数学物理方程(谷超豪) 第三章 调和方程习题解答

合集下载

数学物理方程(谷超豪)-第三、四章 课后习题答案

数学物理方程(谷超豪)-第三、四章 课后习题答案

第三章调和方程§1建立方程定解条件1.设)(),,,(21r f x x x u n = )(221n x x r ++=是n 维调和函数(即满足方程022212=∂∂++∂∂nx ux u),试证明221)(-+=n rc c r f )2(≠n rInc c r f 1)(21+=)2(=n 其中21,c c 为常数。

证:)(r f u =,rx r f x rr f x u i i i ⋅=∂∂⋅=∂∂)()(''32''22"22)(1)()(r x r f r r f rx r f x ui i i ⋅-⋅+⋅=∂∂312''212"122)()()(rx r f r nr f rx r f x uni i ni i ni i∑∑∑===⋅-⋅+⋅=∂∂)(1)('"r f rn r f -+=即方程0=∆u 化为0)(1)('"=-+r f rn r f rn r f r f 1)()('"--=所以)1(1')(--=n r A r f 若2≠n ,积分得1212)(c r n A r f n ++-=+-即2≠n ,则221)(-+=n r c c r f 若2=n ,则rA r f 1')(=故Inr A c r f 11)(+=即2=n ,则rInc c r f 1)(21+=2.证明拉普拉斯算子在球面坐标),,(ϕθr 下,可以写成sin 1)(sin sin 1(12222222=∂∂⋅+∂∂∂∂⋅+∂∂∂∂⋅=∆ϕθθθθθur u r r u r r r u 证:球坐标),,(ϕθr 与直角坐标),,(z y x 的关系:ϕθcos sin r x =,ϕθsin sin r y =,θcos r z =(1)222222z u yu xu u ∂∂+∂∂+∂∂=∆为作变量的置换,首先令θρsin r =,则变换(1)可分作两步进行ϕρcos =x ,ϕρsin =y (2)θρsin r =,θcos r z =(3)由(2)⎪⎪⎭⎪⎪⎬⎫∂∂+-∂∂=∂∂∂∂+∂∂=∂∂)cos ()sin (sin cos ϕρϕρϕϕϕρy ux u u y u x u u 由此解出⎪⎭⎪⎪⎬⎫⋅∂∂+∂∂=∂∂⋅∂∂-∂∂=∂∂ρϕϕϕρρϕϕϕρcos sin sin cos u u y u u u x u (4)再微分一次,并利用以上关系,得)sin cos (22ρϕϕϕρ⋅∂∂-∂∂∂∂=∂∂u u x xu)sin cos (sin )sin cos (cos ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂-∂∂∂∂⋅-⋅∂∂-∂∂∂∂=u u u u +∂∂⋅+∂∂∂⋅-∂∂=22222222sin cos sin 2cos ϕρϕϕρρϕϕρϕuu u ρρϕϕρϕϕ∂∂⋅+∂∂⋅+u u 22sin cos sin 2cos sin (22ρϕϕϕρ⋅∂∂+∂∂∂∂=∂∂u u y yu)cos sin (cos )cos sin (sin ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂+∂∂∂∂++⋅∂∂+∂∂∂∂=u u u u ρρϕϕρϕϕϕρϕϕρρϕϕρ∂∂⋅+∂∂⋅--∂∂⋅+∂∂∂+∂∂=u u uu u2222222222cos cos sin 2cos cos sin 2sin 所以ρρϕρρ∂∂⋅+∂∂⋅+∂∂=∂∂+∂∂uu u yu xu 11222222222(5)ρρϕρρ∂∂⋅+∂∂⋅+∂∂+∂∂=∂∂+∂∂+∂∂uuz uu z u y u x u112222222222222再用(3)式,变换2222zu u ∂∂+∂∂ρ。

数学物理方程(谷超豪)课后答案

数学物理方程(谷超豪)课后答案

第一章.波动方程§1方程的导出。

定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。

ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。

现在计算这段杆在时x +x x ∆刻的相对伸长。

在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。

由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。

)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。

2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。

解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。

数学物理方程(谷超豪)课后答案

数学物理方程(谷超豪)课后答案

第一章.波动方程§1方程的导出。

定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。

ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。

现在计算这段杆在时x +x x ∆刻的相对伸长。

在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。

由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。

)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。

2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。

解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。

数学物理方程 谷超豪 课后答案

数学物理方程 谷超豪 课后答案

第一章.波动方程§1方程的导出。

定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。

ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。

现在计算这段杆在时x +x x ∆刻的相对伸长。

在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。

由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。

)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。

2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。

解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。

数学物理方程第二版(谷超豪)解答

数学物理方程第二版(谷超豪)解答

[x

x

u(x

x,t)] [x x

u(x,t)]
x

ux (x
x, t )
令 x 0 ,取极限得在点 x 的相对伸长为 u x (x,t) 。由虎克定律,张力T (x,t) 等于
T (x,t) E(x)ux (x,t)
其中 E(x) 是在点 x 的杨氏模量。
设杆的横截面面积为 S(x), 则作用在杆段 (x, x x) 两端的力分别为
x 2

t2
x2

y2
3 2
3t2
x2

y2

5 2
x
2

t2

x2

y2
5 2
t2
2x2

y2
同理
2u

t2
x2

y2
5 2
t2
x2
2y2
y 2
所以
2u

2u

t2
x2

y2
5 2
2t 2 x2 y 2

x
(ESu x
)
若 s(x) 常量,则得
即得所证。
(x)
2u t 2
=
x
(E(x)
u x
)
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由, (3)端点固定在弹性支承上,试
分别导出这三种情况下所对应的边界条件。
数学物理方程答案
解:(1)杆的两端被固定在 x 0, x l 两点则相应的边界条件为
T (x) g(l x)

数学物理方程第三版答案谷超豪

数学物理方程第三版答案谷超豪

数学物理方程第三版答案谷超豪【篇一:数学物理方程_答案_谷超豪】/p> 1 方程的导出。

定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x点处的点在时刻t离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明u(x,t)满足方程???u????u????x????e? ?t??t??x??x?其中?为杆的密度,e为杨氏模量。

证:在杆上任取一段,其中两端于静止时的坐标分别为 x与x??x。

现在计算这段杆在时刻t的相对伸长。

在时刻t这段杆两端的坐标分别为:x?u(x,t);x??x?u(x??x,t)其相对伸长等于令?x?[x??x?u(x??x,t)]?[x?u(x,t)]??x?x?ux(x???x,t),取极限得在点x的相对伸长为ux(x,t)。

由虎克定律,张力t(x,t)等于t(x,t)?e(x)ux(x,t)其中e(x)是在点x的杨氏模量。

设杆的横截面面积为s(x),则作用在杆段(x,x??x)两端的力分别为e(x)s(x)ux(x,t);e(x??x)s(x??x)ux(x??x,t).于是得运动方程 ?(x)s(x)??x?utt(x,t)?esu利用微分中值定理,消去?x,再令?x?0得??(x)s(x)u?(esux)?x若s(x)?常量,则得?u?t22x(x??x)|x??x?esux(x)|x?(x)即得所证。

=(e(x)?u?x)2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。

解:(1)杆的两端被固定在x?0,x?l两点则相应的边界条件为u(0,t)?0,u(l,t)?0.(2)若x?l为自由端,则杆在x?l的张力t(l,t)?e(x)的边界条件为?u?x?u?x|x?l等于零,因此相应|x?l=0?u同理,若x?0为自由端,则相应的边界条件为?x(3)若x?l端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的∣x?0?0偏移由函数v(t)给出,则在x?l端支承的伸长为u(l,t)?v(t)。

数学物理方程第二版习题解答 第三章教学文稿

数学物理方程第二版习题解答 第三章教学文稿

x = r sinθ cosϕ , y = r sinθ sinϕ , z = r cosθ
(1)
∆u = ∂ 2u + ∂ 2u + ∂ 2u ∂x 2 ∂y 2 ∂z 2
为作变量的置换,首先令 ρ = ρ sinθ ,则变换(1)可分作两步进行
x = ρ cosϕ , y = ρ sin ϕ
(2)
∂ϕ ρ
= sinϕ ∂ ( ∂u sinϕ + ∂u ⋅ cosϕ ) +
∂ρ ∂ρ
∂ϕ ρ
+ cosϕ ∂ ( ∂u sinϕ + ∂u ⋅ cosϕ )
ρ ∂ϕ ∂ρ
∂ϕ ρ
= sin 2 ∂ 2u + 2sin ϕ cosϕ ∂ 2u + cos2 ϕ ⋅ ∂ 2u −
∂ρ 2
ρ
∂ρ∂ϕ ρ 2 ∂ϕ 2

∂2u ∂ϕ 2
=
0
3. 证明拉普拉斯算子在柱坐标 (r,θ , z) 下可以写成
∆u
=
1 r

∂ ∂r
(r
∂u ) ∂r
+
1 r2

∂2u ∂θ 2
+
∂2u ∂z 2
证:柱坐标 (r,θ , z) 与直角坐标 (x, y, z) 的关系
x = r cosθ , y = r sinθ , z = z
第三章 调 和 方 程
§1 建 立 方 程 定 解 条 件
1. 设 u(x1, x2 ,, xn ) = f (r) (r = x12 + + xn2 ) 是 n 维调和函数(即满足方程
∂ 2u + + ∂ 2u = 0 ),试证明

数学物理方程第二版(谷超豪)答案

数学物理方程第二版(谷超豪)答案

( x) (1 ) 2
若 E ( x) E 为常量,则得
x h
2u x u [ E (1 ) 2 ] 2 x h x t
E
x u x 2u [(1 ) 2 ] (1 ) 2 2 x h x h t
数学物理方程答案
4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡 位置,试导出此线的微小横振动方程。 解:如图 2,设弦长为 l ,弦的线密度为 ,则 x 点处的张力 T ( x) 为
其中
其中 k 为支承的刚度系数。由此得边界条件
(
k E
特别地,若支承固定于一定点上,则 v(t ) 0, 得边界条件
(
u u ) ∣ x l 0 。 x
同理,若 x 0 端固定在弹性支承上,则得边界条件

u ∣ x 0 k[u(0, t ) v(t )] x u ( u ) ∣ x 0 f (t ). x E
x u( x, t ); x x u( x x, t )
其相对伸长等于 令
[ x x u ( x x, t )] [ x u ( x, t )] x u x ( x x, t ) x
x 0 ,取极限得在点 x 的相对伸长为 u x ( x, t ) 。由虎克定律,张力 T ( x, t ) 等于
2u u g [(l x) பைடு நூலகம் 。 2 x x t
5. 验证
u ( x, y , t )
1 t x y
2 2 2
在锥 t 2 x 2 y 2 >0 中都满足波动方程
2u 2u 2u 1 2 2 证:函数 u ( x, y, t ) 在锥 t 2 x 2 y 2 >0 内对变量 2 2 2 2 t x y t x y

数学物理方程_答案_谷超豪

数学物理方程_答案_谷超豪

(3)若 x = l 端固定在弹性支承上, 而弹性支承固定于某点, 且该点离开原来位置的 偏移由函数 v(t ) 给出,则在 x = l 端支承的伸长为 u (l , t ) − v(t ) 。由虎克定律有
E
∂u ∣ x =l = − k[u (l , t ) − v(t )] ∂x ∂u + σu ) ∣ x =l = f (t ) ∂x
=
1 ∂ 2v ( ) h − x a2 ∂t 2
∂ 2v 1 ∂ 2v = ∂x 2 a 2 ∂t 2
由波动方程通解表达式得
v( x, t ) = F ( x − at ) + G ( x + at )
所以 为原方程的通解。 由初始条件得
u=
F (x − at ) + G (x + at ) (h − x )
其中 ρ 为杆的密度, E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与 x + ∆x 。现在计算这段杆 在时刻 t 的相对伸长。在时刻 t 这段杆两端的坐标分别为:
x + u ( x, t ); x + ∆x + u ( x + ∆x, t )
其相对伸长等于 令
[ x + ∆x + u ( x + ∆x, t )] − [ x + u ( x, t )] − ∆x = u x ( x + θ∆x, t ) ∆x
第一章.
波动方程
§1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以 u(x,t)表示静止时在 x 点处的点 在时刻 t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明 u ( x, t ) 满足 方程

第三章调和方程

第三章调和方程
设空间有一电荷密度为xyz的静电场在此电场内任取一个封闭曲面包围的区域g由静电学知通过向外的电通量等于g中总电量的4倍即成立其中e为电场强度矢量而n为上的单位外法线向量
第三章
调和方程
§1 建立方程、定解条件 §2 格林公式及其应用
§1 建立方程、定解条件
§1.1 方程的导出 §1.2 定解条件和定解问题 §1.3 变分原理
§1-2 定解条件和定解问题
因此,对于狄利克雷或诺依曼外问题而言,还需要在无穷远 处对解添加一定的限制条件。在三维情况下,一般要求解在 无穷远处的极限为零(或者说极限为某个特定的值),即
2 2 2 lim u ( x , y , z ) 0 r x y z r
泊松方程的求解可以运用叠加原理转化为调和方程的求解: 首先寻找一个泊松方程的特解u1,作代换u=v+u1把原方程转 化为关于v的调和方程。
习惯思维中,上述定解问题都认为是在有界区域考虑的。也就是说在某 光滑的闭曲面Г的内部寻找满足边界条件的调和函数。 但在实际运用中, 常常会遇到一些无界区域的问题。例如:要确定一个热源物体外部的稳 定温度场。这种情况下,需要在闭曲面Г的外部寻找满足边界条件的调 和函数。为了显示区别,我们把前一种定解问题称为狄利克雷内问题和 诺依曼内问题,把后一类定解问题称为狄利克雷外问题和诺依曼外问题。 流体力学的内流问题和外流问题就是上述问题的典型代表。考虑不可压 无粘势流,其速度势在流动区域内满足拉普拉斯方程,且在物面边界Г 上有 法向无穿透条件 0
2 1
§2 格林公式及其应用
§2.1 格林(Green)公式 §2.2 平均值定理 §2.3 极值原理 §2.4 第一边值问题解的 唯一性和稳定性
§2-1 格林(Green)公式

数学物理方程答案谷超豪

数学物理方程答案谷超豪

数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。

定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。

解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。

仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为?g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程?u ?x.?u?2u?u??x2?[l?(x??x)]∣x??x?g?[l?x]∣?g?xx?x?t利用微分中值定理,消去?x,再令?x?0得?2u??u?g[(l?x)]。

?x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程222?2u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?yx,y,t有二阶连续偏导数。

且232?u??(t2?x2?y2)?t??t35??u(t2?x2?y2)2?3(t2?x2?y2)2?t22?t?(t2?x2?y2)?32?(2t2?x2?y2)?u?(t2?x2?y2)?x?32?x?2u?x2?t?x?22352?2222?22?y?3t?x?yx??????52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2?y所以即得所证。

2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2??2u2?u?2?a2t?x??ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5??t2?x2?y22t2?2x2?y2??2u?x2?2u?y2?t?x??225?y22??2t2?x?y22???t2.?2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。

第三章 调和方程

第三章 调和方程
其次,假设在边界上给定了两个函数f和f*,而且在Г上处处成立
f f * 设u和u*,分别是调和方程在区域Ω上的以f和f*为边界条件的
数学物理方程
§1-2 定解条件和定解问题
第三章 调和方程
因此,对于狄利克雷或诺依曼外问题而言,还需要在无穷远 处对解添加一定的限制条件。在三维情况下,一般要求解在 无穷远处的极限为零(或者说极限为某个特定的值),即
lim u(x, y, z) 0 r x2 y2 z2
r
泊松方程的求解可以运用叠加原理转化为调和方程的求解: 首先寻找一个泊松方程的特解u1,作代换u=v+u1把原方程转 化为关于v的调和方程。
§2.1 格林(Green)公式 §2.2 平均值定理 §2.3 极值原理 §2.4 第一边值问题解的
唯一性和稳定性
数学物理方程
§2-1 格林(Green)公式
第三章 调和方程
高等数学中的高斯公式如下
(
P x
Q y
R )d
z
(P cos(n,
x)
Q cos(n,
y)
R cos(n,
z))ds
调和方程,又称拉普拉斯(Laplace)方程,其三维形式为
u 2u 2u 2u 0 3.1 x2 y2 z 2
这个方程相应的非齐次方程,称为泊松(Poisson)方程,即
u
2u x 2
2u y 2
2u z 2
f (x, y, z)
3.2
这类方程在力学、物理学问题中经常遇到。前面两章推导的波动方程和热 传导方程如果去掉了时间导数项,那么方程就可以转化为泊松方程或调和 方程。流体力学中的速度势和流函数都满足调和方程;静电场中的电位势 满足泊松方程。

数学物理方程(谷超豪)第三章调和方程习题解答

数学物理方程(谷超豪)第三章调和方程习题解答

∆u
=
1 r2

∂ ∂r
(r 2
∂u ) ∂r
+
r2
1 sin θ

∂ ∂θ
(sin θ
∂u ∂θ
)
+
r2
1 sin
2
θ

∂2u ∂ϕ 2
=0
证:球坐标 (r,θ ,ϕ) 与直角坐标 (x, y, z) 的关系:
x = r sinθ cosϕ , y = r sin θ sin ϕ , z = r cosθ
f
(r)
=

A1 n+
2
r −n+2
+
c1
即 n ≠ 2 ,则
f
(r)
=
c1
+
c2 r n−2
若 n = 2 ,则 即 n = 2 ,则
f ' (r) = A1 故 f (r) = c1 + A1Inr r
f (r) = c1 + c2 In 1 r
2. 证明拉普拉斯算子在球面坐标 (r,θ ,ϕ) 下,可以写成

∂u ∂ρ
(5)
∂ 2u ∂x 2
+
∂2u ∂y 2
+
∂2u ∂z 2
=
∂2u ∂ρ 2
+
∂2u ∂z 2
+
1 ρ2

∂2u ∂ϕ 2
+
1 ρ

∂u ∂ρ
∂2u 再用(3)式,变换 ∂ρ 2
+
∂ 2u ∂z 2
。这又可以直接利用(5)式,得
∂2u ∂ρ 2

数学物理方程(谷超豪)课后答案

数学物理方程(谷超豪)课后答案

第一章.波动方程§1方程的导出。

定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。

ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。

现在计算这段杆在时x +x x ∆刻的相对伸长。

在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。

由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。

)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。

2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。

解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。

数理方法第二版前三章习题-谷超豪

数理方法第二版前三章习题-谷超豪

-3-
1.2 习题选讲
因此, 根据达朗贝尔公式, v (x, t)的通解可写为 v (x, t) = F (x − at) + G(x + at),从而 F (x − at) + G(x + at) u(x, t) = h−x
(2) 根据上述变换, v (x, t)所满足的初始条件为 t = 0 : v = (h − x)ϕ(x), ∂v = (h − x)ψ (x) ∂t
其中σ = k /ES . 类似的,对x = l 端,有
− ∂u + σu ∂x
2
= 0.
x= l
3. 试证:圆锥形枢轴的纵振动方程为 ∂ x E 1− ∂x h
∂u ∂x
=ρ 1−
x h
2
∂2u , ∂t2
其中h 为圆锥的高. 证明: 此时S (x) = S0 1 −
x h
2
,其中S0 为圆锥枢轴的底面积.根据第1题的推导,即得所证.
1. 证明方程 ∂ ∂x 1− x h
2
∂u ∂x
=
1 x 1− 2 a h
2
∂2u , ∂t2
的通解可以写成
u(x, t) =
F (x − at) + G(x + at) h−x
其中h > 0为常数, F , G为任意的具有二阶连续导数的单变量函数,并由此求解它的初值问题: ∂v t = 0 : v = (h − x)ϕ(x), = (h − x)ψ (x) ∂t 解: (1) 令v (x, t) = (h − x)u(x, t),则 v (x, t) 满足方程 2 ∂2v 2∂ v = a ∂t2 ∂x2
证明:
(1) 根据非齐次问题解的表达式可知,影响区域为 {(x, t) |t 0, x1 − at x x2 + at }

数学物理方程(谷超豪)课后答案

数学物理方程(谷超豪)课后答案

第一章.波动方程§1方程的导出。

定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。

ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。

现在计算这段杆在时x +x x ∆刻的相对伸长。

在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。

由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。

)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。

2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。

解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。

数学物理方程(谷超豪) 第三章 调和方程习题解答

数学物理方程(谷超豪) 第三章 调和方程习题解答

证:柱坐标 (r ,θ , z ) 与直角坐标 ( x, y , z ) 的关系
x = r cosθ ,
利用上题结果知
y = r sin θ ,
z=z
∂ 2u ∂x
2
+
∂ 2u ∂y
2
=
∂ 2u ∂r
2
+
1 ∂ 2u r ∂θ
2 2
+
1 ∂u r ∂r
1 ∂ ∂u 1 ∂ 2u = (r ) + 2 r ∂r ∂r r ∂θ 2
2
=
∂ 2u ∂ρ 2 ∂ 2u ∂z
2
+
1
ρ 2 ∂ϕ 2
∂ 2u ∂ρ
2

∂ 2u
+
1 ∂u ⋅ ρ ∂ρ 1 ⋅ ∂ 2u ∂ϕ
2
(5)
+
+
=
+
∂ 2u ∂z
2
+
ρ
2
+
1 ∂u ⋅ ρ ∂ρ
再用(3)式,变换
∂ 2u ∂ρ 2
+
∂ 2u ∂z 2
。这又可以直接利用(5)式,得
∂ 2u ∂ρ 2
= cos ϕ
∂ ∂u ∂u sin ϕ ( cos ϕ − )− ⋅ ∂ρ ∂ρ ∂ϕ ρ sin ϕ ∂ ∂u ∂u sin ϕ ⋅ ( cos ϕ − ⋅ ) ρ ∂ϕ ∂ρ ∂ϕ ρ
∂ 2u ∂ρ 2 − 2 sin ϕ cos ϕ
= cos 2 ϕ
ρ

∂ 2u sin 2 ϕ ∂ 2 u + ⋅ + ∂ρ∂ϕ ρ 2 ∂ϕ 2
x = ρ cos ϕ ,

数学物理方程Ch.3-4复习资料

数学物理方程Ch.3-4复习资料

+ Bk e
)sin
kπ x=0 a
Ak e

kπ b a
+ Bk e
kπ b a
=0
( k = 1, 得:
A1 = 1 1− e
− 2 bπ a
B1 =
−e

2 bπ a 2 bπ a
1− e

=
−e

bπ a
2 sh
bπ a
Ak = Bk = 0
则对任意的 M ( x, y, z ) ∈ R3 − Ω , 作充分大半径的球面 S k , 使得 M 和 Ω 被
S k 包含。在 S k 与 Γ 所围成的区域 Ω r 中使用极值原理得:
| V ( x, y, z ) |≤ max( max | f |, max | f |)
( x , y , z )∈Γ ( x , y , z )∈Sr
解:令 u ( x, y ) = X ( x)Y ( y ) 代入(1.29)的第一式得 X ( x ) ,Y ( y ) 分别满足:
X ′′( x ) + λ X ( x) = 0 X (0) = X ( a ) = 0
(1.30)
及 Y ′′( y ) − λY ( y ) = 0
(1.31)
由第一章讨论知, (1.30)仅当 λ > 0 时有非零解
求解公式是: (P84) u ( x0 , y0 , z0 ) = 11. Δu = 0 的基本解是什么?
z0 2π
∫ ∫
−∞
+∞
+∞ 2
f ( x, y ) [( x − x0 ) + ( y − y0 ) + z0 ]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∆u = 0 ,所以 u 为调和函数
(2) x 2 − y 2 和2 xy
∂ 2u ∂ 2u = 2 , = 2, 。所以 ∆u = 0 。u 为调和函数 ∂x 2 ∂y 2

v = 2 xy
∂ 2v ∂x 2 = 0,

∂ 2v = 0 。所以 ∆v = 0 。v 为调和函数 ∂y 2
(3) x 3 − 3 xy 2 和3 x 2 y − y 3
所以 u, v 皆为调和函数。 (5) 。证明用极坐标表示的下列函数都满足调和方程 (1) ln r和θ 证: 令u = ln r ,由第1题知, u为调和函数 。
令v = θ , 则显然
∂ 2v ∂ 2v ∂v 0 , = 0 , = 0, 故 = ∂r ∂r 2 ∂θ 2 ∂ 2 v 1 ∂v 1 ∂ 2 v =0 + + ∂r 2 r ∂r r 2 ∂θ 2
x = ρ cos ϕ ,
y = ρ sin ϕ
z = r cosθ
(2) (3)
ρ = r sin θ ,
由(2)
∂u ∂u ∂u = cos ϕ + sin ϕ ∂ρ ∂x ∂y ∂u ∂u ∂u = (− ρ sin ϕ ) + ( ρ cos ϕ ) ∂ϕ ∂x ∂y
证: 令
∂u = chx(chx + cos y ) −1 − sh 2 x (chx + cos y ) −2 ∂x
= (chx + cos y ) −2 (1 + chx cos y )
∂ 2u ∂x
2
= (chx + cos y ) −2 shx cos y − 2(chx + cos y ) −3 shx(1 + chx cos y )
= (chx + cos y ) −3 ( shxchx cos y + shx cos 2 y + shxchx cos y )
∂ 2u ∂x
2
+
∂ 2u ∂y
2
= (chx + cos y ) −3 (2 shx cos 2 y − 2shx + 2shx sin 2 y )
= (chx + cos y ) −3 [2 shx (cos 2 y + sin 2 y ) − 2shx ] = 0 令v = sin y (chx + cos y ) −1
f (r ) = c1 + A1 Inr
1 r
f (r ) = c1 + c 2 In
2. 证明拉普拉斯算子在球面坐标 (r ,θ , ϕ ) 下,可以写成
∆u = =0
1 r2

∂ 2 ∂u 1 ∂ ∂u 1 ∂ 2u (r )+ 2 ⋅ (sin θ )+ 2 ⋅ ∂r ∂r ∂θ r sin θ ∂θ r sin 2 θ ∂ϕ 2
2
=
∂ 2u ∂ρ 2 ∂ 2u ∂z
2
+
1
ρ 2 ∂ϕ 2
∂ 2u ∂ρ
2

∂ 2u
+
1 ∂u ⋅ ρ ∂ρ 1 ⋅ ∂ 2u ∂ϕ
2
(5)
+
+
=
+
∂ 2u ∂z
2
+
ρ
2
+
1 ∂u ⋅ ρ ∂ρ
再用(3)式,变换
∂ 2u ∂ρ 2
+
∂ 2u ∂z 2
。这又可以直接利用(5)式,得
∂ 2u ∂ρ 2
1 r
(n ≠ 2) (n = 2)
f (r ) = c1 + c 2 In
其中 c1 , c 2 为常数。 证:
u = f (r ) ,
∂ 2u ∂xi2
n
x ∂u ∂r = f ' (r ) ⋅ = f ' (r ) ⋅ i ∂xi ∂xi r
= f " (r ) ⋅
n
Hale Waihona Puke xi2xi2 1 ' ' + f ( r ) ⋅ − f ( r ) ⋅ r r2 r3
= (chx + cos y ) −3 (2 sin y + sin y cos ychx − 2 sin ych 2 x)
∂ 2v ∂x
2
+
∂ 2v ∂y
2
= (chx + cos y ) −3 (2 sin ysh 2 x − 2 sin ych 2 x + 2 sin y )
= (chx + cos y ) −3 [−2 sin y (ch 2 x − sh 2 x) + 2 sin y ] = 0
n −1 ' f (r ) = 0 r
n −1 r
所以 若 n ≠ 2 ,积分得
f ' (r ) = A1r −( n−1)
f (r ) =
A1 r −n+ 2 + c1 −n+2
即 n ≠ 2 ,则
f (r ) = c1 +
f ' (r ) = A1 r
r n−2

c2
若 n = 2 ,则 即 n = 2 ,则
∑ ∂x 2
i =1 i
∂ u
2
= f " (r ) ⋅ i =1 2 r
∑ xi2
+ f ' (r ) ⋅
n − f ' (r ) ⋅ i =1 3 r r
∑ xi2
n
= f " (r ) +
n −1 ' f (r ) r
即方程
∆u = 0 化为
f " (r ) +
f " (r ) f ' (r ) =−
证:柱坐标 (r ,θ , z ) 与直角坐标 ( x, y , z ) 的关系
x = r cosθ ,
利用上题结果知
y = r sin θ ,
z=z
∂ 2u ∂x
2
+
∂ 2u ∂y
2
=
∂ 2u ∂r
2
+
1 ∂ 2u r ∂θ
2 2
+
1 ∂u r ∂r
1 ∂ ∂u 1 ∂ 2u = (r ) + 2 r ∂r ∂r r ∂θ 2
第三章
§1 建 立 方



定 解




1. 设 u ( x1 , x 2 , L , x n ) = f ( r ) ( r =
2 2 x1 + L + xn ) 是 n 维调和函数(即满足方程
∂ 2u
2 ∂x1
+L+
∂ 2u
2 ∂x n
= 0) ,试证明
c2
f (r ) = c1 +
r n−2
= (chx + cos y ) −3 ( shxcox 2 y − 2shx − shxchx cos y )
∂u = shx sin y (chx + cos y ) −2 ∂y
∂ 2u ∂y
2
= shx sin y (chx + cos y ) −2 + 2(chx + cos y ) −3 shx sin 2 y

∂ 2 ∂u 1 ∂ ∂u 1 ∂ 2u (r )+ 2 ⋅ (sin θ )+ 2 ⋅ =0 ∂r ∂r ∂θ r sin θ ∂θ r sin 2 θ ∂ϕ 2
3. 证明拉普拉斯算子在柱坐标 (r ,θ , z ) 下可以写成
∆u =
1 ∂ ∂u 1 ∂ 2u ∂ 2 u ⋅ (r ) + 2 ⋅ 2 + 2 r ∂r ∂r r ∂θ ∂z
+
∂ 2u ∂z 2
=
∂ 2u ∂r 2
+
1
r 2 ∂θ 2

∂ 2u
1 ∂u + ⋅ r ∂r
再利用(4)式,得
∂u ∂u ∂u cosθ = sin θ + ⋅ ∂ρ ∂r ∂θ r
所以
∂ 2u ∂x +
2
+
∂ 2u ∂y
2
+ ⋅
∂ 2u ∂z
2
= +
∂ 2u ∂r
2
+
1 r
2

1 ∂u + ⋅ + r ∂r ∂θ
即∆( shny sin nx ) = 0
( shny sin nx ) xx = − (shny sin nx) yy
shny sin nx为调和函数
同理,其余三个函数也是调和的 (5)
shx (chx + cos y ) −1 和 sin y (chx + cos y ) −1 u = shx (chx + cos y ) −1
∂v = − shx sin y (chx + cos y ) −2 ∂x
∂ 2v ∂x
2
= − sin ychx(chx + cos y ) −2 + 2(chx + cos y ) −3 sh 2 x sin y
= (chx + cos y ) −3 (2 sh 2 x sin y − sin ych 2 x − sin ychx cos y )
∆v = [n(n − 1)r n− 2 + nr n− 2 − n 2 r n − 2 ] sin nθ = 0
相关文档
最新文档