 所扫过的面积.
(3)求△A1B1C1 与△A2B2C2 重合部分的面积.
4.(2016 四川省广安市)在数学活动课上,老师要求学生在 5×5 的正方形 ABCD 网格中 (小正方形的边长为 1)画直角三角形,要求三个顶点都在格点上,而且三边与 AB 或 AD 都不平行.画四种图形,并直接写出其周长(所画图象相似的只算一种).
.
.
.
.
考点:作图—复杂作图.学科网 7.(2016 江西省)如图,六个完全相同的小长方形拼成了一个大长方形,AB 是其中一个小 长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺, ②保留必要 的画图痕迹.[来源:学#科#网]

中考数学专题之动手操作问题

中考数学专题之动手操作问题

动手操作问题新课标明确指出,动手实践、自主探索与合作交流是学生学习数学的重要方式,中考操作探究型试题集知识的可操作性、探究性、趣味性、创新性于一体,倡导同学们在多解化的操作活动中体验数学的发现过程,感悟数学思想方法及其本质。

【重点题型讲析】例1、如图,在Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为____________。

例2、如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H。

(1)求BE的长; (2)求Rt△ ABC与△DEF重叠部分的面积。

例3、如图,在Rt△ABC中,∠BAC=90°,如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,那么旋转的角度等于________。

【课堂练习】1、如图,在△ABC 中,∠ACB=90°,∠ABC=30°,AB=2,将△ABC 绕直角顶点C 逆时针旋转60°得△A ′B ′C ,则点B 转过的路径长为__________。

2、如图,在矩形ABCD 中,点E 、F 分别在边AB 、BC 上,且AE=31AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF=2BE ②PF=2PE③FQ=4EQ ④△PBF 是等边三角形。

其中正确的是_____________。

3、如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B ′重合,AE 为折痕,则EB ′=__________。

4、如图,AC 是矩形ABCD 的对角线,⊙O 是ABC 的内切圆,现将矩形ABCD 按如图所示的方法折叠,使点D 与点O 重合,折痕为FG ,点F 、G 分别在边AD 、BC 上,连接OG 、DG ,若OG ⊥DG ,且⊙O 的半径长为1,则下列结论不成立的是_______________。

中考数学专题复习实验操作试题【含解析】

中考数学专题复习实验操作试题【含解析】

实验操作专题实验操作型试题是近几年中考数学的热点试题,这类试题就是让同学们在通过实际操作的基础上设计的问题,需要动手操作(包括裁剪、折叠、拼图等),合情猜想和验证,它既考查学生的动手能力,又考查学生的想象能力,不但有利于培养同学们的创新能力和实践能力,更有助于养成实验研究的习惯,体现新课程理念.,符合新课程标准强调的发现式学习、探究式学习和研究式学习,因此,实验与操作问题将成为今后中考的热点题型. 一、折叠类例1 如图1,小娟将一条直角边长为1的一个等腰直角三角形纸片(图①),沿它的对称轴折叠1次后得到一个等腰直角三角形(图②),再将图②的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形(图③),则图③中的等腰直角三角形的一条腰长为________;同上操作,若小娟连续将图①的等腰直角三角形折叠n次后所得到的等腰直角三角形(图n+1)的一条腰长为_______.分析:已知图①的等腰直角三角形的直角边长为1,即112-⎛⎝⎭,则可以利用勾股定理求出其斜边的长为,通过第一次折叠后,图①的等腰直角三角形的斜边的一半即变成图②的直角边,即图②的直角边长为2,即212-⎛⎫⎪⎪⎝⎭,同理,可以得到图③的直角边长为12,即312-⎛⎫⎪⎪⎝⎭,图④的直角边长为4,即412-⎛⎝⎭,由此可以猜想第n个图形中的等腰直角三角形的腰长为12n-⎛⎫⎪⎪⎝⎭,折叠n次后所得到的等腰直角三角形,即如图n+1的一条腰长为11n+-⎝⎭,即n⎝⎭.解:图③中的等腰直角三角形的一条腰长为12;将图①的等腰直角三角形折叠n次后所得到的第n+1个等腰直角三角形的一条腰长为n⎝⎭.①②③n+1图112评注:求解本题时,一定要动手操作,经过大胆地猜想、归纳与验证,即可获得正确的结果.跟踪训练:1. 如图,将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线(直角三角形的中位线)剪去上面的小直角三角形.将留下的纸片展开,得到的图形是( )2. 如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .10 cm 2B .20 cm 2C .40 cm 2D .80 cm 2第2题图二、裁剪类例2 如图2,有一块边长为1米的正方形钢板,被裁去长为14米、宽为16米的矩形两角,现要将剩余部分重新裁成一正方形,使其四个顶点在原钢板边缘上,且P 点在裁下的正方形一边上,问:如何剪裁使得该正方形面积最大?最大面积是多少?图2 图3分析:本题是一道与正方形裁剪有关的操作型问题,解决问题首先要画出草图,然后从A B CD 第1题图 A B C D3图形中寻找解决问题的模型.如何剪裁使得该正方形面积最大,实际上是确定正方形顶点的位置,可借助相似三角形的性质构造方程解决.解:如图3,设原正方形为ABCD ,正方形EFGH 是要裁下的正方形,且EH 过点P .设AH=x ,则BE=AH=x ,AE=1-x .∵MP∥AH,∴△EMP∽△EAH.∴111641x x x--=-.整理,得12x 2-11x+2=0.解得114x =,223x =. 当14x =时,221151448EFGH S ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭正方形.当23x =时,22225513398EFGH S ⎛⎫⎛⎫=+-=< ⎪ ⎪⎝⎭⎝⎭正方形.∴当BE =DG =14米,BF =DH =34米时,裁下的正方形面积最大,最大面积为58米2. 评注:解决问题利用相似三角形的性质构造方程,并借助一元二次方程的知识解决,既体现数形结合思想,又体现了方程思想.例3 如图4,将正方形沿图中虚线(其中x <y )剪成①②③④四块图形,用这四块图形恰能拼成一个......矩形(非正方形). (1) 画出拼成的矩形的简图; (2) (2)求xy的值.分析:拼接时抓住相等的边进行拼接(重合),再利用面积相等写出等式,合理整理就可求出(2)的值.解:(1)如图4.(2)解法一:由拼图前后的面积相等,得[(x+y)+y]y=(x+y)2.∵y ≠0,整理,得01)(2=-+yx yx .解得215-=yx (负值不合题意,舍去).解法二:由拼成的矩形可知yxy y x y x =+++)(.以下同解法一. 跟踪训练:3.如图,△ABC 是一张等腰直角三角形纸板,∠C=90°,AC=BC=2.图4 ②④① ③4(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图①),比较甲、乙两种剪法,哪种剪法所得的正方形面积更大?请说明理由.(2)图①中甲种剪法称为第1次剪取,记所得的正方形面积为S 1;按照甲种剪法,在余下的△ADE 和△BDF 中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形的面积和为S 2 (如图②),则S 2= ;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方第3题图形的面积和为S 3 (如图③);继续操作下去…则第10次剪取时,S 10= . (3)求第10次剪取后,余下的所有小三角形的面积和.三、探究类例4 如图6,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图②),量得他们的斜边长为10 cm ,较小锐角为30°,再将这两张三角纸片摆成如图③的形状,但点B ,C ,F ,D 在同一条直线上,且点C 与点F 重合(在图③至图④中统一用F 表示). 小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.(1)将图③中的△ABF 沿BD 向右平移到图④的位置,使点B 与点F 重合,请你求出平移的距离;(2)将图③中的△ABF 绕点F 顺时针方向旋转30°到图⑤的位置,A 1F 交DE 于点G ,请你求出线段FG 的长度;(3)将图③中的△ABF 沿直线AF 翻折到图⑥的位置,AB 1交DE 于点H ,请说明AH =DH.图6分析:(1)根据题意,由对图形的操作过程可知图形平移的距离就是线段BC 的长. (2)依题意运用勾股定理求解.EBQ④ ⑥ ⑤ ③ ②①5(3)要说明AH =DH ,由于∠FAB 1=∠EDF =30°,可知FD =FA ,EF =FB =FB 1,从而得到AE =DB 1,可以说明△AHE ≌△DHB 1,问题得解.解:(1)图形平移的距离就是线段BC 的长.∵在Rt△ABC 中,斜边长为10cm ,∠BAC=30°,∴BC =5cm ,即平移的距离为5cm.(2)∵∠A 1FA =30°,∴∠GFD=60°,∠D=30°.∴∠FGD =90°.在Rt △EFD 中,ED =10 cm ,∵FD =,∴FGcm. (3)在△AHE 与△DHB 1中,∵∠FAB 1=∠EDF =30°,∴FD =FA ,EF =FB =FB 1, ∴FD -FB 1=FA -FE ,即AE =DB 1.又∵∠AHE =∠DHB 1,∴△AHE ≌△DHB 1,∴AH =DH.评注:动手操作的证明问题,既体现此类题型的动手能力,又能利用几何图形的性质进行全等、相似等证明,同时,从动手操作中学到知识,从操作中得到结论,这些都是借助图形的平移、旋转,读者应注意多加体会.跟踪训练: 4.,我们把这样的矩形叫做黄金矩形.(1)操作:请你在如图所示的黄金矩形ABCD (AB >AD )中,以短边AD 为一边作正方形AEFD ; (2)探究:在(1)中的四边形EBCF 是不是黄金矩形?若是,请予以证明;若不是,请说明理由;(3)归纳:通过上述操作及探究,请概括出具有一般性的结论(不需要证明).第4题图参考答案1. 此题我们可以用一张纸按图示过程动手剪一剪,选A.2. 剪下来的图形展开前是一个直角三角形,它的面积是所求菱形面积的四分之一;易知直角三角形的两直角边分别为2,25,∴菱形面积为4S △=4×21×2×25=10,故选A.3.解: (1)如图甲,由题意,得AE=DE=EC.因为AC=2,所以EC=1,S 正方形CFDE=1.如图乙,设MN=x ,则由题意,得AM=MQ=PN=NB=MN=x.33x x ∴==解得,28(39PNMQ S ∴==正方形.6又819>∴甲种剪法所得的正方形的面积更大 注:图甲可另解为:由题意得点D ,E ,F 分别为AB,AC,BC 的中点,112ABCCFDE S S ==正方形.(2)212S =,10912S =. (3)探索规律可知112n n S -=,剩余三角形的面积和为()12109911112212422S S S ⎛⎫-+++=-++++= ⎪⎝⎭. 4.解:(1)如图所示.第4题图(2)四边形EBCF 是黄金矩形.证明:由题意知,215-=AB AD ,所以AD=215-AB .因为四边形ADFE是正方形,所以AD=AE.所以在四边形EBCF中215215215-=---=-=AB ABAB ADAFAB BC BF ,所以四边形EBCF 是黄金矩形. (3)在黄金矩形内以短边为边作一个正方形后,所得到的另外一个四边形是矩形,而且是黄金矩形.。

2020年中考数学考点分类讲解-操作设计型问题(含解析)

2020年中考数学考点分类讲解-操作设计型问题(含解析)
例2 (2020·内蒙古乌兰察布)将正方体骰子(相对面上的点数分别为1和6、2和5、3 和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针 方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连 续完成10次变换后,骰子朝上一面的点数是( )
【评析】这道中考题取材于现实生活中的图案,这一极富现实情景的几何图形,对学生 来说并不陌生,但他们能否有一双慧眼来发现生活中的数学问题,是解决问题的关键.因 此,教师的教学应该密切联系蕴涵丰富数学思想的现实生活,培养学生发现问题、提出问 题、分析问题、解决问题的能力.
考点二:判断图案变换后的位置
这类中考题,题面提供一个图案,给出变换的条件,要求考生根据心智操作活动来变换 图案,并判断出图案的最终位置.这类题在中考试卷中通常是以选择题和填空题的形式出 现,属于中等题.
【评析】这道中考题设计新颖、独特,以骰子的翻转、旋转为载体,将变换的规律(三 次变换为一周期)蕴含其中.当然学生在解答问题时,不可能在考场上实际操作实物来完 成,只能通过心智操作活动来进行图形的变换操作,从中发现规律,得出结论.本题考查了 学生的阅读理解能力和空间想象能力,具有很强的探索性和创造性,能较好地激发学生的探 究欲望.这道新颖而不怪癖的中考题,为我们编制试题提供了一种切实可行的方案.
2020年中考数学考点分类讲解
操作设计型问题
一.专题诠释
第一部分 讲解部分
操作设计型中考题是指与设计几何图案有关的问题,它把代数计算与几何作图融为一
体,新颖独特,是中考试题中一道亮丽的风景.这类问题格调清新,不但有利于考查学生的
识图能力、计算能力、动手操作能力和空间想象能力,而且能够充分体现义务教育阶段《数

中考数学动手操作型问题试题汇编(附答案)

中考数学动手操作型问题试题汇编(附答案)

中考数学动手操作型问题试题汇编(附答案) 以下是查字典数学网为您推荐的中考数学动手操作型问题试题汇编(附答案),希望本篇文章对您学习有所帮助。

中考数学动手操作型问题试题汇编(附答案)10.(2019湖北荆州,10,3分)已知:顺次连结矩形各边的中点,得到一个菱形,如图①;再顺次连结菱形各边的中点,得到一个新的矩形,如图②;然后顺次连结新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2019个图形中直角三角形的个数有( )A.8048个B.4024个C.2019个D.1066个【解析】本题是规律探索题。

观察图①有4个直角三角形,图②有四个直角三角形,图③有8个直角三角形,图④有8个直角三角形,图⑤图⑥有12个直角三角形可以发现规律图②图④图⑥图⑧4 8 12 16直角三角形的个数,依次增加4个,并且图形中直角三角形的个数是图形序号的2倍,所以第2019个图形中直角三角形的个数有4024个【答案】B【点评】对于规律探索题,关键是寻找变化图形中的不变的规律。

(2019哈尔滨,题号22分值6)22. 图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可);【解析】本题考查网格中的作图能力、勾股定理以及等腰三角形性质.(1)可以分三种情况来考虑:以A(B)为直角顶点,过A(B)作AB垂线(点C不能落在格点上)以C为直角顶点:斜边AB=5,因此两直角边可以是3、4或、;(2)也分可分三情况考虑:以A(B)为等腰三角形顶点:以A(B)为圆心,以5为半径画弧来确定顶点C;以C为等腰三角形顶点:作AB垂直平分线连确定点C(点C 不能落在格点上).【答案】【点评】本题属于实际动手操作题,主要考查学生对格点这一新概念的理解能力、直角三角形、等腰三角形的概念及性质的掌握情况和分类讨论的数学思想,有一定的难度,容易错解和漏解.25. ( 2019年四川省巴中市,25,9)①如图5,在每个小方格都是边长为1个单位长度的正方形方格纸中有△OAB,请将△OAB绕点O顺时针旋转900,画出旋转后的△OAB②折纸:有一张矩形纸片如图6,要将点D沿某直线翻折1800,恰好落在BC边上的D处,请在图中作出该直线.【解析】①如图△OAB即是旋转900后的图形,②折痕为直线DD的垂直平分线EF.【答案】画图见解析【点评】本题是对图形变换中的旋转及轴对称变换的考查.24.(2019广安中考试题第24题,8分)(8分)现有一块等腰三角形纸板,量得周长为32cm,底比一腰多2cm。

初中数学专题复习动手操作题(含解答)

初中数学专题复习动手操作题(含解答)

专题复习六 动手操作题一、知识系统网络在近几年的中考试题中,为了体现教育部关于中考命题改革的精神,出现了动手操作题,动手操作题是让学生在通过实际操作的基础上设计有关的问题.这类题对学生的能力有更高的要求,有利于培养学生的创新能力和实践能力,体现课改的新理念. 二、中考题型例析 1.动手问题例1 (2004·柳州)如图,将一张正方形纸片两次对折,然后剪下含30•°的一块纸片,30︒30︒(由下往上折)(由左往右折)则这块纸片完全展开后所得图形是( )DC B A解析:本题主要考查学生的动手操作能力,用一张正方形的纸按题意提供的方法操作,不难发现打开的图形为A. 答案:A. 2.证明问题例2 (2003·昆明)操作:如图1,在正方形ABCD 中,P 是CD 上一动点(与C 、D 不重合)使三角尺的直角顶点与点P 重合,并且一条直角边始终经过点B,•另一直角边与正方形的某一边所在直线交于点E.探究:(1)观察操作结果,哪一个三角形与△BPC 相似?并证明你的结论;(2)当点P 位于CD 的中点时,你找到的三角形与△BPC 的周长比是多少?DCB A321PE DCAP EDC BA(1) (2) (3)PED CB AP EDC BA(4) (5)分析:通过操作不难画出下面的图形.本题主要考查直角三角形的判定,•相似三角形的性质.解题关键是通过操作画出图形.解:(1)如图2,另一条直角边与AD 交于点E,则△PDE ∽△BCP. 证明:在△PDE 和△BCP 中,∵∠1+∠3=90°,∠2+∠3=90°, ∴∠1=∠2.又∠PDE=∠BCP=90°, ∴△PDE ∽△BCP.或:如图3,若另一条直角边与BC 的延长线交于点E,同理可证△PCE ∽△BCP. 或:如图3,若另一条直角边与BC 的延长线交于点E,同理可证△BPE ∽△BCP. (2)如图4,当点P 位于CD 的中点时,若另一条直角边与AD 交于点E,则12PD BC =. 又∵△PDE ∽△BCP,∴PDE 与△BCP 的周长比为1:2.或:如图5,若另一条直角边与BC 的延长线交于点E,同理可证△PCE•与△BCP 的周长比是1:2.若:若一条直角边与BC 的延长线交于点E.∵BE BP =,又△BPE ∽△BCP,∴△BPE 与△BCP3.拼图问题例3 (2004·陕西)如图,有一腰长为5cm,底边长为4cm 的等腰三角形纸片,沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,•用这两个直角三角形纸片拼成的平面图形中有________个不同的四边形.箭开分析:本题通过对图形的组合,考查了学生的动手操作能力和画图能力以及计算能力,培养了学生思维的周密性,经过组合可得到四种不同的四边形,如图:55552222(4)(3)(2)(1)52答案:4. 4.探索问题例4 (2003·新疆)如图,∠APC 称为圆内角(角的顶点在圆内且与圆心不重合)(1)请同学们按以下步骤作图:①用圆规作⊙O;②在⊙O 内任作一个圆内角∠APC(∠APC ≤90°); ③延长AP 、CP 交⊙O 于B 、D 两点; ④连结OA 、OB 、OC 、OD.(2)按此作图步骤再重复作一个图形,对应点用A ′、B ′、C ′、D ′、P ′、O ′来表示. (3)用量角器量出两图中的下列各角的度数. ∠APC=_______,∠A ′P ′C ′=_________. ∠AOC=_______,∠A ′O ′C ′=_________. ∠BOD=_______,∠B ′O ′D ′=_________.(4)根据上面量得的两组数据猜想:∠APC 与∠AOC 、∠BOD 有什么等量关系? (5)根据你所作的(1)中的图证明你的猜想.(6)用语言描述你证明的结果.AC分析:本题是集画图、测量、猜想、证明、归纳于一体的探究题.由特殊猜想一般的结论,再进行推理证明.对于考查学生注重知识形成的过程,•领会研究问题的方法有一定的作用,也符合新课改的教育理念.解:(1) (2)C' C能按照题目要求作出上面两图.(3)能用量角器量出各角的度数.(4)能猜想得出∠APC=12∠AOC+12∠BOD.(5)证明,如图,连结BC.∵∠APC=∠PBC+∠PCB且∠PBC=12∠AOC,∠PCB=12∠DOB,∴∠APC=12∠AOC+12∠DOB.(6)结论:圆内角等于它所对的弧的圆心角与这个圆内角的对顶角所对的弧的圆心角和的一半.专题训练一、选择题1.(2003·黑龙江)将一长方形纸片按如图的方式折叠,BC 、BD 为折痕,•则∠CBD 的度数为( ).A.60°B.75°C.90°D.95°2.(2003·陕西)将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是( ).A.矩形B.三角形C.梯形D.菱形3.(2004·烟台)4根火柴棒形成如图所示的象形“口”字,平移火柴棒后,原图形能变成的象形汉字是( ).CDBA4.(2003·杭州)要判断如图,△ABC 的面积是△PBC 面积的几倍,•只用一把仅有刻度的直尺,需要度量的次数最少是( ).A.1次;B.2次;C.3次;D.3次以上 二、填空题1.(2004·南昌)将一块正六形硬纸片(如左图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见右图),需在每一个顶点处剪去一个四边形,例如右图中的四边形AGA ′H,那么∠GA ′H 的大小是_______度. 2.(2004·杭州)给出一个正方形,请你动手画一画,将它剖分为n 个小正方形.•那么,通过实验与思考,你认为这样的自然数n 可以取的所有值应该是_______.3.(2004·哈尔滨)如图,在Rt △ABC 中,∠ACB=90°,∠A<∠B,CM•CPB A M CD B A是斜边AB 的中线,将△ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,•那么∠A•等于______度. 三、解答题1.(2004·烟台)如图,现有两个边长比为1:2的正方形ABCD 与A ′B ′C•′D ′,已知点B 、C 、B ′、D ′在同一直线上,且点C 与点B ′重合,•请你利用这两个正方形,通过截割、平移、旋转的方法,拼出两个相似比为1:3的三角形. 要求:(1)借助原图拼图. (2)简要说明方法.(3)指明相似的两个三角形.C(C ')D 'A 'DC 'BA2.(2004·安徽)正方形通过剪切可以拼成三角形,方法如图 (1): 仿上用图示的方法,解答下列问题: 操作设计:(1)如图 (2),对直角三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形.(2)如图 (3),对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形.(1)②②①①(3)(2)3.(2004·宜昌)请你将一张长方形的纸对折、再对折,然后随意撕去一小部分,•再将纸展开,把得到的图案画在试卷上,从对称的角度来说,•你画出的这个图形有哪些几何特征.答案:一、1.C 2.D 3.B 4.A二、1.60 2.n=4或n ≥6的自然数 3.30 三、1.方法:①连结BD 并延长交A ′D ′于点E,交C ′D ′延长线于点F,•②将△DA ′E 绕点E 旋转至△FD ′E 位置,则△BAD ∽△FC ′B,且相似比为1:3.FC(C ')D 'A 'EDC 'BA2.解:要题有多种拼法,下面提供几例作为参考.(1)方法一:中点中点②②①①方法二:②中点中点②①①(2)方法一:③③②中点中点②①①方法二:③③②中点中点②①①方法三:⑤⑤④④③③②中点中点②①①注:本题是开放题,(1)、(2)各给6分,其他拼接方法正确的可参照给分. 3.答:画图正确,是轴对称图形又是中心对称图形,(至少)有两条对称轴.。

中考数学专题复习操作型问题课件

中考数学专题复习操作型问题课件

D3(-3,5) C(1,4)
A(-1,2)
D1(5,3) B(3,1)
D2(1,-1)
2015 •湖北荆州、荆门中考题改编
(变式)在平面直角坐标系中,已知A(-1,2), B(3,1),点C在抛物线 y 1 ( x 3)(x 1) 的对
4
称轴上,点D在此抛物线上,是否存在这样的点C 与点D,使得以A、B、C、D为顶点的四边形是平 行四边形?若存在,请写出点D的坐标;若不存在, 请说明理由.
中考专题复习 ——操作型问题
操作型问题是指通过动手实验, 获得数学结论的研究型活动.
一、课前导学 1.求tan15°的值; 2.已知△BCD的面积是1,求AD的长.
15°
D
C
B
A
30°
3. 如图,有两块全等的含30°角的三角板,把它 们相等的边拼在一起(两块三角板不重叠),最 多可以拼出多少种不同形状的图形?
30°
30°
翻折
旋转
2
2
30°
1
30°
30°
30°
33
xx
3x 2
30°
30°
2
30° 30°
x
3x
30° 30°
筝形
把两组邻边分别相等 的四边形叫筝30° 形
30°
二、典例导悟 例1(2015•潍坊)如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去 一个彼此全等的筝形,再沿图中的虚线折起, 做成一个无盖的直三棱柱纸盒,求该纸盒侧 面积的最大值.
ABCE是菱形?
(2)在(1)的条件下,若菱形ABCE的面积
为2,求CD的长.
C
B
D
A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动手操作型问题10.(2012湖北荆州,10,3分)已知:顺次连结矩形各边的中点,得到一个菱形,如图①;再顺次连结菱形各边的中点,得到一个新的矩形,如图②;然后顺次连结新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2012个图形中直角三角形的个数有( ) A .8048个 B .4024个 C .2012个 D .1066个【解析】本题是规律探索题。

观察图①有4个直角三角形, 图②有四个直角三角形,图③有8个直角三角形,图④有8个直角三角形,图⑤图⑥有12个直角三角形…… 可以发现规律图②→图④→图⑥→图⑧→…… 4 → 8 → 12 → 16 →……直角三角形的个数,依次增加4个,并且图形中直角三角形的个数是图形序号的2倍, 所以第2012个图形中直角三角形的个数有4024个 【答案】B【点评】对于规律探索题,关键是寻找变化图形中的不变的规律。

(2012·哈尔滨,题号22分值 6)22. 图l 、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A 和点B 在小正方形的顶点上.(1)在图1中画出△ABC(点C 在小正方形的顶点上),使△ABC 为直角三角形(画一个 即可);(2)在图2中画出△ABD(点D 在小正方形的顶点上),使△ABD 为等腰三角形(画一个即可);图① 图② 图③【解析】本题考查网格中的作图能力、勾股定理以及等腰三角形性质. (1)可以分三种情况来考虑:以A (B)为直角顶点,过A (B)作AB垂线(点C不能落在格点上) 以C 为直角顶点:斜边AB=5,因此两直角边可以是3、4或5、20; (2)也分可分三情况考虑:以A (B )为等腰三角形顶点:以A (B )为圆心,以5为半径画弧来确定顶点C ; 以C为等腰三角形顶点:作AB 垂直平分线连确定点C (点C不能落在格点上).【答案】【点评】本题属于实际动手操作题,主要考查学生对格点这一新概念的理解能力、直角三角形、等腰三角形的概念及性质的掌握情况和分类讨论的数学思想,有一定的难度,容易错解和漏解.25. ( 2012年四川省巴中市,25,9)①如图5,在每个小方格都是边长为1个单位长度的正方形方格纸中有△OAB,请将△OAB 绕点O 顺时针旋转900,画出旋转后的△OA′B′②折纸:有一张矩形纸片如图6,要将点D 沿某直线翻折1800,恰好落在BC 边上的D′处,请在图中作出该直线.【解析】①如图△OA′B′即是旋转900后的图形,②折痕为直线DD′的垂直平分线EF.图5图6【答案】画图见解析【点评】本题是对图形变换中的旋转及轴对称变换的考查.24.(2012广安中考试题第24题,8分)(8分)现有一块等腰三角形纸板,量得周长为32cm ,底比一腰多2cm 。

若把这个三角形纸板沿其对称轴剪开,拼成一个四边形,请画出你能拼成的各种四边形的示意图,并计算拼成的各个四边形的两条对角线长的和。

思路导引:动手操作,注意分类讨论,进行长度计算问题,联系平行四边形的性质:对角线互相平分,以及直角三角形中的勾股定理分别对每一种情况进行解答解析:设AB=AC=xcm ,则BC=(x+2)cm ,根据题意得出x +2+2x=32,解得x=10。

因此AB=AC=10cm ,BC=12cm ,过点A 做AD⊥BC 于点D ,∵AB=AC,AD⊥BC,∴BD=CD=6cm,,可以拼成4种四边形,如图所示:图(1)中两条对角线之和是10+10=20(cm ),图(2)中两条对角线之和是(6)(cm ),图(3)中,BO=两条对角线之和是(8)(cm ),图(4)中,S △ABC =12AC×BC=12AB×OC,所以OC=AC BC AB ⨯=245, 两条对角线之和是245×2+10=19.6(cm );点评:几何图形的有关剪切、拼接的动手操作问题,往往多解,因此应当分类讨论,分类个数根据得出的几何图形的判定方法以及性质进行,图形的有关计算,往往联系直角三角形的性质,勾股定理,锐角三角函数进行.专项四 动手操作型问题(38 )22.(2012北京,22,5)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点P '.点A B ,在数轴上,对线段AB 上的每个点进行上述操作后得到线段A B '',其中点A B ,的对应点分别为A B '',.如图1,若点A 表示的数是3-,则点A '表示的数是 ;若点B '表示的数是2,则点B 表示的数是 ;已知线段AB 上的点E 经过上述操作后得到的对应点E '与点E 重合,则点E 表示的数是 ;(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(00m n >>,),得到正方形A B C D ''''及其内部的点,其中点A B ,的对应点分别为A B '',。

已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,求点F 的坐标。

【解析】(1)–3×13+1=0;设B 点表示的数为a ,13a +1=2,a =3;设点E 表示的数为a , 13a +1=a ,解得a =32(2)由点A 到A ’,可得方程组3102a m a m -+=-⎧⎨⨯+=⎩;由B 到B ’,可得方程组3202a m a n +=⎧⎨⨯+=⎩,解得12122a m n ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩设F 点的坐标为(x ,y ),点F ’与点F 重合得到方程组1122122x x y y⎧+=⎪⎪⎨⎪+=⎪⎩,解得14x y =⎧⎨=⎩,即F (1,4)【答案】(1)0,3,32(2)F (1,4)【点评】本题考查了根据给出的条件列出方程或方程组,并解方程组的知识。

五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.(2012北京,23,7)已知二次函数23(1)2(2)2y t x t x =++++ 在0x =和2x =时的函数值相等。

(1) 求二次函数的解析式;(2) 若一次函数6y kx =+的图象与二次函数的图象都经过点(3)A m -,,求m 和k 的值;(3) 设二次函数的图象与x 轴交于点B C ,(点B 在点C 的左侧),将二次函数的图象在点B C ,间的部分(含点B 和点C )向左平移(0)n n >个单位后得到的图象记为G ,同时将(2)中得到的直线6y kx =+向上平移n 个单位。

请结合图象回答:当平移后的直线与图象G 有公共点时,n 的取值范围。

【解析】利用已知条件求二次函数及一次函数解析式。

平移后的临界点讨论。

【答案】解:(1)由题意0x =和2x =时的函数值相等可知,233(1)22(2)222t t =+⨯++⨯+ 解得32t =-,∴二次函数的解析式为21322y x x =-++(2)∵二次函数图象必经过点A∴213(3)(3)622m =-⨯-+-+=- ∵一次函数y =kx +6的图象经过点A∴–3k +6= –6,∴k =4(3)由题意可知,点B C ,间的部分图象的解析式为()()1312y x x =--+,13x -≤≤ 则向左平移后得到的图象C 的解析式为()()312y x n x n =--+++113n x n ---≤≤此时平移后的解析式为46y x n =++由图象可知,平移后的直线与图象C 有公共点, 则两个临界的交点为()10n --,与()30n -, 则()0416n n =--++ 23n =()0436n n =-++ 6n = ∴263n ≤≤【点评】前两问都比较简单,第三问有一定难度,考察学生对于函数图象平移的理解,以及对于直线与抛物线位置关系的运用。

此题的关键在于临界点讨论需要同学们能够表示出临界点的坐标,带入直线解析式即可得到n 的取值范围。

24.(2012北京,24,7)在ABC △中,BA BC BAC =∠=α,,M 是AC 的中点,P 是线段BM上的动点,坐标为(3-n,0)将线段PA 绕点P 顺时针旋转2α得到线段PQ 。

(1) 若α=60︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数;(2) 在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小(用含α的代数式表示),并加以证明;(3) 对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围。

【解析】动点问题和几何变换结合 【答案】⑴30CDB ∠=︒⑵ 连接PC AD ,,易证APD CPD △≌△∴AP PC = ADB CDB ∠=∠ PAD PCD ∠=∠ 又∵PQ PA = ∴2PQ PC ADC CDB =∠=∠,,PQC PCD PAD ∠=∠=∠∴180PAD PQD PQC PQD ∠+∠=∠+∠=︒ ∴()360180APQ ADC PAD PQD ∠+∠=︒-∠+=︒ ∴1801802ADC APQ α∠=︒-∠=︒- ∴21802CDB α∠=︒- ∴90CDB α∠=︒-⑶ ∵90CDB α∠=︒-,且PQ QD =∴21802PAD PCQ PQC CDB α∠=∠=∠=∠=︒- ∵点P 不与点B M ,重合∴BAD PAD MAD ∠>∠>∠ ∴21802ααα>︒-> ∴4560α︒<<︒【点评】此题并没有考察常见的动点问题,而是将动点问题和几何变换结合在一起,应用一个点构造2倍角。

需要同学们注意图形运动过程中的不变量,此题可以用倒角(上述答案的方法)或是构造辅助圆C的方法解决。

25.(2012北京,25,8)在平面直角坐标系xOy 中,对于任意两点111()P x y ,与222()P x y ,的“非常距离”,给出如下定义:若1212||||x x y y --≥,则点1P 与点2P 的“非常距离”为12||x x -; 若1212||||x x y y -<-,则点1P 与点2P 的“非常距离”为12||y y -.例如:点1(12)P ,,点2(35)P ,,因为|13||25|-<-,所以点1P 与点2P 的“非常距离”为|25|3-=,也就是图1中线段1PQ 与线段2P Q 长度的较大值(点Q 为垂直于y 轴的直线1PQ 与垂直于x 轴的直线2P Q 的交点)。

相关文档
最新文档