中值定理与导数习题
高等数学 第三章中值定理与导数的应用习题课
(5) (1 + x )α = 1 + αx +
α (α − 1)
2!
x2 + L+
α (α − 1)L (α − n + 1)
n!
x n + o( x n )
Ⅲ 导数的应用
一、函数的极值与单调性
1.函数极值的定义 . x ∈ U ( x0 , δ ), f ( x ) ≤ f ( x0 ), f ( x0 )为极大值. 为极大值.
0 ∞ 其它型: 其它型: ⋅ ∞ , ∞ − ∞ , 0 , 1 , ∞ , 转化为 “ ”型或“ ” 型 0 型或“ 型或 0 ∞
0 ∞ 0
二、泰勒公式
1.泰勒公式 .
如果函数在含有一点的开区间内具有直到(n+1)阶导数 阶导数 如果函数在含有一点的开区间内具有直到 f ′′( x0 ) f ( n) ( x0 ) 2 f ( x) = f ( x0 ) + f ′( x0 )( x − x0 ) + ( x − x0 ) + L+ ( x − x0 )n + Rn ( x) 2! n! ( n +1) f (ξ ) Rn ( x ) = ( x − x0 ) n+1 拉格朗日型余项 ( n + 1)!
x ∈ U ( x 0 , δ ), f ( x ) ≥ f ( x0 ), f ( x0 )为极小值 .
o
。
2.函数的驻点 .
f ′( x 0 ) = 0 则 x 0为 f ( x ) 的驻点。 的驻点。
3.函数的单调区间的判别 .
函数在[a,b]上连续 在(a,b)内可导 上连续,在 内可导. 函数在 上连续 内可导
第三章 微分中值定理与导数的应用
微分中值定理例3.1 证明方程322x x +=-有且仅有一实根.例3.2 设()f x 在[]0,a 上连续,在()0,a 内可导,且()0f a =,证明:存在一点()0,a ξ∈,使得()()0f f ξξξ'+=. 例3.4 证明当0>x 时,x x xx <+<+)1ln(1.习题3.11.选择题(1)函数()f x =).(A) []0,1 (B) [1,1]- (C) [2,2]- (D)34,55⎡⎤-⎢⎥⎣⎦ (2)下列函数在给定的区间上,满足拉格朗日中值定理条件的是( ) (A)()f x x =[]1,1- (B) ()cos f x x = []1,1-(C)1()f x x=[]1,1- (D)21,0()1,x x f x x x +≤⎧=⎨+>⎩ []1,1-(3)设()f x 连续可导,且()0f x =有5个不等实根,则()0f x '=至少有( )个实根. (A)5 (B) 1 (C)4 (D)3(4)设()f x 在[],a b 连续,在(),a b 内三阶可导,且()0f x =在(),a b 内有5个不等实根,则()0f x '''=至少有( )个实根.(A)0 (B) 1 (C)2 (D)3 2.填空题(1)设()(1)(2)(3)(4)f x x x x x x =----,则()0f x '=有 个实根. (2)对函数xy e =在[]0,1上应用拉格朗日中值定理,得到的ξ= .3.证明方程5321x x x ++=有且仅有一个正实根.4.证明多项式()33f x x x a =-+在[]0,1上至多有一个零点.5.设函数()f x 在闭区间[]0,1上可导,对[]0,1上的任意x 都有0()1f x <<,且对任意()0,1x ∈都有()1f x '≠,证明:在()0,1内有且仅有一个x 使得()f x x =.洛必达法则例3.8 求xx x x x tan tan lim2-→.例3.10 求极限0lim ln x x x +→⋅例3.11 求极限011lim tan x xx →⎛⎫-⎪⎝⎭例3.12 求极限 0lim xx x +→习题3.21.求下列极限 (1)0tan limsin x x x x x→-- (2)2arcsin limsin x x x x x→-(3)011lim ln(1)x x x →⎡⎤-⎢⎥+⎣⎦(4)lim nx x xe →+∞(其中n 是正整数)(5)sin sin limx ax ax a→-- (6)()111155lim0x ax a a x a→-≠-(7)02limsin x xx e exx x-→---(8)011lim sin x xx →⎛⎫-⎪⎝⎭(9)()tan21lim 2xx x π→- (10)()0lim sin xx x +→函数单调性与极值以及曲线凹凸性例3.19讨论22ln y x x =-的单调区间,并求极值例 3.20 设()()()()121,,f x x x x '=-+∈-∞+∞,在1,12⎛⎫⎪⎝⎭内讨论()f x 的单调性和曲线()y f x =凹凸性例3.21设()f x 有二阶连续导数,()0(0)0,lim1x f x f x→'''==,则( )(A ) (0)f 不是)(x f 的极值点,()0,(0)f 也不是曲线()y f x =的拐点;(B ) (0)f 是)(x f 的极值点,()0,(0)f 也是曲线()y f x =的拐点; (C ) ()0,(0)f 是曲线()y f x =的拐点;(D )(0)f 是)(x f 的极小值点.例3.24 当0x >时,证明不等式3sin 6xx x -<.习题3.41.选择题(1)下面说法正确的是( )(A)如果可导函数()f x 在(),a b 内单调增加,那么()0f x '>;(B)如果可导函数()f x 在0x 处有水平切线,那么()f x 在0x 处取得极值; (C)如果可导函数在(),a b 内只有唯一的驻点,那么该驻点一定是极值点; (D)如果可导函数()f x 在0x 处取得极值,那么()0f x '=.(2)函数()f x 在点0x x =处连续且取得极小值,则()f x 在0x 处必有( ). (A)0()0f x '=且0()0f x ''>; (B)0()0f x '=; (C)0()0f x '=或不存在; (D)0()0f x ''>. (4)曲线arctan y x x =的图形( )(A)在(),-∞+∞内是凹的; (B)在(),-∞+∞内是凸的; (C)在(),0-∞内是凸的,在()0,+∞内是凹的; (D)在(),0-∞内是凹的,在()0,+∞内是凸的. (5)函数21x y e +=的单调增区间为( )(A )(),-∞+∞ (B ) [)0,+∞ (C ) [)1,+∞ (D ) (],0-∞(6)设0a <,则当满足条件( )时函数 32()38f x ax ax =++为增函数.(A)2x <-; (B)20x -<<; (C)0x >; (D)2x <-或0x >. (7)设函数()f x 及()g x 都在0x x =处取得极大值,()()()F x f x g x =,则()F x 在0x x = 处( )(A)必取得极小值; (B)必取得极大值;(C)必不取得极值; (D)是否取得极值不能确定. 2.填空题(1) 函数331y x x =-+的单调减区间为 ; 曲线331y x x =-+的凹区间为 . (2)函数32()31f x x x =++在区间[]3,1-上的最小值为 . (3)设()f x 在[]15,x x 上有连续导数,且()f x '则()f x 在()15,x x 内的极小值点为(4)函数3()1f x x ax =-+在点1x =处取极小值,则a = . (5)方程3310x x -+=,有 个实根. 3.确定下列函数的单调区间.(1)223y x x =-+ (2)()cos 02y x x xπ=+≤≤(3)x y x e -=+ (4)y =4.讨论下列函数确定的曲线的凹凸性和拐点. (1)3223124y x x x =+-+ (2)()523539y x x =+-5.证明下列不等式:(1).证明:当1x >时,x e ex >.(2)证明:当01x <<时,22ln 1x x ->. (3)证明:当0x >时,()2ln 12xx x -<+.(4)证明:当02x π<<时,sin cos x x x >.(7)证明:当0x >时,13x≥-.6.求函数()32()11f x x =-+的极值. 7.求函数y x =在闭区间[]5,1-上的最大值和最小值.9.已知32()f x x ax bx =++在1x =处有极小值2-,求a 和b .10.当a 为何值时,函数1()sin sin 33f x a x x =+在3x π=处必有极值,它是极大值还是极小值,并求此极值.13.求内接于半径为R 的球圆柱体的体积的最大值.14.在半径为R 的圆内作一个内接矩形,试将矩形的面积的最大值.15. 设有一块边长为a 的正方形铁皮,现将它的四角剪去边长相等的小正方形后,制作一个无盖盒子,问小正方形边长为多少时盒子的容积最大?.16.抛物线22(0)y px p =>和直线x a =(0)a >的内接矩形(一边在x a =上)的宽E F 为多少时,其面积最大?。
高等数学微分中值定理与导数应用习题
微分中值定理与导数应用一、选择题1. 设函数()sin f x x =在[0,]π上满足罗尔中值定理的条件,则罗尔中值定理的结论中的=ξ【 】 A. π B. 2π C. 3πD. 4π2. 下列函数中在闭区间],1[e 上满足拉格朗日中值定理条件的是【 】A. x lnB.x ln ln C.xln 1 D.)2ln(x -3. 设函数)3)(2)(1()(---=x x x x f ,则方程0)('=x f 有【 】A. 一个实根B. 二个实根C. 三个实根D. 无实根4. 下列命题正确的是【 】A. 若0()0f x '=,则0x 是()f x 的极值点B. 若0x 是()f x 的极值点,则0()0f x '=C. 若0()0f x ''=,则()()00x f x ,是()f x 的拐点D. ()0,3是43()23f x x x =++的拐点5. 若在区间I 上,()0,()0,f x f x '''>≤, 则曲线f (x ) 在I 上【 】A. 单调减少且为凹弧B. 单调减少且为凸弧C. 单调增加且为凹弧D. 单调增加且为凸弧 6. 下列命题正确的是【 】A. 若0()0f x '=,则0x 是()f x 的极值点B. 若0x 是()f x 的极值点,则0()0f x '=C. 若0()0f x ''=,则()()00x f x ,是()f x 的拐点D. ()0,3是43()23f x x x =++的拐点7. 若在区间I 上,()0,()0,f x f x '''<≥, 则曲线f (x ) 在I 上【 】A. 单调减少且为凹弧B. 单调减少且为凸弧C. 单调增加且为凹弧D. 单调增加且为凸弧 8. 下列命题正确的是【 】A. 若0()0f x '=,则0x 是()f x 的极值点B. 若0x 是()f x 的极值点,则0()0f x '=C. 若0()0f x ''=,则()()00x f x ,是()f x 的拐点D. ()0,3是43()23f x x x =++的拐点9. 若在区间I 上,()0,()0,f x f x '''>≥, 则曲线f (x ) 在I 上【 】A. 单调减少且为凹弧B. 单调减少且为凸弧C. 单调增加且为凹弧D. 单调增加且为凸弧 10.函数256, y x x =-+在闭区间 [2,3]上满足罗尔定理,则ξ=【 】A. 0B. 12C. 52D. 2 11.函数22y x x =--在闭区间[1,2]-上满足罗尔定理,则ξ=【 】A. 0B. 12C. 1D. 212.函数y =在闭区间[2,2]-上满足罗尔定理,则ξ=【 】A. 0B. 12C. 1D. 2 13.方程410x x --=至少有一个根的区间是【 】A.(0,1/2)B.(1/2,1)C. (2,3)D.(1,2) 14.函数(1)y x x =+.在闭区间[]1,0-上满足罗尔定理的条件,由罗尔定理确定的=ξ 【 】A. 0B. 12-C. 1D.1215.已知函数()32=+f x x x 在闭区间[0,1]上连续,在开区间(0,1)内可导,则拉格朗日定理成立的ξ是【 】 A.± B. C. D. 13±16.设273+=x y ,那么在区间)3,(-∞和),1(+∞内分别为【 】 A.单调增加,单调增加 B.单调增加,单调减小 C.单调减小,单调增加 D.单调减小,单调减小二、填空题1. 曲线53)(23+-=x x x f 的拐点为_____________.2. 曲线x xe x f 2)(=的凹区间为_____________。
第03章微分中值定理与导数的应用习题详解
M 12丿」I 2丿第三章 微分中值定理与导数的应用习题3-11.解:(1)虽然 f(x)在[—1,1]上连续,f(—1) = f(1),且 f(x)在(—1,1)内可导。
可见,f(x)在[_1,1]上满足罗尔中值定理的条件,因此,必存在一点 匕€(-1,1),使得f 牡)=0,即:f(X)=cosx, F(X)=1 — sin X 且对任一 x 乏0,—】,F'(X)H 0, ”■. f (x),F (x)满足柯西 I 2丿中值定理条件。
—12©宀2=0,满足、; (2)虽然f(x)在[—1,1]上连续,f(_1)= f (1),但 f (x)在(—1,1)内 x = 0点不可导。
可 见,f (x)在[ —1,1]上不满足罗尔中值定理的条件,因此未必存在一点 £ £ (_1,1),使得 f 徉)=0. 2.因为函数是一初等函数,易验证满足条件 3 3 .解:令 y = 3arccos x - arccos(3x - 4x 3), y ‘ = 一 23 —12x 2厂工®®3)2,化简得 y'=0,「. y =c ( C 为常数),又 y(0.5)=兀,故当-0.5<x<0.5,有 y(x)=兀。
「兀f f 兀、 4 .证明:显然f(x), F(x)都满足在'|0,二I 上连续,在10,二 内可导L 2」 I 2丿 c oxsn ——x、、2丿F Q-F(O)12丿兀--1 2F( x) -1 sixn_c O 弓-x厂(X )_F(x) ZL"2 /兀 X ,,即 tan I - -- U--1,此时l 4 2丿 2f JI「兀X = 2 I — -arctan l — -1L 4l 2显然萨〔0,-〕,即丿」 I 2丿5.解:因为f(0) = f (1)= f (2) = f (3) =0,又因为f(x)在任一区间内都连续而且可导, 所以f (X)在任一区间 0,1 ], 1,2], [2,3]内满足罗尔中值定理的条件, 所以由罗尔定理,得:3" -(0,1), "^(1,2), ©-(2,3),使得:f 徉1 )= 0 r =) &:◎(=), 30 因为6.证明:设f(x) =0的n+1个相异实根为X o V X 1 <X 2 <H( <X n则由罗尔中值定理知:存在J (i =1,2,川n):X0 <:勺1cj ■<X2 vill <-1^Xn ,使得再由罗尔中值定理至少存在So =1,2,川n-1):上11 C 巴21 V ©2 吒 W ©3 V i 11 < J n d W G n ,使得7.解:反证法,倘若 p(X)=0有两个实根,设为X^X 2,由于多项式函数 p(x)在[X 1,X 2]上连续且可导,故由罗尔中值定理存在一点E€(X I ,X 2),使得P 徉)=0,而这与所设p'(x)=0没有实根相矛盾,命题得证。
微积分中值定理习题[精品]
第三章 中值定理与导数的应用§1 中值定理一、 证明:当1>x 时,x e e x⋅>。
二、证明方程015=-+x x 只有一个正根。
三、设)()(x g x f 、在],[b a 上连续,在),(b a 内可导,证明在),(b a 内有一点ξ,使得)()()()()()()()()(ξξg a g f a f a b b g a g b f a f ''-= 四、证明:若函数)(x f 在),(+∞-∞内满足关系式)()(x f x f =',且1)0(=f ,则x e x f =)(。
五、设函数)(x f y =在0=x 的某邻域内具有n 阶导数,且)0()0()0()1(-=='=n f f f ,试用柯西中值定理证明:10 !)()()(<<=θθ,n x f xx f n n§2 洛必达法则一、 求下列极限(1)2031)cos(sinlim xx x -→=(2)xxx x 30sin arcsin lim -→= (3)x x x 21sin 1)1cos(ln lim π--→=(4)x x x x 21cot ])1[ln( lim π--+→=(5)21)arcsin ( lim 0x xx x →=(6)x cb ac b a x x x x 1)(lim 1110+++++++→,其中0≠++c b a 。
§3 泰勒公式一、 求函数x x f tan )(=的二阶麦克劳林公式。
二、 求函数xxe x f =)(的n 阶麦克劳林公式。
、当40=x 时,求函数x y =的三阶泰勒公式。
三、 当10=x 时,求函数x x x f ln )(2=的n 阶泰勒公式。
§4 函数单调性的判定法一、 确定下列函数的单调区间:(1)x x y ln 22-=;(2))0())(2(32>--=a x a a x y ,二、证明:当0>x 时,221)1ln(1x x x x +>+++;三、设在],[b a 上0)(>''x f ,证明函数ax a f x f x --=)()()(ϕ在],(b a 上是单调增加的。
微分中值定理及导数应用双周练习卷
lim arctan( x a) arctan x
x
x 2
(0) 0
lim x
1
(
1 x
a
)2
2 x3
1
1 x
2
1 lim
2 x
x3 (2ax a2 ) (1 x2 )[1 ( x a)2 ]
()
1 2a
2
a
1
13、lim x0
tan x
x
x2
lim x0
1
e x2
tan x ln x
1
8 x3
由f ( x) 0,得 x 2
f (1) 1,
f (2) 1,
f (4) 1 4
最大值是 f (2) 1; 最小值是 f (1) 1
17、证明:arctan b arctan a b a .
证:设f ( x) arctan x,(不妨设b a) f ( x) C[a,b], f ( x) D(a,b)
x
x
二、填空题(每题3分,共15分)
6、曲线y
4x 1 ( x 2)2
的渐近线是
y 0,
x 2.
解:
lim 4x 1 x ( x 2)2
0
y 0是水平渐近线
又
4x 1
lim
x 2
(
x
2)2
x 2是垂直渐近线
7、函数f ( x) 1 x 在[1, 2]上满足拉格朗日中 x
定理的 = 2 .
解: f ( ) f (2) f (1)
21
1
2
1 2
得 2 (舍负)
8、函数f ( x) x 2sin x在区间[0, ]上的
2
《高等数学一》第四章-微分中值定理和导数的应用-课后习题汇总(含答案解析)
第四章微分中值定理和导数的应用[单选题]1、曲线的渐近线为()。
A、仅有铅直渐近线B、仅有水平渐近线C、既有水平渐近线又有铅直渐近线D、无渐近线【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】本题考察渐近线计算.因为,所以y存在水平渐近线,且无铅直渐近线。
[单选题]2、在区间[0,2]上使罗尔定理成立有中值为ξ为()A、4B、2C、3D、1【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,罗尔定理是满足等式f′(ξ)=0,从而2ξ-2=0,ξ=1. [单选题]3、,则待定型的类型是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由于当x趋于1时,lnx趋于0,ln(1-x)趋于无穷,所以是型. [单选题]4、下列极限不能使用洛必达法则的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由于当x趋于无穷时,cosx的极限不存在,所以不能用洛必达法则.[单选题]5、在区间[1,e]上使拉格朗日定理成立的中值为ξ=().A、1B、2C、eD、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】本题考察中值定理的应用。
[单选题]6、如果在内,且在连续,则在上().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】在内,说明为单调递增函数,由于在连续,所以在上f(a)<f(x)<f(b).[单选题]7、的单调增加区间是().A、(0,+∞)B、(-1,+∞)C、(-∞,+∞)D、(1,+∞)【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,若求单调增加区间就是求的区间,也就是2x-2>0,从而x>1. [单选题]8、().A、-1B、0C、1D、∞【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]9、设,则().A、是的最大值或最小值B、是的极值C、不是的极值D、可能是的极值【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由,我们不能判断f(0)是极值点,所以选D. [单选题]10、的凹区间是().A、(0,+∞)B、(-1,+∞)C、(-∞,+∞)D、(1,+∞)【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】若求凹区间则就是求的区间,即6x+6>0,即x>-1.[单选题]11、的水平渐近线是().A、x=1,x=-2B、x=-1C、y=2D、y=-1【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】水平渐近线就是当x趋于无穷时,y的值就是水平渐近线,x趋于无穷时,y的值是2,所以y=2是水平渐近线;当y趋于无穷时,x的值就是垂直渐近线,本题中由于分母可以分解为(x+1)(x-1),所以当x趋于1或-1时y的值趋于无穷.即x=1,x=-1都是垂直渐近线.[单选题]12、设某商品的需求量Q对价格P的函数关系为,则P=4时的边际需求为().A、-8B、7C、8D、-7【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】,当P=4时,Q=-8.[单选题]13、设某商品的需求函数为,其中表示商品的价格,Q为需求量,a,b为正常数,则需求量对价格的弹性().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】由弹性定义可知,[单选题]14、设函数在a处可导,,则().A、B、5C、2D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】因为f(x)可导,可用洛必达法则,用导数定义计算.所以[单选题]15、已知函数(其中a为常数)在点处取得极值,则a=().A、1B、2C、0D、3【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】在点处取得极值,[单选题]16、某商店每周购进一批商品,进价为6元/件,若零售价定位10元/件,可售出120件;当售价降低0.5元/件时,销量增加20件,问售价p定为多少时利润最大?().A、9.5B、9C、8.5D、7【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】设销量为Q,则Q=120+20(10-P)·2=520-40P利润此时即取得最大值.[单选题]17、若在(a,b)上,则函数y=f(x)在区间(a,b)上是()A、增加且凹的B、减少且凹的C、增加且凸的D、减少且凸的【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]18、求极限=().A、2B、C、0D、1【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]19、函数在区间上的极大值点=().A、0B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】令,当时,当时,当时,函数有极大值.[单选题]20、设某商品的供给函数为,其中p为商品价格,S为供给量,a,b为正常数,则该商品的供给价格弹性().A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]21、某产品产量为q时总成本C(q)=1100+,则q=1200时的边际成本为() A、0B、C、1D、2【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,q=1200时的边际成本为2.[单选题]22、已知函数f(x)=ax2-4x+1在x=2处取得极值,则常数a=()A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】,得到a=1.[单选题]23、极限=()A、-B、0C、D、1【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】首先利用洛必达法则,分子分母分别求导,.[单选题]24、曲线y=x3的拐点为().A、(0,0)B、(0,1)C、(1,0)D、(1,1)【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】y"=6x,当y"=0时,x=0,将x=0代入原函数得y=0,所以选择A.参见教材P108~109.(2015年4月真题)[单选题]25、曲线的水平渐近线为().A、y=0B、y=1C、y=2D、y=3【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题因为,所以直线y=1为曲线的水平渐近线.参见教材P110~111.(2015年4月真题)[单选题]26、函数y=x3-3x+5的单调减少区间为().A、(-∞,-1)B、(-1,1)C、(1,+∞)D、(-∞,+∞)【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】y'=3x2-3y'=0时,x=±1.在(-∞,-1)上,y'>0,为增函数;在(-1,1)上,y'<0,为减函数;在(1,+∞)上,y'>0,为增函数.因此选B.参见教材P100~101.(2015年4月真题)[单选题]27、已知函数(其中a为常数)在处取得极值,则a=().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】∵在处,取得极值点,∴参见教材P102~104。
第三章 微分中值定理和导数的应用习题66道
第三章 微分中值定理和导数的应用3.1 验证罗尔定理对函数21x y -=在区间]1,1[-上的正确性。
3.2 验证罗尔定理对函数x y sin ln =在区间⎥⎦⎤⎢⎣⎡65,6ππ上的正确性。
3.3 不用求函数)4)(3)(2)(1()(----=x x x x x f 的导数,说明0)(/=x f 有几个实根,并指出它们所在的区间。
3.4 试证明对函数r qx px y ++=2应用拉格朗日中值定理时所求得的点ξ总是位于区间的正中间。
3.5 验证担格朗日定理对于函数x x f arctan )(=在区间[0,1]上的正确性。
3.6 对函数3)(x x f =及1)(2+=x x g 在区间[1,2]上验证柯西中值定理的正确性。
3.7 对函数x x f sin )(=,x x g cos )(=在区间⎥⎦⎤⎢⎣⎡2,0π验证柯西中值定理的正确性。
3.8 对函数2)(x x f =,x x g =)(在区间[1,4]上验证柯西中值定理的正确性。
3.9 试证当⎪⎭⎫ ⎝⎛-∈2,2ππx 时,|tan |||x x ≤(等号只有在0=x 时成立)。
3.10 证明下列不等式:(1)b a b a -≤-arctan arctan ;(2)y x y x -≤-sin sin ;(3))()(11y x nx y x y x ny n n n n -<-<--- (y x n >>,1);(4)如果20παβ<≤<,试证:αβαβαββα22cos tan tan cos -≤-≤-; (5)设0>n ,试证:1111arctan 1arctan 1)1(122+<+-<++n n n n 。
3.11 试证:21arctan arcsin xx x -= (11<<-x )。
3.12 若k x f =)(/,k 为常数,试证:b kx x f +=)(。
高等数学第三章微分中值定理与导数的应用试题库(附带答案)
>第三章 微分中值定理与导数的应用一、选择题1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( )是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A (2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( )0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''=3、的凸区间是 x e y x -=( )) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞,4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( )(A)xx sin )x (f = (B)2)1x ()x (f += (C) 3 2x )x (f = (D)1x )x (f 2+=5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( )(A) [-1,1] (B) [0,1] (C) [-2,2] (D) ]5 4, 5 3[- 7、x 2 e x y -=的凹区间是( )(A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-,&8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) .(A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3x 3sin3x asinx f(x)π=+=( ) (A) 1 (B) 2 (C)3 π(D) 010、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( )]5 4, 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( )的极值必定不是的极值点为必定为曲线的驻点, 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000、二、填空题 1、__________________e y82x的凸区间是曲线-=.2、______________ 2 x y x 的极小值点是函数=.3、的凸区间为曲线x 3 e y x+=_____________________ . 4、函数f (x )=x x 3-在[0,3]上满足罗尔定理的条件,由罗尔定理确定的罗尔中值点ξ= . 5、设曲线y =a 23bx x +以点(1,3)为拐点,则数组(a ,b )= . 6、函数1x 3x y 3+-=在区间 [-2,0] 上的最大值为 ,最小值为 . 7、函数 x sin ln y =在 [65, 6 ππ] 上的罗尔中值点ξ= . …8、1 x y +=在区间 [ 1,3 ] 的拉格朗日中值点ξ = _______________. 9、______________ 2 x y x 的极小值点是函数=. 10、______________ 2x y x 的极小值点是函数⋅=。
第3章习题及答案
第三章 中值定理与导数应用§1 中值定理一、是非判定题一、假设0)('),,(,),(,],[)(=∈ξξf b a b a b a x f 使且必存在可导在有定义在 (×)二、假设0)('),,(),()(,],[)(=∈=ξξf b a b f a f b a x f 使则必存在在连续在 (×)3、假设0)('),,(),(lim )(lim ,],[)(00=∈=-→+→ξξf b a x f x f b a x f b x a x 使则存在且内可导在 (√)4、假设))((')()(),,(,],[)(a b f a f b f b a b a x f -=-∈ξξ使则必存在内可导在 (√)五、假设使内至少存在一点则在可导在上连续在与,),(,),(,],[)()(ξb a b a b a x g x f )(')(')()()()(ξξg f a g b g a f b f =-- (×)(提示:柯西中值定理,少条件0)('≠ξg )六、假设对任意,0)('),,(=∈x f b a x 都有那么在(a,b)内f(x)恒为常数 (√)二.单项选择题 一、设1.0,(),()()'()()ab f x a x b f b f a f b a xξξ<=<<-=-则在内,使成立的有 C 。
(A )只有一点(B )有两个点(C )不存在(D )是不是存在与a,b 取值有关二、设],[)(b a x f 在上持续,(,),()(()()a b I f a f b =内可导则与 Ⅱ)0)(',),((≡x f b a 内在之间关系是 B 。
(A) (I)是(Ⅱ)的充分但非必要条件; (B )(I )是(Ⅱ)的必要但非充分条件;(C )(I )是(Ⅱ)的充分必要条件; (D )(I )不是(Ⅱ)的充分条件,也不是必要条件。
第四章 中值定理与导数的应用习题
第四章 中值定理与导数的应用一、填空题1、函数4)(x x f =在区间[1,2]上满足拉格朗日中值定理,则ξ=_______.2、设)4)(3)(2)(1()(----=x x x x x f ,方程0)(='x f 有____个根,它们分别在区间_________上3.如果函数)(x f 在区间I 上的导数__________,那么)(x f 在区间I 上是一个常数.4、xx y 82+=(0>x )在区间_____单调减少,在区间_____单调增加. 5、.曲线)1ln(2x y +=在区间_____上是凸的,在区间_____上是凹的,拐点为_____6、若)(x f 在[a,b]上连续、在(a,b)内二阶可导且 _____ ,则)(x f 在[a,b]上的曲线是凹的.7、若()bx ax x x f ++=35在x = 1时有极值56,则a = ,b = . 8、()x f 二阶可导,()0x f '' = 0是曲线()x f y =上点_____为拐点的 条件.9、函数y=sinx-cosx 在区间(0,2π)内的极大值点是_____,极小值点是_____.10、函数2x y e -=的单调递增区间为_____,最大值为11、设函数()x f 在点0x 处具有导数,且在0x 处取得极值,则该函数在0x 处的导数()='0x f 。
12、()x x f ln =在[1,e ]上满足拉格朗日定理条件,则在(1,e )内存在一点=ξ ,使()()11=-⋅'e f ξ13、若()x f 在[0,1]上连续,在(0,1)内可导,且()00=f ,()11=f ,由拉格朗日定理,必存在点∈ξ(0,1),使()()='⋅ξξf e f .14、()()()()321---=x x x x x f ,则方程()0='x f ,有 个实根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题3一、填空题i 设孑心 好 m ,则yw=o 有 _________________________ 根,它们分别位于 区间;2.函数「'在〔•-上满足拉格朗日定理条件的-■ ----------3 .函数了(兀2*与削+ *在区间卩总]上满足柯西定理条件的4. 函数y = 在皿]上满足拉格朗日中值定理条件的 貝In sin 3z hi ll ---- --- = ____________5. In sin 5x/ W = -y8.函数 的单调减区间是 -----------9.设」八在"可导,则「是在点心处取得极值的 ------------------------ 条 件;210•函数■…亠:—二在工「及"=-取得极值,贝F ——•jf (尤)—工—2冒6. hm (1 — x) tan ——= y '2 7. lim r-j-0i(cos 111.函数」一二的极小值是 __________ ;/⑴二邑壬12•函数'•1的单调增区间为_____________13. 函数的极小值点是" ----------------------- ;14. 函数,二」——'•在一「一上的最大值为 ---------- ,最小值为------14. 函数他"-"+5在[-H]的最小值为------------------- ;15. 设点」■是曲线2心:的拐点,则”-…八;16. 曲线- J的下凹区间为------------- ,曲线的拐点为--------- ;17. 曲线」一一‘-的上凹区间为 --------- ;18. 曲线」一一?-的拐点为-------------- ;19. 若/八是工的四次多项式函数,它有两个拐点' '':■ ■,并且在点:二处的切线平行于艺轴,那么函数」八‘的表达式是----------------- ;《220. 曲线“二玄+户任卩叔)的拐点为 -------------- ;y —-----21. 曲线:「的水平渐近线的方程是 ------------------ ,垂直渐近线的方程是------------ ;/ (工)二22. --的垂直渐近线为______________ ;水平渐近线为_________兀二——123. 曲线」'在的曲率’-------------------- ;24. 曲线1■■ :1的曲率计算公式为------- ;25. 抛物线;_ "' 在顶点处的曲率为----------------- ;二.单项选择题;1■--1. 罗尔定理中的三个条件;「■' ■在宀-上连续,在内可导,且備m是/⑴在(佔内至少存在一点,使得广忆)成立的().■」;必要条件」■'充分条件•■充要条件」•既非充分也非必要2. 函数-":,:1广,则().• p•在任意闭区间' '■上罗尔定理一定成立;•''在-■-上罗尔定理不成立;•「在-上罗尔定理成立;--在任意闭区间上,罗尔定理都不成立;3. 设函数八)在区间卜M上连续,在开区间(7)上可导,且『I朋皿, /(Q)= o,则必有()...I:■: |-^ ;_■….■: I---'; _ : ':- ■■■■■-./.':|' -J J4. 下列函数在「二上满足拉格朗日中值定理条件的是().1.1: "I .. .'.J. ,-.; u . 3 叱一】•J J J•';不满足拉格朗日中值定理的条件;x EH满足拉格朗日中值定理的条件,且〔■';■' 满足中值定理的条件,但无法求出「的表达式;•「不满足中值定理条件,但有• ‘:满足中值定理的结论.6. 若」」在开区间内可导,且;J 是/;内任意两点,则至少存在一点: 使得下式成立()•': 1-■.: 」;J(月)了(可)-)=(珂■心< 乃(Q 了(吐)-)=(兀-工”©<5 <知(⑵ = (^2 ^1 <5 < 孔7. 设」」 '是内的可导函数,「宀'是"7内的任意两点,则(). ㈤在忌工+山之间恰有一个,使得3 =广(力山2- In x, 1<Z <15.函数 1 <^<3 (1P 3),它在内().在- -之间至少存在一点--,使得r.-对于+与上二之间的任一点匚,均有■.'8. 若」」在开区间一〔内可导,且对「''内任意两点恒有”伽)-/如1兰(乜-",则必有().1 : .■■'•:.'■' 1.■■'(常数)9. 已知函数: - 1_ ,则方程■-:有()';分别位于区间-;1■ :| :■-内的三个根;::四个根,它们分别为J 二I,_:亠;©四个根,分别位于(叩)20(23)24);「分别位于区间':「二内的三个根;10. 若「'为可导函数,'「为开区间 ' ' '内一定点,而且有' - - -::「,则在闭区间宀[上必总有().⑷/«<0(c)/w > 0 (D) /w>011. 若和—弘<0,则方程fg"亠&" +拥+巴=0•';无实根■有唯一实根有三个实根(’•有重实根12. 若/⑴在区间[见珅上二次可微,且/(□) =虫沁J3 Q/3兰°(.;»),则方程1在…上().'•:没有实根「■有重实根i 〔有无穷多实根• •有且仅有一个实根13. 求极限'■ "- -Li ■■时,下列各种方法正确的是().';用洛必达法则后,求得极限为0;-因为不能用洛必达法则,故极限不存在;lim °Lum.' ‘力 ta14. 设'为未定型,贝『■厂存在是… 邛二也存在的().(月)必要条件(月)充分条件充要条件既非充分也非必要条件-:因为 1.上不存在,所以上述极限不存在原式='r — ---- .工血 sin x1—5导「,且 ,则()• gG) 存在,且匸=二乳命丄必有…小曲= E Um = B.「如果存在,且丄"三「如果-"-J'■■■■ 存在,不一定有A= B『二——T16. 函数-在().J'•单调增加°二单调减少(6 (-M)单调增加,其余区间单调减少(门)(-U)单调减少,其余区间单调增加17. 已知一'-.在上连续,在*'内可导,且当’时,有,■',又㈣沁,则().上单调增加,且-< -1;上单调增加,且■' ',: ' 1;■在一」冷上单调减少,且■' ',: ' 1 ;(。
)川工)在[口上]上单调增加,但了®)正负符号无法确定.18. 当二飞-时,有不等式()成立.(矶,1 +㈤ / >l+x(匚0当x>0时X w 1 + x当兀吒0时护> H x (口)当z >0时秽>1十x ,当x < 0时秽弋1 +就19. 函数T二工m的图形,在().:八-“[处处是凸的;U〔处处是凹的;(S (-叫0]为凸的,在(Q七幼为凹的(D)卜叫0)为凹的,在(Q网为凸的.20. 若在区间1 - ■'内,函数的一阶导数「■',二阶导数' 1■,则函数」」在此区间内是().•';单调减少,曲线上凹;单调增加,曲线上凹;';单调减少,曲线下凹;’•单调增加,曲线下凹•丿二21. 曲线的凹凸区间是().(& (-叫丹o)为其凹区间;㈤(~T 为其凸区间;©当时,曲线是凸的,时是凹的(D)当ar心时,曲线是凹的,上时是凸的y = 一22.曲线】十盂().-p'有一个拐点;-■有二个拐点;-,有三个拐点;-■'无拐点;23. 若点为曲线•「的拐点,则().-'「必有,■ '■-存在且等于零;-必有存在但不一定等于零•—如果,■ '■-存在,必等于零;-/如果,■ '■-存在,必不等于零. 24. 设函数 1 :1在x"处有,在处不存在,则()."及二二© —定都是极值点;,工只有二二?1:1是极值点;';X二"及二二®都可能不是极值点;-.? = ?:及二■-至少有一个点是极值占八、、・25. 曲线_' ' :().■有极值点T二,但无拐点;1'有拐点•-丄,但无极值点;■' ■'"二‘是极值点,匚-」是拐点;■'"既无极值点又无拐点.26. 若连续函数在闭区间上有唯一的极大值和极小值,则().(国极大值一定是最大值,极小值一定是最小值;,;极大值一定是最大值,或极小值一定是最小值;(⑺极大值不一定是最大值,极小值不一定是最小值;-极大值必大于极小值.2I27. 函数一‘ v :' '在区间■- ■上的最小值为().729Q4) 4 ;(旳° ;(Q1;(巧无最小值.V 二— -28. 指出曲线’二」的渐近线().';没有水平渐近线,也没有斜渐近线;㈤“运为垂直渐近线,无水平渐近线;';既有垂直渐近线,又有水平渐近线;-只有水平渐近线.ZT 护+ K +1y arctan ------------------------29. 曲线’「I、的渐近线有().;1条;・2条;「3条;'4条;30. 设,,在;f:内可导,且对于任意当I •一时有八亠, 则().'•:对于任意;「•对于任意1' ■':,':';函数,单调增加;「「函数^':■-:单调增加.31. 设函数/W 在[叩]上广饲沁,则广或炖5)的大小顺序是().'一' . ■/': .. . ; .:■ ■/ . - : :J(G)/(D-/(O)> f ⑴> 尸®;9"⑴> /(0)- zm > 尸®J ・广〔0)二0,1^ 台沪二132. 设「'有二阶连续导数,且…' ,则().1是」八的极大值;是八T 的极小值;©(5))是曲线的拐点;(巧炖不是/(刃的极值,(叮⑼)不是曲线y = /W的拐点.1 】33. 在区间(一叫他)内,方程丹十昨一"石().•' 无实根;■有且仅有一个实根;••:有且仅有两个实根;L '•有无穷多个实根34. 设小二时,厂 L与“是同阶无穷小,则为().1;- 2;3;「435. 函数炖二雹7不可导点的个数是().=3 ;'2 ;- 1 ;''0 .36. 设函数丿「'在工=-的某个邻域内连续,且丿」为其极大值,则存在’「当时,必有()。