统计学常用公式汇总
(完整版)统计学公式大全
(完整版)统计学公式大全统计学公式大全本文档旨在提供统计学领域常用的公式大全,便于大家在研究和实践中进行参考和应用。
描述统计学公式中心趋势度量1. 平均数(Mean):$\bar{x} =\frac{{\sum_{i=1}^{n}x_i}}{n}$2. 中位数(Median):若数据个数为奇数,中位数为排序后的中间值;若数据个数为偶数,中位数为排序后的中间两个值的平均值。
3. 众数(Mode):出现频率最高的数值。
离散趋势度量1. 方差(Variance):$Var(x) = \frac{{\sum_{i=1}^{n}(x_i - \bar{x})^2}}{n}$2. 标准差(Standard Deviation):$SD(x) = \sqrt{Var(x)}$3. 极差(Range):$Range(x) = \max(x) - \min(x)$分布形状度量1. 偏度(Skewness):$\text{Skewness} =\frac{{\sum_{i=1}^{n}(x_i - \bar{x})^3}}{n \cdot SD(x)^3}$2. 峰度(Kurtosis):$\text{Kurtosis} =\frac{{\sum_{i=1}^{n}(x_i - \bar{x})^4}}{n \cdot SD(x)^4}$ 推断统计学公式参数估计1. 样本均值的抽样分布标准差(Standard Error of the Mean):$SE(\bar{x}) = \frac{{SD(x)}}{\sqrt{n}}$2. 双侧置信区间公式(Confidence Interval):$\bar{x} \pm Z\cdot SE(\bar{x})$3. 样本比例的抽样分布标准差(Standard Error of Proportion):$SE(p) = \sqrt{\frac{{p(1-p)}}{n}}$4. 双侧置信区间公式(Confidence Interval):$p \pm Z \cdotSE(p)$假设检验1. 样本均值和总体均值的差异(t检验):$t = \frac{{\bar{x} -\mu}}{{SE(\bar{x})}}$2. 双侧拒绝域临界值(t分布):$t_{\text{critical}} = \pmt_{\alpha/2, df}$3. 样本比例和总体比例的差异(z检验):$z = \frac{{\hat{p} - p}}{{SE(p)}}$4. 双侧拒绝域临界值(z分布):$z_{\text{critical}} = \pmz_{\alpha/2}$回归分析公式简单线性回归模型1. 回归方程(Simple Linear Regression):$y = \beta_0 +\beta_1x + \epsilon$2. 线性预测公式(Simple Linear Regression):$\hat{y} =\hat{\beta}_0 + \hat{\beta}_1x$3. 斯皮尔曼秩相关系数(Spearman's Rank Correlation Coefficient):$r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$4. 相关系数的显著性检验(t检验):$t = \frac{r}{\sqrt{\frac{1 - r^2}{n-2}}}$结论本文档列举了统计学领域常用的公式,包括描述统计学中的中心趋势度量、离散趋势度量和分布形状度量,推断统计学中的参数估计和假设检验,以及回归分析中的简单线性回归模型等相关公式。
统计学常用公式
统计学常用公式统计学是一门研究数据收集、分析、解释和表达的科学。
在统计学中,有许多常用的公式被广泛应用于数据处理和推断分析。
本文将介绍一些统计学常用公式,并对其进行说明和用途解释。
一、描述统计学公式1. 平均值(Mean)平均值是一组数据的总和除以数据的个数,即:$\bar{X} = \frac{X_1 + X_2 + \cdots + X_n}{n}$其中,$\bar{X}$表示平均值,$X_i$表示第i个数据,n表示数据的个数。
2. 中位数(Median)中位数是将一组数据按照大小排列后,处于中间位置的数值。
当数据个数为奇数时,中位数即为排列后正中间的数;当数据个数为偶数时,中位数为排列后中间两个数的平均值。
3. 众数(Mode)众数是一组数据中出现频率最高的数值。
4. 标准差(Standard Deviation)标准差衡量数据的离散程度,其计算公式为:$SD = \sqrt{\frac{(X_1 -\bar{X})^2 + (X_2 -\bar{X})^2 + \cdots + (X_n -\bar{X})^2}{n-1}}$5. 方差(Variance)方差是标准差的平方,即:$Var = SD^2$6. 百分位数(Percentile)百分位数是指一组数据中某个特定百分比处的数值。
比如,第25百分位数是将一组数据从小到大排列后,处于前25%位置的数值。
二、概率与统计公式1. 随机变量期望(Expectation)随机变量期望是描述随机变量平均值的指标,也称为均值。
对于离散型随机变量X,其期望计算公式为:$E(X) = \sum_{i=1}^{n} X_i \cdot P(X_i)$对于连续型随机变量X,其期望计算公式为:$E(X) = \int_{-\infty}^{\infty} x \cdot f(x)dx$其中,$X_i$表示随机变量X的取值,$P(X_i)$表示对应取值的概率,$f(x)$表示X的概率密度函数。
统计学公式大全
3 i1 N3
峰度
(概念要点)
• 1. 数据分布扁平程度的测度 • 2. 峰度系数=3扁平程度适中 • 3. 偏态系数<3为扁平分布 • 4. 偏态系数>3为尖峰分布 • 5. 计算公式为
K Xi X 4 Fi
4 i1 N 4
时间序列的分类
时间序列
绝对数序列 相对数序列 平均数序列
时期序列 时点序列
线性模型法
(a和b的最小二乘估计)
1. 根据最小二乘法得到求解 a 和 b 的标准方程为
Ynab t tYa tb
t2
解得:b
ntY tY
nt 2 t2
a Y bt
2. 取时间序列的中间时期为原点时有 t=0,上
式可化简为
Y na tY bt 2
a Y
解得:
b
tY t2
增1% 长 绝对环 值 逐 比 = 期 增 增 1长 0 长 0前 速 1量 期 0度 0水
甲企业增长1%绝对值=500/100=5万元 乙企业增长1%绝对值=60/100=0.6万元
时间序列的构成要素与模型
(要点)
1. 构成因素
– 长期趋势 (Secular trend ) – 季节变动 (Seasonal Fluctuation ) – 循环波动 (Cyclical Movement ) – 不规则波动 (Irregular Variations )
3. 平均数时间序列
– 一系列平均数按时间顺序排列而成
绝对数序列的序时平均数
(计算方法)
时期序列
n
•
计算公 式:
Y Y1 Y2
Yn
Yi
i1
n
n
【例11.1】 根据表11.1中的国内生产总值 序列,计算各年度的平均国内生产总值
统计学公式汇总
统计学公式汇总统计学是研究数据收集、分析、解释和预测的一门学科。
在统计学中,有许多重要的公式被广泛应用于数据的处理和分析过程中。
本文将汇总一些常见的统计学公式,并简要介绍其应用场景和使用方法。
1. 均值(Mean)均值是统计学中最常用的概念之一,用于衡量一组数据的集中趋势。
对于一个样本集合,均值可以通过将所有观测值相加,然后除以样本容量来计算。
其数学公式如下:均值= ∑(观测值) / 样本容量2. 方差(Variance)方差是用于衡量一组数据的离散程度的指标。
方差越大,表示数据的离散程度越高;方差越小,表示数据的离散程度越低。
方差的计算公式如下:方差= ∑((观测值-均值)^2) / 样本容量3. 标准差(Standard Deviation)标准差是方差的平方根,用于衡量数据的离散程度,并且具有和原始数据相同的单位。
标准差的计算公式如下:标准差 = 方差的平方根4. 相关系数(Correlation Coefficient)相关系数用于衡量两组变量之间的线性关系强度和方向。
相关系数的取值范围在-1到1之间,其中-1表示完全的负相关,1表示完全的正相关,0表示无相关。
相关系数的计算公式如下:r = Cov(X,Y) / (σX * σY)5. 回归方程(Regression Equation)回归方程用于建立一个或多个自变量与因变量之间的线性关系。
回归方程的一般形式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn表示回归系数,ε表示模型的误差项。
6. 样本容量和置信水平(Sample Size and Confidence Level)在统计学中,样本容量和置信水平是决定实验或调查结果可靠性的重要因素。
样本容量是指从总体中抽取的样本大小,而置信水平是指对总体参数的估计值的信任程度。
统计学主要计算公式
统计学主要计算公式统计学是研究数据收集、整理、分析、解释和呈现的科学。
在统计学中,有许多重要的计算公式被广泛应用于统计分析和推断,以下是一些常见的计算公式:1.平均值:平均值是一组数据的总和除以数据的数量。
公式:平均值=总和/数据数量2.中位数:中位数是一组有序数据中的中间值,将数据从小到大排列,若数据的数量为奇数,则中位数为中间的数值;若数据的数量为偶数,则中位数为中间两个数值的平均值。
3.众数:众数是一组数据中出现最频繁的值。
4.方差:方差是一组数据与其平均值的差的平方的平均值。
公式: 方差= (∑(xi-平均值)^2) / 数据数量5.标准差:标准差是方差的平方根,用于衡量一组数据的离散程度。
公式:标准差=√方差6.相关系数:用于衡量两个变量之间线性相关程度的统计量。
公式: r = Cov(X,Y) / (SD(X) * SD(Y))其中,Cov(X,Y)表示X和Y的协方差,SD(X)和SD(Y)分别表示X和Y的标准差。
7.正态分布概率密度函数:正态分布是统计学中最重要的分布之一,其概率密度函数可以描述随机变量的分布。
公式:f(x)=(1/(σ*√(2π)))*e^(-(x-μ)^2/(2σ^2))其中,μ表示均值,σ表示标准差,e表示自然常数。
8.合并概率公式:用于计算多个事件同时发生的概率。
公式:P(A∩B)=P(A)*P(B,A)其中,P(A)表示A事件发生的概率,P(B,A)表示在A事件发生的条件下B事件发生的概率。
9.条件概率公式:用于计算在已知其中一事件发生的条件下另一事件发生的概率。
公式:P(A,B)=P(A∩B)/P(B)其中,P(A,B)表示在B事件发生的条件下A事件发生的概率。
10.抽样误差公式:用于计算样本估计值与总体参数之间的误差。
公式:误差=Z*(标准误差)其中,Z表示置信水平对应的标准正态分布的分位数,标准误差表示样本估计的标准差。
这些计算公式是统计学中非常重要的工具,用于帮助我们理解和解释数据的特征和关系。
统计学原理重要公式
一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxx加权调和平均数: ∑∑∑∑==fxf x m m x频数也称次数。
在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。
再如在3.14159265358979324中,…9‟出现的频数是3,出现的频率是3/18=16.7% 一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。
频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。
而频率则每个小组的频数与数据总数的比值。
在变量分配数列中,频数(频率)表明对应组标志值的作用程度。
频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。
掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中…正面朝上‟的频数是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上的频数为____.解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上的频数为60.一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxxx 代表算术平均数;∑是总和符合;f 为标志值出现的次数。
加权算术平均数是具有不同比重的数据(或平均数)的算术平均数。
比重也称为权重,数据的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关。
依据各个数据的重要性系数(即权重)进行相乘后再相加求和,就是加权和。
加权和与所有权重之和的比等于加权算术平均数。
加权平均数 = 各组(变量值 × 次数)之和 / 各组次数之和 = ∑xf / ∑f加权调和平均数: ∑∑∑∑==fxf xm m x加权算术平均数以各组单位数f 为权数,加权调和平均数以各组标志总量m 为权数但计算内容和结果都是相同的。
数理统计常用公式
数理统计常用公式1.样本均值的公式:样本均值(x̄)是在一组样本数据中,所有数据的总和除以样本数量的结果。
即:x̄=(x₁+x₂+x₃+...+x̄)/n其中,x₁、x₂、x₃等为样本数据,n为样本数量。
2.总体均值的公式:总体均值(μ)是在一个总体中,所有数据的总和除以总体数量的结果。
在样本数据无法覆盖总体数据的情况下,可以通过样本均值来估计总体均值。
即:μ=(x₁+x₂+x₃+...+x̄)/N其中,x₁、x₂、x₃等为样本数据,N为总体数量。
3.样本方差的公式:样本方差(s²)是一组样本数据与其均值之差的平方和除以样本数量减一的结果。
即:s²=((x₁-x̄)²+(x₂-x̄)²+(x₃-x̄)²+...+(x̄-x̄)²)/(n-1)其中,x₁、x₂、x₃等为样本数据,x̄为样本均值,n为样本数量。
4.总体方差的公式:总体方差(σ²)是一组数据与其均值之差的平方和除以总体数量的结果。
在样本数据无法覆盖总体数据的情况下,可以通过样本方差来估计总体方差。
即:σ²=((x₁-μ)²+(x₂-μ)²+(x₃-μ)²+...+(x̄-μ)²)/N其中,x₁、x₂、x₃等为样本数据,μ为总体均值,N为总体数量。
5.样本标准差的公式:样本标准差(s)是样本方差的平方根。
即:s=√(s²)其中,s²为样本方差。
6.总体标准差的公式:总体标准差(σ)是总体方差的平方根。
即:σ=√(σ²)其中,σ²为总体方差。
7.相关系数的公式:相关系数(r)衡量了两个变量之间线性关系的强度和方向。
其计算公式为:r=Σ((x-x̄)*(y-ȳ))/(√(Σ(x-x̄)²)*√(Σ(y-ȳ)²))其中,x、y为两个变量的取值,x̄、ȳ分别为两个变量的均值,Σ表示求和。
统计学常用公式
统计学常用公式统计学是一门研究数据收集、整理、分析和解释的学科。
在统计学中,公式是非常重要的工具,用于计算和推导各种统计指标和结果。
下面是一些统计学中常用的公式,它们可以帮助我们理解和应用统计学的基本概念和方法。
1. 数据的中心趋势度量在统计分析中,我们经常需要了解数据的中心趋势,即数据的集中程度或平均水平。
以下是几个常用的中心趋势度量公式:- 平均值(Mean):一组数据中所有观测值的总和除以观测值的个数。
- 中位数(Median):将一组数据按照大小排序,位于中间位置的观测值。
- 众数(Mode):出现次数最多的观测值。
- 加权平均值(Weighted Mean):将每个观测值乘以相应的权重,然后求和并除以总的权重和。
2. 数据的离散程度度量除了了解数据集中在哪里,我们还需要了解数据的离散程度,即数据分散的程度。
以下是几个常用的离散程度度量公式:- 方差(Variance):一组数据与其平均值之差的平方的平均值。
- 标准差(Standard Deviation):方差的算术平方根。
- 平均绝对偏差(Mean Absolute Deviation):一组数据与其平均值之差的绝对值的平均值。
3. 数据的相关性度量在统计分析中,我们常常需要了解两个或多个变量之间的相关性。
以下是几个常用的相关性度量公式:- 协方差(Covariance):一组数据中两个变量之间的协方差。
协方差的正负表示两个变量是正相关还是负相关。
- 相关系数(Correlation Coefficient):协方差除以两个变量各自的标准差的乘积。
相关系数的取值范围为-1到1,越接近-1或1表示相关性越强。
4. 抽样误差估计在统计学中,我们通常只能对样本数据进行分析,从而推断总体的特征。
以下是几个常用的抽样误差估计公式:- 样本标准差(Sample Standard Deviation):类似于总体标准差,但在计算时使用样本数据。
- 样本均值(Sample Mean):类似于总体均值,但在计算时使用样本数据。
统计学原理常用公式
统计学原理常用公式1.样本均值公式:样本均值是用来估计总体均值的一种方法,公式为:\bar{x} = \frac{{\sum_{i=1}^n x_i}}{n}\]其中,\(\bar{x}\) 是样本均值,\(x_i\) 是第 \(i\) 个观察值,\(n\) 是样本容量。
2.样本方差公式:样本方差是用来估计总体方差的一种方法,公式为:s^2 = \frac{{\sum_{i=1}^n (x_i - \bar{x})^2}}{n-1}\]其中,\(s^2\) 是样本方差,\(x_i\) 是第 \(i\) 个观察值,\(\bar{x}\) 是样本均值,\(n\) 是样本容量。
计算样本方差时使用的是无偏估计公式。
3.标准差公式:标准差是样本方差的平方根,公式为:s = \sqrt{s^2}\]其中,\(s\)是样本标准差。
4.离差平方和公式:离差平方和是指每个观察值与均值之差的平方的总和,公式为:\sum_{i=1}^n (x_i - \bar{x})^2\]5.切比雪夫不等式:切比雪夫不等式给出了随机变量与其均值之间的关系,公式为:P(,X-\mu,\geq k\sigma) \leq \frac{1}{k^2}\]其中,\(X\) 是随机变量,\(\mu\) 是均值,\(\sigma\) 是标准差,\(k\) 是大于零的常数。
6.二项分布的期望值和方差公式:二项分布用于描述在\(n\)次独立重复试验中成功的次数的概率分布。
其期望值和方差分别为:E(X) = np\]Var(X) = np(1-p)\]其中,\(X\)是二项分布随机变量,\(n\)是试验次数,\(p\)是单次试验成功的概率。
7.正态分布的概率密度函数和累积分布函数公式:正态分布描述了大部分自然现象中的连续性随机变量的分布。
f(x) = \frac{1}{{\sqrt{2\pi}\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]F(x) = \frac{1}{2}\left[1 + \text{erf}\left(\frac{x -\mu}{\sqrt{2}\sigma}\right)\right]\]其中,\(x\) 是正态分布的随机变量,\(\mu\) 是均值,\(\sigma\) 是标准差,\(\text{erf}\) 是误差函数。
统计学公式汇总
统计学公式汇总(1) αβδμσνπρυt u F X s 2χ(2) 均数(mean ):nX nX X X X n∑=+⋅⋅⋅++=21式中X 表示样本均数,X 1,X 2,Xn为各观察值。
(3) 几何均数(geometric mean, G ):)lg (lg )lg lg lg (lg 121121nX n X X X X X X G n nn ∑--=+⋅⋅⋅++=⋅⋅⋅∙=式中G 表示几何均数,X 1,X 2,X n 为各观察值。
(4) 中位数(median, M )n 为奇数时,)21(+=n X Mn 为偶数时,2/][)12()2(++=n n XX M式中n 为观察值的总个数。
(5) 百分位数 )%(L xx f x n f iL P ∑-⋅+= 式中L为Px 所在组段的下限,f x 为其频数,i 为其组距,L f ∑为小于L各组段的累计频数。
(6) 四分位数(quartile, Q ) 第25百分位数P 25,表示全部观察值中有25%(四分之一)的观察值比它小,为下四分位数,记作Q L;第75百分位数P 75,表示全部观察值中有25%(四分之一)的观察值比它大,为上四分位数,记作Q U。
(7) 四分位数间距 等于上、下四分位数之差。
(8) 总体方差 NX 22)(μσ-∑=(9) 总体标准差 NX 2)(μσ-∑=(10)样本标准差 1/)(1)(222-∑-∑=--∑=n nX X n X X s (11)变异系数(coefficient of variation, CV ) %100⨯=X sCV (12)样本均数的标准误 理论值nX σσ=估计值ns s X =式中σ为总体标准差,s为样本标准差,n 为样本含量。
(13)样本率的标准误 理论值np )1(ππσ-=估计值np p s p )1(-=式中π为总体率,p 为样本率,n 为样本含量。
(14)总体率的估计:正态分布法,(n p p u p n p p u p /)1(,/)1(-⋅+-⋅-αα) 式中p为样本均数,s 为样本标准差,n 为样本含量。
统计学常用公式总结
心理统计常用公式总结1 、组数 K(总体分布为正态)( N 为数据个数, K 取近似整数)2 、算术平均数3 、中数4 、众数5 、加权平均数,其中 W i 为权数,其中为各小组的平均数, n i 为各小组人数6 、几何平均数,其中 n 为数据个数, X i 为数据的值7 、调和平均数8 、方差与标准差,其中9 、变异系数,其中 S 为标准差, M 为平均数10 、标准分数,其中 X 为原始数据,为平均数, S 为标准差11 、全距R=最大数-最小数12 、平均差13 、四分差,其中 L b 为该四分点所在组的精确下限, F b 为该四分点所在组以下的累加次数,和为该四分点所在组的次数, i 为组距, N 为数据个数14 、积差相关基本公式:,其中N 为成对数据的数目, S x 、 S y 分别为 X 和 Y 的标准差变形:差法公式:用估计平均数计算:用相关表计算:15 、斯皮尔曼等级相关,其中 D 为各对偶等级之差直接用等级序数计算:,其中 R X 、 R Y 分别为二变量各等级数有相同等级时:16 、肯德尔等级相关有相同等级:17 、点二列相关,其中是两个二分变量对偶的连续变量的平均数, p 、 q 是二分变量各自所占的比率, p+q=1 , S t 是连续变量的标准差18 、二列相关,其中 S T 与是连续变量的标准差与平均数, y 为 P 的正态曲线的高度19 、多系列相关,其中 P i 为每系列的次数比率, y 1 为每一名义变量下限的正态曲线高度,y h 为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数, S t 为连续变量的标准差20 、总体为正态,σ 2 已知:21 、总体为正态,σ 2 未知:22 、23 、24 、。
(完整word版)统计学常用公式
公式一1. 众数【MODE 】(1) 未分组数据或单变量值分组数据众数的计算未分组数据或单变量值分组数据的众数就是出现次数最多的变量值。
(2) 组距分组数据众数的计算对于组距分组数据,先找出出现次数最多的变量值所在组,即为众数所在组,再根据下面的公式计算计算众数的近似值。
下限公式: 1012M =L++i ∆⨯∆∆ 式中:0M 表示众数;L 表示众数的下线;1∆表示众数组次数与上一组次数之差;2∆表示众数组次数与下一组次数之差;i 表示众数组的组距。
上限公式:2012M =U-+i ∆⨯∆∆ 式中:U 表示众数组的上限。
2.中位数【MEDIAN 】(1)未分组数据中中位数的计算根据未分组数据计算中位数时,要先对数据进行排序,然后确定中位数的位置。
设一组数据按从小到大排序后为12N X X X ,,…,,中位数e M ,为则有:e N+M =X1()2当N 为奇数e N N +1221M =X +X 2⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭ 当N 为偶数(2)分组数据中位数的计算分组数据中位数的计算时,要先根据公式N / 2 确定中位数的位置,并确定中位数所在的组,然后采用下面的公式计算中位数的近似值:N=1m-1e m-S 2M =L+ii fd f ⨯∑式中:e M 表示中位数;L 表示中位数所在组的下限;m-1S 表示中位数所在组以下各组的累计次数;m f 表示中位数所在组的次数;d 表示中位数所在组的组距。
3.均值的计算【A VERAGE 】(1)未经分组均值的计算未经分组数据均值的计算公式为: 112n ++==nii x x x x x n n=∑…(2)分组数据均值计算分组数据均值的计算公式为: 11221121+++==+ki ik k i k kii x f x f x f x f x f f f f==+∑∑+4.几何平均数【GEOMEAN 】几何平均数是N 个变量值乘积的N 次方根,计算公式为:式中:G 表示几何平均数;∏表示连乘符号。
统计学计算公式大全
统计学计算公式大全统计学是数学中一个重要的分支,它利用分析数据,抽象出具有相似特征的概念,研究其变化规律、发展趋势,为决策提供重要的依据。
统计学涉及的范畴较广,涉及统计数据的收集、分析处理、描述抽象、模型建立、推理预测等数学计算技术,其中重要的组成部分就是计算公式,下面就是统计学计算公式大全。
一、抽样调查统计1、样本量的计算公式:n=N/ (1+N*e2/δ2)其中:n为样本量,N为总体量,e为期望的标准误差,δ为期望的置信度。
2、样本抽取a)取系统抽样公式:Pi=Di/n其中:Pi为抽取的概率,Di为分层抽样时的各层系统抽样量,n 为总体量。
b)层抽样公式:Di=ni/ni+N1+…+Nk其中:Di为分层抽样时的各层系统抽样量,ni为各层抽样量,N1+…+Nk为总体量。
3、数据分析a)差、方差、标准差极差X=Xmax-Xmin方差S2=G2S/(n-1)标准差S=根号[G2S/(n-1)]其中:Xmax,Xmin为所有样本数据的最大值和最小值,G1S和G2S分别为样本一阶矩和二阶矩,n为样本量。
b)值、中位数均值:X=G1S/n中位数:中位数=X((n+1)/2)其中:G1S为样本一阶矩,n为样本量。
c)分位数百分位数:Xp=(n+1)P/100其中:P为百分位数,n为样本量二、两个样本的比较1、大样本检验a) t检验t=X1-X2/S其中:X1,X2分别为样本1和样本2的均值,S为两个样本总体方差的平均值。
b) F检验F=S12/S22其中:S12,S22分别为样本1和样本2的方差。
2、小样本检验a) Z检验z=X1-X2/S其中:X1,X2分别为样本1和样本2的均值,S为样本1和样本2的总体标准差的平方根。
b)2检验χ2=∑[(Oi-Ei)2/Ei]其中:Oi,Ei分别为样本的实际频数和期望频数。
三、数据回归分析1、回归分析公式Y=a+bX其中:Y,X分别为回归变量,a,b分别为回归系数。
统计学原理重要公式
统计学原理重要公式1.样本均值公式:样本均值是样本数据的总和除以样本的大小。
它的公式是:$$ \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i $$其中,n是样本的大小,xi是第i个观测值。
2.总体均值公式:总体均值是从总体中取得的全部样本数据的总和除以总体的大小。
它的公式是:$$ \mu = \frac{1}{N} \sum_{i=1}^{N} x_i $$其中,N是总体的大小,xi是第i个观测值。
3.样本方差公式:样本方差是样本数据与样本均值差的平方和的平均值。
它的公式是:$$ s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 $$其中,n是样本的大小,xi是第i个观测值,$ \bar{x} $是样本均值。
4.总体方差公式:总体方差是总体数据与总体均值差的平方和的平均值。
它的公式是:$$ \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 $$其中,N是总体的大小,xi是第i个观测值,$ \mu $是总体均值。
5.样本标准差公式:样本标准差是样本方差的平方根。
它的公式是:$$ s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} $$其中,n是样本的大小,xi是第i个观测值,$ \bar{x} $是样本均值。
6.总体标准差公式:总体标准差是总体方差的平方根。
它的公式是:$$ \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} $$其中,N是总体的大小,xi是第i个观测值,$ \mu $是总体均值。
7.样本比例公式:样本比例是样本中具有一些特征的观测值的比例。
$$ p = \frac{x}{n} $$其中,n是样本的大小,x是具有特征的观测值的数量。
统计学原理重要公式大全
一.加权算术平均数和加权调和平均数的计算加权算术平均数:∑∑=fxf x 或 ∑∑=f f x x加权调和平均数: ∑∑∑∑==f xf xm m x频数也称次数。
在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。
再如在3.14159265358979324中,…9‟出现的频数是3,出现的频率是3/18=16.7% 一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。
频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。
而频率则每个小组的频数与数据总数的比值。
在变量分配数列中,频数(频率)表明对应组标志值的作用程度。
频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。
掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中…正面朝上‟的频数是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上的频数为____.解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上的频数为60.一.加权算术平均数和加权调和平均数的计算加权算术平均数:∑∑=f xf x 或 ∑∑=f f x xx 代表算术平均数;∑是总和符合;f 为标志值出现的次数。
加权算术平均数是具有不同比重的数据(或平均数)的算术平均数。
比重也称为权重,数据的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关。
依据各个数据的重要性系数(即权重)进行相乘后再相加求和,就是加权和。
加权和与所有权重之和的比等于加权算术平均数。
加权平均数 = 各组(变量值 × 次数)之和 / 各组次数之和 = ∑xf / ∑f加权调和平均数: ∑∑∑∑==fxf xmm x加权算术平均数以各组单位数f 为权数,加权调和平均数以各组标志总量m 为权数但计算内容和结果都是相同的。
统计常用公式函数大全
统计常用公式函数大全一、描述统计函数1. 平均值:用于计算一组数据的平均值。
公式为:$mean =\frac{1}{n}\sum_{i=1}^{n}x_i$2. 中位数:用于计算一组有序数据的中间值。
公式为:$median = \begin{cases}X[\frac{n+1}{2}], & \text{if n is odd} \\\frac{X[\frac{n}{2}] + X[\frac{n}{2}+1]}{2}, & \text{if n is even} \end{cases}$3. 众数:用于寻找一组数据中出现次数最多的值。
4. 极差:用于计算一组数据中最大值和最小值之间的差值。
公式为:$range = max(X) - min(X)$5. 方差:用于衡量一组数据的离散程度。
公式为:$variance = \frac{\sum_{i=1}^{n}(x_i - mean)^2}{n}$6. 标准差:用于衡量一组数据的离散程度,是方差的平方根。
公式为:$standard \ deviation = \sqrt{variance}$7. 百分位数:用于划分一组有序数据,表示小于某个特定百分比的值。
公式为:$percentile = \frac{(p/100)(n+1)}{100}$8. 相关系数:用于衡量两个变量之间的线性相关关系。
公式为:$correlation \ coefficient = \frac{cov(X, Y)}{nX_{std}Y_{std}}$9. 协方差:用于衡量两个变量之间的线性相关关系。
公式为:$cov(X, Y) = \frac{\sum_{i=1}^{n}(x_i - \overline{X})(y_i -\overline{Y})}{n}$10. 四分位数:用于将一组数据分为四个部分,每个部分包含相同数量的数据。
公式为:第1四分位数= $X[\frac{1}{4}(n+1)]$,第2四分位数 = $X[\frac{1}{2}(n+1)]$,第3四分位数 =$X[\frac{3}{4}(n+1)]$二、假设检验函数1. t检验:用于比较两组样本之间的平均值是否具有统计学差异。
数据分析入门:必须掌握的15个统计学公式
数据分析入门:必须掌握的15个统计学公式算数平均数通过算术平均数,可以求出一定观察期内预测目标的时间数列的算术平均数,以作为下期预测值。
调和平均数调和平均数又称倒数平均数,是变量倒数的算术平均数的倒数。
(1)简单平均式(2)加权平均式几何平均数几何平均数多用于计算平均比率和平均速度。
(1) 简单几何平均法(2) 加权几何平均法众数众数是指社会经济现象中最普遍出现的标志值。
从分布角度看,众数是具有明显集中趋势的数值。
L——众数所在组下限;U——众数所在组上限;▲1——众数所在组次数与其下限的邻组次数之差;▲2——众数所在组次数与其上限的邻组次数之差;d——众数所在组组距。
中位数中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据。
在数列中出现了极端变量值的情况下,用中位数作为代表值要比用算术平均数更好,因为中位数不受极端变量值的影响。
极差极差是指总体各单位的两个极端标志值之差。
R=最大标志值-最小标志值四分位差四分位差是指将各个变量值按大小顺序排列,然后将此数列分成四等份,所得第三个四分位上的值与第一个四分位上的值的差。
主要用于测度顺序数据的离散程度。
Q = Q3 − Q1其中:Q1的位置=(n+1)/4Q3的位置=3(n+1)/4方差/标准差方差和标准差也是根据全部数据计算的,它反映了每个数据与其均值相比平均相差的数值,因此它能准确地反映出数据的离散程度。
设总体方差为σ2,对于未经分组整理的原始数据,方差的计算公式为:对于分组数据,方差的计算公式为:方差的平方根即为标准差,其相应的计算公式为:(1) 未分组数据(2) 分组数据平均差平均差是总体各单位标志对其算术平均数的离差绝对值的算术平均数。
它综合反映了总体各单位标志值的变动程度。
平均差越大,则表示标志变动度越大,反之则表示标志变动度越小。
在资料未分组的情况下,平均差的计算公式为:变异系数变异系数又称“标准差率”,是衡量资料中各观测值变异程度的另一个统计量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学常用公式汇总
项目三统计数据的整理与显示
组距二上限一下限
a ) 组中值=(上限+下限)* 2
b ) 缺下限开口组组中值二上限一邻组组距/2
c ) 缺上限开口组组中值二下限+1/2邻组组距
例
按完成净产值分组(万元) 10以下 10— 20 20— 30 30— 40 40— 70 70以上
缺下限:组中值=10 —10/2=5 组
中值=(10+20) /2=15 组中值
=(20+30) /2=25 组中值=(30+40) /2=35 组中值=(40+70) /2=55
缺上限:组中值=70+30/2=85
项目四统计描述
i. 相对指标
1. 结构相对指标=各组(或部分)总量/总体总量
2. 比例相对指标=总体中某一部分数值/总体中另一部分数值
3. 比较相对指标=甲单位某指标值/乙单位同类指标值
4. 动态相对指标二报告期数值/基期数值
5. 强度相对指标二某种现象总量指标/另一个有联系而性质不同的现 象总量
指标
实际数= 实际完成程度% 计划数 计划规定的完成程度%
1实际提高百分数
IK =
1计划提高百分数
ii. 平均指标
1. 简单算术平均数:
2. 加权算术平均数
6. 计划完成程度相对指标
7. 计划完成程度(提高率)
100%
计划完成程度(降低率)
,_1实际提高百分数
K=
1计划提高百分数
iii. 变异指标
1. 全距=最大标志值-最小标志值
2. 标准差:简单c = ' J :
P
Jp(1 P)
成数的标准差
项目五
时间序列的构成分析
、平均发展水平的计算方法:
(1)由总量指标动态数列计算序时平均数
① 由时期数列计算
② 由时点数列计算
- a a
n
在连续时点数列的条件下计算(判断标志按日登记):a
在间断时点数列的条件下计算(判断标志按月/季度/年等登记): 若间断的间隔相等,则采用“首末折半法”计算。
公式为:
若间断的间隔不等,则应以间隔数为权数进行加权平均计算
(2)(选用)由相对指标或平均指标动态数列计算序时平均数 基本公式为:
式中:_c 代表相对指标或平均指标动态数列的序时平均数; a 代表分子数列的
序时平均数;
b 代表分母数列的序时平均数;
3.标准差系数:
a 1 a 2 2
1
a
n
2an1
a 1 a 2
a ? a 3
a
n 1 a
n
2
公式为:
4F
、(选用)平均增长量 二 ---------------------
逐期增长量的个数 计算平均发展速度的公式为:
x n ~X
三平均增长速度的计算
平均增长速度=平均发展速度-1( 100% 四增长1%的绝对值
=
逐期增长量 =报告期水平 前一期水平=a i ■, a i
=前期水平
环比增长速度 100 报告期水平 前一期水平 a i i a i
100
前一期水平100 a - 100
项目六统计指数
综合指数的计算与分析
(1)数量指标指数
q 1 P 0 q 。
P 0
此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。
( 5 p ° - q ° P 0)
该差额说明由于数量指标的变动对价值量指标影响的绝对数额。
(2)质量指标指数
q 1 P 1 q 1P 0
此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。
( q 1 pi - q 1 P 0)
此差额说明由于质量指标的变动对价值量指标影响的绝对数额。
(3)(选用)平均指标指数
逐期增长量之和 累积增长量
逐期增长量的个数
K q
复杂现象总体总量指标变动的因素分析 相对数变动分析:
绝对值变动分析:
项目七抽样推断
样本可能数目计算公式
加权算术平均数指数=
kq ° p o q °P o
加权调和平均数指数=
q i P i
q i P i = q o P o
q i P 。
v q i P i q 。
P o
q i P o
q i P i -
q o P o = ( q i P o -
q °P o )+ ( qi P i -
qp o )
1.相关系数
n xy x y
/ 2 2 2 2
、n x ( x) n y ( y)
2. 配合回归方程 y = a + bx
(1)重复抽样:
p
p (1
n p )
(2)不重复抽样:
2
(
1 n
p(1 p) n
n (1
N )
2.抽样极限误差 3总体区间估计:
总体平均数:x 总体成数:p
项目八
相关与回归分析(选用)
(重复与不重复的判断标志是否已知 N 的数值)
1.抽样平均误差:
n xy x y
b22
n x2( x)
a y bx
1 y a y b xy 3.估计标准误:Sy I n 2。