波分复用的概念

合集下载

光纤通信课件第6章 WDM

光纤通信课件第6章 WDM

WDM系统的基本结构
光接收机: 由光前置放大器(PA)放大经传输而衰减的主信道光信 号。 光分波器从主信道光信号中分出特定波长的光信号。 接收机不但要满足一般接收机对光信号灵敏度、过载 功率等参数的要求,还要能承受有一定光噪声的信号, 要有足够的电带宽。
WDM系统的基本结构
光监控信道(OSC: Optical Supervisory Channel): 主要功能:监控系统内各信道的传输情况。 在发送端,插入本结点产生的波长为λs(1510 nm)的 光监控信号,与主信道的光信号合波输出。 在接收端,将接收到的光信号分离,输出λs 波长的光 监控信号和业务信道光信号。 帧同步字节、公务字节和网管所用的开销字节等都是 通过光监控信道来传送的。
WDM复用原理
波分复用的常规分类
➢ 光频分复用(OFDM):光频(信)道间距很小的频分复用。 ➢ 密集波分复用(DWDM):光频(信)道间距小于10nm的波分
复用,D:Dense (密集) ➢ 粗波分复用(CWDM):光频(信)道间距大于10nm 的波分复
用, C: Coarse (粗),也称稀疏波分复用。 ➢ DWDM(1550波段)的标准信道间距:
WDM复用原理
WDM系统的基本构成: 将不同波长的信号结合在一起经一根光纤输出的器件 称为复用器(也叫合波器)。 反之,经同一传输光纤送来的多波长信号分解为各个 波长分别输出的器件称为解复用器(也叫分波器)。 复用器和解复用器一般是相同的(除非有特殊的要求)。
WDM复用原理
WDM系统的基本构成主要有以下两种形式: 双纤单向传输: 单向WDM传输:所有光通路同时在一根光纤上沿同 一方向传送。在发送端将载有各种信息的、具有不同 波长的已调光信号λ1,λ2,…,λn通过光复用器组合在一起, 并在一根光纤中单向传输。在接收端通过光解复用器 将不同波长的信号分开,完成多路光信号传输的任务。

光波导芯片_波分复用_解释说明

光波导芯片_波分复用_解释说明

光波导芯片波分复用解释说明1. 引言1.1 概述光通信作为一种高速、大容量的数据传输技术,已成为现代信息社会中不可或缺的基础设施。

然而,在面对日益增长的带宽需求和传输距离要求时,传统的电路板和金属导线等传输介质已经显得力不从心。

因此,光波导芯片作为一种新型的光学器件应运而生。

1.2 文章结构本文将首先介绍光波导芯片的定义、原理、结构和特点。

随后,我们将重点讨论波分复用技术,并详细解释其原理、基础概念以及相关设备和组成要素。

然后,我们将探讨光波导芯片在波分复用中的应用,包括其在光传输中的作用机制解析、在波分复用系统中关键功能的介绍,以及一些实际应用中的效果与案例分享。

最后,我们将总结主要观点和发现,并展望光波导芯片和波分复用技术未来发展方向。

1.3 目的本文旨在通过对光波导芯片和波分复用技术进行详细说明,帮助读者深入了解光通信领域中的重要概念和技术。

同时,通过介绍光波导芯片在波分复用中的应用,使读者对该技术在实际场景中的应用效果有更全面的认识。

最后,我们将展望未来光波导芯片和波分复用技术的发展方向,为相关研究和工程领域提供参考和启示。

2. 光波导芯片:2.1 定义和原理:光波导芯片是一种集成光学器件,其通过特殊的材料结构和工艺制作而成。

它利用高折射率的核心层将光信号引导在其表面附近传输,形成一条或多条光波导路径。

这些路径类似于管道,可以将光信号有效地控制、传播和分配。

光波导芯片原理基于总反射和电磁波的耦合效应。

当光线传入具有高折射率的核心层时,由于介质折射率的差异,部分能量会被全内反射并沿着波导路径传输。

在光波导芯片中,可以通过调整核心层和包围层之间的折射率差异来改变传播模式、控制波导路径和操纵光信号。

2.2 结构和特点:通常情况下,光波导芯片由三个主要组成部分构成:核心层、包围层和衬底。

核心层是最重要的部分,用于引导光信号;包围层则用于限制光信号的传播区域,并保持其在核心层内传输;衬底则为光波导芯片提供支撑和稳定性。

一分钟带你了解100G QSFP28 4WDM光模块

一分钟带你了解100G QSFP28 4WDM光模块

一分钟带你了解100G QSFP284WDM光模块提到光纤通信,大家可能应该了解波分复用的概念——波分复用(WDM)技术是当前通信扩容的重要方式。

简单地说就是将两种或多种不同波长的光载波信号,在发送端经合波器汇合、在接收端经分波器分离的技术。

优点是大量减少了光纤使用量,从而降低了建设成本。

但是波分复用(WDM)技术根据波长间隔的不同,可分为几种不同的类别。

比如:CWDM (粗波分复用)、DWDM(密集波分复用)、SWDM(短波分复用)、LWDM(长波分复用)等。

今天的“一分钟系列”给大家介绍一下4WDM光模块——4WDM是个什么东东呢?100G QSFP284WDM所谓100G QSFP284WDM光模块就是传输速率为100G,采用QSFP28封装形式的4WDM光模块,4WDM就是4路波分复用。

有同学会问,CWDM4光模块也是四路波分复用,这两者有什么不一样吗?这个问题问得好。

波分复用技术的一些标准都是由多源协议(MSA)这个组织所制定,就像我们人类社会的法律一样,必须要遵守。

而100G QSFP284WDM光模块的协议由4WDM MSA所制定。

根据传输距离的不同,该组织给光模块厂家专门制定了不同的方案,且看下表。

这个表实在是不能更简单粗暴了,总结一下:1、2km是CWDM4,10km、20km、40km三种场景是4WDM;2、2km和10km采用1271nm、1291nm、1311nm、1331nm波长,而20km和40km波长间隔变小,分别是1295.56nm、1300.05nm、1304.58nm、1309.14nm;3、40km采用APD ROSA。

另外,激光器的波长会随温度变化产生漂移现象,就是我们所说的“温漂”,CWDM粗波分复用方案不用很担心,本身波长间隔比较大(20nm),系统最大波长偏移可达-6.5nm~+6.5nm,一般工作温度下温漂都在容许范围之内。

而LAN-WDM波长间隔只有4.5nm左右,对温度敏感,所以需要TEC(Thermo Electric Cooler)来稳定。

10分钟了解什么是OTN

10分钟了解什么是OTN

SDH
WDM
面向IP的 WDM
(OTN)
ROADM WSS
AON
现今 几年后
未来
PDH与SDH同为TDM技术,适当的开销处理使点对点的链变成了端到端的网; 现在的WDM仍然是点对点的链,为了适应未来网络的IP化,它必须向端到端的网发展,
它必须增加适当的开销处理,这就是OTN; ASON(GMPLS)是控制层,它在自身不断发展的同时,相继与通道层SDH、OTN、
多种完善的保护机制 规范的映射、复用,多层次的嵌入式开销
丰富的可运营可管理经验
……
WDM的大容量传送机制+SDH的电层处理机制
OTN
Page 9
OTN概念
OTN即光传送网, Optical Transport Network; 传统的WDM在保护、管理、调度等方面的局限,使其不能很好的适应大
简单类比
1、SDH系统:高速公路 只能走一辆车。
2、波分系统:高速公路 可以并列走多辆车。
Page 4
传统波分特点
一、传统波分出现意义:(解决了容量和距离) 解决了SDH网络容量不足的问题,城域波分最大可以支持
80×10G带宽(SDH网络带宽最大为10G)
二、传统波分局限性:(调度、保护、管理功能不足) 类似PDH系统,只能组点对点的链。不能对波长进行灵活调度,
波长
•40波 DWDM,可升级到80波
GMPLS控制平面
Page 12
SDH signal
1
1 2
n
IP package ATM cells
2


n
Page 3
由高速公路和车辆类比一个波分系统
加油站

DWDM系统的组成和工程实例

DWDM系统的组成和工程实例

DWDM系统的组成和工程实例的体会当前,通信技术正向着宽带化、智能化、大众化和个人化的方向发展;电信网也面临着从语音网向数据网、从电路交换向分组交换方向的转变。

与此同时,对传输网的带宽、质量、安全以及成本等问题也提出了更高的要求。

传输网的发展必须超前于各种业务网的发展,传输系统从初始的载波系统发展到PDH系统,再到SDH系统,以至目前最热门的WDM和DWDM系统。

1 波分复用技术1.1 波分复用的基本概念波分复用是利用一根光纤可以同时传输多个不同波长的光载波的特点,把光纤可能应用的波长范围划分为若干个波段,每个波段作为一个独立的通道来传输某一特定波长的光信号。

光波分复用的实质是在光纤上进行光频分复用,只是因为光波通常采用波长来描述、监测和控制。

在波分复用传输系统的发送端采用合波器将待传输的多个光载波信号进行复接,在接收端利用分波器分离出不同波长的光信号。

由于系统设计的不同,每个波长之间的间隔宽度也会有差别,按照通道间隔的差异,WDM可以细分为W-WDM(Wide-WDM,通道间隔≥25nm)、M-WDM(Mid-WDM,3.2nm≤通道间隔≤25 nm)和D-WDM(Dense-WDM,通道间隔≤3.2nm)。

通道可以是等间隔的,也可以是非等间隔的,采用非等间隔主要是为了缓和光纤中四波混频(FWM)的影响。

本文以DWDM系统为例来介绍波分复用系统。

1.2 波分复用系统的组成DWDM系统由OTM和OA设备组成,其中OTM包括合波器、分波器、波长转换器(OTU)(可选)、光功率放大器、光前置放大器和光监控信道(OSC);OA包括光线路放大器和OSC。

根据OTU应用情况的不同,DWDM的配置系统分为开放式和集成式,在开放式系统中OTU兼作再生器系统;集成式系统不需要OTU设备,采用SDH再生器系统,其系统结构如图1所示。

2 波分复用系统的相关技术参数2.1 合波器/分波器合波器/分波器应符合ITU-TG.671、G.692及相关建议要求。

复用技术的基本概念

复用技术的基本概念

复用技术的基本概念光纤通信复用技术主要分为:光波复用和光信号复用两大类.光波复用包括波分复用(wDM)和空分复用(sDM),而光信号复用包括时分复用( TDM),此外还有光码分复用(OCDM)、副载波复用(SCM)技术.在此先对复用概念进行讨论.1.光波分复用光波分复用是指将两种或多种各自携带有大量信息的不同波长的光载波信号,在发射端经复用器汇合,并将其耦合到同一根光纤中进行传输,在接收端通过解复用器对各种波长的光载波信号进行分离,然后由光接收机做进一步的处理,使原信号复原,这种复用技术不仅适用于单模戏多模光纤通信系统,同时也适用于单向或双向传输.波分复用系统的工作波长可以从0.8 μm到1.7μm,由此可见,它可以适用于所有低衰减、低色散窗口,这样可以充分利用现有的光纤通信线路,提高通信能力,满足急剧增长的业务需求。

当同一根光纤中传输的光载波路数更多,波长间隔更小(通常小于0.8 nm)时,时分系统称为密集波分复用系统.由此可见,此复用的通信容量成倍地得到提高,这样可以带来巨大的经济效益。

当然,由于其信道间隔小,在实现上所存在的技术难点也比波分复用的大些,因而在光频分复用系统中,各支路信号是在发射端从适当的调制方式调制在相应的光载频上,再依靠光功率耦合器件耦合到一根光纤中进行传输,在接收端义采用滤波器将各种光载波信号分开,从而完成复用、解复用的过程。

2.空分复用所谓空分复用就是利用空问分割,根据需要构成不同的信道进行光复用的一种复用技术,例如,一根光缆中的两根光纤可以构成两个不同的信道,也可以构成不同传输方向(一根去向,一根来向)的一个系统,这是目前普遍使用的最为简单的复用方式。

随着技术的不断提高,人们对空间分割的理解更加深刻,使空间复用向着多路空分复用通信方式发展,例如,对于一幅由若干象素构成的图像来说,如果用一根光纤传送其中一个象素的信息,这样通过利用多芯光纤可使传输图像的传输速率成数量级的提高,同时仍保持其良好的色保持特性和透光性.这是空分复用的一个发展方向。

光通信中的波长分复用和调制技术研究

光通信中的波长分复用和调制技术研究

光通信中的波长分复用和调制技术研究第一章绪论近年来,随着互联网、移动通讯、云计算等领域的快速发展,信息传输的需求也越来越高。

传统的通信方式已经难以满足这些需求,为此,光通信技术应运而生。

光通信技术利用光作为信息的传输媒介,拥有传输速度快、带宽大、抗干扰能力强等优点。

其中,波长分复用技术和调制技术是光通信中的核心技术,也是其能够实现高速传输的关键。

本文将重点讨论光通信中的波长分复用和调制技术的研究现状以及未来发展趋势。

第二章波长分复用技术研究2.1 波长分复用技术的概念波长分复用技术是一种将不同波长的光信号分别传输在同一光纤中的技术。

在传统单波长光通信中,每根光纤只能传输一路信号,而且带宽有限。

而采用波长分复用技术,可以将多路信号合并传输在同一光纤中,从而提高了光纤的传输效率。

2.2 波长分复用系统的分类根据光信号处理方式的不同,波长分复用系统可以分为两种类型:基于波分复用(WDM)的系统和基于密集波分复用(DWDM)的系统。

基于波分复用的系统是将不同波长的信号合并在一起传输,其带宽受限于每个波长的带宽。

基于DWDM的系统是将信号的波长分得更加密集,实现更高的带宽效率。

DWDM系统采用的是更高精度的技术,以逐渐缩小波长间隔,从而在同一光纤上传输更多的光信号。

2.3 波长分复用技术的发展趋势随着科技的进步和市场需求的增长,波长分复用技术有望实现更高的速率和更大的容量。

未来的发展方向包括多种不同类型的复用、多种不同类型的光纤和更加高效的元器件。

第三章调制技术研究3.1 调制技术的概念调制技术是将电信号转化为光信号的过程。

调制技术可以控制光的强度、相位和频率,以实现信息的传输。

3.2 调制技术的分类调制技术可以分为三种类型:幅度调制(AM)、相位调制(PM)和频率调制(FM)。

幅度调制是指将信号的幅度变化转化为光信号的强度变化。

相位调制是指将信号的相位变化转化为光信号的相位变化。

频率调制是指将信号的频率变化转化为光信号的频率变化。

第6章_波分复用.

第6章_波分复用.

2.OXC
(2) OXC ① 基于WDM技术和空分复用技术的OXC ② 基于空分技术和可调光滤波器技术的OXC ③ 基于分送耦合开关的第一类和第二类OXC ④ 基于平行波长的开关的OXC ⑤ 完全基于波长交换的OXC
2.OXC
• 图6-25 OXC的一般结构
2.OXC
• 图6-26 WDM技术和空分复用技术相结合的 OXC的结构
(1) (2)
2.网络生存性策略——保护和 恢复 (1)保护恢复技术分类 • 按网络中所使用的协议层次进行划分:
– – – – IP层恢复技术 ATM SDH层恢复技术 光层恢复技术
• WDM网络的恢复方案又可分为保护倒换和利用 OXC
2.网络生存性策略——保护和 恢复 (2) • 冗余度是指网络中总的空闲容量与总工作容量 • 恢复率是指已恢复的通道数占原来失效的总通
6.2 光波分复用技术
6.2.1 WDM、DWDM和CWDM 6.2.2 WDM的特点 6.2.3 WDM与光纤 6.2.4 WDM对光源和光电检测器的要求
6.2.1 WDM、DWDM和CWDM
• DWDM和CWDM技术实际上它们是同一种技术, 只是通道间隔不同。 • WDM系统的通道间隔为几十纳米以上,例如最 早的1310/1550nm两波长系统,它们之间的波 长间隔达两百多纳米,这是在当时技术条件下 所能实现的WDM • 随着技术的发展,特别是EDFA(掺铒光纤放大 器)的商用化,使WDM系统的应用进入了一个 新的时期。
6.2.4 WDM对光源和光电检测器 的要求 • 图6-5 波长反馈控制原理示意图
6.3 波分复用系统
6.3.1 波分复用系统结构 6.3.2 WDM系统的基本应用形式 6.3.3 WDM系统中的光监控信道

波分知识点总结

波分知识点总结

DWDM原理部分:1.波分复用的概念:2.单向wdm和双向wdm:一般的波分复用系统采用单向wdm形式,两个方向的光信号可以安排在相同的波长处,监控信号的波长为1510nm3.开放式和集成式波分复用系统,实际工程一般采用开放式,注意区别4.波分复用系统的基本构件5.CWDM和DWDM的区别6.光纤的损耗主要取决于吸收损耗、散射损耗、弯曲损耗三种损耗7.OSC和ESC的区别:从降低产品成本的角度出发,产品提出了利用固定帧结构业务中的开销字节进行DCC通信的思路,这样就可以直接通过OTU单板的对接实现网元间的通信,这就是电监控信道(ESC)。

与OSC不同的是ESC是采用随路的方式,即监控信息随主业务信号一起传送,到对端再将他们分离,这种方式不再另外占用波长资源。

8.WDM网元有如下5种类型:光终端复用设备OTM(Optical Terminal Multiplexer)光线路放大设备OLA(Optical Line Amplifier)光分插复用设备OADM(Optical Add/Drop Mulitiplexer)光均衡设备OEQ(Optical Equalizer)电中继设备REG(Regenerator9.影响波分传输系统主要有3个因素:衰耗、色散及信噪比10.192.1~196.1THz(C波段)和186.9~190.9THz(L波段)。

1600G硬件部分:1. OptiX BWS 1600G系统主要用于国家级干线、省级干线作长距离大容量传输2. 了解:I型系统是160波×10G系统,通道间隔为50GHZ,应用于SSMF/G.655光纤的C波段和L波段,支持以400Gbit/s模块为单位的系统升级,最大容量达到了1600Gbit/s;在400Gbit/s模块内支持以10Gbit/s的速率为单位的单波升级。

单通道接入最大速率为10Gbit/s。

II型系统是80波×10G系统,有两种规格,C+L波段的800G系统的通道间隔为100GHz,C波段800G系统的通道间隔为50GHz 。

光纤通信系统波分复用系统WDM-共64页课件

光纤通信系统波分复用系统WDM-共64页课件

中心频率 193.6 193.5 193.4 193.3 193.2 193.1 193.0 192.9 192.8 192.7 192.6 192.5 192.4 192.3 192.2 192.1
4 波系统 * * * *
8 波系统 * * * * * * * *
16 波系统 * * * * * * * * * * * * * * * *
(a)现实的需要性,以2.5Gb/s系统为例, 16波分单向就可达到40Gb/s的传输速率, 这足以满足未来几年的业务需求;
(b)技术的可行性。当前波分复用器件和激 光器元件的技术都满足16个波长以上的复用。
从当前应用上看,WDM系统只用于 2.5Gb/s以上的高速率系统。因而在制定规 范的过程中,我们主要考虑了基于2.5Gb/s SDH的干线网WDM系统的应用,承载信号为 SDH STM-16系统,即2.5Gb/s×N的WDM 系统。对于承载信号为其他格式(例如IP)的系 统和其它速率(例如10Gb/s×N)暂不作要 求。
开放式波分复用系统:就是波分复用器前端 加入波长转移单元OTU,将当前SDH的 G.957接口波长转换为G.692的标准波长光 接口。可以接纳过去的老SDH系统,并实 现不同厂家互联,但OTU的引入可能对系 统性能带来一定的负面影响。
双向WDM系统在设计和应用时必须要考虑几个关 键的系统因素:
如为了抑制多通道干扰(MPI),必须注意到光反射的影响、 双向通路之间的隔离、串扰的类型和数值、两个方向传输的功 率电平值和相互间的依赖性、光监控信道(OSC)传输和自动功 率关断等问题,同时要使用双向光纤放大器。
l
1 1,
l
1 2,
l
1 3
,l
1 4

波分复用

波分复用

7.2.4 光滤波器与光波分复用器
• 波长路由器中应用(图7.10(c))
7.2.4 光滤波器与光波分复用器
• 波分复用器和解复用器主要用在: • WDM终端 • 波长路由器 • 波长分插复用器(Wavelength Add/Drop Multiplexer, WADM)
7.2.4 光滤波器与光波分复用器
1. WDM的概念
如图7.6所示,在光纤的两个低损 耗传输窗口: 波长为1.31 μm(1.25~ 1.35μm)的窗口,相应的带宽(|Δf|=|Δλc/λ2|, λ和Δλ分别为中心波长和相 应的波段宽度, c为真空中光速)为 17700 GHz; 波长为1.55 μm(1.50~ 1.60 μm)的窗口, 相应的带宽为 12500 GHz。两个窗口合在一起,总 带宽超过30THz。如果信道频率间隔 为10 GHz, 在理想情况下, 一根光 纤可以容纳3000个信道。
7.2.2 WDM系统的基本结构
• 网络管理系统通过光监控信道物理层传送开销 字节到其他结点或接收来自其他结点的开销字 节对WDM系统进行管理, 实现配置管理、故 障管理、性能管理和安全管理等功能,并与上 层管理系统(如TMN)相连。 • 目前国际上已商用的系统有:4×2.5 Gb/s(10 Gb/s), 8×2.5 Gb/s(20 Gb/s), 16×2.5 Gb/s(40 Gb/s), 40×2.5 Gb/s(100 Gb/s), 32×10 Gb/s(320 Gb/s), 40×10 Gb/s(400 Gb/s)。
入端反过来使用, 就是复用器 。因此复用器和解复用器是相同
的(除非有特殊的要求)。 WDM系统的基本构成主要有以下两种 形式:双纤单向传输和单纤双向传输 。
2. WDM系统的基本形式

OTN基础知识学习-PPT

OTN基础知识学习-PPT

通过网线与其他网元的 NM_ETH1/NM_ETH2网口 相连,用于网元间通信。
ETH1
RJ45
通过网线与其它子架的 ETH1/ETH2/ETH3 接口相连,
实现主从子架间通信。
ETH2
RJ45
通过网线与其它子架的 ETH1/ETH2/ETH3 接口相连,
实现主从子架间通信。
Page 21
放大板OAU/OBU接口
OTM配置
1
OTU
80
DCM
C-EVEN
M40
OAU
客户侧信号
SC1/TC1
1
OTU
80
C-EVEN
D40
OAU
DCM
OTM 信号流:
DWDM
F I U
········· MCA
Page 12
第2章 业务信号流及相关硬件
2.1 OTM信号流 2.2 OLA信号流
Page 13
OLA配置
DCM
IN OUT
TC
F
I
TM RM
U
RC
TDC RDC
O IN A OUT
U
RM1 T TM2
C
2
TM1
RM2
O A OUT U IN
RDC
TDC
RC
F RM I TM U
TC
OUT IN
Page 16
第3章 重要单板的介绍
Page 17
OSN8800 I 槽位信息
Page 18
OSN6800 槽位信息
Page 19
AUX
系统辅助接口板;实现板间、子架间通信功能,子架内管理功能 指示灯 单板的面板上共有 5 个指示灯。 l 单板硬件状态灯(STAT)—红、绿、黄三 l 单板业务激活状态灯(ACT)—绿、橙两色 l 单板业务告警指示灯(SRV)—红、绿、黄 l 单板软件状态灯(PROG)—红、绿双色指 l 告警关断指示灯(ALMC)—黄色指示灯

WDM波分复用器详解

WDM波分复用器详解

WDM波分复用器详解波分的概念波分复用,指在同一根光纤中,同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。

简介波分复用波分复用(WND)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。

这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。

概述光纤通信飞速发展,光通信网络成为现代通信网的基础平台。

光纤通信系统经历了几个发展阶段,从80年代末的PDH系统,90年代中期的SDH系统,WDM系统,光纤通信系统快速地更新换代。

双波长WDM(1310/1550nm)系统80年代在美国AT&T网中使用,速率为2×17Gb/s。

90年代中期,WDM系统发展速度并不快,主要原因在于:(1)TDM(时分复用)技术的发展,155Mb/s-622Mb/s-2.5Gb/sTDM技术相对简单。

据统计,在2.5Gb/s系统以下(含2.5Gb/s系统),系统每升级一次,每比特的传输成本下降30%左右。

因此在系统升级中,人们首先想到并采用的是TDM技术。

(2)波分复用器件不成熟。

波分复用器/解复用器和光放大器在90年代初才开始商用化,1995年开始WDM技术发展很快,特别是基于掺铒光纤放大器EDFA的1550nm窗口密集波分复用(DWDM)系统。

Ciena推出了16×2.5Gb/s系统,Lucent公司推出8×2.5Gb/s系统,目前试验室已达Tb/s速率。

发展迅速的主要原因在于:(1)光电器件的迅速发展,特别是EDFA的成熟和商用化,使在光放大器(1530~1565nm)区域采用WDM技术成为可能;(2)利用TDM 方式已接近硅和镓砷技术的极限,TDM已无太多的潜力,且传输设备价格高;(3)已敷设G.652光纤1550nm窗口的高色散限制了TDM10Gb/s系统的传输,光纤色散的影响日益严重。

波分复用技术

波分复用技术

波分复用技术研究1.产生背景1.1全球形势随着全球互联网(Internet)的迅猛发展,以因特网技术为主导的数据通信在通信业务总量中的比列迅速上升,因特网业务已成为多媒体通信业中发展最为迅速、竞争最为激烈的领域。

同时,无论是从数据传输的用户数量还是从单个用户需要的带宽来讲,都比过去大很多。

特别是后者,它的增长将直接需要系统的带宽以数量级形式增长。

因此如何提高通信系统的性能,增加系统带宽,以满足不断增长的业务需求成为大家关心的焦点。

面对市场需求的增长,现有通信网络的传输能力的不足的问题,需要从多种可供选择的方案中找出低成本的解决方法。

缓和光纤数量的不足的一种途径是敷设更多的光纤,这对那些光纤安装耗资少的网络来说,不失为一种解决方案。

但这不仅受到许多物理条件的限制,也不能有效利用光纤带宽。

另一种方案是采用时分复用(TDM)方法提高比特率,但单根光纤的传输容量仍然是有限的,何况传输比特率的提高受到电子电路物理极限限制。

第三种方案是波分复用(WDM)技术, WDM系统利用已经敷设好的光纤,使单根光纤的传输容量在高速率TDM 的基础上成N倍地增加。

WDM能充分利用光纤的带宽,解决通信网络传输能力不足的问题,具有广阔的发展前景。

WDM波分复用并不是一个新概念,在光纤通信出现伊始,人们就意识到可以利用光纤的巨大带宽进行波长复用传输,但是在20世纪90年代之前,该技术却一直没有重大突破,其主要原因在于TDM的迅速发展,从155Mbit/s到622Mbit/s,再到2.5Gbit/s系统,TDM速率一直以过几年就翻4倍的速度提高。

人们在一种技术进行迅速的时候很少去关注另外的技术。

1995年左右,WDM系统的发展出现了转折,一个重要原因是当时人们在TDM10Gbit/s技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上,WDM系统才在全球范围内有了广泛的应用。

1.2 发展过程1.2.1 发展阶段光纤通信飞速发展,光通信网络成为现代通信网的基础平台。

复用技术的原理解析

复用技术的原理解析

一:什么是复用技术随着”光进铜退”逐渐成为园区网的技术主流,一方面由于资源受限,制造成本不断增加,光纤链路的铺设费用也在逐年增长,同时对于无线传输媒介来说,有限的可用频率也是非常宝贵的资源。

因此,对于通信线路的利用率提升成为了大家关注的重点,多路复用技术应运而生。

多路复用技术就是通过在一条通信线路上传输多路信号,从而提升光通信线路利用率的技术。

目前最常用的多路复用技术有波分复用、时分复用、频分复用、码分复用。

今天会重点对波分复用和时分复用展开来讲。

二:什么是波分复用技术2.1波分复用概念波分复用(WDM))是一种通过使用不同波长(即颜色)的激光将多个光载波信号复用到一根光纤上的技术,参考图一示意。

波分复用可以实现在一根光纤上双向通信,并实现容量的成倍增长。

波分复用技术是基于频分复用技术(FDM),可以将一个信道的带宽按照一定的数值分为多个信道(一般按照20nm为一个单位)。

在波分复用网络中,每个信道都被称为一个波长,每个信道以不同的频率和不同的光波长进行信息传输互达。

每个波长彼此分离,可以实现天然的物理隔离,k 可以有效防止他们互相干扰。

2.2 波分复用的工作原理波分复用技术,是将多个不同波长(或频率)的调制光信号(携带有用信息)在发送端经复用器(也叫合波器,Mux)合路到一起送入光线路(光纤传输链路)的同一根光纤中进行传输,在接收端用解复用器(也叫分波器,demux)将不同波长信号分开接收的技术,原理图见下方示意图。

一个波分系统包含很多的功能单元,如光转发单元(OTU),用于转发客户侧数据业务到线路侧的光口;光合波单元(OMU)和光分波单元(ODU),分别用于将多个波长光信号合并和分开;以及光功率放大器(OBA),光线路放大器(OLA)和光前置放大器(OPA),分别用于发端,链路,和接收端光信号放大。

当然还应该包括光监控信道(OSC),完成业务和链路的监控以便网络管理和维护。

三、什么是时分复用3.1 时分复用原理时分复用(TDM)是采用统一物理连接的不同时段来传输不同的信号,也能达到多路传输的目的。

DWDM系统基本原理培训

DWDM系统基本原理培训

光功率 (dbm)
波长
1530-1560nm
信道1
光源
信道2
光源
合波器
信道n
光源
分波器
信道1
检测器
信道2
检测器
信道n
检测器
波分复用系统的基本组成
DWDM系统的基本形式
• 双纤单向传输: ☆目前普遍采用,例如:陕南环波分; 京太西波分(32CH)等等。
• 单纤双向传输: ☆光通路在一根光纤上同时向两个不同方向传 输,所用波长相互分开,以实现彼此双方全双 工的通讯联络。
DWDM系统基本原理及日常维 护培训
以中兴DWDM设备为例
波分复用的基本概念
• 光波分复用的定义:是在一根光纤中同 时传输多波长光信号的技术。
• 基本原理:在发送端将不同波长的光信 号复用,并耦合到同一根光纤中进行传 输,在接收端又将组合波长解复用,并 进一步处理,恢复出原信号后,送入不 同的终端。
2、OPA要求噪声系数小,饱和输出功率不必太高; 3、OLA要求噪声系数不能太高,饱和输出功率高。
。EDFA特点:业务透明传输、无串扰、宽带宽(35nm)、高增益
(33dB)、低噪声。
。EDFA主要技术参数:增益(16、22、27、32dB)、带宽、噪声系
数、饱和输出功率( 17dBm、20dBm)、平坦度<2dB。
• 32CH系统波长 ◆ CH1(OTU1):192.1THZ(1560.61nm) ◆CH2(OTU2:192.2THZ(1559.79nm) ◆….. ◆CH2(OTU32):195.2THZ(1535.82nm) ◆8波系统,通路波长间隔为200GHZ(约1.6nm) ◆32波系统,通路波长间隔为100GHZ(约0.8nm)

波分复用技术及其应用现状与发展前景

波分复用技术及其应用现状与发展前景

波分复用技术及其应用现状与发展前景摘要:随着互联网科技的不断发展,人们对网络宽带的需求在不断的增加,因此为了满足人们的需求,研究者发现一种新的波分复用的技术,这种技术可以减缓当前对网络渴求的压力。

本次研究对波分复用技术及其应用现状与发展前景进行了浅要的探讨。

关键词:波分复用技术、光纤、光信号、千兆以太网前言:波分复用技术是一根光纤中包含着不同的光波,将其耦合复用到一起可以更有效的提供带宽,可以让不同的数据业务都可以统一的进行传输。

随着社会的不断进步,电信运营商为了更好的满足用户的需求,更好的开展业务,必须利用更好的技术来进行数据的传输。

因此波分复用技术正是解决目前的难题的一种技术,被广泛的应用到网络传输的业务中。

一、波分复用技术的概念及应用优势(一)波分复用技术的概念利用同一根光纤可以同时对多种的光波长信号通过不同的通道将信息传送到终端的技术成为波分复用技术,这种技术可以节省光纤资源,同时又让光纤的传输效率有大幅度的提高。

利用波分复用技术可以传输从0.8μm达到1.7μm的光波长信号,因此可以满足多种业务的需求。

(二)波分复用技术的应用优势1、设备简单、体积小、可靠性高利用波分复用技术进行信号的输送离不开设备的使用,在当前使用的设备来看,因为它不含有电源,只是一个简单的无源纤维光学器件,所以使它有着体积小,具有可靠性,同时这种设备的结构简单,也有便于和光纤进行耦合的特点。

这种设备可以将不同波长的信号进行整合和分开,可以使同一根光纤达到双向传输的目的。

2.兼容性高波分复用其可以将不同波长的光信号按照一定的次序进行排列,从而能够提高自身的利用率,这种传输方式不受传输速率和电调制方式的影响,因此可以使不同波长的光信号同时进行传送,实现高兼容传输的目的。

3.提高频带的利用率在大部分的光纤通信系统中,一般都是单根光纤只进行一种光波长的信号传输,导致光纤带宽的浪费。

利用光纤复用技术,可以实现多个光信号同时进行传输的目的,大大提高了光纤频带的利用率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光通信系统可以按照不同的方式进行分类。

如果按照信号的复用方式来进行分类,可分为频分复用系统(FDM-Frequency Division Multiplexing )、时分复用系统(TDM-Time Division Multiplexing)、波分复用系统(WDM- Wavelength Division Multiplexing)和空分复用系统(SDM-Space Division Multiplexing)。

所谓频分、时分、波分和空分复用,是指按频率、时间、波长和空间来进行分割的光通信系统。

应当说,频率和波长是紧密相关的,频分也即波分,但在光通信系统中,由于波分复用系统分离波长是采用光学分光元件,它不同于一般电通信中采用的滤波器,所以我们仍将两者分成两个不同的系统。

波分复用是光纤通信中的一种传输技术,它利用了一根光纤可以同时传输多个不同波长的光载波的特点,把光纤可能应用的波长范围划分成若干个波段,每个波段作一个独立的通道传输一种预定波长的光信号。

光波分复用的实质是在光纤上进行光频分复用(OFDM),只是因为光波通常采用波长而不用频率来描述、监测与控制。

随着电-光技术的向前发展,在同一光纤中波长的密度会变得很高。

因而,使用术语密集波分复用(DWDM-Dense Wavelength Division Multiplexing),与此对照,还有波长密度较低的WDM系统,较低密度的就称为稀疏波分复用(CWDM-Coarse Wave Division Multiplexing)。

这里可以将一根光纤看作是一个“多车道”的公用道路,传统的TDM系统只不过利用了这条道路的一条车道,提高比特率相当于在该车道上加快行驶速度来增加单位时间内的运输量。

而使用DWDM技术,类似利用公用道路上尚未使用的车道,以获取光纤中未开发的巨大传输能力。

2.1.2 WDM技术的发展背景
随着科学技术的迅猛发展,通信领域的信息传送量正以一种加速度的形式膨胀。

信息时代要求越来越大容量的传输网络。

近几年来,世界上的运营公司及设备制造厂家把目光更多地转向了WDM技术,并对其投以越来越多的关注,增加光纤网络的容量及灵活性,提高传输速率和扩容的手段可以有多种,下面对几种扩容方式进行比较。

l 空分复用SDM(Space Division Multiplexer)
空分复用是靠增加光纤数量的方式线性增加传输的容量,传输设备也线性增加。

在光缆制造技术已经非常成熟的今天,几十芯的带状光缆已经比较普遍,而且先进的光纤接续技术也使光缆施工变得简单,但光纤数量的增加无疑仍然给施工以及将来线路的维护带来了诸多不便,并且对于已有的光缆线路,如果没有足够的光纤数量,通过重新敷设光缆来扩容,工程费用将会成倍增长。

而且,这种方式并没有充分利用光纤的传输带宽,造成光纤带宽资源的浪费。

作为通信网络的建设,不可能总是采用敷设新光纤的方式来扩容,事实上,在工程之初也很难预测日益增长的业务需要和规划应该敷设的光纤数。

因此,空分复用的扩容方式是十分受限。

l 时分复用TDM(Time Division Multiplexer)
时分复用也是一项比较常用的扩容方式,从传统PDH的一次群至四次群的复用,到如今SDH
的STM-1、STM-4、STM-16乃至STM-64的复用。

通过时分复用技术可以成倍地提高光传输信息的容量,极大地降低了每条电路在设备和线路方面投入的成本,并且采用这种复用方式可以很容易在数据流中抽取某些特定的数字信号,尤其适合在需要采取自愈环保护策略的网络中使用。

但时分复用的扩容方式有两个缺陷:第一是影响业务,即在“全盘”升级至更高的速率等级时,网络接口及其设备需要完全更换,所以在升级的过程中,不得不中断正在运行的设备;第二是速率的升级缺乏灵活性,以SDH设备为例,当一个线路速率为155Mbit/s的系统被要求提供两个155Mbit/s的通道时,就只能将系统升级到622Mbit/s,即使有两个155Mbit/s 将被闲置,也没有办法。

对于更高速率的时分复用设备,目前成本还较高,并且40Gbit/s的TDM设备已经达到电子器件的速率极限,即使是10Gbit/s的速率,在不同类型光纤中的非线性效应也会对传输产生各种限制。

现在,时分复用技术是一种被普遍采用的扩容方式,它可以通过不断地进行系统速率升级实现扩容的目的,但当达到一定的速率等级时,会由于器件和线路等各方面特性的限制而不得不寻找另外的解决办法。

不管是采用空分复用还是时分复用的扩容方式,基本的传输网络均采用传统的PDH或SDH技术,[url=/]魔兽世界私服[/url]即采用单一波长的光信号传输,这种传输方式是对光纤容量的一种极大浪费,因为光纤的带宽相对于目前我们利用的单波长信道来讲几乎是无限的。

我们一方面在为网络的拥挤不堪而忧心忡忡,另一方面却让大量的网络资源白白浪费。

l 波分复用WDM(Wavelength Division Multiplexing)
WDM波分复用是利用单模光纤低损耗区的巨大带宽,将不同速率(波长)的光混合在一起进行传输,这些不同波长的光信号所承载的数字信号可以是相同速率、相同数据格式,也可以是不同速率、不同数据格式。

可以通过增加新的波长特性,按用户的要求确定网络容量。

对于2.5Gb/s以下的速率的WDM,目前的技术可以完全克服由于光纤的色散和光纤非线性效应带来的限制,满足对传输容量和传输距离的各种需求。

WDM扩容方案的缺点是需要较多的光纤器件,增加失效和故障的概率。

l TDM和WDM技术合用
利用TDM和WDM两种技术的优点进行网络扩容是应用的方向。

可以根据不同的光纤类型选择TDM的最高传输速率,在这个基础上再根据传输容量的大小选择WDM复用的光信道数,在可能情况下使用最多的光载波。

毫无疑问,多信道永远比单信道的传输容量大,更经济。

相关文档
最新文档