2019版八年级数学下学期期末检测试题新人教版 (I)

合集下载

2019-2020年八年级下学期期末考试数学试题(解析版)

2019-2020年八年级下学期期末考试数学试题(解析版)

2019-2020年八年级下学期期末考试数学试题(解析版)一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.63.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=1826.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.57.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx二、填空题11.一元二次方程x2=x的解是.12.数据﹣2、﹣1、0、1、2的方差是.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B (1,1),则关于x的方程ax2﹣bx﹣c=0的解为.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?27.如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数解析式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=2秒时,判断点P是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.xx学年江苏省南通市田家炳中学八年级(下)期末数学试卷参考答案与试题解析一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四【考点】一次函数的性质.【分析】由条件可分别求得直线与两坐标轴的交点,则可确定出其所在的象限,可求得答案.【解答】解:在y=2x+3中,令y=0可求得x=﹣1.5,令x=0可得y=3,∴直线与x轴交于点(﹣1.5,0),与y轴交于点(0,3),∴直线经过第一、二、三象限,∴不经过第四象限,故选D.【点评】本题主要考查一次函数的性质,利用直线与两坐标轴的交点即可确定出直线所在的象限.2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.6【考点】菱形的性质.【分析】首先根据已知可求得OA,OD的长,再根据勾股定理即可求得BC的长,再由菱形的面积等于底乘以高也等于两对角线的乘积,根据此不难求得DE的长.【解答】解:∵四边形ABCD是菱形,对角线AC=8,DB=6,∴BC==5,∵S菱形ABCD=AC×BD=BC×DE,∴×8×6=5×DE,∴DE==4.8,故选C.【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.3.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对【考点】抛物线与x轴的交点.【分析】利用已知将原式变形得出x12+x22=(x1+x2)2﹣2x1x2,进而利用根与系数关系求出即可.【解答】解:∵二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,∴x12+x22=(x1+x2)2﹣2x1x2=﹣2×(﹣)=,解得:m=±3,故选:C.【点评】此题主要考查了根与系数的关系,得出x12+x22=(x1+x2)2﹣2x1x2是解题关键.4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】二次函数的图象;一次函数的性质.【分析】根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.【点评】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n、m的符号.5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b 为终止时间的有关数量.6.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5【考点】众数;加权平均数.【分析】根据众数及平均数的概念求解.【解答】解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选:A.【点评】本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.7.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m【考点】二次函数的应用.【分析】依题意,该二次函数与x轴的交点的x值为所求.即在抛物线解析式中.令y=0,求x的正数值.【解答】解:把y=0代入y=﹣x2+x+得:﹣ x2+x+=0,解之得:x1=10,x2=﹣2.又x>0,∴x=10,故选:D.【点评】本题主要考查二次函数的实际应用,熟练掌握二次函数的图象和性质是解题的关键.8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对【考点】根的判别式.【分析】若方程有两相等根,则根的判别式△=b2﹣4ac=0,建立关于k的等式,求出k的值,再把不合题意的解舍去,即可得出答案.【解答】解:∵方程有两相等的实数根,∴△=b2﹣4ac=[﹣(k﹣1)]2﹣4(k﹣1)×=0,且k﹣1≠0,解得:k=1(舍去)或k=2,∴k的值为2;故选B.【点评】本题考查了根的根判别式,掌握当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根是本题的关键.9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx【考点】正方形的性质;坐标与图形性质.【专题】规律型.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形An BnCnDn的边长是:()n﹣1.则正方形Axx B2016CxxDxx的边长是:()xx.故选:D.【点评】此题主要考查了正方形的性质、锐角三角函数;熟练掌握正方形的性质,得出正方形的边长变化规律是解题关键.二、填空题11.一元二次方程x2=x的解是x=0或x= .【考点】解一元二次方程﹣因式分解法.【分析】移项后因式分解法求解可得.【解答】解:∵x2=x,∴x2﹣x=0,即x(x﹣)=0,∴x=0或x﹣=0,解得:x=0或x=,故答案为:x=0或x=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.12.数据﹣2、﹣1、0、1、2的方差是 2 .【考点】方差.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【解答】解:由题意可得,这组数据的平均数是:,∴这组数据的方差是: =2,故答案为:2.【点评】本题考查方差,解题的关键是明确方差的计算方法.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为y=﹣2x+1 .【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,把直线y=﹣2x﹣3向上平移4个单位长度后所得直线的解析式为:y=﹣2x﹣3+4,即y=﹣2x+1.故答案为:y=﹣2x+1【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为16 .【考点】根与系数的关系;矩形的性质.【分析】设矩形的长和宽分别为x、y,由矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两个根,根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x+y=8;xy=,然后利用矩形的性质易求得到它的周长.【解答】解:设矩形的长和宽分别为x、y,根据题意得x+y=8;所以矩形的周长=2(x+y)=16.故答案为:16.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=.也考查了矩形的性质.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1 .【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1 .【考点】二次函数的性质.【专题】数形结合.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是y 2<y3<y1.【考点】二次函数图象上点的坐标特征.【分析】把点的坐标代入可求得y1,y2,y3的值,比较大小即可.【解答】解:∵A(x1,y1)、B(x2,y2)、C(x3,y3)在抛物线上,∴y1=(a﹣3)2﹣2a(a﹣3)+3=﹣a2+12,y2=(a+1)2﹣2a(a+1)+3=﹣a2+4,y3=(a+2)2﹣2a(a+2)+3=﹣a2+7,∵﹣a2+4<﹣a2+7<﹣a2+12,∴y2<y3<y1,故答案为:y2<y3<y1.【点评】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是①②④.【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对③④选项讨论即可得解.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),∴△=b2﹣4ac>0,故本选项正确;②∵点M(x0,y)在二次函数y=ax2+bx+c(a≠0)的图象上,∴x=x0是方程ax2+bx+c=y的解,故本选项正确;③若a>0,则x1<x<x2,若a<0,则x0<x1<x2或x1<x2<x,故本选项错误;④若a>0,则x0﹣x1>0,x﹣x2<0,所以,(x0﹣x1)(x﹣x2)<0,∴a(x0﹣x1)(x﹣x2)<0,若a<0,则(x0﹣x1)与(x﹣x2)同号,∴a(x0﹣x1)(x﹣x2)<0,综上所述,a(x0﹣x1)(x﹣x2)<0正确,故本选项正确.故①②④正确,故答案为①②④【点评】本题考查了二次函数与x轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键,③④选项要注意分情况讨论.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.【考点】解一元二次方程﹣公式法;解一元二次方程﹣配方法.【分析】(1)因式分解法求解可得;(2)公式法求解可得.【解答】解:(1)∵(x﹣1)2=0,∴x﹣1=0,即x=1;(2)∵a=﹣2,b=4,c=﹣1,∴△=16﹣4×(﹣2)×(﹣1)=8>0,∴x==﹣2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的基本方法是解题的关键.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40 ,图①中m的值为15 ;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】图表型.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.【考点】待定系数法求一次函数解析式.【专题】作图题;待定系数法.【分析】(1)利用待定系数法求函数解形式即可;(2)先求一次函数图象与两坐标轴的交点坐标,再利用三角形的面积公式求解即可.【解答】解:(1)设一次函数解析式为y=kx+b,则,解得,∴这个一次函数的解析式为y=2x+1;(2)当y=0时,x=﹣,当x=0时,y=1,所以函数图象与坐标轴的交点为(﹣,0)(0,1),∴三角形的面积=×|﹣|×1=.【点评】本题主要考查待定系数法求一次函数解析式;先求出函数图象与坐标轴的交点坐标是求三角形面积的关键.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.【考点】根与系数的关系;根的判别式.【分析】根据方程有两个实数根结合根的判别式即可得出△=8k+8≥0,解之即可得出k的取值范围,再结合根与系数的关系以及x1+x2<x1x2,即可得出4<2﹣2k,解之即可得出k的取值范围,取两个k的取值范围的交集即可得出结论.【解答】解:不存在,理由如下:∵方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,∴△=(﹣4)2﹣4×1×[﹣2(k﹣1)]=8k+8≥0,解得:k≥﹣1.∵x1+x2=4,x1x2=2﹣2k,x1+x2<x1x2,∴4<2﹣2k,解得:k<﹣1.∵k≥﹣1和k<﹣1没有交集,∴不存在x1+x2<x1x2的情况.【点评】本题考查了根的判别式以及根与系数的关系,根据根的判别式以及根与系数的关系找出关于k的一元一次不等式是解题的关键.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BE D=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是120 千米,甲到B市后 5 小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.【考点】一次函数的应用.【分析】(1)从图中看,甲车3小时到达B市,则3×40=120千米,即A、B 两市的距离是120千米,根据乙车往返的速度都为20千米/时,那么乙车去时所用的时间为:120÷20=6小时,6+2=8,则8小时后乙到达,所以甲到B市后5小时乙到达B市;(2)分别表示A、B两点的坐标,利用待定系数法求解析式,并写t的取值;(3)先分别求出C、D两点的坐标,再求CD的解析式,求直线AB与CD的交点,即此时两车相遇,时间为12小时,计算甲车从第10小时开始返回,则再经过2小时两车相遇.【解答】解:(1)3×40=120,乙车所用时间: =6,2+6﹣3=5,答:A、B两市的距离是120千米,甲到B市后5小时乙到达B市;故答案为:120,5;(2)由题意得:A(10,120),B(13,0),设甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=kt+b,把A(10,120),B(13,0)代入得:,解得:,∴甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=﹣40t+520(10≤t≤13);(3)由题意得:C(8,10),120﹣(10﹣8)×20=80,∴D(10,80),设直线CD的解析式为:S=kt+b,把C(8,120)、D(10,80)代入得:,解得:,∴直线CD的解析式为:S=﹣20t+280,则:,﹣40t+520=﹣20t+280,t=12,12﹣10=2,答:甲车从B市往回返后再经过2小时两车相遇.【点评】本题是一次函数的应用,考查了利用待定系数法求一次函数的解析式,本题属于行程问题,明确路程、时间、速度的关系,注意图形中S所表示的实际意义:两车距A市的路程(千米);理解题意,弄清两直线的交点即为两车相遇所表示的点,并注意自变量t的取值范围.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.【考点】菱形的判定与性质;全等三角形的判定与性质;三角形中位线定理;正方形的判定.【专题】几何综合题;压轴题.【分析】(1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH 是菱形,则四边形EFGH是正方形.【解答】解:(1)四边形EFGH是菱形.(2分)(2)成立.理由:连接AD,BC.(4分)∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.(6分)∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=BC,FG=AD,GH=BC,EH=AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(7分)(3)补全图形,如答图.判断四边形EFGH是正方形.(9分)理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.(11分)∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.(12分)【点评】此题主要考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?。

2019-2020学年辽宁省丹东市八年级(下)期末数学试卷 (解析版)

2019-2020学年辽宁省丹东市八年级(下)期末数学试卷 (解析版)

2019-2020学年辽宁省丹东市八年级第二学期期末数学试卷一、选择题(共9小题).1.下列是不等式的是()A.x+y B.3x>7C.2x+3=5D.x3y22.下列图形中,是中心对称图形的是()A.等边三角形B.正五边形C.平行四边形D.等腰直角三角形3.下列各式从左到右的变形中,是因式分解的是()A.m(a+b+c)=ma+mb+mc B.x2+6x+36=(x+6)2C.a2﹣b2+1=(a+b)(a﹣b)+1D.10x2﹣5x=5x(2x﹣1)4.若m<n,则下列各式中正确的是()A.﹣3m<﹣3n B.m+1<n+1C.3m>3n D.m﹣1>n﹣1 5.下列式子从左到右的变形一定正确的是()A.=B.=C.=D.=6.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,BE=BC,连接BD,若AC=8cm,则AD+DE等于()A.6cm B.7cm C.8cm D.9cm7.若关于x的分式方程﹣3=有增根,则a的值为()A.﹣1B.﹣2C.3D.﹣38.如图,一次函数y1=kx+4与y2=x+m的图象相交于点P(1,3),则关于x的不等式kx+4<x+m的解集是()A.x<1B.x>1C.x<3D.x>39.如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD,交BC于点E,且∠ADC =60°,AB=BC,连接OE,下列结论:①∠CAD=30°;②OD=AB;③S▱ABCD =AC•CD;④S四边形OECD=S△AOD,其中成立的个数为()A.1个B.2个C.3个D.4个二、填空题(每小题2分,共18分)10.分式有意义,则x的取值范围是.11.若一个多边形内角和为900°,则这个多边形是边形.12.若2a﹣b=4,则4a2﹣4ab+b2=.13.如图,DE,MN分别垂直平分AB,AC,且BC=10cm,则△ADM的周长为.14.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,若CD=6,则AC=.15.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E是AD的中点,△AEO的周长是6,则△ABC的周长为.16.不等式6+x≥4x﹣3的非负整数解有个.17.如图,平行四边形ABCD的对角线AC,BD相交于点O,E、F是对角线AC上的两点,给出下列4个条件:①OE=OF;②DE=BF;③∠ADE=∠BCF;④∠ABE=∠CDF;其中不能判定四边形DEBF是平行四边形的是.(只填序号)18.如图,在△ABC中,∠C=90°,AC=BC,AB=2+2,点M,N分别是边AB,AC 上的动点,沿MN所在直线折叠△ABC,使点A的对应点A′始终落在边BC上,若△MA′B为直角三角形,则BM的长为.三、(每小题8分,共8分)19.计算:(1)因式分解:5ax2﹣5ay4.(2)解不等式组:.四、(每小题10分,共10分)20.(1)先化简,再求值:(1﹣)÷,其中x=.(2)解方程:+=4.五、(每小题6分,共12分)21.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上(每个小方格都是边长为1个单位长度的正方形),点C的坐标为(5,1).(1)将△ABC向左平移6个单位长度,再向上平移2个单位长度得到△A1B1C1,请画出△A1B1C1,并写出A1的坐标.(2)画出△ABC关于原点O成中心对称的△A2B2C2,并写出A2的坐标.22.如图,在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形.(2)当∠A=60°,DE=6,直接写出△DEF的面积.六、(每小题7分,共14分)23.为了改善社区环境,某社区计划对3600m2的区域进行绿化,社区委员会对甲、乙两个工程队考查发现,甲队每天能完成的绿化面积是乙队每天能完成绿化面积的1.5倍,如果两队各自独立完成社区的绿化任务,甲队比乙队少用10天,求甲、乙两个工程队每天各能完成多少绿化面积.24.如图,在四边形ABCD中,AD∥BC,∠A=∠C,∠ABC的平分线交CD于点E.(1)求证:四边形ABCD是平行四边形;(2)当E是CD中点,AD=3时,求四边形ABCD的周长.七、(本题8分)25.某单位要印刷一批宣传材料,在甲印刷厂不管一次印刷多少页,每页收费0.1元,在乙印刷厂,一次印刷页数不超过20时,每页收费0.12元;一次印刷页数超过20时,超过部分每页收费0.09元.设该单位需要印刷宣传材料的页数为x(x>20,且x为整数),在甲印刷厂实际付费为y1(元),在乙印刷厂实际付费为y2(元).(1)分别求出y1,y2与x的函数关系式.(2)你认为选择哪家印刷厂印刷这批宣传材料较好,为什么?八、(本题12分)26.如图,∠AOB=120°,OC是∠AOB的平分线,点E,M分别在射线OA,OC上,作射线ME,以M为中心,将射线ME逆时针旋转60°,交OB所在直线于点F.(1)按要求画图,并完成证明.过点M作MH∥OA,交射线OB于点H,求证:△OMH是等边三角形.(2)当点F落在射线OB上,请猜想线段OE,OF,OM三者之间的数量关系,并说明理由;(3)当点F落在射线OB的反向延长线上,请直接写出线段OE,OF,OM三者之间的数量关系.(4)点G是射线OA上一点,且满足OG=8,若MG=7,OF=1.5,请直接写出OE 的长.参考答案一、选择题(下列各题的备选答案中,只有一个是正确的.每小题2分,共18分)1.下列是不等式的是()A.x+y B.3x>7C.2x+3=5D.x3y2解:A、x+y是代数式,不是不等式,故此选项不符合题意;B、3x>7是不等式,故此选项符合题意;C、2x+3=5是等式,故此选项不符合题意;D、x3y2是代数式,不是不等式,故此选项不符合题意.故选:B.2.下列图形中,是中心对称图形的是()A.等边三角形B.正五边形C.平行四边形D.等腰直角三角形解:A、等边三角形不是中心对称图形,故本选项不合题意;B、正五边形不是中心对称图形,故本选项不合题意;C、平行四边形是中心对称图形,故本选项符合题意;D、等腰直角三角形不是中心对称图形,故本选项不合题意.故选:C.3.下列各式从左到右的变形中,是因式分解的是()A.m(a+b+c)=ma+mb+mc B.x2+6x+36=(x+6)2C.a2﹣b2+1=(a+b)(a﹣b)+1D.10x2﹣5x=5x(2x﹣1)解:A、是整式的乘法,不是因式分解,原变形错误,故此选项不符合题意;B、x2+12x+36=(x+6)2,x2+6x+36≠(x+6)2,原变形错误,故此选项不符合题意;C、没把一个多项式化为几个整式的积的形式,原变形错误,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,原变形正确,故此选项符合题意;故选:D.4.若m<n,则下列各式中正确的是()A.﹣3m<﹣3n B.m+1<n+1C.3m>3n D.m﹣1>n﹣1解:∵m<n,∴﹣3m>﹣3n,m+1<n+1,3m<3n,m﹣1<n﹣1.故选:B.5.下列式子从左到右的变形一定正确的是()A.=B.=C.=D.=解:A、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故A错误;B、c=0时,原式不成立,故B错误;C、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C错误;D、分子分母都除以ab,故D正确;故选:D.6.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,BE=BC,连接BD,若AC=8cm,则AD+DE等于()A.6cm B.7cm C.8cm D.9cm解:∵DE⊥AB,∴∠DEB=90°,在Rt△BCD和Rt△BED中,,∴Rt△BCD≌Rt△BED(HL),∴CD=DE,∴AD+DE=AD+CD=AC,∵AC=8cm,∴AD+DE=AC=8cm.故选:C.7.若关于x的分式方程﹣3=有增根,则a的值为()A.﹣1B.﹣2C.3D.﹣3解:分式方程去分母得:x﹣4﹣3x+9=a,整理得:﹣2x+5=a,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程得:a=﹣1,故选:A.8.如图,一次函数y1=kx+4与y2=x+m的图象相交于点P(1,3),则关于x的不等式kx+4<x+m的解集是()A.x<1B.x>1C.x<3D.x>3解:观察函数图象可知:当x>1时,一次函数y1=kx+4的图象在y2=x+m的图象的下方,∴关于x的不等式kx+4<x+m的解集是x>1.故选:B.9.如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD,交BC于点E,且∠ADC =60°,AB=BC,连接OE,下列结论:①∠CAD=30°;②OD=AB;③S▱ABCD =AC•CD;④S四边形OECD=S△AOD,其中成立的个数为()A.1个B.2个C.3个D.4个解:∵四边形ABCD为平行四边形,∠ADC=60°,∴AD∥BC,∠ABC=∠ADC=60°,OB=OD,∴∠DAE=∠AEB,∠BAD=∠BCD=120°,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB∴△ABE为等边三角形,∴∠BAE=∠AEB=60°,AB=BE=AE,∵AB=BC,∴EC=AE,∴∠EAC=∠ECA=30°,∴∠CAD=30°,故①正确;∵∠BAD=120°,∠CAD=30°,∴∠BAC=90°,∴BO>AB,∴OD>AB,故②错误;∴S▱ABCD=AB•AC=AC•CD,故③正确;∵∠BAC=90°,BC=2AB,∴E是BC的中点,∴S△BEO:S△BCD=1:4,∴S四边形OECD:S△BCD=3:4,∴S四边形OECD:S▱ABCD=3:8,∵S△AOD:S▱ABCD=1:4,∴S四边形OECD=S△AOD,故④正确.故选:C.二、填空题(每小题2分,共18分)10.分式有意义,则x的取值范围是x≠﹣2.解:分式有意义,则x+2≠0,所以x≠﹣2.故答案为:x≠﹣2.11.若一个多边形内角和为900°,则这个多边形是七边形.解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故答案为:七.12.若2a﹣b=4,则4a2﹣4ab+b2=16.解:∵2a﹣b=4,∴4a2﹣4ab+b2=(2a﹣b)2=42=16.故答案为16.13.如图,DE,MN分别垂直平分AB,AC,且BC=10cm,则△ADM的周长为10cm.解:∵DE,MN分别垂直平分AB,AC,∴AD=DB,AM=CM,∴△ADM的周长=AD+DM+AM=BD+DM+CM=BC=10cm,故答案为:10cm.14.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,若CD=6,则AC=6+6.解:∵∠C=90°,AC=BC∴∠B=∠CAB=45°,AC⊥BC,∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE=6,∠AED=90°,∴∠DEB=90°,∠EDB=45°=∠B,∴DE=BE=6,在△DEB中,由勾股定理得:BD==6,∵AC=BC,∴AC=CD+BD=6+6,故答案为:6+6.15.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E是AD的中点,△AEO 的周长是6,则△ABC的周长为12.解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=ED,∴CD=2OE,AC=2OA,AD=2AE,∵△AEO的周长是6,∴OE+OA+AE=6,∴2OE+2OA+2AE=12,∴AD+CD+AC=12,∴△ACD的周长为12,∴△ABC的周长为12,故答案为:12.16.不等式6+x≥4x﹣3的非负整数解有4个.解:6+x≥4x﹣3,6+3≥4x﹣x,3x≤9,x≤3,故不等式6+x≥4x﹣3的非负整数解有0,1,2,3共4个.故答案为:4.17.如图,平行四边形ABCD的对角线AC,BD相交于点O,E、F是对角线AC上的两点,给出下列4个条件:①OE=OF;②DE=BF;③∠ADE=∠BCF;④∠ABE=∠CDF;其中不能判定四边形DEBF是平行四边形的是②③.(只填序号)解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD∥BC,AD=BC,OB=OD,OA=OC,①OE=OF,则四边形DEBF是平行四边形;故①能判定四边形DEBF是平行四边形;②DE=BF时,不能证明OE=OF,故②不能判定四边形DEBF是平行四边形;③∠ADE=∠BCF时,不能证明OE=OF,故③不能判定四边形DEBF是平行四边形;④∵AB∥CD,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,又∵OB=OD,∴四边形DEBF是平行四边形;故④能判定四边形DEBF是平行四边形;故答案为:②③.18.如图,在△ABC中,∠C=90°,AC=BC,AB=2+2,点M,N分别是边AB,AC 上的动点,沿MN所在直线折叠△ABC,使点A的对应点A′始终落在边BC上,若△MA′B为直角三角形,则BM的长为2或+1.解:①如图1,当∠A′MB=90°,A′与C重合,M是AB的中点,∴BM=AB=(2+2)=;②如图2,当∠MA′B=90°,∵∠C=90°,AC=BC,∴∠B=45°,∴△BMA′是等腰直角三角形,∴BM=MA′,∵沿MN所在直线折叠△ABC,使点A的对应点A′,∴AM=A′M,∴BM=AM,∵BC=2+2,∴BM+AM=AM+AM=2+2,∴AM=2,∴BM=2,综上所述,若△MA′B为直角三角形,则BM的长为2或+1,故答案为:2或+1.三、(每小题8分,共8分)19.计算:(1)因式分解:5ax2﹣5ay4.(2)解不等式组:.解:(1)5ax2﹣5ay4=5a(x2﹣y4)=5a(x+y2)(x﹣y2);(2)不等式组,解不等式①,得x<1,解不等式②,得x>0,∴原不等式组的解集为:0<x<1.四、(每小题10分,共10分)20.(1)先化简,再求值:(1﹣)÷,其中x=.(2)解方程:+=4.解:(1)=,==,当x=时,原式==3.(2)∵.∴x﹣5=4(2x﹣3)∴x=1.经检验:x=1是原方程的解.五、(每小题6分,共12分)21.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上(每个小方格都是边长为1个单位长度的正方形),点C的坐标为(5,1).(1)将△ABC向左平移6个单位长度,再向上平移2个单位长度得到△A1B1C1,请画出△A1B1C1,并写出A1的坐标.(2)画出△ABC关于原点O成中心对称的△A2B2C2,并写出A2的坐标.解:(1)如图,△A1B1C1即为所求;A1的坐标(﹣2,5);(2)如图,△A2B2C2即为所求,A2的坐标(﹣4,﹣3).22.如图,在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形.(2)当∠A=60°,DE=6,直接写出△DEF的面积.解:(1)∵AB=AC,∴∠B=∠C,∵BD=CE,BE=CF,∴△BDE≌△CEF(SAS),∴DE=EF,∴△DEF是等腰三角形;(2)∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°﹣∠BED﹣∠CEF=180°﹣∠DEB﹣∠EDB=∠B,∵∠A=60°,AB=AC,∴△ABC是等边三角形,∴∠B=∠DEF=60°,∴△DEF是等边三角形.∵DE=6,∴△DEF的面积为×=9.六、(每小题7分,共14分)23.为了改善社区环境,某社区计划对3600m2的区域进行绿化,社区委员会对甲、乙两个工程队考查发现,甲队每天能完成的绿化面积是乙队每天能完成绿化面积的1.5倍,如果两队各自独立完成社区的绿化任务,甲队比乙队少用10天,求甲、乙两个工程队每天各能完成多少绿化面积.解:设乙队每天绿化面积为xm2,则甲队每天绿化面积为1.5xm2,根据题意得:,解这个方程得x=120,经检验:x=120是原方程的根,∴1.5x=1.5×120=180(m2),答:甲队每天绿化面积为180m2,则乙队每天绿化面积为120m2.24.如图,在四边形ABCD中,AD∥BC,∠A=∠C,∠ABC的平分线交CD于点E.(1)求证:四边形ABCD是平行四边形;(2)当E是CD中点,AD=3时,求四边形ABCD的周长.【解答】(1)证明:∵AD∥BC,∴∠ABC+∠A=180°,∵∠A=∠C,∴∠ABC+∠C=180°,∴AB∥CD,∴四边形ABCD是平行四边形;(2)解:由(1)得:四边形ABCD是平行四边形,∴BC=AD=3,∵∠ABC的平分线交CD于点E,∴∠ABE=∠EBC,∵AB∥CD,∴∠ABE=∠CEB,∴∠CEB=∠EBC,∴CE=BC,∵E是CD中点,∴CD=2CE,∴CD=2BC,又∵BC=AD=3,∴CD=2BC=6,∴平行四边形ABCD的周长=(3+6)×2=18.七、(本题8分)25.某单位要印刷一批宣传材料,在甲印刷厂不管一次印刷多少页,每页收费0.1元,在乙印刷厂,一次印刷页数不超过20时,每页收费0.12元;一次印刷页数超过20时,超过部分每页收费0.09元.设该单位需要印刷宣传材料的页数为x(x>20,且x为整数),在甲印刷厂实际付费为y1(元),在乙印刷厂实际付费为y2(元).(1)分别求出y1,y2与x的函数关系式.(2)你认为选择哪家印刷厂印刷这批宣传材料较好,为什么?解:(1)由题意得,y1=0.1x,y2=20×0.12+0.09(x﹣20)=0.09x+0.6,∴y1,y2与x的函数关系式分别为y1=0.1x,y2=0.09x+0.6;(2)当x>20时,由y1<y2得,0.1x<0.09x+0.6,解得,x<60,由y1=y2得,0.1x=0.09x+0.6,解得,x=60,由y1>y2得0.1x>0.09x+0.6,解得,x>60,∴当x=60时,甲、乙两个印刷厂收费相同,当20<x<60时,甲印刷厂费用少,当x >60时,乙印刷厂费用少.八、(本题12分)26.如图,∠AOB=120°,OC是∠AOB的平分线,点E,M分别在射线OA,OC上,作射线ME,以M为中心,将射线ME逆时针旋转60°,交OB所在直线于点F.(1)按要求画图,并完成证明.过点M作MH∥OA,交射线OB于点H,求证:△OMH是等边三角形.(2)当点F落在射线OB上,请猜想线段OE,OF,OM三者之间的数量关系,并说明理由;(3)当点F落在射线OB的反向延长线上,请直接写出线段OE,OF,OM三者之间的数量关系.(4)点G是射线OA上一点,且满足OG=8,若MG=7,OF=1.5,请直接写出OE 的长.【解答】(1)证明:如图1中,过点M作MH∥OA,交射线OB于点H.∵OC是∠AOB的平分线,∴∠AOC=∠COB=∠AOB=,∵MH∥OA,∴∠HMO=∠AOC=60°,∴∠HMO=∠COB=∠MHO=60°,∴△OMH是等边三角形.(2)结论:OM=OF+OE.∵△OMH是等边三角形,∴OM=MH=OH,∵以M为中心,将射线ME逆时针旋转60°,∴∠EMF=∠HMO=60°,∴∠EMF﹣∠OMF=∠HMO﹣∠OMF,即∠EMO=∠HMF,又∵∠MOE=∠MHF=60°,∴△EMO≌△FMH(ASA),∴OE=FH,∵OM=OH=OF+FH,∴OM=OF+OE.(3)结论:OM=OE﹣OF.理由:如图2中,过点M作MH∥OA,交射线OB于点H.∵△OMH是等边三角形,∴OM=MH=OH,∵以M为中心,将射线ME逆时针旋转60°,∴∠EMF=∠HMO=60°,∴∠EMF+∠OMF=∠HMO+∠OMF,即∠EMO=∠HMF,又∵∠MOE=∠MHF=60°,∴△EMO≌△FMH(ASA),∴OE=FH,∵OM=OH=FH﹣OF,∴OM=OE﹣OF.(4)如图3中,在射线OA上取一点J,使得OM=OJ,连接MJ,MG,过点M作MK ⊥OA于K.∵OM=OJ,∠MOJ=60°,∴△MOJ是等边三角形,设OM=OJ=MJ=x.∵MK⊥OJ,∴JK=KO=x,MK=x,在Rt△MGK中,∵MK2+GK2=MG2,∴(x)2+(8﹣x)2=72,解得x=5或3,当x=5时,如图3中,当点F在射线OB上时,OE+OF=OM=5,∴OE=5﹣1.5=3.5,当点F在思想OB栋反向延长线上时,OE﹣OF=OM,可得OE=5+1.5=6.5.如图4中,当x=3时,同法可得OE=1.5或4.5.综上所述,满足条件的OE的值为3.5或6.5或1.5或4.5.。

人教版初中数学八年级下册期末测试题(2019-2020学年天津市滨海新区

人教版初中数学八年级下册期末测试题(2019-2020学年天津市滨海新区

2019-2020学年天津市滨海新区八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)若是二次根式,则x的取值范围是()A.x≥1B.x≤1C.x<1D.x≥02.(3分)下列各式中,是最简二次根式的是()A.B.C.D.3.(3分)下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A.2,2,3B.2,3,4C.3,4,5D.4,5,64.(3分)下列各式中,y不是x的函数的是()A.y=x B.|y|=x C.y=2x+1D.y=x25.(3分)如图,在▱ABCD中,若∠B=70°,则∠D=()A.35°B.70°C.110°D.130°6.(3分)在平面直角坐标系中,下列各点在直线y=2x﹣1上的是()A.P(﹣2.5,﹣4)B.Q(1,3)C.M(2.5,4)D.N(﹣1,0)7.(3分)如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC8.(3分)由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m9.(3分)下列命题中,为真命题的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.一组邻边相等的菱形是正方形D.对角线相等的菱形是正方形10.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象与直线y=2x+1平行B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<011.(3分)如图所示,▱ABCD的对角线AC,BD相交于点O,点E是CD的中点,若BC =6,则OE的长为()A.2B.2.5C.3D.412.(3分)如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.图反映了这个过程中,小明离家的距离y(单位:km)与时间x(单位:min)之间对应关系.根据图象:下列说法错误的是()A.食堂离小明家0.6kmB.小明在图书馆读报用了30minC.食堂离图书馆0.2kmD.小明从图书馆回家平均速度是0.02km/min二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)化简:=,=,=.14.(3分)一次函数y=﹣x+5是由正比例函数向平移个单位得到的.15.(3分)如图,利用函数图象回答下列问题:方程组的解为.16.(3分)当x=﹣1时,代数式x2+2x+1的值是.17.(3分)如图,四边形ABCD是矩形纸片,AD=10,CD=8.在CD边上取一点E,将纸片沿AE翻折,使点D落在BC边上的点F处.则AF=;CF=;DE =.18.(3分)在如图所示的7×7网格中,每个小正方形的边长均为1,点A、B均落在格点上.(Ⅰ)AB的长等于;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为边的正方形ABCD,并简要说明画图的方法(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)计算:(Ⅰ);(Ⅱ).20.(8分)如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.21.(10分)如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.22.(10分)已知,矩形ABCD的对角线AC、BD相交于点O.(Ⅰ)如图①,若AB=6,BC=8,则BD=,OD=;(Ⅱ)如图②,DE∥AC,CE∥BD,求证:四边形OCED是菱形.23.(10分)已知正比例函数y=kx(k≠0)的图象经过点(3,﹣6).(Ⅰ)求这个函数的解析式;(Ⅱ)画出这个函数的图象;(Ⅲ)图象上有两点(﹣1,y1),(2,y2),比较y1与y2的大小.24.(10分)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.52 3.54…付款金额/元7.516…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.25.(10分)如图,在平面直角坐标系中,O为原点,已知直线y=﹣x+4与x轴交于点A,与y轴交于点B.(Ⅰ)点A的坐标为,点B的坐标为;(Ⅱ)如图①,若点M(x,y)在线段AB上运动(不与端点A、B重合),连接OM,设△AOM的面积为S,写出S关于x的函数解析式,并写出自变量x的取值范围;(Ⅲ)如图②,若四边形OADC是菱形,求菱形对角线OD的长.2019-2020学年天津市滨海新区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)若是二次根式,则x的取值范围是()A.x≥1B.x≤1C.x<1D.x≥0【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,1﹣x≥0,解得x≤1.故选:B.【点评】本题考查二次根式.解题的关键是掌握二次根式的被开方数是非负数.2.(3分)下列各式中,是最简二次根式的是()A.B.C.D.【分析】利用最简二次根式定义判断即可.【解答】解:A.,故本选项不合题意;B.,故本选项不合题意;C.是最简二次根式,故本选项符合题意;D.,故本选项不合题意.故选:C.【点评】此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.3.(3分)下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A.2,2,3B.2,3,4C.3,4,5D.4,5,6【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【解答】解:A、22+22≠32,不能构成直角三角形,故此选项错误;B、22+32≠42,不能构成直角三角形,故此选项错误;C、32+42=52,能构成直角三角形,故此选项正确;D、42+52≠62,不能构成直角三角形,故此选项错误.故选:C.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.(3分)下列各式中,y不是x的函数的是()A.y=x B.|y|=x C.y=2x+1D.y=x2【分析】根据对于x的每一个确定的值,y是否有唯一的值与其对应进行判断.【解答】解:A、y=x,y是x的函数,故此选项不符合题意;B、|y|=x,对于x的每一个确定的值,y不是有唯一的值与其对应,∴y不是x的函数,故此选项符合题意;C、y=2x+1,y是x的函数,故此选项不符合题意;D、y=x2,y是x的函数,故此选项不符合题意;故选:B.【点评】本题考查了函数的定义.解题的关键是掌握函数的定义,设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数.5.(3分)如图,在▱ABCD中,若∠B=70°,则∠D=()A.35°B.70°C.110°D.130°【分析】根据平行四边形的对角相等即可得出∠D的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=70°,故选:B.【点评】此题主要考查了平行四边形的性质,熟练掌握平行四边形的对角相等是解题关键.6.(3分)在平面直角坐标系中,下列各点在直线y=2x﹣1上的是()A.P(﹣2.5,﹣4)B.Q(1,3)C.M(2.5,4)D.N(﹣1,0)【分析】分别代入各选项中点的横坐标求出y值,再与点的纵坐标比较后即可得出结论.【解答】解:A、当x=﹣2.5时,y=2x﹣1=﹣6,∴点P(﹣2.5,﹣4)不在直线y=2x﹣1上;B、当x=1时,y=2x﹣1=1,∴点Q(1,3)不在直线y=2x﹣1上;C、当x=2.5时,y=2x﹣1=4,∴点M(2.5,4)在直线y=2x﹣1上;D、当x=﹣1时,y=2x﹣1=﹣3,∴点N(﹣1,0)不在直线y=2x﹣1上.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.7.(3分)如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC【分析】根据平行四边形的判定定理分别进行分析即可.【解答】解:A、根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、不能判定四边形ABCD是平行四边形,故此选项符合题意;C、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题;D、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:B.【点评】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.8.(3分)由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【解答】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:C.【点评】熟练运用勾股定理.熟记6,8,10是勾股数,简便计算.9.(3分)下列命题中,为真命题的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.一组邻边相等的菱形是正方形D.对角线相等的菱形是正方形【分析】根据矩形、菱形、正方形的判定定理判断即可.【解答】解:A、对角线互相垂直的平行四边形是菱形,本选项说法是假命题;B、对角线相等的平行四边形是矩形,本选项说法是假命题;C、一组邻边相等的矩形是正方形,本选项说法是假命题;D、对角线相等的菱形是正方形,本选项说法是真命题;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象与直线y=2x+1平行B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<0【分析】根据一次函数的性质及一次函数图象上点的坐标特点,对各选项进行逐一分析即可.【解答】解:A.由于直线y=﹣2x+1与直线y=2x+1的k值不相等,所以它们不平行,故本选项错误;B.函数y=﹣2x+1中,k=﹣2<0,y随x的增大而减小,故本选项错误;C.函数y=﹣2x+1中,k=﹣2<0,b=1>0,此函数的图象经过一、二、四象限,故本选项错误;D.函数y=﹣2x+1可化为x=,依据>,可得y<0,故本选项正确;故选:D.【点评】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方.11.(3分)如图所示,▱ABCD的对角线AC,BD相交于点O,点E是CD的中点,若BC =6,则OE的长为()A.2B.2.5C.3D.4【分析】先说明OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.【解答】解:∵▱ABCD的对角线AC、BD相交于点O,∴OB=OD,∵点E是CD的中点,∴CE=DE,∴OE是△BCD的中位线,∵BC=6,∴OE=BC=3.故选:C.【点评】本题考查了平行四边形的性质:对角线互相平分这一性质和三角形的中位线定理.12.(3分)如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.图反映了这个过程中,小明离家的距离y(单位:km)与时间x(单位:min)之间对应关系.根据图象:下列说法错误的是()A.食堂离小明家0.6kmB.小明在图书馆读报用了30minC.食堂离图书馆0.2kmD.小明从图书馆回家平均速度是0.02km/min【分析】根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:A、食堂离小明家0.6km,正确,不符合题意;B、小明在图书馆读报用了58﹣28=30min,正确,不符合题意;C、食堂离图书馆0.8﹣0.6=0.2km,正确,不符合题意;D、小明从图书馆回家平均速度是km/min,错误,符合题意;故选:D.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)化简:=3,=3,=﹣3.【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:=3,=3,=﹣3.故答案为:3,3,﹣3.【点评】此题主要考查了二次根式的乘除法,正确化简二次根式是解题关键.14.(3分)一次函数y=﹣x+5是由正比例函数y=﹣x向上平移5个单位得到的.【分析】根据平移法则上加下减可得出平移后的解析式.【解答】解:由题意得:一次函数y=﹣x+5的图象可由正比例函数y=﹣x的图象向上平移5个单位长度得到.故答案为:y=﹣x,上,5.【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.15.(3分)如图,利用函数图象回答下列问题:方程组的解为.【分析】观察函数的图象y=2x与y=﹣x+3相交于点(1,2),从而求解;【解答】解:观察图象可知,x+y=3与y=2x相交于(1,2),可求出方程组的解为,故答案为:.【点评】此题主要考查一次函数与二元一次方程组,关键是能根据函数图象的交点解方程组.16.(3分)当x=﹣1时,代数式x2+2x+1的值是3.【分析】利用完全平方公式得到x2+2x+1=(x+1)2,然后把x的值代入计算即可.【解答】解:∵x=﹣1,∴x2+2x+1=(x+1)2=(﹣1+1)2=3.故答案为3.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.17.(3分)如图,四边形ABCD是矩形纸片,AD=10,CD=8.在CD边上取一点E,将纸片沿AE翻折,使点D落在BC边上的点F处.则AF=10;CF=4;DE=5.【分析】根据折叠的性质得AF=AD=10;根据矩形的性质得AD=CB=10,则CF=BC ﹣BF=4,设DE=x,则EF=x,EC=8﹣x,然后在Rt△ECF中根据勾股定理得到42+(8﹣x)2=x2,再解方程即可得到DE的长.【解答】解:根据折叠可得AF=AD=10,∵四边形ABCD是矩形,∴BC=AD=10,∴FC=10﹣6=4,设DE=x,则EF=x,EC=8﹣x,在Rt△ECF中,∵CE2+FC2=EF2,∴42+(8﹣x)2=x2,解得x=5.则DE=5.故答案为:10,4,5.【点评】本题考查了图形的折叠,矩形的性质和勾股定理,解题的关键是熟练掌握折叠的性质.18.(3分)在如图所示的7×7网格中,每个小正方形的边长均为1,点A、B均落在格点上.(Ⅰ)AB的长等于;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为边的正方形ABCD,并简要说明画图的方法(不要求证明).【分析】(Ⅰ)利用勾股定理计算即可.(Ⅱ)利用数形结合的思想解决问题即可.【解答】解:(Ⅰ)AB==.故答案为.(Ⅱ)如图,取格点C,D,依次连接AD,DC,CB,四边形ABCD即为所求.【点评】本题考查作图﹣复杂作图,勾股定理,正方形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)计算:(Ⅰ);(Ⅱ).【分析】(Ⅰ)先把二次根式化为最简二次根式,然后合并即可;(Ⅱ)利用平方差公式计算.【解答】解:(Ⅰ)原式=3﹣4=﹣;(Ⅱ)原式=(2)2﹣()2=18.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(8分)如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.【分析】根据平行四边形的性质:平行四边的对边相等,可得AB∥CD,AB=CD;根据一组对边平行且相等的四边形是平行四边形,可得AN=CM.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵M,N分别是AB、CD的中点,∴CN=CD,AM=AB,∵CN∥AM,∴四边形ANCM为平行四边形,∴AN=CM.【点评】本题考查了平行四边形的判定与性质,根据条件选择适当的判定方法是解题关键.21.(10分)如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.【分析】连接BD,根据已知分别求得△ABD的面积与△BDC的面积,即可求四边形ABCD【解答】解:连接BD,∵AB=3cm,AD=4cm,∠A=90°∴BD=5cm,S△ABD=×3×4=6cm2又∵BD=5cm,BC=13cm,CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.【点评】此题主要考查勾股定理和逆定理的应用,还涉及了三角形的面积计算.连接BD,是关键的一步.22.(10分)已知,矩形ABCD的对角线AC、BD相交于点O.(Ⅰ)如图①,若AB=6,BC=8,则BD=10,OD=5;(Ⅱ)如图②,DE∥AC,CE∥BD,求证:四边形OCED是菱形.【分析】(1)由矩形ABCD对角线AC、BD相交于点O,根据矩形的对角线相等,且互相平分,即可求得答案;(2)由矩形ABCD对角线AC、BD相交于点O,易证得OC=OD,又由DE∥AC,CE ∥BD,可证得四边形OCED是平行四边形,即可判定四边形OCED是菱形;【解答】(1)解:∵矩形ABCD对角线AC、BD相交于点O,∵AB=6,BC=8,由勾股定理得:AC=BD=10,∴OD=BD=5;故答案为:10,5;(2)证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴AB=CD,OA=OC,OB=OD,∴OC=OD,∴四边形OCED是菱形;【点评】此题考查了矩形的性质、菱形的判定与性质、平行四边形的判定与性质等知识.注意掌握矩形的对角线相等且互相平分定理的应用是解此题的关键.23.(10分)已知正比例函数y=kx(k≠0)的图象经过点(3,﹣6).(Ⅰ)求这个函数的解析式;(Ⅱ)画出这个函数的图象;(Ⅲ)图象上有两点(﹣1,y1),(2,y2),比较y1与y2的大小.【分析】(Ⅰ)把(3,﹣6)代入正比例函数y=kx可得k的值,进而可得函数解析式;(Ⅱ)正比例函数图象必过(0,0),然后过(0,0)和(3,﹣6)画出图象即可;(Ⅲ)利用正比例函数的性质可得答案.【解答】解:(Ⅰ)∵y=kx(k≠0)的图象经过点(3,﹣6),∴﹣6=3k,解得k=﹣2,∴正比例函数解析式为y=﹣2x;(Ⅱ)如图所示:(Ⅲ)解:方法一(代入法):把(﹣1,y1),(2,y2)分别代入y=﹣2x,y1=﹣2×(﹣1)=2,y2=﹣2×2=﹣4,∴y1>y2.方法二(增减性):∵k=﹣2<0,∴y随x的增大而减小,∵﹣1<2,∴y1>y2.【点评】此题主要考查了一次函数图象上点的坐标特点,以及画函数图象和正比例函数的性质,关键是掌握凡是图象经过的点必能满足解析式.24.(10分)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.52 3.54…付款金额/元7.5101618…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.【分析】(1)根据单价乘以数量,可得答案;(2)根据单价乘以数量,可得价格,可得相应的函数解析式;(3)根据函数值,可得相应的自变量的值.【解答】解:(Ⅰ)10,18;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>10,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.【点评】本题考查了一次函数的应用,分类讨论是解题关键.25.(10分)如图,在平面直角坐标系中,O为原点,已知直线y=﹣x+4与x轴交于点A,与y轴交于点B.(Ⅰ)点A的坐标为(3,0),点B的坐标为(0,4);(Ⅱ)如图①,若点M(x,y)在线段AB上运动(不与端点A、B重合),连接OM,设△AOM的面积为S,写出S关于x的函数解析式,并写出自变量x的取值范围;(Ⅲ)如图②,若四边形OADC是菱形,求菱形对角线OD的长.【分析】(Ⅰ)分别令y=0,和令x=0,可得出答案;(Ⅱ)由点M(x,y)在直线上,可将其纵坐标用x表示出来,然后根据三角形面积公式可写出S关于x的函数关系式;(Ⅲ)先由勾股定理求得AB的长,再根据菱形的性质和面积法可求得OE的长,然后根据菱形的性质可得对角线OD的长.【解答】解:(Ⅰ)∵直线y=﹣x+4与x轴交于点A,与y轴交于点B,∴令y=0,得x=3;令x=0,得y=4,∴A(3,0),B(0,4).故答案为:(3,0),(0,4);(Ⅱ)∵点M(x,y)在直线上,∴M(x,).∴S=AO•y M=×3×()=﹣2x+6(0<x<3);(Ⅲ)由(Ⅰ)得,OA=3,OB=4.∴在Rt△AOB中,AB===5.∵四边形OADC是菱形,∴AC⊥OD,.∴.∵AB×OE=OA×OB,∴5OE=3×4,∴.∵,∴.∴菱形对角线OD的长为.【点评】本题属于一次函数综合题,考查了一次函数与坐标轴的交点、直线上的动点与两定点所围成的三角形的面积问题及一次函数与菱形的有关计算.。

山西太原市2018-2019学年八年级下学期期末数学试题(解析版)

山西太原市2018-2019学年八年级下学期期末数学试题(解析版)
山西省太原市2018-2019学年八年级下学期期末数学试题
一.选择题
1.若a>b,则下列不等式成立的是( )
A. B.a+5<b+5C.-5a>-5bD.a-2<b-2
【答案】A
【解析】
【分析】
根据不等式的性质逐项分析即可.
【详解】不等式的两边同时除以一个正数,不等号的方向不变,故A正确.
不等式的两边同时加上或减去一个数,不等号的方向不变,故B、D错误;
A.5.5元/千克B.5.4元/千克C.6.2元/千克D.6元/千克
【答案】D
【解析】
【分析】
设这种水果每千克的售价为x元,购进这批水果m千克,根据这种水果的利润不低于35%列不等式求解即可.
【详解】设这种水果每千克的售价为x元,购进这批水果m千克,根据题意,得
(1-10%)mx-4m≥4m×35%,
8.在平面直角坐标系中,点A的坐标是(3,-4),点B的坐标是(1,2),将线段AB平移后得到线段A'B'.若点A对应点A'的坐标是(5,2),则点B'的坐标是( )
A. (3,6)B. (3,7)C. (3,8)D. (6,4)
【答案】C
【解析】
【分析】
先由点A的平移结果判断出平移的方式,再根据平移的方式求出点B′的坐标即可.
A.x≠2B.x≠-2C.x≠ D.x≠-
【答案】B
【解析】
【分析】
根据分母不 零列式求解即可.
【详解】分式中分母不能为0,
所以,3 x+6≠0,解得:x≠-2,
故选B.
【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:①分式无意义⇔分母为零;②分式有意义⇔分母不为零;③分式值为零⇔分子为零且分母不为零.

2019-2020学年广东省揭阳市普宁市八年级下学期期末数学试卷 (解析版)

2019-2020学年广东省揭阳市普宁市八年级下学期期末数学试卷 (解析版)

2019-2020学年广东揭阳市普宁市八年级第二学期期末数学试卷一、选择题(共10小题).1.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.2.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)3.不等式﹣2x+6>0的解集在数轴上表示正确的是()A.B.C.D.4.如图,在△ABC中,AB=3,BC=6,AC=4,点D,E分别是边AB,CB的中点,那么DE的长为()A.1.5B.2C.3D.45.如图是“一带一路”示意图,若记北京为A地,莫斯科为B地,雅典为C地,分别连接AB、AC、BC,形成一个三角形.若想建立一个货物中转仓,使其到A、B、C三地的距离相等,则中转仓的位置应选在()A.△ABC三条中线的交点处B.△ABC三条高所在直线的交点处C.△ABC三条角平分线的交点处D.△ABC三边的垂直平分线的交点处6.如图,▱ABCD中,点O为对角线AC、BD的交点,下列结论错误的是()A.AC=BD B.AB∥DC C.BO=DO D.∠ABC=∠CDA 7.对于实数a、b、c中,给出下列命题:①若a<b,则a﹣c<b﹣c;②若ab>c,则a>;③若﹣3a>2a,则a<0;④若a>b,则ac2>bc2.其中真命题有()A.①②B.①③C.②④D.③④8.下列各分式中,最简分式是()A.B.C.D.9.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.510.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.3B.+C.+2D.2+二、填空题(共7小题.)11.分解因式:2x3﹣18x=.12.分式方程+=1的解为.13.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于度.14.用反证法证明“三角形的三个内角中,至少有一个大于或等于60°”时,应先假设.15.如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x ≤ax+3的解集是.17.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为.三、解答题(一)(本大题3小题,每小题6分,共18分.)18.解不等式组,并把解集在数轴上表示出来.19.先化简,再求值:•﹣(+1),其中x=﹣6.20.在△ABC中,AB=AC,∠BAC=120°,AB边的垂直平分线交AB于D,交BC于E,求证:BE=CE.四、解答题(二)(本大题3小题,每小题8分,共24分.)21.已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.22.某学习平台为提高学生的积极性,推出学习积分,所得积分可兑换礼品.某品牌的圆珠笔每支需要40积分,笔芯每支需要10积分.现积分超市推出以下两种活动:活动一:按兑换物品所需的积分打八折扣积分;活动二:兑换一支圆珠笔送两支笔芯.王叔叔有1000积分,想兑换这种圆珠笔10支,笔芯x支(x≥20).(1)请你分别写出活动一、活动二兑换所需的积分y1,y2与笔芯x(支)之间的函数关系式;(2)若只能选择一种兑换活动,请你帮助王叔叔判断选择哪种活动更优惠.23.如图,等边△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求∠F的度数.五、解答题(三)(本大题2小题,每小题10分,共20分.)24.为防控“新型冠状病毒”,某超市分别用1600元、6000元购进两批防护口罩,第二批防护口罩每个进货价格比第一批贵2元,购进的数量是第一批的3倍.(1)第一批口罩进货单价多少元?(2)若这两次购进防护口罩过程中所产生其他费用不少于600元,那么该超市这两批防护口罩的平均购进单价至少为多少元?25.将▱OABC放在平面直角坐标系中,O为原点,点C(﹣6,0),点A在第一象限,OA =2,∠A=60°,AB与y轴交于点N.(1)如图①,求点A的坐标;(2)如图②,将平行四边形OABC绕点O逆时针旋转得到平行四边形OA′B′C',当点A的对应点A′落在y轴正半轴上时,求旋转角及点B的对应点B′的坐标;(3)将平行四边形OABC绕点A旋转得到平行四边形DAEF,使点B的对应点E落在直线OA上,请在图③中画出旋转后的图形,并直接写出OE、AB、BC之间的关系.参考答案一、选择题(本大题共10小题,每小题3分,共30分.)1.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解:A、是中心对称图形,也是轴对称图形,不符合题意;B、不是中心对称图形,是轴对称图形,不符合题意;C、是中心对称图形,不是轴对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选:C.2.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)【分析】根据因式分解的意义:把一个多项式化成几个整式积的形式,左边是一个多项式,右边是整式的积的形式,进行判断即可.解:根据因式分解的意义:把一个多项式化成几个整式积的形式,A、右边不是积的形式,故本选项错误;B、右边最后不是积的形式,故本选项错误;C、右边是(a﹣2b)(a﹣2b),故本选项正确;D、结果是a(x+y+1),故本选项错误.故选:C.3.不等式﹣2x+6>0的解集在数轴上表示正确的是()A.B.C.D.【分析】不等式﹣2x+6>0的解集是x<3,小于应向左画,且不包括3时,应用空心圆表示,不能用实心的原点表示3这一点,据此可求得不等式的解以及解集再数轴上的表示.解:不等式移项,得﹣2x>﹣6,系数化1,得x<3;∵不包括3时,应用圈表示,不能用实心的原点表示3这一点答案;故选:B.4.如图,在△ABC中,AB=3,BC=6,AC=4,点D,E分别是边AB,CB的中点,那么DE的长为()A.1.5B.2C.3D.4【分析】根据三角形中位线定理解答即可.解:∵点D,E分别是边AB,CB的中点,∴DE=AC=2,故选:B.5.如图是“一带一路”示意图,若记北京为A地,莫斯科为B地,雅典为C地,分别连接AB、AC、BC,形成一个三角形.若想建立一个货物中转仓,使其到A、B、C三地的距离相等,则中转仓的位置应选在()A.△ABC三条中线的交点处B.△ABC三条高所在直线的交点处C.△ABC三条角平分线的交点处D.△ABC三边的垂直平分线的交点处【分析】根据题意和线段垂直平分线的性质,可以解答本题.解:∵到A、B、C三地的距离相等,∴中转仓的位置应选在△ABC三边的垂直平分线的交点处,故选:D.6.如图,▱ABCD中,点O为对角线AC、BD的交点,下列结论错误的是()A.AC=BD B.AB∥DC C.BO=DO D.∠ABC=∠CDA 【分析】根据平行四边形的性质即可判断.解:∵四边形ABCD是平行四边形,∴AB∥CD,OB=OD,∠ABC=∠ADC,∴B、C、D正确,故选:A.7.对于实数a、b、c中,给出下列命题:①若a<b,则a﹣c<b﹣c;②若ab>c,则a>;③若﹣3a>2a,则a<0;④若a>b,则ac2>bc2.其中真命题有()A.①②B.①③C.②④D.③④【分析】根据不等式的性质对各命题的真假进行判断.解:若a<b,则a﹣c<b﹣c,所以①为真命题;若ab>c,当b>0时,则a>,所以②为假命题;若﹣3a>2a,则a<0,所以③为真命题;若a>b,当c≠0时,则ac2>bc2.所以④为假命题.故选:B.8.下列各分式中,最简分式是()A.B.C.D.【分析】最简分式是指分子和分母没有公因式.解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选:C.9.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.5【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选:A.10.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.3B.+C.+2D.2+【分析】如图.过点D作DF⊥AC于F.首先证明DE=DF=1,解直角三角形分别求出BD,DC即可解决问题.解:如图.过点D作DF⊥AC于F.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=1,在Rt△BED中,∵∠BED=90°,∠B=30°,∴BD=2DE=2,在Rt△DFC中,∵∠DFC=90°,∠C=45°,∴CD=DF=,∴BC=BD+CD=2+,故选:D.二、填空题(本大题共7小题,每小题4分,共28分.)11.分解因式:2x3﹣18x=2x(x+3)(x﹣3).【分析】先提取公因式2x,再对余下的多项式利用平方差公式继续分解.解:原式=2x(x2﹣9)=2x(x+3)(x﹣3),故答案为:2x(x+3)(x﹣3).12.分式方程+=1的解为x=1.【分析】根据解分式方程的步骤,即可解答.解:方程两边都乘以x﹣2,得:3﹣2x﹣2=x﹣2,解得:x=1,检验:当x=1时,x﹣2=1﹣2=﹣1≠0,所以分式方程的解为x=1,故答案为:x=1.13.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于1800度.【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.解:多边形的边数:360°÷30°=12,正多边形的内角和:(12﹣2)•180°=1800°.14.用反证法证明“三角形的三个内角中,至少有一个大于或等于60°”时,应先假设三角形的三个内角都小于60°.【分析】熟记反证法的步骤,直接填空即可.解:用反证法证明“三角形的三个内角中,至少有一个大于或等于60°”时,应先假设三角形的三个内角都小于60°.15.如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=.【分析】重叠部分为等腰直角三角形,设B1C=2x,则B1C边上的高为x,根据重叠部分的面积列方程求x,再求BB1.解:设B1C=2x,根据等腰三角形的性质可知,重叠部分为等腰直角三角形,则B1C边上的高为x,∴×x×2x=2,解得x=(舍去负值),∴B1C=2,∴BB1=BC﹣B1C=.故答案为.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x ≤ax+3的解集是x≥﹣1.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x≤ax+3的解集即可.解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x<ax+3的解集为x≥﹣1.故答案为:x≥﹣1.17.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为(8076,0).【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2020除以3,根据商为673余数为1,可知第20,20个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2020÷3=673…1,∴△2020的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).三、解答题(一)(本大题3小题,每小题6分,共18分.)18.解不等式组,并把解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并把解集在数轴上表示出来即可.解:,由①得x≤1,由②得x>﹣2,故不等式组的就为﹣2<x≤1.把解集在数轴上表示出来为:19.先化简,再求值:•﹣(+1),其中x=﹣6.【分析】根据分式的加减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.解:•﹣(+1)===,当x=﹣6时,原式==.20.在△ABC中,AB=AC,∠BAC=120°,AB边的垂直平分线交AB于D,交BC于E,求证:BE=CE.【分析】先根据等腰三角形性质和三角形内角和定理求出∠B=∠C=30°,根据线段垂直平分线性质和等腰三角形性质求出∠BAD=30°,根据含30度角的直角三角形性质解答即可.【解答】证明:∵AB=AC,∠BAC=120°∴∠B=∠C=30°,又∵DE垂直平分AB∴EA=EB∴∠EAB=∠B=30°∴∠CAE=120°﹣30°=90°,∴在Rt△AEC中∵∠C=30°,∴AE=CE∴BE=CE.四、解答题(二)(本大题3小题,每小题8分,共24分.)21.已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.【分析】(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠4.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠4,据此可得出结论.解:(1)如图所示,AF即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠4.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠4,∴CE=CF.22.某学习平台为提高学生的积极性,推出学习积分,所得积分可兑换礼品.某品牌的圆珠笔每支需要40积分,笔芯每支需要10积分.现积分超市推出以下两种活动:活动一:按兑换物品所需的积分打八折扣积分;活动二:兑换一支圆珠笔送两支笔芯.王叔叔有1000积分,想兑换这种圆珠笔10支,笔芯x支(x≥20).(1)请你分别写出活动一、活动二兑换所需的积分y1,y2与笔芯x(支)之间的函数关系式;(2)若只能选择一种兑换活动,请你帮助王叔叔判断选择哪种活动更优惠.【分析】(1)根据题意可以得到两种活动下兑换所需的积分y1,y2与笔芯x(支)之间的函数关系式;(2)再利用分类讨论的方法即可得到王叔叔选择哪种活动更优惠.解:由题意可得,y1=(40×10+10x)×0.8=8x+320,y2=40×10+10(x﹣10×2)=10x+200;(2)当y1=y2时,8x+320=10x+200,得x=60,当y1<y2时,8x+320<10x+200,得x>60,当y1>y2时,8x+320>10x+200,得x<60,当y1=1000时,8x+320=1000,得x=85,当y2=1000时,10x+200=1000,得x=80,∴当x=60时,选择活动一和活动二一样优惠,当60<x≤85时,选择活动一更优惠,当20≤x<60时,选择活动二更优惠.23.如图,等边△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求∠F的度数.【分析】(1)直接利用三角形中位线定理得出四边形DCFE是平行四边形即可;(2)由平行四边形的性质得出CD∥FE,则∠F=∠BCD,由等边三角形的性质得出∠BCD=30°,即可得出∠F=30°.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∵CF=BC,∴DE=CF,∵DE∥CF,∴四边形DCFE是平行四边形,(2)解:由(1)得:四边形DCFE是平行四边形,∴CD∥FE,∴∠F=∠BCD,∵△ABC是等边三角形,D是AB的中点,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=30°,∴∠F=30°.五、解答题(三)(本大题2小题,每小题10分,共20分.)24.为防控“新型冠状病毒”,某超市分别用1600元、6000元购进两批防护口罩,第二批防护口罩每个进货价格比第一批贵2元,购进的数量是第一批的3倍.(1)第一批口罩进货单价多少元?(2)若这两次购进防护口罩过程中所产生其他费用不少于600元,那么该超市这两批防护口罩的平均购进单价至少为多少元?【分析】(1)设第一批口罩进货单价为x元,则第二批口罩进货单价为(x+2)元,根据数量=总价÷单价结合第二批购进的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可求出第一批购进的数量,结合第二批购进的数量是第一批的3倍可求出第二批购进的数量,设该超市这两批防护口罩的平均购进单价为y元,根据总价=单价×数量结合这两次购进防护口罩过程中所产生其他费用不少于600元,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.解:(1)设第一批口罩进货单价为x元,则第二批口罩进货单价为(x+2)元,依题意,得:=3×,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批口罩进货单价为8元.(2)第一批购进数量为1600÷8=200(个),第二批购进数量为200×3=600(个).设该超市这两批防护口罩的平均购进单价为y元,依题意,得:(200+600)y≥1600+6000+600,解得:y≥10.25.答:该超市这两批防护口罩的平均购进单价至少为10.25元.25.将▱OABC放在平面直角坐标系中,O为原点,点C(﹣6,0),点A在第一象限,OA =2,∠A=60°,AB与y轴交于点N.(1)如图①,求点A的坐标;(2)如图②,将平行四边形OABC绕点O逆时针旋转得到平行四边形OA′B′C',当点A的对应点A′落在y轴正半轴上时,求旋转角及点B的对应点B′的坐标;(3)将平行四边形OABC绕点A旋转得到平行四边形DAEF,使点B的对应点E落在直线OA上,请在图③中画出旋转后的图形,并直接写出OE、AB、BC之间的关系.【分析】(1)利用含30度角的直角三角形的性质求出AN,ON即可得出结论;(2)先求出A'B'=6,∠OA'B'=60°,进而利用含30度角的直角三角形的性质求出B'E,AE即可得出结论;(3)分顺时针旋转和逆时针旋转两种情况,由旋转的性质可求解.解:(1)如图①,在Rt△AON中,∠A=60°,∴∠AON=30°,∵OA=2,∴AN=1,ON=,∴A(1,);(2)如图②,过点B'作B'E⊥y轴于E,∵C(﹣6,0),∴OC=6,∵四边形ABCO是平行四边形,∴AB=OC=6,当点A的对应点A′落在y轴正半轴上时,旋转角为∠AOA'=30°,由旋转知,A'B'=AB=6,OA'=OA=2,∠OA'B=∠A=60°,∴∠A'B'E=30°,∴A'E=3,B'E=3,∴OE=A'E﹣OA'=3﹣2=1,∴B'(﹣3,﹣1);(3)如图3,①当顺时针旋转时,∠BAE=120°,∵将平行四边形OABC绕点A旋转得到平行四边形DAEF,∴AB=AE,∵四边形ABCO是平行四边形,∴BC=OA,∴OE=OA+AE=BC+AB;①当逆时针旋转时,∠BAE'=60°,∵将平行四边形OABC绕点A旋转得到平行四边形DAE'F',∴AB=AE',∵四边形ABCO是平行四边形,∴BC=OA,∴OE=AE'﹣AO=AB﹣BC;综上所述:OE=BC+AB或OE=AB﹣BC.。

【精品】2019新人教版八年级数学下册单元测试题全套

【精品】2019新人教版八年级数学下册单元测试题全套

最新人教版八年级数学下册单元测试题全套及答案(含期中,期末试题,带答案)第十六章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.二次根式2-x 有意义,则x 的取值范围是( D ) A .x >2 B .x <2 C .x ≥2 D .x ≤22.(2016·自贡)下列根式中,不是最简二次根式的是( B ) A.10 B.8 C. 6 D. 23.下列计算结果正确的是( D )A.3+4=7 B .35-5=3 C.2×5=10 D.18÷2=3 4.如果a +a 2-6a +9=3成立,那么实数ɑ的取值范围是( B ) A .a ≤0 B .a ≤3 C .a ≥-3 D .a ≥3 5.估计32×12+20的运算结果应在( C ) A .6到7之间 B .7到8之间 C .8到9之间 D .9到10之间 6.12x 4x +6x x9-4x x 的值一定是( B ) A .正数 B .非正数 C .非负数 D .负数 7.化简9x 2-6x +1-(3x -5)2,结果是( D ) A .6x -6 B .-6x +6 C .-4 D .48.若k ,m ,n 都是整数,且135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系,正确的是( D )A .k <m =nB .m =n >kC .m <n <kD .m <k <n9. 下列选项错误的是( C )A.3-2的倒数是3+ 2B.x 2-x 一定是非负数 C .若x <2,则(x -1)2=1-x D .当x <0时,-2x在实数范围内有意义10.如图,数轴上A ,B 两点对应的实数分别是1和3,若A 点关于B 点的对称点为点C ,则点C 所对应的实数为( A )A .23-1B .1+ 3C .2+ 3D .23+1 二、填空题(每小题3分,共24分)11.如果两个最简二次根式3a -1与2a +3能合并,那么a =__4__. 12.计算:(1)(2016·潍坊)3(3+27)=__12__; (2)(2016·天津)(5+3)(5-3)=__2__.13.若x ,y 为实数,且满足|x -3|+y +3=0,则(x y)2018的值是__1__.14.已知实数a ,b 在数轴上对应的位置如图所示,则a 2+2ab +b 2-b 2=__-a __.,第17题图)15.已知50n 是整数,则正整数n 的最小值为__2__.16.在实数范围内分解因式:(1)x 3-5x =;(2)m 2-23m +3=__(m -.17.有一个密码系统,其原理如图所示,输出的值为3时,则输入的x =.18.若xy >0,则化简二次根式x -yx2的结果为. 三、解答题(共66分) 19.(12分)计算: (1)48÷3-12×12+24; (2)(318+1672-418)÷42; 解:(1)4+ 6 (2)94(3)(2-3)98(2+3)99-2|-32|-(2)0. 解:120.(5分)解方程:(3+1)(3-1)x =72-18. 解:x =32221.(10分)(1)已知x =5-12,y =5+12,求y x +xy的值; 解:∵x +y =252=5,xy =5-14=1,∴y x +x y =y 2+x 2xy =(x +y )2-2xy xy =(5)2-2×11=3(2)已知x ,y 是实数,且y <x -2+2-x +14,化简:y 2-4y +4-(x -2+2)2.解:由已知得⎩⎪⎨⎪⎧x -2≥0,2-x ≥0,∴x =2,∴y <x -2+2-x +14=14,即y <14<2,则y -2<0,∴y 2-4y +4-(x -2+2)2=(y -2)2-(2-2+2)2=|y -2|-(2)2=2-y -2=-y22.(10分)先化简,再求值:(1)[x +2x (x -1)-1x -1]·xx -1,其中x =2+1;解:原式=2(x -1)2,将x =2+1代入得,原式=1(2)a 2-1a -1-a 2+2a +1a 2+a -1a,其中a =-1- 3.解:∵a +1=-3<0,∴原式=a +1+a +1a (a +1)-1a =a +1=-323.(7分)先化简,再求值:2a -a 2-4a +4,其中a = 3.小刚的解法如下:2a -a 2-4a +4=2a -(a -2)2=2a -(a -2)=2a -a +2=a +2,当a =3时,2a -a 2-4a +4=3+2.小刚的解法对吗?若不对,请改正.解:不对.2a -a 2-4a +4=2a -(a -2)2=2a -|a -2|.当a =3时,a -2=3-2<0,∴原式=2a +a -2=3a -2=33-224.(10分)已知长方形的长a =1232,宽b =1318.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系. 解:(1)2(a +b )=2×(1232+1318)=62,∴长方形周长为62 (2)4×ab =4×1232×1318=4×22×2=8,∵62>8,∴长方形周长大25.(12分)观察下列各式及其验证过程: 223=2+23,验证:223=233=23-2+222-1=2(22-1)+222-1=2+23; 338=3+38,验证:338=338=33-3+332-1=3(32-1)+332-1=3+38. (1)按照上述两个等式及其验证过程的基本思路,猜想4415的变形结果,并进行验证; (2)针对上述各式反映的规律,写出用n(n 为任意自然数,且n ≥2)表示的等式,并给出证明. 解:(1)猜想:4415=4+415,验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+415 (2)n nn 2-1=n +n n 2-1,证明:n nn 2-1=n3n 2-1=n 3-n +nn 2-1=n (n 2-1)+nn 2-1=n +n n 2-1第十七章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.已知Rt △ABC 的三边长分别为a ,b ,c ,且∠C =90°,c =37,a =12,则b 的值为( B ) A .50 B .35 C .34 D .262.由下列线段a ,b ,c 不能组成直角三角形的是( D ) A .a =1,b =2,c = 3 B .a =1,b =2,c = 5C .a =3,b =4,c =5D .a =2,b =23,c =33.在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( A ) A.365 B.1225 C.94 D.3344.已知三角形三边长为a ,b ,c ,如果a -6+|b -8|+(c -10)2=0,则△ABC 是( C ) A .以a 为斜边的直角三角形 B .以b 为斜边的直角三角形 C .以c 为斜边的直角三角形 D .不是直角三角形5.(2016·株洲)如图,以直角三角形a ,b ,c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S 1+S 2=S 3图形个数有( D )A .1B .2C .3D .4 6.设a ,b 是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是( D ) A .1.5 B .2 C .2.5 D .37.如图,在Rt △ABC 中,∠A =30°,DE 垂直平分斜边AC 交AB 于点D ,E 是垂足,连接CD ,若BD =1,则AC 的长是( A )A .2 3B .2C .4 3D .4,第7题图) ,第9题图) ,第10题图)8.一木工师傅测量一个等腰三角形的腰、底边和底边上的高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来,应该是( C )A .13,12,12B .12,12,8C .13,10,12D .5,8,49.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m 处,发现此时绳子末端距离地面2 m ,则旗杆的高度为(滑轮上方的部分忽略不计)( D )A .12 mB .13 mC .16 mD .17 m 10.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上的一个动点,则PA +PC 的最小值为( B )A.132 B.312 C.3+192D .27 二、填空题(每小题3分,共24分)11.把命题“对顶角相等”的逆命题改写成“如果…那么…”的形式:__如果两个角相等,那么它们是对顶角__.12.平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB 的长为.13.三角形的三边a ,b ,c 满足(a -b)2=c 2-2ab ,则这个三角形是__直角三角形__.14.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0),(0,8).以点A 为圆心,以AB 为半径画弧交x 轴正半轴于点C ,则点C 的坐标为__(4,0)__.,第14题图) ,第15题图) ,第17题图)15.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积之和为__64__.16.有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种__21__棵树.17.如图,OP =1,过P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2;…依此法继续作下去,得OP 2017=. 18.在△ABC 中,AB =22,BC =1,∠ABC =45°,以AB 为一边作等腰直角三角形ABD ,使∠ABD=90°,连接CD ,则线段CD 的长为.三、解答题(共66分)19.(8分)如图,在△ABC 中,AD ⊥BC ,AD =12,BD =16,CD =5. (1)求△ABC 的周长;(2)判断△ABC 是否是直角三角形.解:(1)可求得AB =20,AC =13,所以△ABC 的周长为20+13+21=54(2)∵AB2+AC2=202+132=569,BC2=212=441,∴AB2+AC2≠BC2,∴△ABC不是直角三角形20.(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN,使MN=17;(2)在图②中画一个三边长均为无理数,且各边都不相等的直角△DEF.解:如图:21.(8分)如图,已知CD=6,AB=4,∠ABC=∠D=90°,BD=DC,求AC的长.解:在Rt△BDC,Rt△ABC中,BC2=BD2+DC2,AC2=AB2+BC2,则AC2=AB2+BD2+DC2,又因为BD =DC,则AC2=AB2+2CD2=42+2×62=88,∴AC=222,即AC的长为22222.(8分)如图,在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于点D,交AB于点E.求证:BE2-EA2=AC2.解:连接CE,∵ED垂直平分BC,∴EB=EC,又∵∠A=90°,∴EA2+AC2=EC2,∴BE2-EA2=AC223.(10分)如图,已知某学校A与直线公路BD相距3000米,且与该公路上的一个车站D相距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?解:设超市C与车站D的距离是x米,则AC=CD=x米,BC=(BD-x)米,在Rt△ABD中,BD=AD2-AB2=4000米,所以BC=(4000-x)米,在Rt△ABC中,AC2=AB2+BC2,即x2=30002+(4000-x)2,解得x=3125,因此该超市与车站D的距离是3125米24.(10分)一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?(2)你认为“AD→DB”是最短路线吗?如果你认为不是,请计算出最短的路程.解:(1)从点A爬到点B所走的路程为AD+BD=42+32+22+32=(5+13)cm(2)不是,分三种情况讨论:①将下面和右面展到一个平面内,AB=(4+6)2+22=104=226(cm);②将前面与右面展到一个平面内,AB=(4+2)2+62=72=62(cm);③将前面与上面展到一个平面内,AB=(6+2)2+42=80=45(cm),∵62<45<226,∴蜘蛛从A点爬到B点所走的最短路程为6 2 cm25.(12分)如图,已知正方形OABC 的边长为2,顶点A ,C 分别在x 轴的负半轴和y 轴的正半轴上,M 是BC 的中点,P(0,m)是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D.(1)求点D 的坐标(用含m 的代数式表示);(2)当△APD 是以AP 为腰的等腰三角形时,求m 的值; 解:(1)先证△DBM ≌△PCM ,从中可得BD =PC =2-m ,则AD =2-m +2=4-m ,∴点D 的坐标为(-2,4-m ) (2)分两种情况:①当AP =AD 时,AP 2=AD 2,∴22+m 2=(4-m )2,解得m =32;②当AP =PD时,过点P 作PH ⊥AD 于点H ,∴AH =12AD ,∵AH =OP ,∴OP =12AD ,∴m =12(4-m ),∴m =43,综上可得,m 的值为32或43第十八章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( B ) A .30° B .45° C .60° D .75°2.(2016·株洲)如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,E 是BC 的中点,以下说法错误的是( D )A .OE =12DC B .OA =OC C .∠BOE =∠OBA D .∠OBE =∠OCE,第2题图) ,第3题图) ,第6题图)3.如图,矩形ABCD 的对角线AC =8 cm ,∠AOD =120°,则AB 的长为( D ) A. 3 cm B .2 cm C .2 3 cm D .4 cm4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( D ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC =90°时,它是矩形D .当AC =BD 时,它是正方形5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是( C )A .矩形B .一组对边相等,另一组对边平行的四边形C .对角线相等的四边形D .对角线互相垂直的四边形 6.如图,已知点E 是菱形ABCD 的边BC 上一点,且∠DAE =∠B =80°,那么∠CDE 的度数为( C ) A .20° B .25° C .30° D .35°7.(2016·菏泽)在▱ABCD 中,AB =3,BC =4,当▱ABCD 的面积最大时,下结论正确的有( B ) ①AC =5;②∠A +∠C =180°;③AC ⊥BD ;④AC =BD . A .①②③ B .①②④ C .②③④ D .①③④8.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ′处,若AE =2,DE =6,∠EFB ′=60°,则矩形ABCD 的面积是( D )A .12B .24C .12 3D .16 3,第8题图) ,第9题图) ,第10题图)9.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( C )A .1 B. 2 C .4-2 2 D .32-410.如图,在矩形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于点F ,将△DEF 沿EF 折叠,点D 恰好落在BE 上点M 处,延长BC ,EF 交于点N ,有下列四个结论:①DF =CF ;②BF ⊥EN ;③△BEN 是等边三角形;④S △BEF =3S △DEF ,其中正确的结论是( B )A .①②③B .①②④C .②③④D .①②③④ 二、填空题(每小题3分,共24分)11.如图,在▱ABCD 中,AB =5,AC =6,当BD =__8__时,四边形ABCD 是菱形.,第11题图) ,第12题图),第14题图)12.(2016·江西)如图,在▱ABCD 中,∠C=40°,过点D 作CB 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__50°__.13.在四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:①AB ∥CD ;②AB =CD ;③∠A =∠C ;④∠B =∠C.能使四边形ABCD 为平行四边形的条件的序号是__①或③__.14.如图,∠ACB =90°,D 为AB 中点,连接DC 并延长到点E ,使CE =14CD ,过点B 作BF ∥DE 交AE 的延长线于点F ,若BF =10,则AB 的长为__8__.15.如图,四边形ABCD 是正方形,延长AB 到点E ,使AE =AC ,则∠BCE 的度数是__22.5__度.,第15题图) ,第16题图) ,第17题图),第18题图)16.如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为点O ,E ,F ,G ,H 分别为边AD ,AB ,BC ,CD 的中点,若AC =8,BD =6,则四边形EFGH 的面积为__12__.17.已知菱形ABCD 的两条对角线长分别为6和8,M ,N 分别是边BC ,CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值是__5__.18.(2016·天津)如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQ S 正方形AEFG 的值等于__89__.三、解答题(共66分)19.(8分)如图,点E ,F 分别是锐角∠A 两边上的点,AE =AF ,分别以点E ,F 为圆心,以AE 的长为半径画弧,两弧相交于点D ,连接DE ,DF.(1)请你判断所画四边形的形状,并说明理由;(2)连接EF ,若AE =8 cm ,∠A =60°,求线段EF 的长.解:(1)菱形,理由:根据题意得AE =AF =ED =DF ,∴四边形AEDF 是菱形 (2)∵AE =AF ,∠A =60°,∴△EAF 是等边三角形,∴EF =AE =8 cm20.(8分)(2016·宿迁)如图,已知BD 是△ABC 的角平分线,点E ,F 分别在边AB ,BC 上,ED ∥BC ,EF ∥AC.求证:BE =CF.解:∵ED∥BC ,EF∥AC ,∴四边形EFCD 是平行四边形,∴DE =CF ,∵BD 平分∠ABC ,∴∠EBD =∠DBC ,∵DE∥BC ,∴∠EDB =∠DBC ,∴∠EBD =∠EDB ,∴EB =ED ,∴EB =CF21.(9分)(2016·南通)如图,将▱ABCD 的边AB 延长到点E ,使BE =AB ,连接DE ,交边BC 于点F.(1)求证:△BEF ≌△CDF ;(2)连接BD ,CE ,若∠BFD =2∠A ,求证:四边形BECD 是矩形.解:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD.∵BE =AB ,∴BE =CD.∵AB ∥CD ,∴∠BEF =∠CDF ,∠EBF =∠DCF ,∴△BEF ≌△CDF (ASA ) (2)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠A =∠DCB ,∵AB =BE ,∴CD =EB ,∴四边形BECD 是平行四边形,∴BF =CF ,EF =DF ,∵∠BFD =2∠A ,∴∠BFD =2∠DCF ,∴∠DCF =∠FDC ,∴DF =CF ,∴DE =BC ,∴四边形BECD 是矩形22.(9分)如图,在▱ABCD 中,E ,F 两点在对角线BD 上,BE =DF.(1)求证:AE =CF ;(2)当四边形AECF 为矩形时,请求出BD -ACBE的值.解:(1)由SAS 证△ABE ≌△CDF 即可 (2)连接CE ,AF ,AC.∵四边形AECF 是矩形,∴AC =EF ,∴BD -AC BE =BD -EF BE =BE +DF BE =2BE BE=223.(10分)如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM ≌△DCM ;(2)填空:当AB ∶AD =__1∶2__时,四边形MENF 是正方形,并说明理由.解:(1)由SAS 可证 (2)理由:∵AB ∶AD =1∶2,∴AB =12AD ,∵AM =12AD ,∴AB =AM ,∴∠ABM=∠AMB ,∵∠A =90°,∴∠AMB =45°,∵△ABM ≌△DCM ,∴BM =CM ,∠DMC =∠AMB =45°,∴∠BMC =90°,∵E ,F ,N 分别是BM ,CM ,BC 的中点,∴EN ∥CM ,FN ∥BM ,EM =MF ,∴四边形MENF 是菱形,∵∠BMC =90°,∴菱形MENF 是正方形24.(10分)(2016·遵义)如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F.(1)求证:△AEF ≌△DEB ;(2)求证:四边形ADCF 是菱形;(3)若AC =4,AB =5,求菱形ADCF 的面积.解:(1)由AAS 易证△AFE ≌△DBE (2)由(1)知,△AEF ≌△DEB ,则AF =DB ,∵DB =DC ,∴AF =CD ,∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD =DC =12BC ,∴四边形ADCF 是菱形 (3)连接DF ,由(2)知AF 綊BD ,∴四边形ABDF 是平行四边形,∴DF =AB =5,∴S 菱形ADCF =12AC·DF =12×4×5=1025.(12分)如图,在正方形ABCD 中,AC 是对角线,今有较大的直角三角板,一边始终经过点B ,直角顶点P 在射线AC 上移动,另一边交DC 于点Q.(1)如图①,当点Q 在DC 边上时,猜想并写出PB 与PQ 所满足的数量关系,并加以证明;(2)如图②,当点Q 落在DC 的延长线上时,猜想并写出PB 与PQ 满足的数量关系,并证明你的猜想.解:(1)PB =PQ.证明:连接PD ,∵四边形ABCD 是正方形,∴∠ACB =∠ACD ,∠BCD =90°,BC =CD ,又∵PC =PC ,∴△DCP ≌△BCP (SAS ),∴PD =PB ,∠PBC =∠PDC ,∵∠PBC +∠PQC =180°,∠PQD +∠PQC =180°,∴∠PBC =∠PQD ,∴∠PDC =∠PQD ,∴PQ =PD ,∴PB =PQ (2)PB =PQ.证明:连接PD ,同(1)可证△DCP ≌△BCP ,∴PD =PB ,∠PBC =∠PDC ,∵∠PBC =∠Q ,∴∠PDC =∠Q ,∴PD =PQ ,∴PB =PQ第十九章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2016·扬州)函数y =x -1中,自变量x 的取值范围是( B ) A .x >1 B .x ≥1 C .x <1 D .x ≤12.若函数y =kx 的图象经过点(1,-2),那么它一定经过点( B )A .(2,-1)B .(-12,1)C .(-2,1)D .(-1,12)3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车的速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的函数图象,那么符合小明行驶情况的图象大致是( D )4.已知一次函数y =kx +b 的图象如图所示,当x <0时,y 的取值范围是( C ) A .y >0 B .y <0 C .y >-2 D .-2<y <0,第4题图) ,第9题图),第10题图)5.当kb <0时,一次函数y =kx +b 的图象一定经过( B )A .第一、三象限B .第一、四象限C .第二、三象限D .第二、四象限6.已知一次函数y =(2m -1)x +1的图象上两点A(x 1,y 1),B(x 2,y 2),当x 1<x 2时,有y 1<y 2,那么m 的取值范围是( B )A .m <12B .m >12C .m <2D .m >07.已知一次函数的图象过点(3,5)与(-4,-9),则该函数的图象与y 轴交点的坐标为( A ) A .(0,-1) B .(-1,0) C .(0,2) D .(-2,0)8.把直线y =-x -3向上平移m 个单位后,与直线y =2x +4的交点在第二象限,则m 的取值范围是( A )A .1<m <7B .3<m <4C .m >1D .m <49.(2016·天门)在一次自行车越野赛中,出发m h 后,小明骑行了25 km ,小刚骑行了18 km ,此后两人分别以a km /h ,b km /h 匀速骑行,他们骑行的时间t(h )与骑行的路程s(km )之间的函数关系如图,观察图象,下列说法:①出发m h 内小明的速度比小刚快;②a =26;③小刚追上小明时离起点43 km ;④此次越野赛的全程为90 km .其中正确的说法有( C )A .1个B .2个C .3个D .4个10.(2016·苏州)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( B )A .(3,1)B .(3,43)C .(3,53) D .(3,2)二、填空题(每小题3分,共24分)11.(2015·上海)同一温度的华氏度数y()与摄氏度数x(℃)之间的函数关系是y =95x +32,如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是__77__12.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是__0.2__千米/分钟.,第12题图) ,第14题图),第16题图)13.一次函数y =(m -1)x +m 2的图象过点(0,4),且y 随x 的增大而增大,则m =__2__. 14.如图,利用函数图象回答下列问题:(1)方程组⎩⎪⎨⎪⎧x +y =3,y =2x 的解为__⎩⎪⎨⎪⎧x =1,y =2__;(2)不等式2x >-x +3的解集为__x >1__. 15.已知一次函数y =-2x -3的图象上有三点(x 1,y 1),(x 2,y 2),(3,y 0),并且x 1>3>x 2,则y 0,y 1,y 2这三个数的大小关系是__y 1<y 0<y 2__.16.如图,在平面直角坐标系中,点A 的坐标为(0,6),将△OAB 沿x 轴向左平移得到△O ′A ′B ′,点A 的对应点A ′落在直线y =-34x 上,则点B 与其对应点B ′间的距离为__8__.17.过点(-1,7)的一条直线与x 轴、y 轴分别相交于点A ,B ,且与直线y =-32x +1平行,则在线段AB 上,横、纵坐标都是整数的点坐标是__(3,1),(1,4)__.18.设直线y =kx +k -1和直线y =(k +1)x +k(k 为正整数)与x 轴所围成的图形的面积为S k (k=1,2,3,…,8),那么S 1+S 2+…+S 8的值为__49__.三、解答题(共66分)19.(8分)已知2y -3与3x +1成正比例,且x =2时,y =5. (1)求x 与y 之间的函数关系,并指出它是什么函数; (2)若点(a ,2)在这个函数的图象上,求a 的值.解:(1)y =32x +2,是一次函数 (2)a =020.(8分)已知一次函数y =(a +8)x +(6-b). (1)a ,b 为何值时,y 随x 的增大而增大?(2)a ,b 为何值时,图象过第一、二、四象限?(3)a ,b 为何值时,图象与y 轴的交点在x 轴上方? (4)a ,b 为何值时,图象过原点?解:(1)a >-8,b 为全体实数 (2)a <-8,b <6 (3)a ≠-8,b <6 (4)a ≠-8,b =621.(9分)画出函数y =2x +6的图象,利用图象:(1)求方程2x +6=0的解; (2)求不等式2x +6>0的解;(3)若-1≤y ≤3,求x 的取值范围.解:图略,(1)x =-3 (2)x >-3 (3)当-1≤y ≤3,即-1≤2x +6≤3,解得-72≤x ≤-3222.(9分)电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图),根据图象解答下列问题.(1)分别写出当0≤x ≤100和x >100时,y 与x 间的函数关系式;(2)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?解:(1)y =⎩⎪⎨⎪⎧0.65x (0≤x ≤100)0.8x -15(x >100) (2)40.3元;150度23.(10分)如图,在平面直角坐标系xOy 中,矩形ABCD 的边AD =3,A(12,0),B(2,0),直线l经过B ,D 两点.(1)求直线l 的解析式;(2)将直线l 平移得到直线y =kx +b ,若它与矩形有公共点,直接写出b 的取值范围.解:(1)y =-2x +4 (2)1≤b ≤724.(10分)今年我市水果大丰收,A ,B 两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两个销售点,从A 基地运往甲、乙两销售点的费用分别为每件40元和20元,从B 基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A 基地运往甲销售点水果x 件,总运费为W 元,请用含x 的代数式表示W ,并写出x 的取值范围;(2)若总运费不超过18300元,且A 地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.解:(1)W =35x +11200(80≤x ≤380) (2)∵⎩⎪⎨⎪⎧W ≤18300,x ≥200,∴⎩⎪⎨⎪⎧35x +11200≤18300,x ≥200,解得200≤x ≤20267,∵35>0,∴W 随x 的增大而增大,∴当x =200时,W 最小=18200,∴运费最低的运输方案为:A →甲:200件,A →乙:180件,B →甲:200件,B →乙:120件,最低运费为18200元25.(12分)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车,设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1)甲、乙两地之间的距离为__560__千米; (2)求快车与慢车的速度;(3)求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.解:(2)设快车速度为m 千米/时,慢车速度为n 千米/时,则有⎩⎪⎨⎪⎧4(m +n )=560,3m =4n ,解得⎩⎪⎨⎪⎧m =80,n =60,∴快车速度为80千米/时,慢车速度为60千米/时 (3)D (8,60),E (9,0),线段DE 的解析式为y =-60x +540(8≤x ≤9)期中检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列二次根式中属于最简二次根式的是( A ) A. 5 B.8 C.12D.0.3 2.(2016·泸州)如图,▱ABCD 的对角线AC ,BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( B )A .10B .14C .20D .22,第2题图) ,第5题图) ,第8题图) ,第9题图)3.在下列以线段a ,b ,c 的长为三边的三角形中,不能构成直角三角形的是( D ) A .a =9,b =41,c =40 B .a =5,b =5,c =5 2 C .a ∶b ∶c =3∶4∶5 D .a =11,b =12,c =15 4.(2016·南充)下列计算正确的是( A ) A.12=2 3 B.32=32C.-x 3=x -xD.x 2=x 5.如图,在△ABC 中,点D ,E 分别是边AB ,BC 的中点,若△DBE 的周长是6,则△ABC 的周长是( C )A .8B .10C .12D .146.(2016·益阳)下列判断错误的是( D )A .两组对边分别相等的四边形是平行四边形B .四个内角都相等的四边形是矩形C .四条边都相等的四边形是菱形D .两条对角线垂直且平分的四边形是正方形7.若x -1-1-x =(x +y)2,则x -y 的值为( C ) A .-1 B .1 C .2 D .38.如图,在△ABC 中,AC 的垂直平分线分别交AC ,AB 于点D ,F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A =30°,BC =2,AF =BF ,则四边形BCDE 的面积是( A )A .2 3B .3 3C .4D .4 39.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=52,如果Rt△ABC的面积为1,则它的周长为( D)A.5+12B.5+1C.5+2D.5+310.(2016·眉山)如图,在矩形ABCD中,O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE∶S△BCM=2∶3.其中正确结论的个数是( B)A.4个 B.3个 C.2个 D.1个二、填空题(每小题3分,共24分)11.若代数式xx-1有意义,则x的取值范围为__x≥0且x≠1__.12.如图,在平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于点F,则CF=__2__.,第12题图) ,第13题图) ,第14题图) ,第15题图)13.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=__16__时,∠ACB=90°.14.如图,它是一个数值转换机,若输入的a值为2,则输出的结果应为3.15.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件__答案不唯一,如:OA=OC__,使ABCD成为菱形.(只需添加一个即可)16.如图,在△ABC中,AB=5,AC=3,AD,AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连接DH,则线段DH的长为__1__.,第16题图) ,第17题图),第18题图)17.(2016·南京)如图,菱形ABCD的面积为120 cm2,正方形AECF的面积为50 cm2,则菱形的边长为__13__ cm.18.如图,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A ,C 的坐标分别为A(10,0),C(0,4),点D 是OA 的中点,点P 为线段BC 上的点.小明同学写出了一个以OD 为腰的等腰三角形ODP 的顶点P 的坐标(3,4),请你写出其余所有符合这个条件的P 点坐标__(2,4)或(8,4)__.三、解答题(共66分) 19.(8分)计算:(1)8+23-(27-2); (2)(43-613)÷3-(5+3)(5-3). 解:(1)32- 3 (2)020.(8分)已知a =7-5,b =7+5,求值: (1)b a +a b; (2)3a 2-ab +3b 2. 解:a +b =27,ab =2,(1)b a +a b =(a +b )2-2ab ab =12 (2)3a 2-ab +3b 2=3(a +b )2-7ab =7021.(8分)如图,四边形ABCD 是平行四边形,E ,F 为对角线AC 上两点,连接ED ,EB ,FD ,FB.给出以下结论:①BE ∥DF ;②BE =DF ;③AE =CF.请你从中选取一个条件,使∠1=∠2成立,并给出证明.解:答案不唯一,如:补充条件①BE ∥DF.证明:∵BE ∥DF ,∴∠BEC =∠DFA ,∴∠BEA =∠DFC ,∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAE =∠DCF ,∴△ABE ≌△CDF (AAS ),∴BE =DF ,∴四边形BFDE 是平行四边形,∴ED ∥BF ,∴∠1=∠222.(7分)如图,在B 港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某方向以每小时15海里的速度前进,2小时后甲船到M 岛,乙船到P 岛,两岛相距34海里,你能知道乙船沿哪个方向航行吗?解:(1)由题意得BM =2×8=16(海里),BP =2×15=30(海里),∵BM 2+BP 2=162+302=1156,MP 2=342=1156,∴BM 2+BP 2=MP 2,∴∠MBP =90°,∴乙船沿南偏东30°的方向航行23.(8分)如图,四边形ABCD 是菱形,BE ⊥AD ,BF ⊥CD ,垂足分别为点E ,F.(1)求证:BE =BF ;(2)当菱形ABCD 的对角线AC =8,BD =6时,求BE 的长.解:(1)由AAS 证△ABE ≌△CBF 可得 (2)∵四边形ABCD 是菱形,∴OA =12AC =4,OB =12BD =3,∠AOB =90°,∴AB =OA 2+OB 2=5,∵S 菱形ABCD =AD ·BE =12AC ·BD ,∴5BE =12×8×6,∴BE =24524.(8分)如图,在四边形ABCD 中,AB =AD =2,∠A =60°,BC =25,CD =4.(1)求∠ADC 的度数;(2)求四边形ABCD 的面积.解:(1)连接BD ,∵AB =AD =2,∠A =60°,∴△ABD 是等边三角形,∴BD =2,∠ADB =60°,在△BDC 中,BD =2,DC =4,BC =25,∴BD 2+DC 2=BC 2,∴△BDC 是直角三角形,∴∠BDC =90°,∴∠ADC =∠ADB +∠BDC =150° (2)S 四边形ABCD =S △ABD +S △BDC =12×2×3+12×2×4=3+425.(9分)如图,在▱ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E. (1)求证:△AOD ≌△EOC ;(2)连接AC ,DE ,当∠B =∠AEB=____°时,四边形ACED 是正方形,请说明理由.解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠D =∠OCE ,∠DAO =∠E ,∵O 是CD 的中点,∴OD =OC ,∴△AOD ≌△EOC (AAS ) (2)当∠B =∠AEB =45°时,四边形ACED 是正方形,理由:∵△AOD ≌△EOC ,∴OA =OE ,又∵OC =OD ,∴四边形ACED 是平行四边形,∵∠B =∠AEB =45°,∴AB =AE ,∠BAE =90°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∴∠COE =∠BAE =90°,∴▱ACED 是菱形,∵AB =AE ,AB =CD ,∴AE =CD ,∴菱形ACED 是正方形26.(10分)已知正方形ABCD 和正方形EBGF 共顶点B ,连接AF ,H 为AF 的中点,连接EH ,正方形EBGF 绕点B 旋转.(1)如图①,当F 点落在BC 上时,求证:EH =12CF ;(2)如图②,当点E 落在BC 上时,连接BH ,若AB =5,BG =2,求BH 的长.解:(1)延长FE 交AB 于点Q ,∵四边形EBGF 是正方形,∴EF =EB ,∠EFB =∠EBF =45°,∵四边形ABCD 是正方形,∴∠ABC =90°,AB =BC ,∴∠BQF =∠QBE =45°,∴QE =EB ,∴QE =EF ,又∵AH =FH ,∴EH =12AQ ,∵∠BQF =∠BFQ =45°,∴BQ =BF ,∵AB =BC ,∴AQ =CF ,∴EH =12CF (2)延长EH 交AB 于点N ,∵四边形EBGF 是正方形,∴EF ∥BG ,EF =EB =BG =2,∵EF ∥AG ,∴∠FEH =∠ANH ,∠EFH =∠NAH.又∵AH =FH ,∴△ANH ≌△FEH (AAS ),∴NH =EH ,AN =EF.∵AB =5,AN =EF =2,∴BN=AB -AN =3,∵∠NBE =90°,BE =2,BN =3,∴EN =22+32=13.∵∠NBE =90°,EH =NH ,∴BH =12EN =132期末检测题(一)(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列根式有意义的范围为x ≥5的是( D ) A.x +5 B.1x -5C.1x +5D.x -5 2.(2016·来宾)下列计算正确的是( B ) A.5-3= 2 B .35×23=615C .(22)2=16 D.33=13.由线段a ,b ,c 组成的三角形不是直角三角形的是( D ) A .a =7,b =24,c =25 B .a =41,b =4,c =5C .a =54,b =1,c =34D .a =13,b =14,c =154.若一次函数y =x +4的图象上有两点A(-12,y 1),B(1,y 2),则下列说法正确的是( C )A .y 1>y 2B .y 1≥y 2C .y 1<y 2D .y 1≤y 25.已知A 样本的数据如下:72,73,76,76,77,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( B )A .平均数B .方差C .中位数D .众数6.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,下列结论正确的是( A ) A .S ▱ABCD =4S △AOB B .AC =BDC .AC ⊥BD D .▱ABCD 是轴对称图形,第6题图),第9题图) ,第10题图)7.李大伯在承包的果园里种植了100棵樱桃树,今年已经进入收获期,收获时,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:这组数据的中位数为m ,樱桃的总产量约为n ,则m ,n 分别是( B ) A .18,2000 B .19,1900 C .18.5,1900 D .19,1850 8.下列说法中,错误的是( B )A .两条对角线互相平分的四边形是平行四边形B .两条对角线相等的四边形是矩形C .两条对角线互相垂直的平行四边形是菱形D .两条对角线相等的菱形是正方形9.如图,在矩形ABCD 中,AD =2AB ,点M ,N 分别在边AD ,BC 上,连接BM ,DN ,若四边形MBND是菱形,则AMMD等于( C )A.38B.23C.35D.4510.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒,在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( A )A .①②③B .仅有①②C .仅有①③D .仅有②③ 二、填空题(每小题3分,共24分) 11.已知x ,y 为实数,且x -1+3(y -2)2=0,则x -y 的值为__-1__.12.(2016·天津)若一次函数y =-2x +b(b 为常数)的图象经过第二、三、四象限,则b 的值可以是__-1(答案不唯一,b <0即可)__.(写出一个即可)13.某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是__13__元.,第13题图) ,第14题图) ,第16题图) ,第18题图)14.一次函数y =kx +b(k ≠0)的图象如图所示,当y >0时,x 的取值范围是__x <2__.15.(2016·邵阳)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:请你根据上表中的数据选一人参加比赛,最适合的人选是__乙__.16.如图,矩形ABCD 中,点E ,F 分别是AB ,CD 的中点,连接DE 和BF ,分别取DE ,BF 的中点M ,N ,连接AM ,CN ,MN ,若AB =22,BC =23,则图中阴影部分的面积为.17.在平面直角坐标系中,直线y =kx +x +1过一定点A ,坐标系中有点B(2,0)和点C ,要使以A ,O ,B ,C 为顶点的四边形为平行四边形,则点C 的坐标为__(2,1)或(2,-1)或(-2,1)__.18.如图,长方形纸片ABCD 中,AB =6 cm ,BC =8 cm ,点E 是BC 边上一点,连接AE 并将△AEB 沿AE 折叠,得到△AEB ′,以C ,E ,B ′为顶点的三角形是直角三角形时,BE 的长为__3或6__cm.三、解答题(共66分) 19.(8分)计算:(1)27-12+45; (2)27×13-(5+3)(5-3). 解:(1)原式=3+3 5 (2)原式=120.(8分)如图,四边形ABCD 是平行四边形,E ,F 是对角线BD 上的点,∠1=∠2. 求证:(1)BE =DF ;(2)AF ∥CE.解:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF ,∵∠1=∠2,∴∠AEB =∠CFD ,∴△ABE ≌△CDF (AAS ),∴BE =DF (2)由(1)得△ABE ≌△CDF ,∴AE =CF ,∵∠1=∠2,∴AE ∥CF ,∴四边形AECF 是平行四边形,∴AF ∥CE21.(8分)在直角坐标系中,一条直线经过A(-1,5),P(-2,a),B(3,-3)三点. (1)求a 的值;(2)设这条直线与y 轴相交于点D ,求△OPD 的面积. 解:(1)直线解析式为y =-2x +3,把P (-2,a )代入y =-2x +3中,得a =7 (2)由(1)得点P (-2,7),当x =0时,y =3,∴D (0,3),∴S △OPD =12×3×2=322.(7分)如图,这是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4 m 的半圆,其边缘AB =CD =20 m ,点E 在CD 上,CE =4 m ,一滑行爱好者从A 点到E 点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,π取3)解:展开图如图,作EF ⊥AB ,由于平铺,∴四边形ABCD 是矩形,∴∠C =∠B=90°,∵EF ⊥AB ,∴∠EFA =∠EFB =90°,∴四边形CBFE 是矩形,∴EF =BC =4×2×3×12=12(m ),FB =CE =4 m ,∴AF =20-4=16(m ),∴AE =122+162=20(m ),即他滑行的最短距离为20 m。

2019最新人教版八年级数学下期末模拟试卷期终复习综合练习检测卷

2019最新人教版八年级数学下期末模拟试卷期终复习综合练习检测卷

八年级第二学期数学期末模拟试卷(1)一、选择题(本大题共10小题,每小题2分,共20分.)1. 下列所给图形是中心对称图形但不是轴对称图形的是 ( )A .B .C .D .2. 下列式子中,属于最简二次根式的是( )A .7B .9C .20D .133. 一组数据:a -1,a ,a ,a +1,若添加一个数据a ,下列说法错误的是( )A .平均数不变B .中位数不变C .众数不变D .方差不变4. 若关于x 的一元二次方程(k -1) x 2+2x -2=0有不相等实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠15. 若顺次连结四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必定是( )A .正方形B .对角线相等的四边形C .菱形D .对角线相互垂直的四边形6. 如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心、正方形对角线的长为半径画弧,交数轴于点A ,则点A 表示的数是 ( )A .2-B .22-C .12-D .12+7. 四边形ABCD 是菱形,对角线AC =8cm ,BD =6cm ,DH ⊥AB 于点H ,则DH 长为( )A .125cmB .245cmC .185cmD .165cm8. 一次函数y ax b =+的图象如图所示,则化简2()||b a a b --+ 的结果是 ( )A .2aB .2a -C .2bD .2b -9. 甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y (m)与乙出发的时间t (s)之间的关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③ 10.已知平面直角坐标系内,点D 与点(0,1)A -,(0,5)B ,(1)C a a -+,是平行四边形的四个顶点,则CD 长的最小值为( )A .6B .2C .3D .22二、填空题(本大题共8小题,每小题2分,共16分.)11.函数21x y x +=的自变量x 的取值范围是 .12.已知点()11y -,、()22y ,在函数y =-2x +1的图象上,则y 1与y 2的大小关系是 .13.若103-=a ,则代数式262--a a 的值为 . 14.如图,已知函数12y x b =-+和y kx =的图象交于点P (﹣4,﹣2),则根据图象可得关于x 的不等式12x b kx -+>的解集为 .15.如图,平行四边形ABCD 的周长是26cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3cm ,则AE 的长度为 cm .16.如图,将△ABC 绕点B 顺时针旋转到△DBE 的位置.连接AD ,若∠ADB =60°,则∠1= °.17.如图,直线AB 的解析式为25y x =+,与y 轴交于点A ,与x 轴交于点B ,点P 为线段AB 上的一个动点,作PE ⊥y 轴于点E ,PF ⊥x 轴于点F ,连接EF ,则线段 EF 的最小值为 .18.如图,在平面直角坐标系xOy 中,平行四边形OABC 的顶点A ,B 的坐标分别为(6,0), (7,3),将平行四边形OABC 绕点O 逆时针方向旋转得到平行四边形OA′B′C′,当点C′落在BC 的延长线上时,线段OA ′ 交BC 于点E ,则线段C′E 的长度为 . 三、解答题(本大题共8小题,共64分.请在答题卡指定区域.......内作答,解答时应 写出文字说明、证明过程或演算步骤) 19. (本小题满分8分)(1)计算:1(312248)123-+÷;(2)解方程:x 2-3x +1=0﹒ 20.(本小题满分7分)已知关于x 的方程222(1)0x k x k --+=有两个实数根x 1、x 2.(1)求k 得取值范围; (2)若∣x 1+x 2∣=x 1x 2-1,求k 的值.第9题图 OH A B C D 第6题图 第7题图 第8题图 第16题图 第15题图 第14题图 O B A E C ′ C x y B ′ A ′ 第17题图 第18题图图2图1如图,△ABC 中,∠ACB =90°,点D ,点E 分别是AC ,AB 的中点,点F 在BC 的延长线上,且∠CDF =∠A .求证:四边形DFCE 是平行四边形.22.(本小题满分7分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的满分均为100分.前5名选手的笔试成绩如下:选手序号 1 2 3 4 5 笔试成绩/分8584808492(1)这5名选手笔试成绩的平均数是 分,中位数是 分,众数是 分;(2)求这5名选手笔试成绩的方差;(3)根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).若1号选手的面试成绩为90分,最后的综合成绩为87分,求笔试成绩和面试成绩各占的百分比.24.(本小题满分7分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了迎接“双11”节,扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件. (1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?如图,直线12(0)2y kx k k =-≠与x 轴交于A ,与y 轴正半轴交于B ,4AOB S ∆= .点 M 在第二象限内直线AB 上. (1)求直线AB 的解析式;(2)若OB 是△AOM 的中线,求直线OM 的解析式;(3)在(2)的条件下,N 是射线MO 上一点,AO 平分∠MAN ,求N 点的坐标.26.(本小题满分10分)如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,动点F 在边BC 上,且不与 点B 、C 重合,将△EBF 沿EF 折叠,得到△EB′ F . (1)当∠BEF =45°时,求证:CF =AE ; (2)当B′ D = B′C 时,求B′ C 的长; (3)直接写出△CB ′F 周长的最小值.E F C D B A B′ D C B A 备用图 G。

上海市静安区2019-2020学年八年级(下)期末数学试卷(解析版)

上海市静安区2019-2020学年八年级(下)期末数学试卷(解析版)

2019-2020学年上海市静安区八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1.当a<0时,|a﹣1|等于()A.a+1 B.﹣a﹣1 C.a﹣1 D.1﹣a2.下列方程中,是无理方程的为()A.B.C.D.3.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+44.下列关于向量的运算,正确的是()A.B.C.D.5.有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同.下列事件中属于确定事件的是()A.从袋子中摸出1个球,球的颜色是红色B.从袋子中摸出2个球,它们的颜色相同C.从袋子中摸出3个球,有颜色相同的球D.从袋子中摸出4个球,有颜色相同的球6.已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CD C.OB=OC,AB=CD D.OB=OC,OA=OD二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上】7.如果一次函数y=(k﹣2)x+1的图象经过一、二、三象限,那么常数k的取值范围是.8.方程x3+1=0的根是.9.方程的根是.10.用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.11.已知函数,那么=.12.从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数是素数的概率是.13.如果一个n边形的内角和是1440°,那么n=.14.如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是AC、AB边的中点,那么△CDE的周长为.16.如图,已知正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC=.17.一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为.18.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD 绕点A旋转后得到梯形AB1C1D1,其中B、C、D的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为.附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)19.如果关于x的方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,那么m=.三、解答题(本大题共8题,满分66分)[将下列各题的解答过程,做在答题纸上] 20.先化简,再求值:,其中x=.21.解方程:.22.解方程组:.23.如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.(1)写出图中所有与互为相反向量的向量:;(2)求作:、.(保留作图痕迹,写出结果,不要求写作法)24.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.25.某公司生产的新产品需要精加工后才能投放市场,为此王师傅承担了加工300个新产品的任务.在加工了80个新产品后,王师傅接到通知,要求加快新产品加工的进程,王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务.问接到通知后,王师傅平均每天加工多少个新产品?26.在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A、与反比例函数(k是常数,k≠0)的图象交于点B(a,3),且这个反比例函数的图象经过点C(6,1).(1)求出点A的坐标;(2)设点D为x轴上的一点,当四边形ABCD是梯形时,求出点D的坐标和四边形ABCD 的面积.27.已知:如图,在矩形ABCD中,AB=3,点E在AB的延长线上,且AE=AC,联结CE,取CE的中点F,联结BF、DF.(1)求证:DF⊥BF;(2)设AC=x,DF=y,求y与x之间的函数关系式,并写出定义域;(3)当DF=2BF时,求BC的长.2019-2020学年上海市静安区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1.当a<0时,|a﹣1|等于()A.a+1 B.﹣a﹣1 C.a﹣1 D.1﹣a【考点】绝对值.【分析】根据负有理数的绝对值是它相反数得结论做出正确判断.【解答】解:当a<0时,即a<1,则|a﹣1|=1﹣a;故选D.2.下列方程中,是无理方程的为()A.B.C.D.【考点】无理方程.【分析】可以判断各选项中的方程是什么方程,从而可以得到哪个选项是正确的.【解答】解:是一元二次方程,是无理方程,=0是分式方程,是一元一次方程,故选B.3.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4【考点】一次函数的应用.【分析】根据图象信息一一判断即可解决问题.【解答】解:由图象可知,出租车的起步价是10元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4,超过3千米部分(x>3)每千米收2元,故A、B、D正确,C错误,故选C.4.下列关于向量的运算,正确的是()A.B.C.D.【考点】*平面向量.【分析】由三角形法则直接求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、+=,故本选项正确;B、﹣=,故本选项错误;C、﹣=,故本选项错误;D、﹣=,故本选项错误.故选:A.5.有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同.下列事件中属于确定事件的是()A.从袋子中摸出1个球,球的颜色是红色B.从袋子中摸出2个球,它们的颜色相同C.从袋子中摸出3个球,有颜色相同的球D.从袋子中摸出4个球,有颜色相同的球【考点】随机事件.【分析】根据袋子中装有3个红球、1个白球、1个绿球以及必然事件、不可能事件、随机事件的概念解答即可.【解答】解:从袋子中摸出1个球,球的颜色是红色是随机事件;从袋子中摸出2个球,它们的颜色相同是随机事件;从袋子中摸出3个球,有颜色相同的球是随机事件;从袋子中摸出4个球,有颜色相同的球是不可能事件,故选:D.6.已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CD C.OB=OC,AB=CD D.OB=OC,OA=OD【考点】等腰梯形的判定.【分析】根据等腰梯形的判定推出即可.【解答】解:A、AC=BD=BC,不能证明四边形ABCD是等腰梯形,错误;B、AB=AD=CD,不能证明四边形ABCD是等腰梯形,错误;C、OB=OC,AB=CD,不能证明四边形ABCD是等腰梯形,错误;D、∵OB=OC,OA=OD,∴∠OBC=∠OCB,∠OAD=∠ODA,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴∠ABO=∠DCO,AB=CD,同理:∠OAB=∠ODC,∵∠ABC+∠DCB+∠CDA+∠BAD=360°,∴∠DAB+∠ABC=180°,∴AD∥BC,∴四边形ABCD是梯形,∵AB=CD,∴四边形ABCD是等腰梯形.故选D二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上】7.如果一次函数y=(k﹣2)x+1的图象经过一、二、三象限,那么常数k的取值范围是k >2.【考点】一次函数图象与系数的关系.【分析】根据一次函数图象所经过的象限确定k的符号.【解答】解:∵一次函数y=(k﹣2)x+1(k为常数,k≠0)的图象经过第一、二、三象限,∴k﹣2>0.解得:k>2,故填:k>2;8.方程x3+1=0的根是﹣1.【考点】立方根.【分析】先求出x3,再根据立方根的定义解答.【解答】解:由x3+1=0得,x3=﹣1,∵(﹣1)3=﹣1,∴x=﹣1.故答案为:﹣1.9.方程的根是x=0.【考点】分式方程的解.【分析】先去分母,再解整式方程,最后检验即可.【解答】解:去分母得,x2+3x=0,解得x=0或﹣3,检验:把x=0代入x+3=3≠0,∴x=0是原方程的解;把x=﹣3代入x+3=﹣3+3=0,∴x=﹣3不是原方程的解,舍去;∴原方程的解为x=0,故答案为x=0.10.用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.【考点】换元法解分式方程.【分析】设,,则=3u,=2v,从而得出关于u、v的二元一次方程组.【解答】解:设,,原方程组变为,故答案为.11.已知函数,那么=.【考点】函数值.【分析】把自变量x=﹣代入函数解析式进行计算即可得解.【解答】解:∵,∴=;故答案为.12.从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数是素数的概率是.【考点】概率公式.【分析】列表列举出所有情况,看两位数是素数的情况数占总情况数的多少即可解答.【解答】解:列表如下:2 3 42 (2,2)(2,3)(2,4)3 (3,2)(3,3)(3,4)4 (4,2)(4,3)(4,4)共有9种等可能的结果,其中是素数的有3种,概率为;故答案为:13.如果一个n边形的内角和是1440°,那么n=10.【考点】多边形内角与外角.【分析】根据多边形的内角和公式:(n﹣2)×180°,列出方程,即可求出n的值.【解答】解:∵n边形的内角和是1440°,∴(n﹣2)×180°=1440°,解得:n=10.故答案为:10.14.如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为5.【考点】菱形的性质.【分析】根据已知可得较小的内角为60°,从而得到较短的对角线与菱形的一组邻边组成一个等边三角形,从而可求得较短对角线的长度.【解答】解:如图所示:∵菱形的边长为5,∴AB=BC=CD=DA=5,∠B+∠BAD=180°,∵菱形相邻两内角的度数比为1:2,即∠B:∠BAD=1:2,∴∠B=60°,∴△ABC是等边三角形,∴AC=AB=5;故答案为:5.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是AC、AB边的中点,那么△CDE的周长为12.【考点】三角形中位线定理.【分析】利用勾股定理求得边AB的长度,然后结合三角形中位线定理得到DE=AB,则易求△CDE的周长.【解答】解:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB===10.又∵点D、E分别是AC、AB边的中点,∴CE=BC=4,CD=AC=3,ED是△ABC的中位线,∴DE=AB=5,∴△CDE的周长=CE+CD+ED=4+3+5=12.故答案是:12.16.如图,已知正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC=﹣1.【考点】正方形的性质;角平分线的性质.【分析】根据正方形的性质和已知条件可求得AF,AC的长,从而不难得到FC的长.【解答】解:∵四边形ABCD是正方形,∴AB=BC=AD=CD=1,∠D=∠B=90°,∴AC==,∵AE平分∠DAC,EF⊥AC交于F,∴AF=AD=1,∴FC=AC﹣AF=﹣1,故答案为:;17.一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为4.【考点】一次函数图象上点的坐标特征.【分析】先根据点A、B的坐标代入解析式,再代入代数式计算即可求解.【解答】解:把点A、B的坐标代入解析式,可得:a+2=b,c+2=d,所以ac﹣ad﹣bc+bd=ac﹣a(c+2)﹣(a+2)c+(a+2)(c+2)=4;故答案为:418.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD 绕点A旋转后得到梯形AB1C1D1,其中B、C、D的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为.【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;直角梯形.【分析】先根据旋转的性质得出△DAB≌△D1AB1,再根据全等三角形的性质以及等腰三角形的性质,得出∠2=∠3,然后根据平行线的性质,得出∠2=∠4,若设∠1=∠2=∠3=∠4=α,则根据∠2+∠3+∠5=180°,可以求得α的度数为60°,最后根据△ADD1、△BCD都是等边三角形,求得DD1=AD=.【解答】解:如图,将梯形ABCD绕点A旋转后得到梯形AB1C1D1,连接BD,由旋转得:AD=AD1,AB=AB1,∠DAD1=∠BAB1,∴∠DAB=∠D1AB1,且∠1=∠3,在△DAB和△D1AB1中,,∴△DAB≌△D1AB1(SAS),∴∠1=∠2,∴∠2=∠3,∵AD∥BC,∴∠2=∠4,设∠1=∠2=∠3=∠4=α,则∠5=180°﹣∠4﹣∠C=120°﹣α,∵∠2+∠3+∠5=180°,∴α+α+120°﹣α=180°,解得α=60°,∴∠1=∠2=∠3=∠4=60°,∴△ADD1、△BCD都是等边三角形,∴BD=CD=5,∠ABD=30°,∴Rt△ABD中,AD=BD=,∴DD1=AD=.故答案为:附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)19.如果关于x的方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,那么m=﹣1.【考点】根与系数的关系.【分析】先根据根与系数的关系得到=1,解得m=﹣1或m=1,然后根据判别式的意义确定满足条件的m的值.【解答】解:∵方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,∴=1,解得m=1或m=﹣1,当m=1时,方程变形为x2+x+1=0,△=1﹣4×1×1=﹣3<0,方程没有实数解,所以m的值为﹣1.故答案为:﹣1.三、解答题(本大题共8题,满分66分)[将下列各题的解答过程,做在答题纸上] 20.先化简,再求值:,其中x=.【考点】分式的化简求值.【分析】要熟悉混合运算的顺序,分式的除法转化为分式的乘法运算,最后算减法,注意化简后,将x=代入化间后的式子求出即可.【解答】解:原式=÷+,=×+,=+,=,当x=+1,原式=21.解方程:.【考点】无理方程.【分析】分析:将方程中左边的一项移项得:,两边平方得,,两边再平方得x﹣3=1,解得x=4,最后验根,可求解.【解答】解:,,,x﹣3=1,x=4.经检验:x=4是原方程的根,所以原方程的根是x=4.22.解方程组:.【考点】高次方程.【分析】先把第二个方程因式分解,把二元二次方程组转化为二元一次方程组,求解即可.【解答】解:由②得x﹣4y=0或x+3y=0,原方程组可化为(Ⅰ)(Ⅱ),解方程组(Ⅰ)得,方程组(Ⅱ)无解,所以原方程组的解是.23.如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.(1)写出图中所有与互为相反向量的向量:,,;(2)求作:、.(保留作图痕迹,写出结果,不要求写作法)【考点】*平面向量;梯形.【分析】(1)根据平行四边形的性质即可解决问题.(2)根据向量和差定义即可解决.【解答】解:(1)∵AD∥EC,AE∥DC,∴四边形AECD是平行四边形,∴AD=EC,∵BC=2AD,∴BE=EC,∴所有与互为相反向量的向量有、、.(2)如图﹣=, +=+=,图中.就是所求的向量.24.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.【考点】平行四边形的判定与性质.【分析】法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE 与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠DHC,根据AB与CD平行,得到一对内错角相等,再由AB=CD,利用AAS得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到AG=CH,利用一组对边平行且相等的四边形为平行四边形即可得证;法2:连接AC,与BD交于点O,利用平行四边形的对角线互相平分得到OA=OC,OB=OD,再由AB与CD平行,得到一对内错角相等,根据CF与AD垂直,AE与BC垂直,得一对直角相等,利用ASA得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到BG=DH,根据等式的性质得到OG=OH,利用对角线互相平分的四边形为平行四边形即可得证.【解答】证明:法1:在□ABCD中,AD∥BC,AB∥CD,∵CF⊥AD,∴CF⊥BC,∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,∴∠AGB=∠DHC,∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,∴AG=CH,∴四边形AGCH是平行四边形;法2:连接AC,与BD相交于点O,在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,∴∠ABG=∠CDH,∵CF⊥AD,AE⊥BC,∴∠AEB=∠CFD=90°,∴∠BAG=∠DCH,∴△ABG≌CDH,∴BG=DH,∴BO﹣BG=DO﹣DH,∴OG=OH,∴四边形AGCH是平行四边形.25.某公司生产的新产品需要精加工后才能投放市场,为此王师傅承担了加工300个新产品的任务.在加工了80个新产品后,王师傅接到通知,要求加快新产品加工的进程,王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务.问接到通知后,王师傅平均每天加工多少个新产品?【考点】分式方程的应用.【分析】根据关键句子“王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务”找到等量关系列出方程求解即可.【解答】解:设接到通知后,王师傅平均每天加工x个新产品.根据题意,得.x2﹣65x+550=0,x1=55,x2=10.经检验:x1=55,x2=10都是原方程的解,但x2=10不符合题意,舍去.答:接到通知后,王师傅平均每天加工55个新产品.26.在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A、与反比例函数(k是常数,k≠0)的图象交于点B(a,3),且这个反比例函数的图象经过点C(6,1).(1)求出点A的坐标;(2)设点D为x轴上的一点,当四边形ABCD是梯形时,求出点D的坐标和四边形ABCD 的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先利用C点坐标计算出反比例函数中的k的值,进而可得反比例函数解析式,再利用反比例函数解析式计算出B的坐标,把B点坐标代入y=x+b可得B的值,进而可得一次函数解析式,然后可得一次函数y=x+b的图象与x轴交点A的坐标;(2)点D为x轴上的一点,因此不可能出现AD∥BC的情形,只有可能AB∥CD,设直线CD的解析式为y=x+m,把C点坐标代入可得m的值,然后可得D点坐标,分别过点B、C 作BE⊥x轴、CF⊥x轴,垂足分别为E、F,然后利用图形中的面积关系计算出四边形ABCD 的面积即可.【解答】解:(1)方法一:∵反比例函数经过点C(6,1),∴,∴k=6,∴反比例函数解析式为.∵B(a,3)在该反比例的图象上,∴,∴a=2,即B(2,3),∵y=x+b经过点B(2,3),∴y=x+1,令y=x+1=0,得x=﹣1,∴A(﹣1,0).方法二:∵点C(6,1)与点B(a,3)都在反比例函数的图象上,∴6×1=a×3=k,∴a=2,∴B(2,3).∵y=x+b经过点B(2,3),∴y=x+1,令y=x+1=0,得x=﹣1,∴A(﹣1,0).(2)∵四边形ABCD是梯形,且点D为x轴上的一点,∴不可能出现AD∥BC的情形,只有可能AB∥CD,∵直线AB 的解析式为y=x +1,∴可设直线CD 的解析式为y=x +m ,∵y=x +m 经过点C (6,1),∴y=x ﹣5,令y=x ﹣5=0,得x=5,∴D (5,0),分别过点B 、C 作BE ⊥x 轴、CF ⊥x 轴,垂足分别为E 、F ,则S 梯形ABCD =S △ABE +S 梯形BEFC ﹣S △DCF ,===12.27.已知:如图,在矩形ABCD 中,AB=3,点E 在AB 的延长线上,且AE=AC ,联结CE ,取CE 的中点F ,联结BF 、DF .(1)求证:DF ⊥BF ;(2)设AC=x ,DF=y ,求y 与x 之间的函数关系式,并写出定义域;(3)当DF=2BF 时,求BC 的长.【考点】四边形综合题.【分析】(1)方法一:如图1中,连接AF,只要证明△ABF≌DCF即可.方法二:如图2中,连接BD,与AC相交于点O,联结OF,只要证明OB=OF=OD即可.(2)由y=DF=即可解决问题.(3)首先证明CE=DF=AF,列出方程即可解决.【解答】(1)证明:方法一:如图1中,连接AF,∵AE=AC,点F为CE的中点,∴AF⊥CE,即∠AFC=90°,∵在矩形ABCD中,AB=CD,∠ABC=∠DCB=90°,∴∠CBE=180°﹣∠ABC=90°,∴EF=BF=CF=,∴∠FBC=∠FCB,即∠ABC+∠FBC=∠DCB+∠FCB,∴∠ABF=∠DCF,在△ABF和△DCF中,,∴△ABF≌DCF,∴∠AFB=∠DFC,∴∠BFD=∠AFB+∠AFD=∠AFD+∠DFC=∠AFC=90°,即DF⊥BF;方法二:如图2中,连接BD,与AC相交于点O,联结OF,∵在矩形ABCD中,AC=BD,OA=OC,OB=OD,∴OA=OC=OB=OD=AC=BD,∵点F是CE的中点,∴OF=AE,∵AE=AC,∴OF=AC=BD,∴OF=OB=OD,∴∠OBF=∠OFB,∠OFD=∠ODF,∵∠OBF+∠OFB+∠OFD+∠ODF=180°,∴2∠OFB+2∠OFD=180°,∴∠OFB+∠OFD=90°,即∠BFD=90°,∴DF⊥BF;(2)解:在Rt△ABC中,BC2=AC2﹣AB2=x2﹣9,∵AE=AC=x,∴BE=x﹣3,∴EC===,∴BF==,∴y=DF===,∴y=(x>3).(3)∵△ABF≌DCF,∴AF=DF,∵在Rt△ABC中,CE=2BF,又∵DF=2BF,∴CE=DF=AF,∴=,∴x1=0,x2=5.经检验,x1=0,x2=5都是方程的根,但x=0不符合题意.∴BC===4.。

2019-2020学年山东省潍坊市八年级第二学期期末达标检测数学试题含解析

2019-2020学年山东省潍坊市八年级第二学期期末达标检测数学试题含解析
A. B. C. D.
4.下列各式中,运算正确的是()
A. B. C. D.
5.一个正多边形的每一个外角都等于.已知一次函数y=(m+1)x+n-2的图象经过一.三.四象限,则m,n的取值范围是()
A.m>-1,n>2B.m<-1,n>2C.m>-1,n<2D.m<-1,n<2
(3)在图2中补画y乙与t之间的函数图象,并观察图象得出在整个行驶过程中两车相遇的次数.
15.在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对______题
16.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.
17.小数0.00002l用科学记数法表示为_____.
三、解答题
18.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民户一表生活用水阶梯式计费价格表的部分信息:
自来水销售价格
污水处理价格
每户每月用水量
单价:元/吨
单价:元/吨
吨及以下
超过17吨但不超过30吨的部分
超过30吨的部分
2019-2020学年山东省潍坊市八年级第二学期期末达标检测数学试题
一、选择题(每题只有一个答案正确)
1.已知直线y=mx+n(m,n为常数)经过点(0,﹣2)和(3,0),则关于x的方程mx+n=0的解为( )
A.x=0B.x=1C.x=﹣2D.x=3
2.甲,乙,丙,丁四位跨栏运动员在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲,乙,丙,丁成绩的方差分别是0.11,0.03,0.05,0.02,则当天这四位运动员“110米跨栏”训练成绩最稳定的是()

【三套打包】北京市北大附中八年级下学期期末数学试卷含答案

【三套打包】北京市北大附中八年级下学期期末数学试卷含答案

最新人教版数学八年级下册期末考试试题【答案】一、选择题(本大题共12小题,每小题3分,共36分)1.(3( )A B C D 2.(3分)下列运算正确的是( )A =B 123= C .D 2=3.(3分)如图,矩形ABCD 中,对角线AC ,BD 交于点O .若60AOB ∠=︒,8BD =,则AB 的长为( )A .4B .C .3D .54.(3分)如图,ABCD 的对角线AC 、BD 相交于点O ,且16AC BD +=,6CD =,则ABO ∆的周长是( )A .10B .14C .20D .225.(3分)如图,ABC ∆中,AB AC =,AD 是BAC ∠的平分线.已知5AB =,3AD =,则BC 的长为( )A .5B .6C .8D .106.(3分)如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC =120AEO ∠=︒,则FC 的长度为( )A.1B.2C D7.(3分)根据 2.5PM空气质量标准:24小时 2.5PM均值在035∽(微克/立方米)的空气质量等级为优.将环保部门对我市 2.5PM一周的检测数据制作成如下统计表,这组2.5PM数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米8.(3分)ABC∆中,13AB cm=,15AC cm=,高12AD=,则BC的长为() A.14B.4C.14或4D.以上都不对9.(3分)如图,函数12y x=-与23y ax=+的图象相交于点(,2)A m,则关于x的不等式23x ax->+的解集是()A.2x>B.2x<C.1x>-D.1x<-10.(3分)自驾游是当今社会一种重要的旅游方式,五一放假期间小明一家人自驾去灵山游玩,下图描述了小明爸爸驾驶的汽车在一段时间内路程s(千米)与时间t(小时)的函数关系,下列说法中正确的是()A .汽车在0~1小时的速度是60千米/时B .汽车在2~3小时的速度比0~0.5小时的速度快C .汽车从0.5小时到1.5小时的速度是80千米/时D .汽车行驶的平均速度为60千米/时11.(3分)已知:如图,折叠矩形ABCD ,使点B 落在对角线AC 上的点F 处,若4BC =,3AB =,则线段CE 的长度是( )A .258B .52C .3D .2.812.(3分)把直线3y x =--向上平移m 个单位后,与直线24y x =+的交点在第二象限,则m 的取值范围是( ) A .17m <<B .34m <<C .1m >D .4m <二、填空题(本题共8个小题,每小题3分,共24分)13.(3分)平面直角坐标系内点(2,0)P -,与点(0,3)Q 之间的距离是 .14.(3分)已知一次函数(2)1y m x =++,函数y 的值随x 值的增大而增大,则m 的取值范围是 .15.(3分)一组数据3,5,a ,4,3的平均数是4,这组数据的方差为 .16.(3分)已知方程组122x y x y +=⎧⎨-=⎩的解为10x y =⎧⎨=⎩,则一次函数1y x =-+和22y x =-的图象的交点坐标为 .17.(3分)如图,在菱形ABCD 中,8AC =,6BD =,则ABC ∆的周长是 .18.(3分)将等腰直角三角形AOB 按如图所示放置,然后绕点O 逆时针旋转90︒至△A OB ''的位置,点B 的横坐标为2,则点A '的坐标为 .19.(3分)如图,在ABC ∆中,90BAC ∠=︒,4AB =,6AC =,点D 、E 分别是BC 、AD 的中点,//AF BC 交CE 的延长线于F .则四边形AFBD 的面积为 .20.(3分)如图,菱形ABCD 周长为16,120ADC ∠=︒,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE PB +的最小值是 .三、简答题(本大题共6小题,共60分)21.(7分)计算:1)+22.(7分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表:根据以上提供的信息,解答下列问题: (1)a = ,b = ,c = ; (2)补全上面的条形统计图;(3)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的有多少名?23.(11分)如图,在平面直角坐标系中,一次函数y kx b =+的图象经过点(2,6)A -,且与x 轴相交于点B ,与正比例函数3y x =的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足13COD BOC S S ∆∆=,求点D 的坐标.24.(11分)如图,矩形ABCD 的对角线AC 、BD 交于点O ,且//DE AC ,//CE BD .(1)求证:四边形OCED 是菱形;(2)若30BAC ∠=︒,4AC =,求菱形OCED 的面积.25.(12分)用4A 纸复印文件,在甲复印店不管一次复印多少页,每页收费01元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为(x x 为非负整数) (1)根据题意,填写下表:(2)设在甲复印店复印收费1y 元,在乙复印店复印收费2y 元,分别写出1y ,2y 关于x 的函数关系式;(3)顾客如何选择复印店复印花费少?请说明理由. 26.(12分)【实践探究】如图①,正方形ABCD 的对角线相交于点O ,点O 又是正方形111A B C O 的一个顶点,而且这两个正方形的边长相等.无论正方形111A B C O 绕点O 怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的14,你能说明这是为什么吗? 【拓展提升】如图②,在四边形ABCD 中,AB AD =,90BAD BCD ∠=∠=︒,联结AC .若6AC =,求四边线ABCD 的面积.2018-2019学年山东省临沂市罗庄区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【分析】根据同类二次根式的定义,二次根式化成最简二次根式后,被开方数相同的二次根式,可得答案.最新八年级下册数学期末考试题【含答案】一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A .1 、2 、3B .2 、3 、4C .3 、4 、5D .4 、5 、6 2.下列函数中,一定是一次函数的是()A.8y x=-B.83yx-=+C.256y x=+D.1y kx=-+3.下列二次根式中,最简二次根式为()A B C D4.一组数据2,2,4,3,6,5,2的众数和中位数分别是()A.3,2B.2,3C.2,2D.2,45.下列图象不能反映y是x的函数的是()A.B.C.D.6.如图,在ABC∆中,点D、E分别是AB、AC的中点,如果3DE=,那么BC的长为( )A .4B .5C .6D .77.如图,将ABCD 的一边BC 延长至点E ,若110A ∠=︒,则1∠等于( )A .110︒B .35︒C .70︒D .55︒8.下列计算正确的是( )A 3=-B =C .=D 2=9.某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是( ) A .6.2小时B .6.5小时C .6.6小时D .7小时10.如图, 矩形ABCD 的对角线AC ,BD 交于点O ,4AC cm =,120AOD ∠=︒,则BC 的长为( )A .B .4cmC .D .2cm11.已知:如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,且6AC =,8BD =,点P 是线段AD 上任意一点,且PE BD ⊥,垂足为E ,PF AC ⊥,垂足为F ,则43PE PF +的值是( )A .12B .24C .36D .4812.如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案.已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边()x y >,下列四个说法:①2249x y +=;②2x y -=;③x y +;④2449xy +=;其中说法正确的是()A .①②B .①②③C .①②④D .①②③④二、填空题(本大题共6小题,每小题3分,共18分.)13x 的取值范围是 .14.现有甲、乙两支足球队,每支球队队员身高的平均数均为1.85米,方差分别为20.35S =甲,20.25S =乙,则身高较整齐的球队是 队15.每本书的厚度为0.6cm ,把这些书摞在一起总厚度y (单位:)cm 随书的本数x 的变化而变化,请写出y 关于x 的函数解析式 ,(不用写自变量的取值范围)16.如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(3,5),则点C 的坐标为 .17.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是 .18.将2019个边长都为1cm 的正方形按如图所示的方法摆放,点1A ,2A ⋯,2019A 分别是正方形对角线的交点,则2019个正方形重叠形成的重叠部分的面积和为 2cm .三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)1920.已知:1x ,1y =,求222x xy y ++的值.21.某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩. ①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?22.如图,在平行四边形ABCD 中,点E 、F 别在BC ,AD 上,且BE DF =. (1)如图①,求证:四边形AECF 是平行四边形;(2)如图②,若90BAC ∠=︒,且3AB =.4AC =,求平行四边形ABCD 的周长.23.如图,某校组织学生到A地开展社会实践活动,乘车到达B地后,发现A地恰好在B地的正北方向,导航显示车辆应沿北偏东60︒方向行驶10公里到达C地,再沿北偏西45︒方向行驶一段距离才能到达A地.求A、C两地间的距离,24.甲乙两人同时登山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是米/分钟,乙在A地提速时距地面的高度b为米;(2)直接写出甲距地面高度y(米)和x(分)之间的函数关系式;(3)若乙提速后,乙的速度是甲登山速度的3倍.请问登山多长时间时,乙追上了甲,此时乙距A地的高度为多少米?=,E是CD上一点,BE交AC 25.如图,在四边形ABCD中,AB AD=,CB CD于点F,连结DF.∠=∠;(1)求证:AFD CFEAB CD,试说明四边形ABCD是菱形;(2)若//∠=∠,并说明理由.(3)在(2)的条件下,试确定E点的位置,使得EFD BCD26.A 村有肥料200吨,B 村有肥料300吨,现要将这些肥料全部运往C 、D 两仓库.从A 村往C 、D 两仓库运肥料的费用分别为每吨20元和25元;从B 村往C 、D 两仓库运肥料的费用分别为每吨15元和18元;现C 仓库需要肥料240吨,现D 仓库需要肥料260吨.(1)设A 村运往C 仓库x 吨肥料,A 村运肥料需要的费用为1y 元;B 村运肥料需要的费用为2y 元.①写出1y 、2y 与x 的函数关系式,并求出x 的取值范围; ②试讨论A 、B 两村中,哪个村的运费较少?(2)考虑到B 村的经济承受能力,B 村的运输费用不得超过4830元,设两村的总运费为W 元,怎样调运可使总运费最少?参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1.【分析】判断是否能组成直角三角形, 只要验证两小边的平方和是否等于最长边的平方即可 .【解答】解:A 、222123+≠,∴不能组成直角三角形, 故A 选项错误;B 、222234+≠,∴不能组成直角三角形, 故B 选项错误;C 、222345+=,∴组成直角三角形, 故C 选项正确;D 、222456+≠,∴新八年级(下)数学期末考试试题(含答案)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请将正确答案前的字母填入题后的括号内,每小题选对得3分,选错、不选或多选均得零分) 1.若=2﹣a ,则a 的取值范围是( )A .a =2B .a >2C .a ≥2D .a ≤22.若一个直角三角形的两直角边长分别为3和4,则下列说法不正确的是( ) A .这个直角三角形的斜边长为5 B .这个直角三角形的周长为12 C .这个直角三角形的斜边上的高为D .这个直角三角形的面积为123.如图,在平行四边形ABCD 中,DE 平分∠ADC 交BC 于E ,AF ⊥DE ,垂足为F ,已知∠DAF =50°,则∠B =( )A .50°B .40°C .80°D .100°4.用一长一短的两根木棒,在它们的中心处固定一个小螺钉,做成一个可转动的叉形架,四个顶点用橡皮筋连成一个四边形,转动木条,这个四边形变成菱形时,两根木棒所成角的度数是()A.90°B.60°C.45°D.30°5.一组数据:2,3,4,x中,若中位数与平均数相等,则数x不可能是()A.1B.2C.3D.56.若样本数据3,4,2,6,x的平均数为5,则这个样本的方差是()A.3B.5C.8D.27.若直线l与直线y=2x﹣3关于y轴对称,则直线l的解析式是()A.y=﹣2x+3B.y=﹣2x﹣3C.y=2x+3D.y=2x﹣38.正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.根式+1的相反数是.10.在△ABC中,AC=BC=,AB=2,则△ABC中的最小角是.11.若一组数据1,2,3,x,0,3,2的众数是3,则这组数据的中位数是.12.若直线y=kx+b与直线y=2x平行,且与y轴相交于点(0,﹣3),则直线的函数表达式是.13.如图,矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则BC=.14.菱形ABCD中,∠B=60°,AB=4,点E在BC上,CE=2,若点P是菱形上异于点E的另一点,CE=CP,则EP的长为.三、解答题(本大题共4小题,每小题6分,共24分)15.(6分)(1)计算:2•(﹣3)•(2)化简++x÷16.(6分)如果一组数据﹣1,0,2,3,x的极差为6(1)求x的值;(2)求这组数据的平均数.17.(6分)在图1,图2中,点E是矩形ABCD边AD上的中点,请用无刻度的直尺按下列要求画图(保留画图痕迹,不写画法)(1)在图1中,以BC为一边画△PBC,使△PBC的面积等于矩形ABCD的面积.(2)在图2中,以BE、ED为邻边画▱BEDK.18.(6分)如图,直线y=x+与x轴相交于点B,与y轴相交于点A.(1)求∠ABO的度数;(2)过点A的直线l交x轴的正半轴于点C,且AB=AC,求直线的函数解析式.四、解答题(本大题共3小题,每小题8分,共24分)19.(8分)如图,在矩形ABCD中,点E在AD上,EC平分∠BED(1)判断△BEC的形状,并加以证明;(2)若∠ABE=45°,AB=2时,求BC的长.20.(8分)甲、乙两班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如表,请根据表中数据解答下列问题(1)分别写出甲、乙两班选手进球数的平均数、中位数与众数;(2)如果要从这两个班中选出一个班级参加学校的投篮比赛,争取夺得总进球团体的第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?21.(8分)小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?五、探究题(本大题共1小题,共10分)22.(10分)如图,在正方形ABCD中,点E、F是正方形内两点,BE∥DF,EF⊥BE,为探索研究这个图形的特殊性质,某数学学习小组经历了如下过程:(1)在图1中,连接BD,且BE=DF①求证:EF与BD互相平分②求证:(BE+DF)2+EF2=2AB2(2)在图2中,当BE≠DF,其它条件不变时,(BE+DF)2+EF2=2AB2是否成立?若成立,请你加以证明:若不成立,请你说明理由.(3)在图3中,当AB=4,∠DPB=135°,BP+2PD=4时,求PD的长.参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请将正确答案前的字母填入题后的括号内,每小题选对得3分,选错、不选或多选均得零分)1.解:∵=|a﹣2|=2﹣a,∴a﹣2≤0,故选:D.2.解:根据勾股定理可知,直角三角形两直角边长分别为3和4,则它的斜边长是=5,周长是3+4+5=12,斜边长上的高为=,面积是3×4÷2=6.故说法不正确的是D选项.故选:D.3.解:在Rt△ADF中,∵∠DAF=50°,∴∠ADE=40°,又∵DE平分∠ADC,∴∠ADC=80°,∴∠B=∠ADC=80°.故选:C.4.解:如图,∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形,故选:A.5.解:(1)将这组数据从小到大的顺序排列为2,3,x,4,处于中间位置的数是3,x,那么由中位数的定义可知,这组数据的中位数是(3+x)÷2,平均数为(2+3+4+x)÷4,∴(3+x)÷2=(2+3+4+x)÷4,解得x=3,大小位置与3对调,不影响结果,符合题意;(2)将这组数据从小到大的顺序排列后2,3,4,x,中位数是(3+4)÷2=3.5,此时平均数是(2+3+4+x)÷4=3.5,解得x=5,符合排列顺序;(3)将这组数据从小到大的顺序排列后x,2,3,4,中位数是(2+3)÷2=2.5,平均数(2+3+4+x)÷4=2.5,解得x=1,符合排列顺序.∴x的值为1、3或5.故选:B.6.解:∵数据3,4,2,6,x的平均数为5,∴=5,解得:x=10,则方差为×[(3﹣5)2+(4﹣5)2+(2﹣5)2+(6﹣5)2+(10﹣5)2]=8,故选:C.7.解:与直线y=2x﹣3关于y轴对称的点的坐标为横坐标互为相反数,纵坐标不变,则y=2(﹣x)﹣3,即y=﹣2x﹣3.所以直线l的解析式为:y=﹣2x﹣3.故选:B.8.解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∴一次函数y=kx+k的图象经过二、三、四象限.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)9.解:+1的相反数是﹣﹣1,故答案为:﹣﹣1.10.解:∵AC=BC=,AB=2,∴AC2+BC2=2+2=4=22=AB2,∴△ABC是等腰直角三角形,∴△ABC中的最小角是45°;故答案为:45°.11.解:∵1,2,3,x,0,3,2的众数是3,∴x=3,先对这组数据按从小到大的顺序重新排序0,1,2,2,3,3,3,位于最中间的数是2,∴这组数的中位数是2.故答案为:2;12.解:∵直线y=kx+b与直线y=2x平行,∴k=2,把点(0,﹣3)代入y=2x+b得b=﹣3,∴所求直线解析式为y=2x﹣3.故答案为:y=2x﹣3.13.解:∵AB=2cm,AB=AB1∴AB1=2cm,∵四边形ABCD是矩形,AE=CE,∴∠ABE=∠AB1E=90°∵AE=CE,∴AB1=B1C,∴AC=4cm.在Rt△ABC中,BC===2.故答案为:2cm.14.解:如图所示:连接EP交AC于点H.∵菱形ABCD中,∠B=60°,∴∠BCD=120°,∠ECH=∠PCH=60°.在△ECH和△PCH中,∴△ECH≌△PCH.∴∠EHC=∠PHC=90°,EH=PH.∴EP=2EH=2sin60°•EC=2××2=6.如图2所示:△ECP为等腰直角三角形,则EP=EC=2.过点P′作P′F⊥BC.∵P′C=2,BC=4,∠B=60°,∴P′C⊥AB.∴∠BCP′=30°.∴FC=×2=3,P′F=,EF=2﹣3.∴EP′==3﹣.故答案为:6或2或3﹣.三、解答题(本大题共4小题,每小题6分,共24分)15.解:(1)原式=2×(﹣3)××=﹣9;(2)原式=3++x•=3++=5.16.解:(1)∵3+1=4<6,∴x为最大值或最小值.当x为最大值时,有x+1=6,解得x=5.当x为最小值时,3﹣x=6,解得x=﹣3;(2)当x为5时,平均数为.当x为﹣3时,平均数为.17.解:(1)图1中△PBC为所画;(2)图2中▱BEDK为所画.18.解:(1)对于直线y=x+,令x=0,则y=,令y=0,则x=﹣1,故点A的坐标为(0,),点B的坐标为(﹣1,0),则AO=,BO=1,在Rt△ABO中,∵tan∠ABO=,∴∠ABO=60°;(2)在△ABC中,∵AB=AC,AO⊥BC,∴AO为BC的中垂线,即BO=CO,则C点的坐标为(1,0),设直线l的解析式为:y=kx+b(k,b为常数),则,解得:,即函数解析式为:y=﹣x+.四、解答题(本大题共3小题,每小题8分,共24分)19.解:(1)△BEC是等腰三角形,∵在矩形ABCD中,AD∥BC,∴∠DEC=∠BCE,∵EC平分∠BED,∴∠BEC=∠DEC,∴∠BEC=∠BCE,∴BE=BC,∴△BEC是等腰三角形(2)在矩形ABCD中,∠A=90°,且∠ABE=45°,∴△ABE是等腰直角三角形,∴AE=AB=2,∴BE==2,由(1)知BC=BE,∴BC=220.解:(1)甲班选手进球数的平均数为7,中位为7,众数为7;乙班选手进球数的平均数为7,中位为7,众数为7;(2)甲班S12=[(10﹣7)2+(9﹣7)2+(8﹣7)2+4×(7﹣7)2+0×(6﹣7)2+3×(5﹣7)2]=2.6,乙班S22=[0×(10﹣7)2+(9﹣7)2+2×(8﹣7)2+5×(7﹣7)2+(6﹣7)2+2×(5﹣7)2]=1.4.∵甲方差>乙方差,∴要争取夺取总进球团体第一名,应选乙班.∵甲班有一位百发百中的出色选手,∴要进入学校个人前3名,应选甲班.21.解:(1)由图象得:120千克,(2)当0≤x≤12时,设日销售量与上市的时间的函数解析式为y=k1x,∵直线y=k1x过点(12,120),∴k1=10,∴函数解析式为y=10x,当12<x≤20,设日销售量与上市时间的函数解析式为y=k2x+b,∵点(12,120),(20,0)在y=k2x+b的图象上,∴,解得:∴函数解析式为y=﹣15x+300,∴小明家樱桃的日销售量y与上市时间x的函数解析式为:y=;(3)∵第10天和第12天在第5天和第15天之间,∴当5<x≤15时,设樱桃价格与上市时间的函数解析式为z=mx+n,∵点(5,32),(15,12)在z=mx+n的图象上,∴,解得:,∴函数解析式为z=﹣2x+42,当x=10时,y=10×10=100,z=﹣2×10+42=22,销售金额为:100×22=2200(元),当x=12时,y=120,z=﹣2×12+42=18,销售金额为:120×18=2160(元),∵2200>2160,∴第10天的销售金额多.五、探究题(本大题共1小题,共10分)22.(1)证明:①连接ED、BF,∵BE∥DF,BE=DF,∴四边形BEDF是平行四边形,∴BD、EF互相平分;②设BD交EF于点O,则OB=OD=BD,OE=OF=EF.∵EF⊥BE,∴∠BEF=90°.在Rt△BEO中,BE2+OE2=OB2.∴(BE+DF)2+EF2=(2BE)2+(2OE)2=4(BE2+OE2)=4OB2=(2OB)2=BD2.在正方形ABCD中,AB=AD,BD2=AB2+AD2=2AB2.∴(BE+DF)2+EF2=2AB2;(2)解:当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由如下:如图2,过D作DM⊥BE交BE的延长线于M,连接BD.∵BE∥DF,EF⊥BE,∴EF⊥DF,∴四边形EFDM是矩形,∴EM=DF,DM=EF,∠BMD=90°,在Rt△BDM中,BM2+DM2=BD2,∴(BE+EM)2+DM2=BD2.即(BE+DF)2+EF2=2AB2;(3)解:过P作PE⊥PD,过B作BE⊥PE于E,则由上述结论知,(BE+PD)2+PE2=2AB2.∵∠DPB=135°,∴∠BPE=45°,∴∠PBE=45°,∴BE=PE.∴△PBE是等腰直角三角形,∴BP=BE,∵BP+2PD=4,∴2BE+2PD=4,即BE+PD=2,∵AB=4,∴(2)2+PE2=2×42,解得,PE=2,∴BE=2,∴PD=2﹣2.。

2019-2020学年河南省洛阳市八年级(下)期末数学试卷 (解析版)

2019-2020学年河南省洛阳市八年级(下)期末数学试卷  (解析版)

2019-2020学年河南省洛阳市八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤12.(3分)下列计算:①+=;②()2=2;③5﹣=5;④(+)(﹣)=﹣1.其中正确的有()个A.1B.2C.3D.43.(3分)某特警部队为了选拔“神枪手”,举行了射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.甲、乙两人成绩的稳定性相同C.乙的成绩比甲的成绩稳定D.无法确定谁的成绩更稳定4.(3分)如图,正方形ABCD中,延长AB至E,使AE=AC,连接CE,则∠BCE=()A.10°B.20°C.30°D.22.5°5.(3分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7,则这组数据的众数和平均数分别是()A.8和9B.7和9C.9和7D.7和8.56.(3分)面试时,某人的基本知识、表达能力、工作态度的得分分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是()A.82分B.86分C.85分D.84分7.(3分)如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为()A.5 cm B.6 cm C.10 cm D.不能确定8.(3分)已知一次函数y=(2m﹣1)x+1上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,则m的取值范围是()A.m<B.m>C.m<2D.m>09.(3分)四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=2,则菱形ABCD的面积为()A.2B.4C.4D.810.(3分)如图,正方形ABCD的边长为16,点M在边DC上,且DM=4,点N是对角线AC上一动点,则线段DN+MN的最小值为()A.16B.16C.20D.4二、填空题(每小题3分,共15分)11.(3分)若实数a、b满足,则=.12.(3分)在开展“爱心捐助武汉疫区”的活动中,某团支部8名团员捐款分别为(单位:元)6,5,3,5,6,10,5,6,则这组数据的中位数是.13.(3分)方程组的解为.14.(3分)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,BF=6,AB=5,则AE的长为.15.(3分)如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把△ADE 沿AE折叠,当点D的对应点D′刚好落在矩形ABCD的对称轴上时,则DE的长为.三、解答题(共75分)16.(8分)计算:(1)3﹣+﹣;(2)÷﹣×+.17.(9分)如图,某学校(A点)到公路(直线l)的距离为30m,到公交站(D点)的距离为50m,现在公路边上建一个商店(C点),使商店到学校A及公交站D的距离相等,求商店C与公交站D之间的距离.(结果保留整数)18.(9分)某校为迎接中华人民共和国建国70周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调査,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的中位数为;(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有600名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.19.(9分)如图,已知一次函数y1=ax+2与y2=x﹣1的图象交于点A(2,1).(1)求a的值;(2)若点C是直线y2=x﹣1上的点且AC=2,求点C的坐标;(3)直接写出y2>y1>0时,x的取值范围.20.(9分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠DEF=90°,DE=8,EF=6,当AF为时,四边形BCEF是菱形.21.(10分)某营业厅销售3部A型号手机和2部B型号手机的营业额为10800元,销售4部A型号手机和1部B型号手机的营业额为10400元.(1)求每部A型号手机和B型号手机的售价;(2)该营业厅计划一次性购进两种型号手机共50部,其中B型号手机的进货数量不超过A型号手机数量的3倍.已知A型手机和B型手机的进货价格分别为1500元/部和1800元/部,设购进A型号手机a部,这50部手机的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号手机各多少部时,才能使销售总利润最大,最大利润为多少元?22.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,D为直线BC上一动点(不与点B,C重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BC与CF的位置关系是,BC、CF、CD 三条线段之间的数量关系为;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请猜想BC与CF的位置关系BC,CD,CF三条线段之间的数量关系并证明;(3)如图3,当点D在线段BC的反向延长线上时,点A,F分别在直线BC的两侧,其他条件不变.若正方形ADEF的对角线AE,DF相交于点O,OC=,DB=5,则△ABC的面积为.(直接写出答案)23.(11分)如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为,点C的坐标为;(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.2019-2020学年河南省洛阳市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤1【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣1≥0,解得x≥1,故选:C.2.(3分)下列计算:①+=;②()2=2;③5﹣=5;④(+)(﹣)=﹣1.其中正确的有()个A.1B.2C.3D.4【分析】根据合并同类二次根式法则、二次根式的性质和平方差公式依此计算可得.【解答】解:①与不是同类二次根式,不能合并,此式计算错误;②()2=2,此式计算正确;③5﹣=4,此式计算错误;④(+)(﹣)=2﹣3=﹣1,此式计算正确;故选:B.3.(3分)某特警部队为了选拔“神枪手”,举行了射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.甲、乙两人成绩的稳定性相同C.乙的成绩比甲的成绩稳定D.无法确定谁的成绩更稳定【分析】根据方差的定义,方差越小数据越稳定即可判断.【解答】解:∵甲的方差是0.28,乙的方差是0.21,∴S甲2>S乙2,∴乙的成绩比甲的成绩稳定;故选:C.4.(3分)如图,正方形ABCD中,延长AB至E,使AE=AC,连接CE,则∠BCE=()A.10°B.20°C.30°D.22.5°【分析】根据正方形的性质,可以得到∠ACB和∠CAB的度数,再根据AC=AE,可以得到∠ACE和∠AEC的度数,然后即可得到∠BCE的度数.【解答】解:∵AC是正方形ABCD的对角线,∴∠CAB=∠ACB=45°,∵AC=AE,∴∠ACE=∠AEC,∵∠ACE+∠AEC+∠CAE=180°,∴∠ACE=∠AEC=67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°,故选:D.5.(3分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7,则这组数据的众数和平均数分别是()A.8和9B.7和9C.9和7D.7和8.5【分析】根据众数和算术平均数的定义列式计算可得.【解答】解:将这组数据重新排列为7,7,7,8,8,9,9,10,11,14,所以这组数据的众数为7,平均数为=9,故选:B.6.(3分)面试时,某人的基本知识、表达能力、工作态度的得分分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是()A.82分B.86分C.85分D.84分【分析】根据加权平均数的计算公式进行计算,即可得出答案.【解答】解:根据题意得:90×20%+80×40%+85×40%=84(分);答:这个人的面试成绩是84分.故选:D.7.(3分)如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为()A.5 cm B.6 cm C.10 cm D.不能确定【分析】根据D、E、F分别是△ABC各边的中点,可知DE为△ABC的中位线,根据DE的长度可求得AC的长度,然后根据直角三角形斜边的中线等于斜边的一半,可得HF=AC,即可求解.【解答】解:∵D、E分别是△ABC各边的中点,∴DE为△ABC的中位线,∵ED=6cm,∴AC=2DE=2×6=12(cm),∵AH⊥CD,且F为AC的中点,∴HF=AC=6cm.故选:B.8.(3分)已知一次函数y=(2m﹣1)x+1上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,则m的取值范围是()A.m<B.m>C.m<2D.m>0【分析】先根据x1<x2时,y1<y2,得到y随x的增大而增大,所以x的比例系数大于0,那么2m﹣1>0,解不等式即可求解.【解答】解:∵当x1<x2时,有y1<y2∴y随x的增大而增大∴2m﹣1>0,∴m>.故选:B.9.(3分)四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=2,则菱形ABCD的面积为()A.2B.4C.4D.8【分析】由菱形的性质得出OA=OC=AC,OB=OD=BD=1,AC⊥BD,在Rt△OCD 中,由含30°角的直角三角形的性质求出CD=2OD=2,由勾股定理求出OC,得出AC,由菱形的面积公式即可得出结果.【解答】解:∵四边形ABCD是菱形,∴OA=OC=AC,OB=OD=BD=1,AC⊥BD,在Rt△OCD中,∵∠ACD=30°,∴CD=2OD=2,∴OC===,∴AC=2OC=2,∴菱形ABCD的面积=AC•BD=×2×2=2.故选:A.10.(3分)如图,正方形ABCD的边长为16,点M在边DC上,且DM=4,点N是对角线AC上一动点,则线段DN+MN的最小值为()A.16B.16C.20D.4【分析】连接MB交AC于N,此时DN+MN最小,先证明这个最小值就是线段BM的长,利用勾股定理就是即可解决问题.【解答】解:如图,连接MB交AC于N,此时DN+MN最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴DN=BN,∴DN+MN=BN+NM=BM,在Rt△BMC中,∵∠BCM=90°,BC=16,CM=CD﹣DM=16﹣4=12,∴BM=.故选:C.二、填空题(每小题3分,共15分)11.(3分)若实数a、b满足,则=.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式=﹣.故答案是:﹣.12.(3分)在开展“爱心捐助武汉疫区”的活动中,某团支部8名团员捐款分别为(单位:元)6,5,3,5,6,10,5,6,则这组数据的中位数是 5.5元.【分析】将数据重新排列,再根据中位数的定义求解可得.【解答】解:将这组数据重新排列为:3,5,5,5,6,6,6,10,所以这组数据的中位数为=5.5(元),故答案为:5.5元.13.(3分)方程组的解为.【分析】由图象可知,一次函数x+y=3与y=2x的交点坐标为(1,2),所以方程组的解为.【解答】解:∵一次函数x+y=3与y=2x的交点坐标为(1,2),∴方程组的解为.故答案为.14.(3分)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,BF=6,AB=5,则AE的长为8.【分析】连接EF,AE交BF于O点,如图,由作法得AB=AF,AE平分∠BAD,先证明四边形ABEF为菱形得到AE⊥BF,OA=OE,BO=OF=3,然后利用勾股定理计算出OA,从而得到AE的长.【解答】解:连接EF,AE交BF于O点,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠F AE=∠BEA,由作法得AB=AF,AE平分∠BAD,∴∠BAE=∠F AE,∴∠BAE=∠BEA,∴BA=BE,∴AF=BE,而AF∥BE,∴四边形ABEF为平行四边形,而AB=AF,∴四边形ABEF为菱形,∴AE⊥BF,OA=OE,BO=OF=3,在Rt△AOB中,OA===4,∴AE=2OA=8.故答案为8.15.(3分)如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把△ADE 沿AE折叠,当点D的对应点D′刚好落在矩形ABCD的对称轴上时,则DE的长为或.【分析】过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.【解答】解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=CD=AB=4,AD=AD′=5,由勾股定理可知:ND′==3,∴MD′=MN﹣ND′=AD﹣ND′=2,EM=DM﹣DE=4﹣a,∵ED′2=EM2+MD′2,即a2=(4﹣a)2+4,解得:a=;②当MD′=ND′时,MD′=ND′=MN=AD=,由勾股定理可知:AN==,∴EM=DM﹣DE=AN﹣DE=﹣a,∵ED′2=EM2+MD′2,即,解得:a=.综上知:DE=或.故答案为:或.三、解答题(共75分)16.(8分)计算:(1)3﹣+﹣;(2)÷﹣×+.【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先计算二次根式的乘除运算、化简二次根式,再计算加减运算可得.【解答】解:(1)原式=3﹣2+﹣3=﹣;(2)原式=﹣+2=4+.17.(9分)如图,某学校(A点)到公路(直线l)的距离为30m,到公交站(D点)的距离为50m,现在公路边上建一个商店(C点),使商店到学校A及公交站D的距离相等,求商店C与公交站D之间的距离.(结果保留整数)【分析】作出A点到公路的距离,构造出直角三角形,利用勾股定理易得BD长,那么根据直角三角形BCD的各边利用勾股定理即可求得商店与车站之间的距离.【解答】解:作AB⊥L于B,则AB=30m,AD=50m.∴BD=40m.设CD=x,则CB=40﹣x,x2=(40﹣x)2+302,x2=1600+x2﹣80x+302,80x=2500,x≈31,答:商店C与公交站D之间的距离约为31米.18.(9分)某校为迎接中华人民共和国建国70周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调査,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的中位数为3本;(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有600名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.【分析】(1)先由读1本书的人数及其所占百分比可得总人数,再用总人数乘以读4本书的百分比可得其人数,用读3本书人数除以总人数可得其百分比,据此可补全统计图,最后根据中位数的定义可得答案;(2)根据加权平均数的定义求解可得;(3)用总人数乘以样本中四月份“读书量”为5本的学生人数所占比例可得答案.【解答】解:(1)∵被调查的总人数为3÷5%=60(人),∴读书4本的人数为60×20%=12(人),读3本书的人数所占百分比为×100%=35%,∵共有60个数据,其中位数为第30、31个数据的平均数,而第30、31个数据均为3本,∴中位数为=3(本),故答案为:3本.(2)本次所抽取学生四月份“读书量”的平均数为=3.6(本);(3)估计该校七年级学生中,四月份“读书量”为5本的学生人数为600×=60(人).19.(9分)如图,已知一次函数y1=ax+2与y2=x﹣1的图象交于点A(2,1).(1)求a的值;(2)若点C是直线y2=x﹣1上的点且AC=2,求点C的坐标;(3)直接写出y2>y1>0时,x的取值范围.【分析】(1)把A点坐标代入y1=ax+2可求出a的值;(2)设C(t,t﹣1),利用两点间的距离公式得到(t﹣2)2+(t﹣1﹣1)2=(2)2,然后解方程可得到点C的坐标;(3)先确定一次函数y1=﹣x+2与x轴的交点坐标为(4,0),然后结合函数图象,写出x轴上且直线y=x﹣1在直线y=﹣x+2上方所对应的自变量的范围即可.【解答】解:(1)把A(2,1)代入y1=ax+2得2a+2=1,解得a=﹣;(2)设C(t,t﹣1),∵A(2,1),AC=2,∴(t﹣2)2+(t﹣1﹣1)2=(2)2,解得t1=0,t2=4,∴点C的坐标为(0,﹣1)或(4,3);(3)当y=0时,﹣x+2=0,解得x=4,∴一次函数y1=﹣x+2与x轴的交点坐标为(4,0),∴当2<x<4时,y2>y1>0.20.(9分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠DEF=90°,DE=8,EF=6,当AF为时,四边形BCEF是菱形.【分析】(1)由AB=DE,∠A=∠D,AF=DC,易证得△ABC≌DEF(SAS),即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形;(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,由三角形DEF的面积求出EG的长,根据勾股定理求出FG的长,则可求出答案.【解答】(1)证明:∵AF=DC,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形;(2)解:如图,连接BE,交CF于点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形,∵∠DEF=90°,DE=8,EF=6,∴DF===10,∴S△DEF=EF×DE,∴EG==,∴FG=CG===,∴AF=CD=DF﹣2FG=10﹣=.故答案为:.21.(10分)某营业厅销售3部A型号手机和2部B型号手机的营业额为10800元,销售4部A型号手机和1部B型号手机的营业额为10400元.(1)求每部A型号手机和B型号手机的售价;(2)该营业厅计划一次性购进两种型号手机共50部,其中B型号手机的进货数量不超过A型号手机数量的3倍.已知A型手机和B型手机的进货价格分别为1500元/部和1800元/部,设购进A型号手机a部,这50部手机的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号手机各多少部时,才能使销售总利润最大,最大利润为多少元?【分析】(1)根据3部A型号手机和2部B型号手机营业额10800元,4部A型号手机和1部B型号手机营业额10400元,构造二元一次方程组求解即可;(2)①根据:每类手机利润=单部手机利润×部数,总利润=A型手机利润+B型手机利润,得函数关系式.注意a的取值范围.②根据①的关系式,利用一元函数的性质得出结论.【解答】解:(1)设每部A型号手机的售价为x元,每部B型号手机的售价为y元.由题意,得解得(2)①由题意,得w=(2000﹣1500)a+(2400﹣1800)(50﹣a),即w=30000﹣100a,又∵50﹣a≤3a∴a≥∴w关于a的函数关系式为w=30000﹣100a(a≥);②w关于a的函数关系式为w=30000﹣100a,∵k=﹣100<0,∴w随a的增大而减小,又∵a只能取正整数,∴当a=13时,总利润w最大,最大利润w=30000﹣100×13=2870050﹣a=37答:该营业厅购进A型号手机13部,B型号手机37部时,销售总利润最大,最大利润为28700元22.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,D为直线BC上一动点(不与点B,C重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BC与CF的位置关系是BC⊥CF,BC、CF、CD三条线段之间的数量关系为CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请猜想BC与CF的位置关系BC,CD,CF三条线段之间的数量关系并证明;(3)如图3,当点D在线段BC的反向延长线上时,点A,F分别在直线BC的两侧,其他条件不变.若正方形ADEF的对角线AE,DF相交于点O,OC=,DB=5,则△ABC的面积为.(直接写出答案)【分析】(1)△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC;(3)先证明△BAD≌△CAF,进而得出△FCD是直角三角形,根据直角三角形斜边上中线的性质即可得到DF的长,再求出CD,BC即可解决问题.【解答】解:(1)如图1中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∠ABD=∠ACF=45°,∴∠FCB=∠ACF+∠ACB=90°,即CF⊥BC,∵BD+CD=BC,∴CF+CD=BC;故答案为:CF⊥BC,CF+CD=BC.(2)结论:CF⊥BC,CF﹣CD=BC.理由:如图2中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS)∴BD=CF,∠ABD=∠ACF=45°,∴∠FCB=∠ACF+∠ACB=90°,即CF⊥BC,∴BC+CD=CF,∴CF﹣CD=BC;(3)如图3中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,BD=CF=5,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=135°﹣45°=90°,∴△FCD是直角三角形.∵OD=OF,∴DF=2OC=13,∴Rt△CDF中,CD===12,∴BC=DC﹣BD=12﹣5=7,∴AB=AC=,∴S△ABC=××=.23.(11分)如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为(,0),点C的坐标为(0,﹣1);(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.【分析】(1)根据待定系数法,可得函数解析式,分别令y=0和x=0,可得B、C点坐标;(2)根据面积的和差,可得关于t的方程,根据解方程,可得答案;(3)分情况讨论,注意是在y轴的右侧,有三个符合条件的点M,作辅助线,构建三角形全等,根据全等三角形的判定与性质,可得M的坐标.【解答】解:(1)将D(1,﹣)代入y=x+n,解得n=﹣3,即y=x﹣3,当y=0时,x﹣3=0.解得x=,即B点坐标为(,0);将(1,﹣)代入y=﹣x+m,解得m=﹣1,即y=﹣x﹣1,当x=0时,y=﹣1.即C点坐标为(0,﹣1);故答案为:(,0),(0,﹣1);(2)如图1,S△BDP=(t﹣)×|﹣|=,当y=0时,﹣x﹣1=0,解得x=﹣,即E点坐标为(﹣,0),S△CDP=S△DPE﹣S△CPE=(t+)×﹣×(t+)×|﹣1|=,由△BDP和△CDP的面积相等,得:=+,解得t=5.2;(3)以CP为腰作等腰直角△CPM,有以下两种情况:①如图2,当以点C为直角顶点,CP为腰时,点M1在y轴的左侧,不符合题意,过M2作M2A⊥y轴于A,∵∠PCM2=∠PCO+∠ACM2=∠PCO+∠OPC=90°,∴∠ACM2=∠OPC,∵∠POC=∠CAM2,PC=CM2,∴△POC≌△CAM2(AAS),∴PO=AC=5.2,OC=AM2=1,∴M2(1,﹣6.2);②如图3,当以点P为直角顶点,CP为腰时,过M4作M4E⊥x轴于E,同理得△COP≌△PEM4,∴OC=EP=1,OP=M4E=5.2,∴M4(6.2,﹣5.2),同理得M3(4.2,5.2);综上所述,满足条件的点M的坐标为(1,﹣6.2)或(6.2,﹣5.2)或(4.2,5.2).。

江西省萍乡市2019-2020学年八年级下期末数学试题((有答案))

江西省萍乡市2019-2020学年八年级下期末数学试题((有答案))

2019-2020学年江西省萍乡市八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确答案)1.“a是正数”用不等式表示为()A.a≤0 B.a≥0 C.a<0 D.a>02.当x=1时,下列式子无意义的是()A.B.C.D.3.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.2,4,5 B.6,8,11 C.5,12,12 D.1,1,4.如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C的对应点C′落在AB边上,则旋转角为()A.40°B.70°C.80°D.140°5.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+16.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE7.不等式组的解集是x>4,那么m的取值范围是()A.m≤4 B.m<4 C.m≥4 D.m>48.若关于x的分式方程﹣1=无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.59.如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC=10,BD=8,则△ADE的周长为()A.14 B.16 C.18 D.2010.如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC =16,则MD等于()A.4 B.3 C.2 D.1二、填空题(本大题共8个小题,每小题3分,共24分)11.分解因式:2m3﹣8m=.12.若一个正多边形的每个外角都等于36°,则它的内角和是.13.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=.14.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm 到D,则橡皮筋被拉长了cm.15.颖颖同学用20元钱去买方便面35包,甲种方便面每包0.7元,乙种方便面每包0.5元,则她最多可买甲种方便面包.16.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,垂足为A,交CD于D,若AD=8,则点P到BC的距离是.17.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,则平时每个粽子卖元.18.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为.三、(本大题共3个题,其中第19题8分,第20,21题各5分,共18分)19.(1)解不等式组:,并把解集在数轴上表示出来.(2)解方程:=﹣1.20.先化简,再求值:(1+)÷,其中x=﹣5.21.如图,在△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若DC=4,∠DAC=30°,求AD的长.四、(本大题共2个小题,每小题5分,共10分)22.利用对称性可以设计美丽的图案,在边长为1的正方形方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出上面所作的图形连同原四边形绕点O 按顺时针方向旋转90°后的图形;(2)完成上述设计后,求出整个图案的面积.23.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?五、(本大题共2个小题,第24题5分,第25题6分,共11分)24.如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.25.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以下信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.六、(本大题共1个小题,共7分)26.如图,在▱ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=,且BF=DF,求旋转角度α的大小.2019-2020学年江西省萍乡市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确答案)1.“a是正数”用不等式表示为()A.a≤0 B.a≥0 C.a<0 D.a>0【分析】正数即“>0”可得答案.【解答】解:“a是正数”用不等式表示为a>0,故选:D.【点评】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.2.当x=1时,下列式子无意义的是()A.B.C.D.【分析】分式无意义则分式的分母为0,据此求得x的值即可.【解答】解:A、x=0分式无意义,不符合题意;B、x=﹣1分式无意义,不符合题意;C、x=1分式无意义,符合题意;D、x取任何实数式子有意义,不符合题意.故选:C.【点评】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.2,4,5 B.6,8,11 C.5,12,12 D.1,1,【分析】根据勾股定理的逆定理,只需验证两小边的平方和是否等于最长边的平方即可.【解答】解:A、∵22+42=20≠52,∴不能构成直角三角形,故本选项不符合题意;B、∵62+82=100≠112,∴不能构成直角三角形,故本选项不符合题意;C、∵52+122=169≠122,∴不能构成直角三角形,故本选项不符合题意;D、∵12+12=2=()2,∴能够构成直角三角形,故本选项符合题意.故选:D.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C的对应点C′落在AB边上,则旋转角为()A.40°B.70°C.80°D.140°【分析】根据旋转角的定义,旋转角就是∠ABC,根据等腰三角形的旋转求出∠ABC即可.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣∠A)=×140°=70°,∵△A′BC′是由△ABC旋转得到,∴旋转角为∠ABC=70°.故选:B.【点评】本题考查旋转的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键的理解旋转角的定义,属于中考常考题型.5.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+1【分析】对各多项式进行因式分解即可求出答案.【解答】解:(A)原式=(x+2)(x﹣2),结果中含有因式(x﹣2);(B)原式=x(x2﹣4x﹣12)=x(x+2)(x﹣6),结果中不含有因式(x﹣2);(C)原式=x(x﹣2),结果中含有因式(x﹣2);(D)原式=[(x﹣3)+1]2=(x﹣2)2,结果中含有因式(x﹣2);故选:B.【点评】本题考查因式分解,解题的关键是熟练运用因式分解的方法,本题属于基础题型.6.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE【分析】把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.【解答】解:添加:∠F=∠CDE,理由:∵∠F=∠CDE,∴CD∥AB,在△DEC与△FEB中,,∴△DEC≌△FEB(AAS),∴DC=BF,∵AB=BF,∴DC=AB,∴四边形ABCD为平行四边形,故选:D.【点评】本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.7.不等式组的解集是x>4,那么m的取值范围是()A.m≤4 B.m<4 C.m≥4 D.m>4【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了结合不等式组的解集即可得答案.【解答】解:解不等式(x+2)﹣3>0,得:x>4,由不等式组的解集为x>4知m≤4,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键8.若关于x的分式方程﹣1=无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.5【分析】方程无解即是分母为0,由此可得:原分式方程中的分母为0:x=0或x=3,解方程后x=﹣,分母2m+1=0,解出即可.【解答】解:﹣1=,方程两边都乘以x(x﹣3),得:x(x+2m)﹣x(x﹣3)=2(x﹣3),整理,得:(2m+1)x=﹣6,x=﹣,∵原分式方程无解,∴2m+1=0或﹣=3或﹣=0,解得:x=﹣0.5或x=﹣1.5,故选:D.【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型,分式方程无解,则分母为0.9.如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC=10,BD=8,则△ADE的周长为()A.14 B.16 C.18 D.20【分析】由△DBC≌△EBA,可知AE=DC,推出AE+AD+DE=AD+CD+ED=AC+DE即可解决问题;【解答】解:∵△ABC,△DBE都是等边三角形,∴BC=BA,BD=BE,∠ABC=∠EBD,∴∠DBC=∠EBA,∴△DBC≌△EBA,∴AE=DC,∴AE+AD+DE=AD+CD+ED=AC+DE,∵AC=BC=10,DE=BD=8,∴△AED的周长为18,故选:C.【点评】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题时根据是正确寻找全等三角形解决问题,属于中考常考题型.10.如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC =16,则MD等于()A.4 B.3 C.2 D.1【分析】延长BD交AC于H,根据等腰三角形的性质得到BD=DH,AH=AB=12,根据三角形中位线定理计算即可.【解答】解:延长BD交AC于H,∵AD平分∠BAC,BD⊥AD,∴BD=DH,AH=AB=12,∴HC=AC﹣AH=4,∵M是BC中点,BD=DH,∴MD=CH=2,故选:C.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题(本大题共8个小题,每小题3分,共24分)11.分解因式:2m3﹣8m=2m(m+2)(m﹣2).【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.若一个正多边形的每个外角都等于36°,则它的内角和是1440°.【分析】先根据多边形的外角和求多边形的边数,再根据多边形的内角和公式求出即可.【解答】解:∵一个正多边形的每个外角都等于36°,∴这个多边形的边数为=10,∴这个多边形的内角和=(10﹣2)×180°=1440°,故答案为:1440°.【点评】本题考查了多边形的内角与外角,能正确求出多边形的边数是解此题的关键,注意:多边形的外角和等于360°,边数为n的多边形的内角和=(n﹣2)×180°.13.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=﹣3 .【分析】根据向右平移横坐标加,y轴上的点的横坐标为0列方程求解即可.【解答】解:∵点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,∴m+2+1=0,解得m=﹣3.故答案为:﹣3.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm 到D,则橡皮筋被拉长了 2 cm.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.15.颖颖同学用20元钱去买方便面35包,甲种方便面每包0.7元,乙种方便面每包0.5元,则她最多可买甲种方便面12 包.【分析】设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据总价=单价×数量结合总价不超过20元,即可得出关于x的一元一次不等式,解之取其中的最大整数是解题的关键.【解答】解:设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据题意得:0.7x+0.5(35﹣x)≤20,解得:x≤12.5,∵x为整数,∴x≤12.故答案为:12.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.16.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,垂足为A,交CD于D,若AD=8,则点P到BC的距离是 4 .【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故答案为:4【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.17.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,则平时每个粽子卖 2 元.【分析】设平时每个粽子卖x元,根据题意列出分式方程,解之并检验得出结论.【解答】解:设平时每个粽子卖x元.根据题意得:解得:x=2经检验x=2是分式方程的解故答案为2元【点评】本题考查了分式方程的应用,解题的关键是找准等量关系,列出分式方程.18.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为12 .【分析】由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以S=2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所四边形AFBD以S四边形AFBD=S△ABC,从而求出答案.【解答】解:∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD=2S△ABD,又∵BD=DC,∴S△ABC=2S△ABD,∴S四边形AFBD=S△ABC,∵∠BAC=90°,AB=4,AC=6,∴S△ABC=AB•AC=×4×6=12,∴S四边形AFBD=12.故答案为:12【点评】本题考查平行四边形的性质与判定,涉及全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识,综合程度较高.三、(本大题共3个题,其中第19题8分,第20,21题各5分,共18分)19.(1)解不等式组:,并把解集在数轴上表示出来.(2)解方程:=﹣1.【分析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)由①得:x<﹣1,由②得:x≤2,∴不等式组的解集为x<﹣1,解集表示在数轴上为:;(2)分式方程去分母得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解分式方程,解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.20.先化简,再求值:(1+)÷,其中x=﹣5.【分析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=•=•=,当x=﹣5时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.21.如图,在△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若DC=4,∠DAC=30°,求AD的长.【分析】(1)根据角平分线的性质得到DE=DF,证明Rt△BDE≌Rt△CDF,根据全等三角形的性质得到∠B=∠C,根据等腰三角形的判定定理证明;(2)根据直角三角形的性质求出AC,根据勾股定理计算即可.【解答】(1)证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF,∴∠B=∠C,∴AB=AC;(2)解:∵AD平分∠BAC,BD=CD,∴AD⊥BC,∵∠DAC=30°,∴AC=2DC=8,∴AD==4.【点评】本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.四、(本大题共2个小题,每小题5分,共10分)22.利用对称性可以设计美丽的图案,在边长为1的正方形方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出上面所作的图形连同原四边形绕点O 按顺时针方向旋转90°后的图形;(2)完成上述设计后,求出整个图案的面积.【分析】(1)直接利用旋转变换以及轴对称变换得出对应点位置进而得出答案.【解答】解:(1)如图所示:(2)一个四边形面积为:×5×1×2=5,整个图案面积为:5×4=20.【点评】此题主要考查了利用旋转设计图案以及利用轴对称设计图案,正确得出对应点位置是解题关键.23.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【分析】(1)可设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【解答】解:(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:1.5×=,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路=15﹣1.5a(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.【点评】本题主要考查分式方程及一元一次不等式的应用,找出题目中的等量(或不等)关系是解题的关键,注意分式方程需要检验.五、(本大题共2个小题,第24题5分,第25题6分,共11分)24.如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可.(2)想办法证明OM=MF=ME即可解决问题.【解答】解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵OB⊥OC,∴∠BOC=90°,∵∠EOM+∠COM=90°,∠EOM+∠OCB=90°,∴∠COM=∠OCB,∵EF∥BC,∴∠OFE=∠OCB,∴∠MOF=∠MFO,∴OM=MF,∵∠OEM+∠OFM=90°,∠EOM+∠MOF=90°,∴∠EOM=∠MEO,∴OM=EM,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.【点评】本题考查平行四边形的判定与性质,三角形的中位线,直角三角形的性质,解本题的关键是判定四边形DEFG是平行四边形.25.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以下信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【点评】本题主要考查了一次函数的应用,解题时注意:求正比例函数y=kx,只要一对x,y 的值;而求一次函数y=kx+b,则需要两组x,y的值.六、(本大题共1个小题,共7分)26.如图,在▱ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=,且BF=DF,求旋转角度α的大小.【分析】(1)由平行四边形的性质得出∠OAF=∠AOF,OA=OC,进而判断出△AOF≌△COE,即可得出结论;(2)先判断出∠BAC=∠AOF,得出AB∥EF,即可得出结论;(3)先求出AC=2,进而得出A=1=AB,即可判断出△ABO是等腰直角三角形,进一步判断出△BFD是等腰三角形,利用等腰三角形的三线合一得出∠BOF=90°,即可得出结论.【解答】(1)证明:在▱ABCD中,AD∥BC,∴∠OAF=∠OCE,∵OA=OC,∠AOF=∠COE,∴△AOF≌△COE(ASA),∴OE=OF;(2)解:当旋转角为90°时,四边形ABEF是平行四边形,理由:∵AB⊥AC,∴∠BAC=90°,∵∠AOF=90°,∴∠BAC=∠AOF,∴AB∥EF,∵AF∥BE,∴四边形ABEF是平行四边形;(3)解:在Rt△ABC中,AB=1,BC=,∴AC==2,∴OA=1=AB,∴△ABO是等腰直角三角形,∴∠AOB=45°,∵BF=DF,∴△BFD是等腰三角形,∵四边形ABCD是平行四边形,∴OB=OD,∴OF⊥BD(等腰三角形底边上的中线是底边上的高),∴∠BOF=90°,∴∠α=∠AOF=∠BOF﹣∠AOB=45°.【点评】此题是四边形综合题,主要考查了平行四边形的性质和判定,全等三角形的判定和性质,等腰三角形的判定和性质,等腰直角三角形的性质,旋转的性质,判断出△ABO是等腰直角三角形是解本题的关键.。

2019年新人教版八年级数学下册单元测试题全套-精品

2019年新人教版八年级数学下册单元测试题全套-精品

最新人教版八年级数学下册单元测试题全套及答案(含期中,期末试题,带答案)第十六章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.二次根式2-x 有意义,则x 的取值范围是( D ) A .x >2 B .x <2 C .x ≥2 D .x ≤22.(2016·自贡)下列根式中,不是最简二次根式的是( B ) A.10 B.8 C. 6 D. 23.下列计算结果正确的是( D )A.3+4=7 B .35-5=3 C.2×5=10 D.18÷2=3 4.如果a +a 2-6a +9=3成立,那么实数ɑ的取值范围是( B ) A .a ≤0 B .a ≤3 C .a ≥-3 D .a ≥35.估计32×12+20的运算结果应在( C ) A .6到7之间 B .7到8之间 C .8到9之间 D .9到10之间 6.12x 4x +6x x 9-4x x 的值一定是( B ) A .正数 B .非正数 C .非负数 D .负数 7.化简9x 2-6x +1-(3x -5)2,结果是( D ) A .6x -6 B .-6x +6 C .-4 D .48.若k ,m ,n 都是整数,且135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系,正确的是( D )A .k <m =nB .m =n >kC .m <n <kD .m <k <n 9. 下列选项错误的是( C )A.3-2的倒数是3+ 2B.x 2-x 一定是非负数 C .若x <2,则(x -1)2=1-x D .当x <0时,-2x在实数范围内有意义10.如图,数轴上A ,B 两点对应的实数分别是1和3,若A 点关于B 点的对称点为点C ,则点C 所对应的实数为( A )A .23-1B .1+ 3C .2+ 3D .23+1 二、填空题(每小题3分,共24分)11.如果两个最简二次根式3a -1与2a +3能合并,那么a =__4__. 12.计算:(1)(2016·潍坊)3(3+27)=__12__; (2)(2016·天津)(5+3)(5-3)=__2__.13.若x ,y 为实数,且满足|x -3|+y +3=0,则(x y)2018的值是__1__.14.已知实数a ,b 在数轴上对应的位置如图所示,则a 2+2ab +b 2-b 2=__-a __.,第17题图)15.已知50n 是整数,则正整数n 的最小值为__2__.16.在实数范围内分解因式:(1)x 3-5x =;(2)m 2-23m +3=__(m -.17.有一个密码系统,其原理如图所示,输出的值为3时,则输入的x =.18.若xy >0,则化简二次根式x -yx2的结果为. 三、解答题(共66分) 19.(12分)计算:(1)48÷3-12×12+24; (2)(318+1672-418)÷42; 解:(1)4+ 6 (2)94(3)(2-3)98(2+3)99-2|-32|-(2)0. 解:120.(5分)解方程:(3+1)(3-1)x =72-18. 解:x =32221.(10分)(1)已知x =5-12,y =5+12,求y x +xy的值; 解:∵x +y =252=5,xy =5-14=1,∴y x +x y =y 2+x 2xy =(x +y )2-2xy xy =(5)2-2×11=3(2)已知x ,y 是实数,且y <x -2+2-x +14,化简:y 2-4y +4-(x -2+2)2.解:由已知得⎩⎪⎨⎪⎧x -2≥0,2-x ≥0,∴x =2,∴y <x -2+2-x +14=14,即y <14<2,则y -2<0,∴y 2-4y +4-(x -2+2)2=(y -2)2-(2-2+2)2=|y -2|-(2)2=2-y -2=-y22.(10分)先化简,再求值:(1)[x +2x (x -1)-1x -1]·xx -1,其中x =2+1;解:原式=2(x -1)2,将x =2+1代入得,原式=1(2)a 2-1a -1-a 2+2a +1a 2+a -1a,其中a =-1- 3.解:∵a +1=-3<0,∴原式=a +1+a +1a (a +1)-1a=a +1=-323.(7分)先化简,再求值:2a -a 2-4a +4,其中a = 3.小刚的解法如下:2a -a 2-4a +4=2a -(a -2)2=2a -(a -2)=2a -a +2=a +2,当a =3时,2a -a 2-4a +4=3+2.小刚的解法对吗?若不对,请改正.解:不对.2a -a 2-4a +4=2a -(a -2)2=2a -|a -2|.当a =3时,a -2=3-2<0,∴原式=2a +a -2=3a -2=33-224.(10分)已知长方形的长a =1232,宽b =1318.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.解:(1)2(a +b )=2×(1232+1318)=62,∴长方形周长为62 (2)4×ab =4×1232×1318=4×22×2=8,∵62>8,∴长方形周长大25.(12分)观察下列各式及其验证过程: 223=2+23,验证:223=233=23-2+222-1=2(22-1)+222-1=2+23; 338=3+38,验证:338=338=33-3+332-1=3(32-1)+332-1=3+38. (1)按照上述两个等式及其验证过程的基本思路,猜想4415的变形结果,并进行验证;(2)针对上述各式反映的规律,写出用n(n 为任意自然数,且n ≥2)表示的等式,并给出证明. 解:(1)猜想:4415=4+415,验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+415 (2)n nn 2-1=n +n n 2-1,证明:n nn 2-1=n3n 2-1=n 3-n +nn 2-1=n (n 2-1)+nn 2-1=n +n n 2-1第十七章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.已知Rt △ABC 的三边长分别为a ,b ,c ,且∠C =90°,c =37,a =12,则b 的值为( B ) A .50 B .35 C .34 D .262.由下列线段a ,b ,c 不能组成直角三角形的是( D ) A .a =1,b =2,c = 3 B .a =1,b =2,c = 5C .a =3,b =4,c =5D .a =2,b =23,c =33.在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( A ) A.365 B.1225 C.94 D.3344.已知三角形三边长为a ,b ,c ,如果a -6+|b -8|+(c -10)2=0,则△ABC 是( C ) A .以a 为斜边的直角三角形 B .以b 为斜边的直角三角形 C .以c 为斜边的直角三角形 D .不是直角三角形5.(2016·株洲)如图,以直角三角形a ,b ,c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S 1+S 2=S 3图形个数有( D )A .1B .2C .3D .4 6.设a ,b 是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是( D ) A .1.5 B .2 C .2.5 D .37.如图,在Rt △ABC 中,∠A =30°,DE 垂直平分斜边AC 交AB 于点D ,E 是垂足,连接CD ,若BD =1,则AC 的长是( A )A .2 3B .2C .4 3D .4,第7题图) ,第9题图) ,第10题图)8.一木工师傅测量一个等腰三角形的腰、底边和底边上的高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来,应该是( C )A .13,12,12B .12,12,8C .13,10,12D .5,8,49.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m 处,发现此时绳子末端距离地面2 m ,则旗杆的高度为(滑轮上方的部分忽略不计)( D )A .12 mB .13 mC .16 mD .17 m10.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上的一个动点,则PA +PC 的最小值为( B )A.132 B.312 C.3+192D .27 二、填空题(每小题3分,共24分)11.把命题“对顶角相等”的逆命题改写成“如果…那么…”的形式:__如果两个角相等,那么它们是对顶角__.12.平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB 的长为.13.三角形的三边a ,b ,c 满足(a -b)2=c 2-2ab ,则这个三角形是__直角三角形__.14.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0),(0,8).以点A 为圆心,以AB 为半径画弧交x 轴正半轴于点C ,则点C 的坐标为__(4,0)__.,第14题图) ,第15题图),第17题图)15.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积之和为__64__.16.有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种__21__棵树.17.如图,OP =1,过P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2;…依此法继续作下去,得OP 2017=. 18.在△ABC 中,AB =22,BC =1,∠ABC =45°,以AB 为一边作等腰直角三角形ABD ,使∠ABD=90°,连接CD ,则线段CD 的长为.三、解答题(共66分)19.(8分)如图,在△ABC 中,AD ⊥BC ,AD =12,BD =16,CD =5. (1)求△ABC 的周长;(2)判断△ABC 是否是直角三角形.解:(1)可求得AB =20,AC =13,所以△ABC 的周长为20+13+21=54(2)∵AB 2+AC 2=202+132=569,BC 2=212=441,∴AB 2+AC 2≠BC 2, ∴△ABC 不是直角三角形20.(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN ,使MN =17;(2)在图②中画一个三边长均为无理数,且各边都不相等的直角△DEF.21.(8分)如图,已知CD=6,AB=4,∠ABC=∠D=90°,BD=DC,求AC的长.解:在Rt△BDC,Rt△ABC中,BC2=BD2+DC2,AC2=AB2+BC2,则AC2=AB2+BD2+DC2,又因为BD =DC,则AC2=AB2+2CD2=42+2×62=88,∴AC=222,即AC的长为22222.(8分)如图,在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于点D,交AB于点E.求证:BE2-EA2=AC2.解:连接CE,∵ED垂直平分BC,∴EB=EC,又∵∠A=90°,∴EA2+AC2=EC2,∴BE2-EA2=AC223.(10分)如图,已知某学校A与直线公路BD相距3000米,且与该公路上的一个车站D相距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?解:设超市C与车站D的距离是x米,则AC=CD=x米,BC=(BD-x)米,在Rt△ABD中,BD=AD2-AB2=4000米,所以BC=(4000-x)米,在Rt△ABC中,AC2=AB2+BC2,即x2=30002+(4000-x)2,解得x=3125,因此该超市与车站D的距离是3125米24.(10分)一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?(2)你认为“AD→DB”是最短路线吗?如果你认为不是,请计算出最短的路程.解:(1)从点A爬到点B所走的路程为AD+BD=42+32+22+32=(5+13)cm(2)不是,分三种情况讨论:①将下面和右面展到一个平面内,AB=(4+6)2+22=104=226(cm);②将前面与右面展到一个平面内,AB=(4+2)2+62=72=62(cm);③将前面与上面展到一个平面内,AB=(6+2)2+42=80=45(cm),∵62<45<226,∴蜘蛛从A点爬到B点所走的最短路程为6 2 cm25.(12分)如图,已知正方形OABC的边长为2,顶点A,C分别在x轴的负半轴和y轴的正半轴上,M是BC的中点,P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D 的坐标(用含m 的代数式表示);(2)当△APD 是以AP 为腰的等腰三角形时,求m 的值;解:(1)先证△DBM ≌△PCM ,从中可得BD =PC =2-m ,则AD =2-m +2=4-m ,∴点D 的坐标为(-2,4-m ) (2)分两种情况:①当AP =AD 时,AP 2=AD 2,∴22+m 2=(4-m )2,解得m =32;②当AP=PD 时,过点P 作PH ⊥AD 于点H ,∴AH =12AD ,∵AH =OP ,∴OP =12AD ,∴m =12(4-m ),∴m =43,综上可得,m 的值为32或43第十八章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( B ) A .30° B .45° C .60° D .75°2.(2016·株洲)如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,E 是BC 的中点,以下说法错误的是( D )A .OE =12DC B .OA =OC C .∠BOE =∠OBA D .∠OBE =∠OCE,第2题图) ,第3题图) ,第6题图)3.如图,矩形ABCD 的对角线AC =8 cm ,∠AOD =120°,则AB 的长为( D )A. 3 cm B .2 cm C .2 3 cm D .4 cm4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( D ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC =90°时,它是矩形D .当AC =BD 时,它是正方形5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是( C ) A .矩形 B .一组对边相等,另一组对边平行的四边形 C .对角线相等的四边形 D .对角线互相垂直的四边形 6.如图,已知点E 是菱形ABCD 的边BC 上一点,且∠DAE =∠B =80°,那么∠CDE 的度数为( C ) A .20° B .25° C .30° D .35°7.(2016·菏泽)在▱ABCD 中,AB =3,BC =4,当▱ABCD 的面积最大时,下结论正确的有( B ) ①AC =5;②∠A +∠C =180°;③AC ⊥BD ;④AC =BD . A .①②③ B .①②④ C .②③④ D .①③④8.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ′处,若AE =2,DE =6,∠EFB ′=60°,则矩形ABCD 的面积是( D )A .12B .24C .12 3D .16 3,第8题图) ,第9题图) ,第10题图)9.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( C )A .1 B. 2 C .4-2 2 D .32-410.如图,在矩形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于点F ,将△DEF 沿EF 折叠,点D 恰好落在BE 上点M 处,延长BC ,EF 交于点N ,有下列四个结论:①DF =CF ;②BF ⊥EN ;③△BEN 是等边三角形;④S △BEF =3S △DEF ,其中正确的结论是( B )A .①②③B .①②④C .②③④D .①②③④ 二、填空题(每小题3分,共24分)11.如图,在▱ABCD 中,AB =5,AC =6,当BD =__8__时,四边形ABCD 是菱形.,第11题图) ,第12题图),第14题图)12.(2016·江西)如图,在▱ABCD 中,∠C=40°,过点D 作CB 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__50°__.13.在四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:①AB ∥CD ;②AB =CD ;③∠A =∠C ;④∠B =∠C.能使四边形ABCD 为平行四边形的条件的序号是__①或③__.14.如图,∠ACB =90°,D 为AB 中点,连接DC 并延长到点E ,使CE =14CD ,过点B 作BF ∥DE交AE 的延长线于点F ,若BF =10,则AB 的长为__8__.15.如图,四边形ABCD 是正方形,延长AB 到点E ,使AE =AC ,则∠BCE 的度数是__22.5__度.,第15题图) ,第16题图) ,第17题图),第18题图)16.如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为点O ,E ,F ,G ,H 分别为边AD ,AB ,BC ,CD 的中点,若AC =8,BD =6,则四边形EFGH 的面积为__12__.17.已知菱形ABCD 的两条对角线长分别为6和8,M ,N 分别是边BC ,CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值是__5__.18.(2016·天津)如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQ S 正方形AEFG 的值等于__89__.三、解答题(共66分)19.(8分)如图,点E ,F 分别是锐角∠A 两边上的点,AE =AF ,分别以点E ,F 为圆心,以AE 的长为半径画弧,两弧相交于点D ,连接DE ,DF.(1)请你判断所画四边形的形状,并说明理由;(2)连接EF ,若AE =8 cm ,∠A =60°,求线段EF 的长.解:(1)菱形,理由:根据题意得AE =AF =ED =DF ,∴四边形AEDF 是菱形 (2)∵AE =AF ,∠A =60°,∴△EAF 是等边三角形,∴EF =AE =8 cm20.(8分)(2016·宿迁)如图,已知BD 是△ABC 的角平分线,点E ,F 分别在边AB ,BC 上,ED ∥BC ,EF ∥AC.求证:BE =CF.解:∵ED∥BC ,EF∥AC ,∴四边形EFCD 是平行四边形,∴DE =CF ,∵BD 平分∠ABC ,∴∠EBD =∠DBC ,∵DE∥BC ,∴∠EDB =∠DBC ,∴∠EBD =∠EDB ,∴EB =ED ,∴EB =CF21.(9分)(2016·南通)如图,将▱ABCD 的边AB 延长到点E ,使BE =AB ,连接DE ,交边BC 于点F.(1)求证:△BEF ≌△CDF ;(2)连接BD ,CE ,若∠BFD =2∠A ,求证:四边形BECD 是矩形.解:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD.∵BE =AB ,∴BE =CD.∵AB ∥CD ,∴∠BEF =∠CDF ,∠EBF =∠DCF ,∴△BEF ≌△CDF (ASA ) (2)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠A =∠DCB ,∵AB =BE ,∴CD =EB ,∴四边形BECD 是平行四边形,∴BF =CF ,EF =DF ,∵∠BFD =2∠A ,∴∠BFD =2∠DCF ,∴∠DCF =∠FDC ,∴DF =CF ,∴DE =BC ,∴四边形BECD 是矩形22.(9分)如图,在▱ABCD 中,E ,F 两点在对角线BD 上,BE =DF.(1)求证:AE =CF ;(2)当四边形AECF 为矩形时,请求出BD -ACBE的值.解:(1)由SAS 证△ABE ≌△CDF 即可 (2)连接CE ,AF ,AC.∵四边形AECF 是矩形,∴AC =EF ,∴BD -AC BE =BD -EF BE =BE +DF BE =2BE BE =223.(10分)如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM ≌△DCM ;(2)填空:当AB ∶AD =__1∶2__时,四边形MENF 是正方形,并说明理由.解:(1)由SAS 可证 (2)理由:∵AB ∶AD =1∶2,∴AB =12AD ,∵AM =12AD ,∴AB =AM ,∴∠ABM=∠AMB ,∵∠A =90°,∴∠AMB =45°,∵△ABM ≌△DCM ,∴BM =CM ,∠DMC =∠AMB =45°,∴∠BMC =90°,∵E ,F ,N 分别是BM ,CM ,BC 的中点,∴EN ∥CM ,FN ∥BM ,EM =MF ,∴四边形MENF 是菱形,∵∠BMC =90°,∴菱形MENF 是正方形24.(10分)(2016·遵义)如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F.(1)求证:△AEF ≌△DEB ;(2)求证:四边形ADCF 是菱形;(3)若AC =4,AB =5,求菱形ADCF 的面积.解:(1)由AAS 易证△AFE ≌△DBE (2)由(1)知,△AEF ≌△DEB ,则AF =DB ,∵DB =DC ,∴AF=CD ,∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD =DC =12BC ,∴四边形ADCF 是菱形 (3)连接DF ,由(2)知AF 綊BD ,∴四边形ABDF 是平行四边形,∴DF =AB =5,∴S 菱形ADCF =12AC·DF =12×4×5=1025.(12分)如图,在正方形ABCD 中,AC 是对角线,今有较大的直角三角板,一边始终经过点B ,直角顶点P 在射线AC 上移动,另一边交DC 于点Q.(1)如图①,当点Q 在DC 边上时,猜想并写出PB 与PQ 所满足的数量关系,并加以证明; (2)如图②,当点Q 落在DC 的延长线上时,猜想并写出PB 与PQ 满足的数量关系,并证明你的猜想.解:(1)PB =PQ.证明:连接PD ,∵四边形ABCD 是正方形,∴∠ACB =∠ACD ,∠BCD =90°,BC =CD ,又∵PC =PC ,∴△DCP ≌△BCP (SAS ),∴PD =PB ,∠PBC =∠PDC ,∵∠PBC +∠PQC =180°,∠PQD +∠PQC =180°,∴∠PBC =∠PQD ,∴∠PDC =∠PQD ,∴PQ =PD ,∴PB =PQ (2)PB =PQ.证明:连接PD ,同(1)可证△DCP ≌△BCP ,∴PD =PB ,∠PBC =∠PDC ,∵∠PBC =∠Q ,∴∠PDC =∠Q ,∴PD =PQ ,∴PB =PQ第十九章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.(2016·扬州)函数y =x -1中,自变量x 的取值范围是( B ) A .x >1 B .x ≥1 C .x <1 D .x ≤12.若函数y =kx 的图象经过点(1,-2),那么它一定经过点( B )A .(2,-1)B .(-12,1)C .(-2,1)D .(-1,12)3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车的速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的函数图象,那么符合小明行驶情况的图象大致是( D )4.已知一次函数y =kx +b 的图象如图所示,当x <0时,y 的取值范围是( C ) A .y >0 B .y <0 C .y >-2 D .-2<y <0,第4题图) ,第9题图),第10题图)5.当kb <0时,一次函数y =kx +b 的图象一定经过( B )A .第一、三象限B .第一、四象限C .第二、三象限D .第二、四象限6.已知一次函数y =(2m -1)x +1的图象上两点A(x 1,y 1),B(x 2,y 2),当x 1<x 2时,有y 1<y 2,那么m 的取值范围是( B )A .m <12B .m >12C .m <2D .m >07.已知一次函数的图象过点(3,5)与(-4,-9),则该函数的图象与y 轴交点的坐标为( A ) A .(0,-1) B .(-1,0) C .(0,2) D .(-2,0)8.把直线y =-x -3向上平移m 个单位后,与直线y =2x +4的交点在第二象限,则m 的取值范围是( A )A .1<m <7B .3<m <4C .m >1D .m <49.(2016·天门)在一次自行车越野赛中,出发m h 后,小明骑行了25 km ,小刚骑行了18 km ,此后两人分别以a km /h ,b km /h 匀速骑行,他们骑行的时间t(h )与骑行的路程s(km )之间的函数关系如图,观察图象,下列说法:①出发m h 内小明的速度比小刚快;②a =26;③小刚追上小明时离起点43 km ;④此次越野赛的全程为90 km .其中正确的说法有( C )A .1个B .2个C .3个D .4个10.(2016·苏州)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( B )A .(3,1)B .(3,43)C .(3,53) D .(3,2)二、填空题(每小题3分,共24分)11.(2015·上海)同一温度的华氏度数y()与摄氏度数x(℃)之间的函数关系是y =95x +32,如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是__77__12.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是__0.2__千米/分钟.,第12题图) ,第14题图),第16题图)13.一次函数y =(m -1)x +m 2的图象过点(0,4),且y 随x 的增大而增大,则m =__2__.14.如图,利用函数图象回答下列问题:(1)方程组⎩⎪⎨⎪⎧x +y =3,y =2x 的解为__⎩⎪⎨⎪⎧x =1,y =2__;(2)不等式2x >-x +3的解集为__x >1__.15.已知一次函数y =-2x -3的图象上有三点(x 1,y 1),(x 2,y 2),(3,y 0),并且x 1>3>x 2,则y 0,y 1,y 2这三个数的大小关系是__y 1<y 0<y 2__.16.如图,在平面直角坐标系中,点A 的坐标为(0,6),将△OAB 沿x 轴向左平移得到△O ′A ′B ′,点A 的对应点A ′落在直线y =-34x 上,则点B 与其对应点B ′间的距离为__8__.17.过点(-1,7)的一条直线与x 轴、y 轴分别相交于点A ,B ,且与直线y =-32x +1平行,则在线段AB 上,横、纵坐标都是整数的点坐标是__(3,1),(1,4)__.18.设直线y =kx +k -1和直线y =(k +1)x +k(k 为正整数)与x 轴所围成的图形的面积为S k (k=1,2,3,…,8),那么S 1+S 2+…+S 8的值为__49__.三、解答题(共66分)19.(8分)已知2y -3与3x +1成正比例,且x =2时,y =5. (1)求x 与y 之间的函数关系,并指出它是什么函数; (2)若点(a ,2)在这个函数的图象上,求a 的值.解:(1)y =32x +2,是一次函数 (2)a =020.(8分)已知一次函数y =(a +8)x +(6-b). (1)a ,b 为何值时,y 随x 的增大而增大?(2)a ,b 为何值时,图象过第一、二、四象限?(3)a ,b 为何值时,图象与y 轴的交点在x 轴上方? (4)a ,b 为何值时,图象过原点?解:(1)a >-8,b 为全体实数 (2)a <-8,b <6 (3)a ≠-8,b <6 (4)a ≠-8,b =621.(9分)画出函数y =2x +6的图象,利用图象:(1)求方程2x +6=0的解; (2)求不等式2x +6>0的解;(3)若-1≤y ≤3,求x 的取值范围.解:图略,(1)x =-3 (2)x >-3 (3)当-1≤y ≤3,即-1≤2x +6≤3,解得-72≤x ≤-3222.(9分)电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图),根据图象解答下列问题.(1)分别写出当0≤x ≤100和x >100时,y 与x 间的函数关系式;(2)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?解:(1)y =⎩⎪⎨⎪⎧0.65x (0≤x ≤100)0.8x -15(x >100)(2)40.3元;150度23.(10分)如图,在平面直角坐标系xOy 中,矩形ABCD 的边AD =3,A(12,0),B(2,0),直线l 经过B ,D 两点.(1)求直线l 的解析式;(2)将直线l 平移得到直线y =kx +b ,若它与矩形有公共点,直接写出b 的取值范围.解:(1)y =-2x +4 (2)1≤b ≤724.(10分)今年我市水果大丰收,A ,B 两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两个销售点,从A 基地运往甲、乙两销售点的费用分别为每件40元和20元,从B 基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A 基地运往甲销售点水果x 件,总运费为W 元,请用含x 的代数式表示W ,并写出x 的取值范围;(2)若总运费不超过18300元,且A 地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.解:(1)W =35x +11200(80≤x ≤380) (2)∵⎩⎪⎨⎪⎧W ≤18300,x ≥200,∴⎩⎪⎨⎪⎧35x +11200≤18300,x ≥200,解得200≤x≤20267,∵35>0,∴W 随x 的增大而增大,∴当x =200时,W 最小=18200,∴运费最低的运输方案为:A →甲:200件,A →乙:180件,B →甲:200件,B →乙:120件,最低运费为18200元25.(12分)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车,设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1)甲、乙两地之间的距离为__560__千米; (2)求快车与慢车的速度;(3)求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.解:(2)设快车速度为m 千米/时,慢车速度为n 千米/时,则有⎩⎪⎨⎪⎧4(m +n )=560,3m =4n ,解得⎩⎪⎨⎪⎧m =80,n =60,∴快车速度为80千米/时,慢车速度为60千米/时 (3)D (8,60),E (9,0),线段DE 的解析式为y=-60x +540(8≤x ≤9)期中检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列二次根式中属于最简二次根式的是( A ) A. 5 B.8 C.12D.0.3 2.(2016·泸州)如图,▱ABCD 的对角线AC ,BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( B )A .10B .14C .20D .22,第2题图) ,第5题图) ,第8题图) ,第9题图)3.在下列以线段a ,b ,c 的长为三边的三角形中,不能构成直角三角形的是( D ) A .a =9,b =41,c =40 B .a =5,b =5,c =5 2 C .a ∶b ∶c =3∶4∶5 D .a =11,b =12,c =15 4.(2016·南充)下列计算正确的是( A )A.12=2 3B.32=32C.-x 3=x -xD.x 2=x 5.如图,在△ABC 中,点D ,E 分别是边AB ,BC 的中点,若△DBE 的周长是6,则△ABC 的周长是( C )A .8B .10C .12D .146.(2016·益阳)下列判断错误的是( D )A .两组对边分别相等的四边形是平行四边形B .四个内角都相等的四边形是矩形C .四条边都相等的四边形是菱形D .两条对角线垂直且平分的四边形是正方形7.若x -1-1-x =(x +y)2,则x -y 的值为( C ) A .-1 B .1 C .2 D .38.如图,在△ABC 中,AC 的垂直平分线分别交AC ,AB 于点D ,F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A =30°,BC =2,AF =BF ,则四边形BCDE 的面积是( A )A .2 3B .3 3C .4D .4 39.如图,在Rt △ABC 中,∠ACB =90°,点D 是AB 的中点,且CD =52,如果Rt △ABC 的面积为1,则它的周长为( D )A.5+12B.5+1C.5+2D.5+310.(2016·眉山)如图,在矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO.若∠COB =60°,FO =FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE =EF ;④S △AOE ∶S △BCM =2∶3.其中正确结论的个数是( B )A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共24分) 11.若代数式xx -1有意义,则x 的取值范围为__x ≥0且x ≠1__.12.如图,在平行四边形ABCD 中,AB =5,AD =3,AE 平分∠DAB 交BC 的延长线于点F ,则CF =__2__.,第12题图) ,第13题图) ,第14题图) ,第15题图)13.如图,以△ABC 的三边为边向外作正方形,其面积分别为S 1,S 2,S 3,且S 1=9,S 3=25,当S 2=__16__时,∠ACB =90°.14.如图,它是一个数值转换机,若输入的a 值为2,则输出的结果应为3.15.如图,四边形ABCD 是对角线互相垂直的四边形,且OB =OD ,请你添加一个适当的条件__答案不唯一,如:OA =OC __,使ABCD 成为菱形.(只需添加一个即可)16.如图,在△ABC 中,AB =5,AC =3,AD ,AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连接DH ,则线段DH 的长为__1__.,第16题图) ,第17题图),第18题图) 17.(2016·南京)如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为__13__ cm.18.如图,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A ,C 的坐标分别为A(10,0),C(0,4),点D 是OA 的中点,点P 为线段BC 上的点.小明同学写出了一个以OD 为腰的等腰三角形ODP 的顶点P 的坐标(3,4),请你写出其余所有符合这个条件的P 点坐标__(2,4)或(8,4)__.三、解答题(共66分) 19.(8分)计算:(1)8+23-(27-2); (2)(43-613)÷3-(5+3)(5-3). 解:(1)32- 3 (2)020.(8分)已知a =7-5,b =7+5,求值: (1)b a +a b; (2)3a 2-ab +3b 2. 解:a +b =27,ab =2,(1)b a +a b =(a +b )2-2ab ab =12 (2)3a 2-ab +3b 2=3(a +b )2-7ab =7021.(8分)如图,四边形ABCD 是平行四边形,E ,F 为对角线AC 上两点,连接ED ,EB ,FD ,FB.给出以下结论:①BE ∥DF ;②BE =DF ;③AE =CF.请你从中选取一个条件,使∠1=∠2成立,并给出证明.解:答案不唯一,如:补充条件①BE ∥DF.证明:∵BE ∥DF ,∴∠BEC =∠DFA ,∴∠BEA =∠DFC ,∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAE =∠DCF ,∴△ABE ≌△CDF (AAS ),∴BE =DF ,∴四边形BFDE 是平行四边形,∴ED ∥BF ,∴∠1=∠222.(7分)如图,在B 港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某方向以每小时15海里的速度前进,2小时后甲船到M 岛,乙船到P 岛,两岛相距34海里,你能知道乙船沿哪个方向航行吗?解:(1)由题意得BM =2×8=16(海里),BP =2×15=30(海里),∵BM 2+BP 2=162+302=1156,MP 2=342=1156,∴BM 2+BP 2=MP 2,∴∠MBP =90°,∴乙船沿南偏东30°的方向航行23.(8分)如图,四边形ABCD 是菱形,BE ⊥AD ,BF ⊥CD ,垂足分别为点E ,F.(1)求证:BE =BF ;(2)当菱形ABCD 的对角线AC =8,BD =6时,求BE 的长.解:(1)由AAS 证△ABE ≌△CBF 可得 (2)∵四边形ABCD 是菱形,∴OA =12AC =4,OB =12BD =3,∠AOB =90°,∴AB =OA 2+OB 2=5,∵S 菱形ABCD =AD ·BE =12AC ·BD ,∴5BE =12×8×6,∴BE =24524.(8分)如图,在四边形ABCD 中,AB =AD =2,∠A =60°,BC =25,CD =4.(1)求∠ADC 的度数;(2)求四边形ABCD 的面积.解:(1)连接BD ,∵AB =AD =2,∠A =60°,∴△ABD 是等边三角形,∴BD =2,∠ADB =60°,在△BDC 中,BD =2,DC =4,BC =25,∴BD 2+DC 2=BC 2,∴△BDC 是直角三角形,∴∠BDC =90°,∴∠ADC =∠ADB +∠BDC =150° (2)S 四边形ABCD =S △ABD +S △BDC =12×2×3+12×2×4=3+425.(9分)如图,在▱ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E. (1)求证:△AOD ≌△EOC ;(2)连接AC ,DE ,当∠B =∠AEB=____°时,四边形ACED 是正方形,请说明理由.解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠D =∠OCE ,∠DAO =∠E ,∵O 是CD 的中点,∴OD =OC ,∴△AOD ≌△EOC (AAS ) (2)当∠B =∠AEB =45°时,四边形ACED 是正方形,理由:∵△AOD ≌△EOC ,∴OA =OE ,又∵OC =OD ,∴四边形ACED 是平行四边形,∵∠B =∠AEB =45°,∴AB =AE ,∠BAE =90°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∴∠COE =∠BAE =90°,∴▱ACED 是菱形,∵AB =AE ,AB =CD ,∴AE =CD ,∴菱形ACED 是正方形26.(10分)已知正方形ABCD 和正方形EBGF 共顶点B ,连接AF ,H 为AF 的中点,连接EH ,正方形EBGF 绕点B 旋转.(1)如图①,当F 点落在BC 上时,求证:EH =12CF ;(2)如图②,当点E 落在BC 上时,连接BH ,若AB =5,BG =2,求BH 的长.解:(1)延长FE 交AB 于点Q ,∵四边形EBGF 是正方形,∴EF =EB ,∠EFB =∠EBF =45°,∵四边形ABCD 是正方形,∴∠ABC =90°,AB =BC ,∴∠BQF =∠QBE =45°,∴QE =EB ,∴QE =EF ,又∵AH =FH ,∴EH =12AQ ,∵∠BQF =∠BFQ =45°,∴BQ =BF ,∵AB =BC ,∴AQ =CF ,∴EH =12CF (2)延长EH 交AB 于点N ,∵四边形EBGF 是正方形,∴EF ∥BG ,EF =EB =BG =2,∵EF ∥AG ,∴∠FEH =∠ANH ,∠EFH =∠NAH.又∵AH =FH ,∴△ANH ≌△FEH (AAS ),∴NH =EH ,AN =EF.∵AB =5,AN =EF=2,∴BN =AB -AN =3,∵∠NBE =90°,BE =2,BN =3,∴EN =22+32=13.∵∠NBE =90°,EH=NH ,∴BH =12EN =132期末检测题(一)(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列根式有意义的范围为x ≥5的是( D )A.x +5B.1x -5 C.1x +5D.x -5 2.(2016·来宾)下列计算正确的是( B )A.5-3= 2 B .35×23=615C .(22)2=16 D.33=13.由线段a ,b ,c 组成的三角形不是直角三角形的是( D )A .a =7,b =24,c =25B .a =41,b =4,c =5C .a =54,b =1,c =34D .a =13,b =14,c =154.若一次函数y =x +4的图象上有两点A(-12,y 1),B(1,y 2),则下列说法正确的是( C )A .y 1>y 2B .y 1≥y 2C .y 1<y 2D .y 1≤y 25.已知A 样本的数据如下:72,73,76,76,77,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( B )A .平均数B .方差C .中位数D .众数6.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,下列结论正确的是( A ) A .S ▱ABCD =4S △AOB B .AC =BDC .AC ⊥BD D .▱ABCD 是轴对称图形,第6题图) ,第9题图),第10题图)7.李大伯在承包的果园里种植了100棵樱桃树,今年已经进入收获期,收获时,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:这组数据的中位数为m ,樱桃的总产量约为n ,则m ,n 分别是( B ) A .18,2000 B .19,1900 C .18.5,1900 D .19,1850 8.下列说法中,错误的是( B )A .两条对角线互相平分的四边形是平行四边形B .两条对角线相等的四边形是矩形C .两条对角线互相垂直的平行四边形是菱形D .两条对角线相等的菱形是正方形9.如图,在矩形ABCD 中,AD =2AB ,点M ,N 分别在边AD ,BC 上,连接BM ,DN ,若四边形MBND是菱形,则AMMD 等于( C )A.38B.23C.35D.4510.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒,在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( A )A .①②③B .仅有①②C .仅有①③D .仅有②③ 二、填空题(每小题3分,共24分) 11.已知x ,y 为实数,且x -1+3(y -2)2=0,则x -y 的值为__-1__.12.(2016·天津)若一次函数y =-2x +b(b 为常数)的图象经过第二、三、四象限,则b 的值可以是__-1(答案不唯一,b <0即可)__.(写出一个即可)13.某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是__13__元.,第13题图) ,第14题图) ,第16题图) ,第18题图)14.一次函数y =kx +b(k ≠0)的图象如图所示,当y >0时,x 的取值范围是__x <2__.15.(2016·邵阳)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:请你根据上表中的数据选一人参加比赛,最适合的人选是__乙__.16.如图,矩形ABCD 中,点E ,F 分别是AB ,CD 的中点,连接DE 和BF ,分别取DE ,BF 的中点M ,N ,连接AM ,CN ,MN ,若AB =22,BC =23,则图中阴影部分的面积为.17.在平面直角坐标系中,直线y =kx +x +1过一定点A ,坐标系中有点B(2,0)和点C ,要使以A ,O ,B ,C 为顶点的四边形为平行四边形,则点C 的坐标为__(2,1)或(2,-1)或(-2,1)__.18.如图,长方形纸片ABCD 中,AB =6 cm ,BC =8 cm ,点E 是BC 边上一点,连接AE 并将△AEB 沿AE 折叠,得到△AEB ′,以C ,E ,B ′为顶点的三角形是直角三角形时,BE 的长为__3或6__cm.三、解答题(共66分) 19.(8分)计算:(1)27-12+45; (2)27×13-(5+3)(5-3). 解:(1)原式=3+3 5 (2)原式=120.(8分)如图,四边形ABCD 是平行四边形,E ,F 是对角线BD 上的点,∠1=∠2. 求证:(1)BE =DF ;(2)AF ∥CE.解:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF ,∵∠1=∠2,∴∠AEB =∠CFD ,∴△ABE ≌△CDF (AAS ),∴BE =DF (2)由(1)得△ABE ≌△CDF ,∴AE =CF ,∵∠1=∠2,∴AE ∥CF ,∴四边形AECF 是平行四边形,∴AF ∥CE21.(8分)在直角坐标系中,一条直线经过A(-1,5),P(-2,a),B(3,-3)三点. (1)求a 的值;(2)设这条直线与y 轴相交于点D ,求△OPD 的面积.解:(1)直线解析式为y =-2x +3,把P (-2,a )代入y =-2x +3中,得a =7 (2)由(1)得点。

山东省聊城市莘县2019-2020学年八年级下学期数学期末考试试卷(解析版)

山东省聊城市莘县2019-2020学年八年级下学期数学期末考试试卷(解析版)

山东省聊城市莘县2019-2020学年八年级下学期数学期末考试试卷一、选择题(本大题共12小题,共36分)1.下列计算正确的是( )A. √2+√3=√5B. √2·√3=√6C. √24÷√3=4D. √(−3)2=−32.如图,为测量池塘边A,B两点的距离,小明在池塘的一侧选取一点O,测得OA,OB的中点分别是点D,E,且DE=14米,则A,B间的距离是( )A. 18米B. 24米C. 28米D. 30米3.若等腰三角形中相等的两边的长为10cm,第三边长为16cm,则第三边的高为( )A. 12cmB. 10cmC. 8cmD. 6cm4.如图,四边形ABCD是平行四边形,下列说法不正确的是( )A. 当AC=BD时,四边形ABCD是矩形B. 当AC⊥BD时,四边形ABCD是菱形C. 当AC平分∠BAD时,四边形ABCD是菱形D. 当∠DAB=90°时,四边形ABCD是正方形5.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是√16=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的有( )A. 0个B. 1个C. 2个D. 3个6.如图,一次函数y=kx+b的图象经过(2,0)和(0,4)两点,则下列说法正确的是( )A. y随x的增大而增大B. 当x<2时,y<4C. k=-2D. 点(5,-5)在直线y=kx+b上7.已知关于x的不等式(1-a)x>1的解集为x<1,则a的取值范围是( )1−aA. a≥1B. 0≤a<1C. a>1D. 0<a≤18.已知关于x的不等式3x-m+1>0的最小整数解为2,则实数m的取值范围是( )A. 4<m<7B. 4≤m<7C. 4<m≤7D. 4≤m≤79.如图,一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0,n>0)的图象是( )A. B. C. D.10.点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A. B. C. D.11.小丽同学准备用自己节省的零花钱购买一台学生平板电脑,她已存有750元,并计划从本月起每月节省30元,直到她至少存有1080元,设x个月后小丽至少有1080元,则可列计算月数的不等式为( )A. 30x+750>1080B. 30x-750≥1080C. 30x-750≤1080D. 30x+750≥108012.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是( )3A. 2B. 2 √2C. √2D. √2二、填空题(本大题共5小题,共15分)3的平方根为________13. √6414.如图,在△ABC中,点D在BC上,BD=AB,BM⊥AD于点M,N是AC的中点,连接MN。

2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案

2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案

2018—2019学年度第二学期期末教学质量检测八年级数学试题(满分120分,时间:120分钟)一、选择题:本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A 、B 、C 、D 中,只有一项是正确的,请把正确的选项填在答题卡的相应位置1.在数轴上与原点的距离小于8的点对应的x 满足A.x <8B.x >8C.x <-8或x >8D.-8<x <82.将多项式﹣6a 3b 2﹣3a 2b 2+12a 2b 3分解因式时,应提取的公因式是A .-3a 2b 2B .-3abC .-3a 2bD .-3a 3b 33.下列分式是最简分式的是A .11m m --B .3xy y xy -C .22x y x y -+D .6132m m- 4.如图,在Rt △ABC 中,∠C=90°,∠ABC=30°,AB=8,将△ABC 沿CB 方向向右平移得到△DEF.若四边形ABED 的面积为8,则平移距离为A .2B .4C .8D .165.如图所示,在△ABC 中,AB=AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB 、AC 的距离相等;③∠BDE=∠CDF ;④∠1=∠2.正确的有A.1个B.2个C.3个D.4个6.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为 A.y x my nx ++元 B.yx ny mx ++元 C.y x n m ++元 D.12x y m n ⎛⎫+ ⎪⎝⎭元 7.如图,□ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为A .13B .26C .20D .178.如图,DE 是△ABC 的中位线,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是A .EF=CFB .EF=DEC .CF <BD D .EF >DE二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后的结果填写在答题卡的相应区域内)9.利用因式分解计算:2012-1992= ;10.若x+y=1,xy=-7,则x 2y+xy 2= ;11.已知x=2时,分式31x k x ++的值为零,则k= ; 12.公路全长为skm ,骑自行车t 小时可到达,为了提前半小时到达,骑自行车每小时应多走 ;13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 ;14.如图,△ACE 是以□ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,﹣D 点的坐标是 .三、解答题(本大题共78分,解答要写出必要的文字说明、演算步骤)15.(6分)分解因式(1)20a 3-30a 2 (2)25(x+y )2-9(x-y )216.(6分)计算:(1)22122a a a a+⋅-+ (2)211x x x -++ 17.(6分)A 、B 两地相距200千米,甲车从A 地出发匀速开往B 地,乙车同时从B 地出发匀速开往A 地,两车相遇时距A 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.18.(7分)已知:如图,在△ABC 中,AB=AC ,点D 是BC 的中点,作∠EAB=∠BAD ,AE 边交CB 的延长线于点E ,延长AD 到点F ,使AF=AE ,连结CF .求证:BE=CF .19.(8分) “二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.20.(8分)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别在AB ,AC 上,CE=BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF.(1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC=90°.21.(8分)下面是某同学对多项式(x 2-4x+2)(x 2-4x+6)+4进行因式分解的过程.解:设x 2-4x=y ,原式=(y+2)(y+6)+4(第一步)=y 2+8y+16 (第二步)=(y+4)2(第三步)=(x 2-4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 .A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底? .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果 .(3)请你模仿以上方法尝试对多项式(x 2-2x)(x 2-2x+2)+1进行因式分解.22.(8分)如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在OA ,OC 上(1)给出以下条件;①OB=OD ,②∠1=∠2,③OE=OF ,请你从中选取两个条件证明△BEO ≌△DFO ;(2)在(1)条件中你所选条件的前提下,添加AE=CF ,求证:四边形ABCD 是平行四边形.23.(10分)如图,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .24.(11分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,且AD=12cm ,AB=8cm ,DC=10cm ,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:(1)BC= cm ;(2)当t 为多少时,四边形PQCD 成为平行四边形?(3)当t 为多少时,四边形PQCD 为等腰梯形?(4)是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.八年级数学试题参考答案一、选择题(每小题3分,共24分)1、D2、A3、C4、A5、C6、B7、D8、B二、填空题(每小题3分,共18分)9. 800 10.-7 11.-6 12.221s t --s t 13.6(六) 14.(5,0) 三、解答题 (共78分)15.(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)…………………………………………3分(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )]=(8x+2y )(2x+8y );=4(4x+y)(x+4y)……………………………………………………………3分16.(1)解:22122a a a a+⋅-+ =2(2)(2)a a a a +-⋅+ =212a a -1(2)a a -或………………………………………………3分 (2)211x x x -++ =2(1)1x x x --+ =2(1)(1)11x x x x x -+-++ =2(1)(1)1x x x x --++=11x +…………………………………………………………………………3分 17.设甲车的速度是x 千米/时,乙车的速度为(x+30)千米/时,……………1分308020080+-=x x ………………………………………………………………………3分 解得,x=60,………………………………………………………………………4分经检验,x=60是原方程的解.……………………………………………………5分则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.……………………6分18.证明:∵AB=AC ,点D 是BC 的中点,∴∠CAD=∠BAD .…………………………………………………………………2分 又∵∠EAB=∠BAD ,∴∠CAD=∠EAB .…………………………………………………………………4分 在△ACF 和△ABE 中,∴△ACF ≌△ABE (SAS ).∴BE=CF .……………………………………………………………………………7分19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆,根据题意得:,解之得:. 答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;…………………4分(2)设载重量为8吨的卡车增加了z 辆,依题意得:8(5+z )+10(7+6﹣z )>165,解之得:z <,………………………………………………………………………………6分 ∵z ≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.………………………………8分20.(1)解:补全图形,如图所示.………………………………………………………3分(2) 证明:由旋转的性质得∠DCF=90°,DC=FC ,∴∠DCE +∠ECF=90°.………………………………………………………………4分∵∠ACB=90°,∴∠DCE +∠BCD=90°,∴∠ECF=∠BCD∵EF ∥DC ,∴∠EFC +∠DCF=180°,∴∠EFC=90°.………………………………………………………………………6分在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC(SAS),∴∠BDC=∠EFC=90°.………………………………………………………………8分21.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C ;……………………………………………………………………………2分(2)该同学因式分解的结果不彻底,原式=(x 2﹣4x+4)2=(x ﹣2)4;故答案为:不彻底,(x ﹣2)4…………………………………………………………4分(3)(x 2﹣2x )(x 2﹣2x+2)+1=(x 2﹣2x )2+2(x 2﹣2x )+1=(x 2﹣2x+1)2=(x ﹣1)4.………………………………………………………………………………8分22.证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);……………………………………………………………………4分(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.……………………………………………………………8分23.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;………………………………………………………………………………6分(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.………………………………………………………………………………10分24.解:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC=,∴BC=BE+EC=18cm.…………………………………………………………………2分(直接写出最后结果18cm即可)(2)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即12-2t=3t,解得t=125秒,故当t=125秒时四边形PQCD为平行四边形;………………………………………4分(3)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,当PQ=CD时,四边形PQCD为等腰梯形.过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△CDE中,PQ CD PF DE ==⎧⎨⎩, ∴Rt △PQF ≌Rt △CDE (HL ),∴QF=CE ,∴QC-PD=QC-EF=QF+EC=2CE ,即3t-(12-2t )=12,解得:t=245, 即当t=245时,四边形PQCD 为等腰梯形;……………………………………………8分 (4)△DQC 是等腰三角形时,分三种情况讨论:①当QC=DC 时,即3t=10,∴t=103; ②当DQ=DC 时,362t = ∴t=4; ③当QD=QC 时,3t ×6510= ∴t=259. 故存在t ,使得△DQC 是等腰三角形,此时t 的值为103秒或4秒或259秒.………11分③在Rt△DMQ中,DQ2=DM2+QM2222 (3)8(38) t t=+-36t=100t=259第11 页共11 页。

【人教版】数学八年级下学期《期末检测题》附答案

【人教版】数学八年级下学期《期末检测题》附答案

2020-2021学年第二学期期末测试人教版数学八年级试题学校________ 班级________ 姓名________ 成绩________本试卷共25题.全卷满分120分.考试用时120分钟.一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若化成最简二次根式后,能与合并,则a的值不可以是()A.B.8 C.18 D.282.下列各组数中,是勾股数的是()A.0.3,0.4,0.5 B.6,8,10C.D.10,15,183.a=2019×2021﹣2019×2020,b=,c=,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图,在正方形ABCD中,以对角线BD为边作菱形BDFE,连接BF,则∠AFB=()A.30°B.25°C.22.5°D.不能确定6.如图,周长为20的菱形ABCD中,点E、F分别在边AB、AD上,AE=2,AF=3,P为BD上一动点,则线段EP+FP长度的最小值为()A.3 B.4 C.5 D.67.如图,直线y=kx+b与x轴,y轴分别相交于点A(﹣3,0),B(0,2),则不等式kx+b>2的解集是()A.x>﹣3 B.x<2 C.x>0 D.x<28.某中学八(1)班8个同学在课间进行一分钟跳绳比赛,成绩(单位:个)如下:115,138,126,143,134,126,157,118.这组数据的众数和中位数分别是()A.126,126 B.126,130 C.130,134 D.118,1349.某班同学从学校出发去秋游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要15分钟才能到达景点入口.A.1个B.2个C.3个D.4个10.如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,把y看作x的函数,函数的图象如图②所示,则图②中的a等于()A.3B.4C.14 D.18二、填空题:本题共7小题,每小题3分,共21分.11.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.12.若代数式有意义,则x的取值范围是13.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则两平行线AD与BC间的距离为.14.如图,△ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC.(1)线段PC的最小值是.(2)当PC=5时,AP长是.15.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.16.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.17.如图,在直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,C为OB的中点,点D在第二象限,且四边形AOCD为矩形,P是CD上一个动点,过点P作PH⊥OA于H,Q是点B关于点A的对称点,则BP+PH+HQ的最小值为.三、解答题:共69分.解答应写出文字说明、证明过程或演算步骤.考生根据要求作答.18.计算:×﹣(+1)2.19.已知:a=+2,b=﹣2.(1)求ab.(2)求a2+b2﹣ab.20.已知函数y=kx+,当x=1时,y=7;当x=2时,y=8.(1)求y与x之间的函数关系式;(2)当x=4时,求y的值.21.如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.22.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?23.在平面直角坐标系xOy中,A(0,4),B(2,0),C(5,1),D(2,5).(1)AD=,AB=;(2)∠BAD是直角吗?请说出理由;(3)求点B到直线CD的距离.24.如图,在Rt△ABC中,∠ACB=90°,点D是AB上的一点,连接CD,CE∥AB,BE∥CD,且CE=AD.(1)求证:四边形BDCE是菱形;(2)过点E作EF⊥BD,垂足为点F,若点F是BD的中点,EB=6,求BC的长.25.如图,矩形ABCO中,点C在y轴上,点A在x轴上,点B的坐标是(﹣8,﹣6),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、y轴分别交于点D、F.(1)求线段BO的长;(2)求直线BF的解析式;(3)若点N是平面内任一点,在x轴上是否在点M,使得M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.参考答案一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若化成最简二次根式后,能与合并,则a的值不可以是()A.B.8 C.18 D.28【答案】D【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、=,能与合并,a的值可以是,本选项不符合题意;B、==2,能与合并,a的值可以是8,本选项不符合题意;C、==3,能与合并,a的值可以是18,本选项不符合题意;D、==2,不能与合并,a的值不可以是28,本选项符合题意;故选:D.【知识点】最简二次根式、同类二次根式、二次根式有意义的条件2.下列各组数中,是勾股数的是()A.0.3,0.4,0.5 B.6,8,10C.D.10,15,18【答案】B【分析】利用勾股数定义进行分析即可.【解答】解:A、0.3,0.4,0.5不是正整数,不是勾股数,故此选项不合题意;B、62+82=102,都是正整数,是勾股数,故此选项符合题意;C、,,不是正整数,不是勾股数,故此选项不合题意;D、102+152≠182,不是勾股数,故此选项不合题意;故选:B.【知识点】勾股数3.a=2019×2021﹣2019×2020,b=,c=,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【答案】A【分析】利用平方差公式计算a,利用完全平方公式和二次根式的化简求出b,利用二次根式大小的比较办法,比较b、c得结论.【解答】解:a=2019×2021﹣2019×2020=(2020﹣1)(2020+1)﹣(2020﹣1)×2020=20202﹣1﹣20202+2020=2019;∵20222﹣4×2021=(2021+1)2﹣4×2021=20212+2×2021+1﹣4×2021=20212﹣2×2021+1=(2021﹣1)2=20202,∴b=2020;∵>,∴c>b>a.故选:A.【知识点】实数大小比较、二次根式的乘除法、二次根式的性质与化简4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【答案】D【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选:D.【知识点】勾股定理的应用5.如图,在正方形ABCD中,以对角线BD为边作菱形BDFE,连接BF,则∠AFB=()A.30°B.25°C.22.5°D.不能确定【答案】C【分析】根据正方形的对角线平分一组对角可得∠ADB=45°,再根据菱形的四条边都相等可得BD=DF,根据等边对等角可得∠DBF=∠DFB,然后根据三角形的一个外角等于与它不相邻的两个内角的和进行计算即可得解.【解答】解:在正方形ABCD中,∠ADB=∠ADC=×90°=45°,在菱形BDFE中,BD=DF,所以,∠DBF=∠AFB,在△BDF中,∠ADB=∠DBF+∠AFB=2∠AFB=45°,解得∠AFB=22.5°.故选:C.【知识点】正方形的性质、菱形的性质6.如图,周长为20的菱形ABCD中,点E、F分别在边AB、AD上,AE=2,AF=3,P为BD上一动点,则线段EP+FP长度的最小值为()A.3 B.4 C.5 D.6【答案】C【分析】在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.EG的长就是EP+FP的最小值,据此即可求解.【解答】解:∵四边形ABCD是菱形,周长为20,∴AD=20,在DC上截取DG=FD=AD﹣AF=5﹣3=2,连接EG,EG与BD交于点P′,连接P′F,此时P′E+P′F的值最小,最小值=EG的长,∵AE=DG=2,且AE∥DG,∴四边形ADGE是平行四边形,∴EG=AD=5.故选:C.【知识点】菱形的性质、轴对称-最短路线问题7.如图,直线y=kx+b与x轴,y轴分别相交于点A(﹣3,0),B(0,2),则不等式kx+b>2的解集是()A.x>﹣3 B.x<2 C.x>0 D.x<2【答案】C【分析】根据图象和B的坐标得出即可.【解答】解:∵直线y=kx+b和y轴的交点是B(0,2),∴不等式kx+b>2的解集是x>0,故选:C.【知识点】一次函数的性质、一次函数与一元一次不等式8.某中学八(1)班8个同学在课间进行一分钟跳绳比赛,成绩(单位:个)如下:115,138,126,143,134,126,157,118.这组数据的众数和中位数分别是()A.126,126 B.126,130 C.130,134 D.118,134【答案】B【分析】先将这组数据重新排列,再根据众数和中位数的概念求解即可.【解答】解:将这组数据重新排列为115,118,126,126,134,138,143,157,所以这组数据的众数为126,中位数为=130,故选:B.【知识点】中位数、众数9.某班同学从学校出发去秋游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要15分钟才能到达景点入口.A.1个B.2个C.3个D.4个【答案】C【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【解答】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车原来的速度为:15÷30=0.5km/min,后来的速度为:0.5×=(km/min),当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷﹣(40﹣15)÷1=10分钟才能达到景点入口,故④错误,故选:C.【知识点】一次函数的应用10.如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,把y看作x的函数,函数的图象如图②所示,则图②中的a等于()A.3B.4C.14 D.18【答案】A【分析】由图②知,BC=6,CD=14﹣6=8,BD=18﹣14=4,再通过解直角三角形,求出△CBD高,进而求解.【解答】解:由图②知,BC=6,CD=14﹣6=8,BD=18﹣14=4,过点B作BH⊥DC于点H,设CH=x,则DH=8﹣x,则BH2=BC2﹣CH2=BD2﹣DH2,即:BH2=42﹣(8﹣x)2=62﹣x2,解得:BH=,则a=y=S△ABP=DC×HB=×8×=3,故选:A.【知识点】动点问题的函数图象二、填空题:本题共7小题,每小题3分,共21分.11.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.【答案】39【分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40,其中第四个数据为39,所以这组数据的中位数为39.故答案为39.【知识点】中位数12.若代数式有意义,则x的取值范围是【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0.【解答】解:若代数式有意义,必有解得﹣3≤x<且x≠﹣2.【知识点】二次根式有意义的条件13.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则两平行线AD与BC间的距离为.【答案】6【分析】作PF⊥AD于F,PG⊥BC于G,根据角平分线的性质得到PF=PE=3,PG=PE=3,根据平行线间的距离的求法计算即可.【解答】解:作PF⊥AD于F,PG⊥BC于G,∵AP是∠BAD的角平分线,PF⊥AD,PE⊥AB,∴PF=PE=3,∵BP是∠ABC的角平分线,PE⊥AB,PG⊥BC,∴PG=PE=3,∵AD∥BC,∴两平行线AD与BC间的距离为PF+PG=6,故答案为:6.【知识点】平行线之间的距离、角平分线的性质14.如图,△ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC.(1)线段PC的最小值是.(2)当PC=5时,AP长是.【答案】【第1空】4.8【第2空】5或2.2【分析】(1)当PC⊥AB时,PC的值最小,利用面积法求解即可;(2)过C作CQ⊥BC于Q,同(1)得CQ=4.8,由勾股定理求出AQ=3.6,PQ=1.4,当P在线段BQ上时,AP=AQ+PQ=5;当P在线段AQ上时,AP=AQ﹣PQ=2.2.【解答】解:(1)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB===10,由垂线段最短得:当PC⊥AB时,PC的值最小,此时,△ABC的面积=•AB•PC=•AC•BC,∴AB•PC=AC•BC,∴PC===4.8,故答案为:4.8;(2)过C作CQ⊥BC于Q,如图所示:同(1)得:CQ=4.8,由勾股定理得:AQ===3.6,PQ===1.4,当P在线段BQ上时,AP=AQ+PQ=3.6+1.4=5;当P在线段AQ上时,AP=AQ﹣PQ=3.6﹣1.4=2.2;综上所述,AP的长为5或2.2,故答案为:5或2.2.【知识点】勾股定理、垂线段最短15.已知一次函数y=kx+3﹣2k,当k变化时,原点到一次函数y=kx+(3﹣2k)的图象的最大距离为.【分析】根据一次函数图象过定点A(2,3),即可得到OA=为最大距离.【解答】解:一次函数y=(x﹣2)k+3中,令x=2,则y=3,∴一次函数图象过定点A(2,3),∴OA=为最大距离.故答案为:.【知识点】一次函数的性质、一次函数的图象16.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.【答案】(4,160)【分析】根据点C与点D的坐标即可得出乙货车的速度,进而得出乙货车从B地到A地所用时间,据此即可得出点E的坐标.【解答】解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(km/h),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到达A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).【知识点】一次函数的应用17.如图,在直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,C为OB的中点,点D在第二象限,且四边形AOCD为矩形,P是CD上一个动点,过点P作PH⊥OA于H,Q是点B关于点A的对称点,则BP+PH+HQ的最小值为.【分析】根据直线y=x+4先确定OA和OB的长,证明四边形PHOC是矩形,得PH=OC=BC=2,再证明四边形PBCH是平行四边形,则BP=CH,在BP+PH+HQ中,PH=2是定值,所以只要CH+HQ 的值最小就可以,当C、H、Q在同一直线上时,CH+HQ的值最小,利用平行四边形的性质求出即可.【解答】解:如图,连接CH,∵直线y=x+4分别交x轴,y轴于A,B两点,∴OB=4,OA=3,∵C是OB的中点,∴BC=OC=2,∵∠PHO=∠COH=∠DCO=90°,∴四边形PHOC是矩形,∴PH=OC=BC=2,∵PH∥BC,∴四边形PBCH是平行四边形,∴BP=CH,∴BP+PH+HQ=CH+HQ+2,要使CH+HQ的值最小,只须C、H、Q三点共线即可,∵点Q是点B关于点A的对称点,∴Q(﹣6,﹣4),又∵点C(0,2),根据勾股定理可得CQ==6,此时,BP+PH+HQ=CH+HQ+PH=CQ+2=6+2,即BP+PH+HQ的最小值为6+2;故答案为:6+2.【知识点】一次函数综合题三、解答题:共69分.解答应写出文字说明、证明过程或演算步骤.考生根据要求作答.18.计算:×﹣(+1)2.【分析】根据根式的乘法和完全平方公式化成最简二次根式,再合并即可.【解答】解:×﹣(+1)2=﹣[()2+2+1]=﹣3﹣2﹣1=2﹣3﹣2﹣1=﹣4.【知识点】二次根式的混合运算19.已知:a=+2,b=﹣2.(1)求ab.(2)求a2+b2﹣ab.【分析】(1)根据平方差公式、二次根式的乘法法则计算;(2)根据二次根式的加法法则求出a+b,根据完全平方公式把原式变形,把a+b、ab的值代入计算即可.【解答】解:(1)ab=(+2)(﹣2)=()2﹣22=5﹣4=1;(2)∵a=+2,b=﹣2,∴a+b=(+2)+(﹣2)=2,∴a2+b2﹣ab=a2+2ab+b2﹣3ab=(a+b)2﹣3ab=(2)2﹣3×1=17.【知识点】二次根式的化简求值、分母有理化20.已知函数y=kx+,当x=1时,y=7;当x=2时,y=8.(1)求y与x之间的函数关系式;(2)当x=4时,求y的值.【分析】(1)直接把已知x,y的值代入解方程组得出答案;(2)利用(1)中所求把x的值代入求出答案.【解答】解:(1)∵函数y=kx+,当x=1时,y=7;当x=2时,y=8,∴,解得:,故y与x之间的函数关系式为:y=3x+;(2)当x=4时,y=3×4+=13.【知识点】函数值21.如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.【分析】连结BD,取BD的中点H,连结HE,HF,根据三角形的中位线的性质得到FH∥BM,FH=AB,EH∥CN,EH=CD,根据平行线的性质得到∠BME=∠HFE,∠CNE=∠HEF,根据等腰三角形的性质得到∠HFE=∠HEF,等量代换即可得到结论.【解答】证明:连结BD,取BD的中点H,连结HE,HF,∵E、F分别是BC、AD的中点,∴FH∥BM,FH=AB,EH∥CN,EH=CD,∴∠BME=∠HFE,∠CNE=∠HEF,∵AB=CD,∴FH=EH,∴∠HFE=∠HEF,∴∠BME=∠CNE.【知识点】三角形中位线定理22.某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为中位数为.(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?【答案】【第1空】1.5【第2空】1.5【分析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,再用总人数减去学生劳动“0.5小时”、“1小时”、“2小时”的人数,得出学生劳动“1.5小时”的人数,从而补全条形图;(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;(3)总人数乘以样本中参加义务劳动2小时的百分比即可得.【解答】解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时,故答案为:1.5,1.5;(3)1200×=216,答:估算该校学生参加义务劳动2小时的有216人.【知识点】中位数、全面调查与抽样调查、众数、条形统计图、用样本估计总体23.在平面直角坐标系xOy中,A(0,4),B(2,0),C(5,1),D(2,5).(1)AD=,AB=;(2)∠BAD是直角吗?请说出理由;(3)求点B到直线CD的距离.【分析】(1)直接根据两点间的距离公式可求出AD及AB的长即可;(2)连接BD,根据勾股定理的逆定理进行判断即可;(3)过点B作BE⊥CD于点E,作CG⊥x轴于点G,根据三角形的面积公式求出BE的长即可.【解答】解:(1)∵A(0,4),B(2,0),C(5,1),D(2,5).∴AD==;AB===2.故答案为:,2;(2)∠BAD是直角.理由:连接BD,∵B(2,0),D(2,5),∴BD=5﹣0=5.∵由(1)知AD=,AB=2,∴AD2=5,AB2=20,BD2=25,∴AD2+AB2=BD2,∴∠BAD是直角;(3)过点B作BE⊥CD于点E,作CG⊥x轴于点G,∵C(5,1),D(2,5),∴CD==5,∵B(2,0),D(2,5).∴BD⊥x轴,BG=5﹣2=3,CG=1,∴S△BCD=S梯形DBGC﹣S△BCG,即×5BE=(1+5)×3﹣×1×3,解得BE=3.答:点B到直线CD的距离为3.【知识点】勾股定理、勾股定理的逆定理、坐标与图形性质24.如图,在Rt△ABC中,∠ACB=90°,点D是AB上的一点,连接CD,CE∥AB,BE∥CD,且CE=AD.(1)求证:四边形BDCE是菱形;(2)过点E作EF⊥BD,垂足为点F,若点F是BD的中点,EB=6,求BC的长.【分析】(1)先证明四边形BDCE是平行四边形,得出CE=BD,证出BD=CD,由直角三角形斜边上的中线性质得出CD=AB=BD,即可得出四边形BDCE是菱形;(2)连接DE,由菱形的性质得出BC⊥DE,BD=BE,OB=OC,由线段垂直平分线的性质得出BE=DE,证出BE=DE=BD,由等边三角形和菱形的性质得出∠EBC=∠EBD=30°,求出OE=EB=3,由勾股定理求出OB,即可得出结果.【解答】(1)证明:∵CE∥AB,BE∥CD,∴四边形BDCE是平行四边形,∴CE=BD,∵CE=AD,∴BD=AD,又∵∠ACB=90°,∴CD=AB=BD,∴四边形BDCE是菱形;(2)解:连接DE,如图所示:由(1)得:四边形BDCE是菱形,∴BC⊥DE,BD=BE,OB=OC,∵EF⊥BD,点F是BD的中点,∴BE=DE,∴BE=DE=BD,∴∠DBE=60°,∠EBC=∠EBD=30°,∴OE=EB=3,∴OB===3,∴BC=2OB=6.【知识点】菱形的判定25.如图,矩形ABCO中,点C在y轴上,点A在x轴上,点B的坐标是(﹣8,﹣6),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、y轴分别交于点D、F.(1)求线段BO的长;(2)求直线BF的解析式;(3)若点N是平面内任一点,在x轴上是否在点M,使得M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.【分析】(1)由勾股定理求出BO即可;(2)由待定系数法求出直线BF的解析式即可;(3)分情况讨论:①当OM、OE都为菱形的边时,OM=OE=4,得出M的坐标为(4,0)或(﹣4,0);②当OM为菱形的对角线,OE为边时,同②得(﹣,0);③当OM为菱形的边,OE为对角线时,MN垂直平分OE,垂足为G,由勾股定理求出OM即可.【解答】解:(1)∵四边形ABCO是矩形,点B的坐标是(﹣8,﹣6),∴∠OAB=∠OCB=90°,OA=BC=8,AB=CO=6,∴BO===10;(2)由折叠的性质得:BE=AB=6,DE=DA,∠DEB=∠DAB=90°,∴∠DEO=90°,OE=BO﹣BE=10﹣6=4.设OD=a,则DA=DE=8﹣a,在Rt△EOD中,DE2+OE2=OD2,即(8﹣a)2+42=a2,解得:a=5,∴D(﹣5,0),设直线BF的解析式为y=kx+b,把B(﹣8,﹣6),D(﹣5,0)代入得:,解得:,∴直线BF的解析式为y=2x+10;(3)存在,理由如下:①当OM、OE都为菱形的边时,OM=OE=4,∴M的坐标为(4,0)或(﹣4,0);②当OE为菱形的边,OM为菱形的对角线时,如图1所示:设直线OB解析式为:y=kx,由点B(﹣8,﹣6)在图象上可知:﹣6=﹣8k,∴k=,则直线OB解析式为y=x,设点E(x,x),在Rt△EOG中,OG2+GE2=OE2,即:x2+(x)2=16,解得:x=±,∵点E在第三象限,∴x=﹣,∴点M(﹣,0);③当OM为菱形的边,OE为对角线时,MN垂直平分OE,垂足为G,作EP⊥OA于P,如图2所示:由②得:E(﹣,﹣),则OP=,EP=,在Rt△PEM中,由勾股定理得:(﹣OM)2+()2=EM2,∵OM=EM,∴(﹣OM)2+()2=OM2,解得:OM=,∴点M的坐标为(﹣,0);综上所述,在x轴上存在点M,使得M、N、E、O为顶点的四边形是菱形,点M的坐标为(4,0)或(﹣4,0)或(﹣,0)或(﹣,0).【知识点】一次函数综合题。

2019-2020学年山东省济宁市曲阜市八年级下学期期末数学试卷 (解析版)

2019-2020学年山东省济宁市曲阜市八年级下学期期末数学试卷 (解析版)

2019-2020学年山东济宁市曲阜市八年级第二学期期末数学试卷一、选择题(共10小题).1.要使二次根式有意义,x的值可以是()A.﹣2B.﹣3C.﹣4D.﹣52.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)3.在▱ABCD中、如果∠A=65°、那么∠C的度数是()A.115°B.65°C.25°D.35°4.某青年排球队l2名队员的年龄情况如下表所示:年龄1819202122人数14322则这12名队员的平均年龄是()A.18岁B.19岁C.20岁D.21岁5.以下列各组数为边长,能构成直角三角形的是()A.5,12,13B.1,2,C.,,2D.4,5,66.下列运算结果正确的是()A.=﹣3B.(﹣)2=2C.÷=2D.=±4 7.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是菱形8.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,159.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 10.已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于()A.B.C.D.二、填空题(共6小题).11.正比例函数图象经过(3,﹣6),则这个正比例函数的解析式是.12.已知:x=,y=﹣2,代数式x2﹣2xy+y2的值为.13.已知,如图,一小船以20海里/时的速度从港口A出发向东北方向航行,另一小船以15海里/时的速度同时从港口A出发向东南方向航行,离开港口1小时后,则两船相距.14.将直线y=2x﹣5向上平移2个单位,所得直线解析式为.15.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于.16.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积为.三、解答题:共72分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:×+6﹣.18.如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.19.甲、乙两名同学5次数学练习的成绩如下表:(单位:分)测试日期2月10日2月20日3月5日3月18日3月27日甲126127130133134乙130125130135130已知甲同学这5次数学练习成绩的平均数为130分,方差为10分2.(1)乙同学这5次数学练习成绩的平均数为分,方差为分2;(2)甲、乙都认为自己在这5次练习中的表现比对方更出色,请分别写出一条支持他们俩观点的理由.20.如图,在平行四边形ABCD中,E、F为对角线BD上的两点,且∠BAF=∠DCE.求证:BE=DF.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x 轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)请直接写出不等式kx+b﹣3x>0的解集;(3)M为射线CB上一点,过点M作y轴的平行线交y=3x于点N,当MN=OD时,求M点的坐标.22.“双剑合璧,天下无敌”,其意思是指两个人合在一起,取长补短,威力无比.在二次根式中也常有这种相辅相成的“对子”,如:(2+)(2﹣)=1,=3,它们的积中不含根号,我们说这两个二次根式是互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样解:,=7+4.像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决下列问题:(1)将分母有理化得;+1的有理化因式是;(2)化简:=;(3)化简:……+.23.如图,矩形ABCD中,点P是线段AD上的一个动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向点D运动(不与D 重合).设点P运动的时间为t秒,请用t表示PD的长;并求出t为何值时,四边形PBQD是菱形?参考答案一、选择题(共10小题).1.要使二次根式有意义,x的值可以是()A.﹣2B.﹣3C.﹣4D.﹣5解:由题意得,x+2≥0,解得,x≥﹣2,故选:A.2.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)解:令y=0,则2﹣x=0,解得x=2,所以一次函数y=2﹣x与x轴的交点坐标是(2,0),故选:C.3.在▱ABCD中、如果∠A=65°、那么∠C的度数是()A.115°B.65°C.25°D.35°解:∵四边形ABCD是平行四边形,∴∠C=∠A=65°,故选:B.4.某青年排球队l2名队员的年龄情况如下表所示:年龄1819202122人数14322则这12名队员的平均年龄是()A.18岁B.19岁C.20岁D.21岁解:(18+4×19+3×20+2×21+2×22)÷12=(18+76+60+42+44)÷12=240÷12=20(岁).故这l2名队员的平均年龄是20岁.故选:C.5.以下列各组数为边长,能构成直角三角形的是()A.5,12,13B.1,2,C.,,2D.4,5,6解:A、52+122=132,能构成直角三角形,故选项符合题意;B、12+22≠()2,不能构成直角三角形,故选项不合题意;C、()2+22≠()2,不能构成直角三角形,故选项不合题意;D、42+52≠62,不能构成直角三角形,故选项不合题意.故选:A.6.下列运算结果正确的是()A.=﹣3B.(﹣)2=2C.÷=2D.=±4解:A、=3,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、÷=,故本选项不符合题意;D、=4,故本选项不符合题意;故选:B.7.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是菱形解:A、∵四边形ABCD是平行四边形,AB=BC,∴四边形ABCD是菱形,故正确;B、∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,故正确;C、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,故正确;D、∵四边形ABCD是平行四边形,AC=BD,四边形ABCD是矩形,故错误.故选:D.8.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,15解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.9.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.故选:C.10.已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于()A.B.C.D.解:连接PO,∵矩形ABCD的两边AB=5,BC=12,∴S矩形ABCD=AB•BC=60,OA=OC,OB=OD,AC=BD,AC===13,∴S△AOD=S矩形ABCD=15,OA=OD=AC=,∴S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=OA(PE+PF)=××(PE+PF)=15,∴PE+PF=,故选:A.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.正比例函数图象经过(3,﹣6),则这个正比例函数的解析式是y=﹣2x.解:设这个正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(3,﹣6),∴﹣6=3k,解得k=﹣2,∴y=﹣2x.故答案是:y=﹣2x.12.已知:x=,y=﹣2,代数式x2﹣2xy+y2的值为4.解:∵x=,y=﹣2,∴x﹣y=2,∴原式=(x﹣y)2=4,故答案为:413.已知,如图,一小船以20海里/时的速度从港口A出发向东北方向航行,另一小船以15海里/时的速度同时从港口A出发向东南方向航行,离开港口1小时后,则两船相距25海里.解:由题意得:两船的行驶方向为直角,向东北方向航行的小船行驶路程为:20×1=20(海里),向东南方向航行的小船行驶路程为:15×1=15(海里),两船的距离:=25(海里),故答案为:25海里.14.将直线y=2x﹣5向上平移2个单位,所得直线解析式为y=2x﹣3.解:由“上加下减”的原则可知,将函数y=2x﹣5向上平移,2个单位所得函数的解析式为y=2x﹣5+2,即y=2x﹣3.故答案为:y=2x﹣3.15.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于3.解:∵菱形ABCD的周长等于24,∴AB==6,∵四边形ABCD是菱形,∴AC⊥BD,∵H为AB边中点,∴在Rt△AOB中,OH为斜边上的中线,∴OH=AB=3.故答案为:3.16.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积为1.解:∵四边形ABD是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠AOB=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠BOF,在△AOE和△BOF中,,∴△AOE≌△BOF(ASA),∴△AOE的面积=△BOF的面积,∴四边形AFOE的面积=正方形ABCD的面积=×22=1;故答案为:1.三、解答题:共72分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:×+6﹣.解:原式=+2﹣=2+2﹣=3.18.如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.解:(1)由勾股定理得:DC==,BC==2,AD==,AB==,所以四边形ABCD的周长为AB+BC+cd+ad=+2++=+3+;(2)连接BD,由勾股定理得:BD==5,∵DC=,BC=2,∴DC2+BC2=BD2,∴∠BCD=90°.19.甲、乙两名同学5次数学练习的成绩如下表:(单位:分)测试日期2月10日2月20日3月5日3月18日3月27日甲126127130133134乙130125130135130已知甲同学这5次数学练习成绩的平均数为130分,方差为10分2.(1)乙同学这5次数学练习成绩的平均数为130分,方差为10分2;(2)甲、乙都认为自己在这5次练习中的表现比对方更出色,请分别写出一条支持他们俩观点的理由.解:(1)乙的平均分=(130+125+130+135+130)=130,方差=[(130﹣130)2+(125﹣130)2+(130﹣130)2+(135﹣130)2+(130﹣130)2]=10.故答案为130,10.(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在130分以上(含130分)的次数更多.20.如图,在平行四边形ABCD中,E、F为对角线BD上的两点,且∠BAF=∠DCE.求证:BE=DF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABF=∠CDE,在△ABF和△CDE中,∴△ABF≌△CDE(ASA),∴ED=BF,∴BD﹣CF=BD﹣DE,∴BE=DF.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x 轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)请直接写出不等式kx+b﹣3x>0的解集;(3)M为射线CB上一点,过点M作y轴的平行线交y=3x于点N,当MN=OD时,求M点的坐标.解:(1)当x=1时,y=3x=3,∴C点坐标为(1,3).直线y=kx+b经过(﹣2,6)和(1,3),则,解得:k=﹣1,b=4;(2)x<1;(3)当x=0时,y=﹣x+4=4,∴D点坐标为(0,4),∴OD=4.设点M的横坐标为m,则M(m,﹣m+4),N(m,3m),∴MN=3m﹣(﹣m+4)=4m﹣4∵MN=OD,∴4m﹣4=4,解得m=2.即M点坐标为(2,2).22.“双剑合璧,天下无敌”,其意思是指两个人合在一起,取长补短,威力无比.在二次根式中也常有这种相辅相成的“对子”,如:(2+)(2﹣)=1,=3,它们的积中不含根号,我们说这两个二次根式是互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样解:,=7+4.像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决下列问题:(1)将分母有理化得;+1的有理化因式是﹣1;(2)化简:=﹣;(3)化简:……+.解:(1)==,(+1)(﹣1)=()2﹣12=2﹣1=1,即+1的有理化因式是﹣1,故答案为:,﹣1;(2)===﹣,故答案为:﹣.(3)原式=﹣1+﹣+﹣+…+﹣=﹣1=10﹣1=9.23.如图,矩形ABCD中,点P是线段AD上的一个动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向点D运动(不与D 重合).设点P运动的时间为t秒,请用t表示PD的长;并求出t为何值时,四边形PBQD是菱形?解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,∵O为BD的中点,∴DO=BO,在△PDO和△QBO中,,∴△PDO≌△QBO(ASA),∴OP=OQ;(2)由题意知:AD=8cm,AP=tcm,∴PD=8﹣t,∵PB=PD,∴PB2=PD2,即AB2+AP2=PD2,∴62+t2=(8﹣t)2,解得t=,∴当t=时,PB=PD.。

【精选】2019-2020学年八年级数学第二学期期末模拟试卷及答案(九)

【精选】2019-2020学年八年级数学第二学期期末模拟试卷及答案(九)

2019-2020学年八年级数学第二学期期末模拟试卷及答案(九)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.若二次根式有意义,则x的取值范围是()A.x<2 B.x≠2 C.x≤2 D.x≥22.计算的结果是()A.a B.b C.1 D.﹣b3.己知反比例函数y=(k≠0)的图象经过点P(2,﹣3),则这个函数的图象位于()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.下列根式中,与是同类二次根式的是()A.B. C. D.5.有40个数据,共分成6组,第1﹣4组的频数分别是10,5,7,6,第5组的频率为0.10,则第6组的频率为()A.0.25 B.0.30 C.0.15 D.0.206.如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25 B.20 C.15 D.107.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向红色区域的概率是()A.B.C.D.8.关于x的方程=1的解是正数,则a的取值范围是()A.a>﹣1 B.a>﹣1且a≠0 C.a<﹣1 D.a<﹣1且a≠﹣2 9.如图,矩形ABCD中,AB=4,BC=6,P是CD边上的中点,E 是BC边上的一动点,M,N分别是AE、PE的中点,则随着点E的运动,线段MN长为()A.B.4C.2D.不确定10.如图,点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M,N,延长线段AB交x轴于点C,若OM=MN=NC,S△BNC=2,则k的值为()A.4 B.6 C.8 D.12二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.当x=______时,分式没有意义.12.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性______(选填“大于”“小于”或“等于”)是白球的可能性.13.如果+=0,则+=______.14.已知函数y=和y=3x+n的图象交于点A(﹣2,m),则n m=______.15.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.16.如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=______.17.如图,在平面直角坐标系中,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A、B两点.若y1<y2,则x的取值范围是______.18.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD于点E,则BE的长为______.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.计算:×﹣+|﹣3|.20.解方程:.21.先化简,再求值:÷(m﹣),其中m=.22.如图,点O 是菱形ABCD 对角线的交点,CE ∥BD ,EB ∥AC ,连接OE .(1)求证:OE=CB ;(2)如果OC :OB=1:2,CD=,则菱形的面积为______.23.某报社为了解苏州市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,其中有一个问题是:“您觉得雾霾天气对您哪方面的影响最大?”五个选项分别是;A .身体健康;B .出行;C .情绪不爽;D .工作学习;E .基本无影响,根据调查统计结果,绘制了不完整的三种统计图表.雾霾天气对您哪方面的影响最大百分比 A 、身体健康mB、出行15%C、情绪不爽10%D、工作学习nE、基本无影响5%(1)本次参与调查的市民共有______人,m=______,n=______;(2)请将图1的条形统计图补充完整;(3)图2所示的扇形统计图中A部分扇形所对应的圆心角是______度.24.已知函数y=(k﹣2)x为反比例函数.(1)求k的值;(2)若点A(x1,2)、B(x2﹣1)、C(x3,﹣)是该反比例函数的图象上的三点,则x1、x2、x3的大小关系是______(用“<”号连接);(3)当﹣3≤x≤﹣时,求y的取值范围.25.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?26.(10分)(2016春•张家港市期末)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求∠EAG的度数;(3)求BG的长.27.(10分)(2016•苏州一模)如图,在直角坐标系xOy中,一直线y=2x+b经过点A(﹣1,0)与y轴正半轴交于B点,在x轴正半轴上有一点D,且OB=OD,过D点作DC⊥x轴交直线y=2x+b于C 点,反比例函数y=(x>O)经过点C.(1)求b,k的值;(2)求△BDC的面积;(3)在反比例函数y=(x>0)的图象上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.28.(10分)(2016春•张家港市期末)如图,直线l1:y=﹣x+b 分别与x轴、y轴交于A、B两点,与直线l2:y=kx﹣6交于点C(4,2).(1)点A坐标为(______,______),B为(______,______);(2)在线段BC上有一点E,过点E作y轴的平行线交直线l2于点F,设点E的横坐标为m,当m为何值时,四边形OBEF是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.若二次根式有意义,则x的取值范围是()A.x<2 B.x≠2 C.x≤2 D.x≥2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,2﹣x≥0,解得x≤2.故选C.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.2.计算的结果是()A.a B.b C.1 D.﹣b【考点】约分.【分析】约去分式的分子与分母的公因式ab即可.【解答】解:原式==b.故选:B.【点评】本题考查了约分.约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.3.己知反比例函数y=(k≠0)的图象经过点P(2,﹣3),则这个函数的图象位于()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【考点】反比例函数的性质.【分析】先根据点的坐标求出k值,再利用反比例函数图象的性质即可求解.【解答】解:∵反比例函数y=(k≠0)的图象经过点P(2,﹣3),∴k=2×(﹣3)=﹣6<0,∴该反比例函数经过第二、四象限.故选:B.【点评】本题考查了反比例函数的性质.反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.首先利用待定系数法确定函数的表达式,再根据常数的正负确定函数图象经过的象限.4.下列根式中,与是同类二次根式的是()A.B. C. D.【考点】同类二次根式.【分析】把各选项中式子化为最简二次根式,利用同类二次根式定义判断即可.【解答】解:A、=2,与不是同类二次根式;B、=2,与是同类二次根式;C、与不是同类二次根式;D、与不是同类二次根式,故选B【点评】此题考查了同类二次根式,以及最简二次根式,熟练掌握同类二次根式定义是解本题的关键.5.有40个数据,共分成6组,第1﹣4组的频数分别是10,5,7,6,第5组的频率为0.10,则第6组的频率为()A.0.25 B.0.30 C.0.15 D.0.20【考点】频数与频率.【分析】有40个数据,第5组的频率为0.10;故可以求得第5组的频数,根据各组的频数的和是40,即可求得第6组的频数,利用频数除以频率即可求解.【解答】解:∵第5组的频率为0.10,∴第5组的频数为40×0.1=4,∴第6组的频数为40﹣(10+5+7+6+4)=8,故第6组的频率为=0.2.故本题选D.【点评】本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系频率=.6.如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25 B.20 C.15 D.10【考点】菱形的性质.【分析】由于四边形ABCD是菱形,AC是对角线,根据菱形对角线性质可求∠BAC=60°,而AB=BC=AC,易证△BAC是等边三角形,结合△ABC的周长是15,从而可求AB=BC=5,那么就可求菱形的周长.【解答】解:∵四边形ABCD是菱形,AC是对角线,∴AB=BC=CD=AD,∠BAC=∠CAD=∠BAD,∴∠BAC=60°,∴△ABC是等边三角形,∵△ABC的周长是15,∴AB=BC=5,∴菱形ABCD的周长是20.故选B.【点评】本题考查了菱形的性质、等边三角形的判定和性质.菱形的对角线平分对角,解题的关键是证明△ABC是等边三角形.7.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向红色区域的概率是()A.B.C.D.【考点】几何概率.【分析】首先确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向红色区域的概率.【解答】解:∵圆被等分成6份,其中红色部分占3份,∴落在阴影区域的概率=.故选B【点评】此题考查几何概率问题,关键是根据概率=相应的面积与总面积之比解答.8.关于x的方程=1的解是正数,则a的取值范围是()A.a>﹣1 B.a>﹣1且a≠0 C.a<﹣1 D.a<﹣1且a≠﹣2 【考点】分式方程的解.【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求a的取值范围.【解答】解:去分母得,2x+a=x﹣1∴x=﹣1﹣a∵方程的解是正数∴﹣1﹣a>0即a<﹣1又因为x﹣1≠0∴a≠﹣2则a的取值范围是a<﹣1且a≠﹣2故选:D.【点评】由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式,另外,解答本题时,易漏掉a≠﹣2,这是因为忽略了x ﹣1≠0这个隐含的条件而造成的,这应引起同学们的足够重视.9.如图,矩形ABCD中,AB=4,BC=6,P是CD边上的中点,E 是BC边上的一动点,M,N分别是AE、PE的中点,则随着点E的运动,线段MN长为()A.B.4C.2D.不确定【考点】矩形的性质;三角形中位线定理.【分析】连接AP,根据矩形的性质求出AP的长度,再根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AP,问题得解.【解答】解:连接AP,∵矩形ABCD中,AB=DC=4,P是CD边上的中点,∴DP=2,∴AP==2,连接AP,∵M,N分别是AE、PE的中点,∴MN是△AEP的中位线,∴MN=AP=.故选A.【点评】本题考查了矩形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质以及定理并求出AP的值是解题的关键.10.如图,点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M,N,延长线段AB交x轴于点C,若OM=MN=NC,S△BNC=2,则k的值为()A.4 B.6 C.8 D.12【考点】反比例函数系数k的几何意义;相似三角形的判定与性质.【分析】由BN∥AM可判断△CNB∽△CMA,根据相似的性质得S:S△CMA=()2=,则S△CMA=8,由于OM=MN=NC,根据三△CNB角形面积公式得到S△AOM=S△AMC=4,然后根据反比例函数k的几何意义得到S△AOM=|k|=4,再去绝对值易得k的值.【解答】解:∵BN∥AM,MN=NC,∴△CNB∽△CMA,∴S△CNB:S△CMA=()2=()2=,而S△BNC=2,∴S△CMA=8,∵OM=MN=NC,∴OM=MC,∴S△AOM=S△AMC=4,∵S△AOM=|k|,∴|k|=4,∴k=8.故选(C)【点评】本题主要考查了反比例函数的比例系数k的几何意义以及相似三角形的判定与性质.从反比例函数y=(k≠0)图象上任意一点向x轴或y轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.当x=3时,分式没有意义.【考点】分式有意义的条件.【分析】根据分式没有意义,分母等于0列式计算即可得解.【解答】解:根据题意得,x﹣3=0,解得x=3.故答案为:3.【点评】本题考查的知识点为:分式无意义,分母为0.12.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性大于(选填“大于”“小于”或“等于”)是白球的可能性.【考点】可能性的大小.【分析】根据“哪种球的数量大哪种球的可能性就打”直接确定答案即可.【解答】解:∵袋子里有5只红球,3只白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故答案为:大于.【点评】本题考查了可能性的大小,可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.13.如果+=0,则+=.【考点】二次根式的化简求值;非负数的性质:算术平方根.【分析】直接利用二次根式的性质得出a,b的值,进而利用二次根式加减运算法则求出答案.【解答】解:∵ +=0,∴a=2,b=3,则+=+=.故答案为:.【点评】此题主要考查了二次根式的化简求值以及非负数的性质,正确化简二次根式是解题关键.14.已知函数y=和y=3x+n的图象交于点A(﹣2,m),则n m=.【考点】反比例函数与一次函数的交点问题.【分析】根据点A在y=的图象上,求出m的值,代入一次函数解析式求出n的值,计算即可.【解答】解:∵点A(﹣2,m)在y=的图象上,∴m==﹣1,则点A的坐标为(﹣2,﹣1),∴﹣1=3×(﹣2)+n,解得,n=7,则n m=,故答案为:.【点评】本题考查的是反比例函数与一次函数的交点问题、负整数指数幂的性质,掌握函数图象上点的坐标特征是解题的关键.15.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.【考点】三角形中位线定理;直角三角形斜边上的中线.【分析】利用直角三角形斜边上的中线等于斜边的一半,可求出DF 的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE的长,进而求出EF的长【解答】解:∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∵DE为△ABC的中位线,∴DE=BC=4,∴EF=DE﹣DF=1.5,故答案为:1.5.【点评】本题考查了直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.16.如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=2.【考点】平行四边形的性质.【分析】根据角平分线的定义可得∠1=∠2,再根据两直线平行,内错角相等可得∠2=∠3,∠1=∠F,然后求出∠1=∠3,∠4=∠F,再根据等角对等边的性质可得AD=DE,CE=CF,根据平行四边形对边相等代入数据计算即可得解.【解答】解:如图,∵AE平分∠DAB,∴∠1=∠2,平行四边形ABCD中,AB∥CD,AD∥BC,∴∠2=∠3,∠1=∠F,又∵∠3=∠4(对顶角相等),∴∠1=∠3,∠4=∠F,∴AD=DE,CE=CF,∵AB=5,AD=3,∴CE=DC﹣DE=AB﹣AD=5﹣3=2,∴CF=2.故答案为:2.【点评】本题考查了平行四边形对边相等,对边平行的性质,角平分线的定义,平行线的性质,比较简单,熟记性质是解题的关键.17.如图,在平面直角坐标系中,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A、B两点.若y1<y2,则x的取值范围是x <0或1<x<3.【考点】反比例函数与一次函数的交点问题.【分析】观察函数图象,当x<0或1<x<3时,反比例函数图象都在一次函数图象下方.【解答】解:当x<0或1<x<3时,y1<y2.【点评】本题考查了反比例函数与一次函数的交点问题,也考查了观察函数图象的能力.18.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD于点E,则BE的长为2﹣2.【考点】角平分线的性质;等腰直角三角形;正方形的性质.【分析】过E作EM⊥AB于M,根据正方形性质得出AO⊥BD,AO=OB=OC=OD,由勾股定理得出2AO2=22,求出AO=OB=,在Rt△BME中,由勾股定理得:2ME2=BE2,求出即可.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AO⊥BD,AO=OB=OC=OD,则由勾股定理得:2AO2=22,AO=OB=,∵EM⊥AB,BO⊥AO,AE平分∠CAB,∴EM=EO,由勾股定理得:AM=AO=,∵正方形ABCD,∴∠MBE=45°=∠MEB,∴BM=ME=OE,在Rt△BME中,由勾股定理得:2ME2=BE2,即2(2﹣)2=BE2,BE=2﹣2,故答案为:2﹣2.【点评】本题考查了角平分线性质和正方形性质,勾股定理的应用,注意:角平分线上的点到线段两个端点的距离相等.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.计算:×﹣+|﹣3|.【考点】实数的运算;零指数幂.【分析】此题涉及零指数幂、绝对值、算术平方根的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【解答】解:×﹣+|﹣3|=2×﹣1+3=2﹣1+3=4【点评】此题主要考查了实数的综合运算能力,解决此类题目的关键是熟练掌握零指数幂、绝对值、算术平方根的运算.20.解方程:.【考点】解分式方程.【分析】观察可得最简公分母是x(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:x2+x(x+1)=(2x+1)(x+1)(2分)x2+x2+x=2x2+3x+1,解这个整式方程得:,(4分)经检验:把代入x(x+1)≠0.∴原方程的解为.(5分)【点评】考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.先化简,再求值:÷(m﹣),其中m=.【考点】分式的化简求值.【分析】先对原式化简,再将m=代入化简后的式子即可解答本题.【解答】解:÷(m﹣)===,当m=时,原式===.【点评】本题考查分式的化简求值,解题的关键是明确分式化简求值的方法.22.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE.(1)求证:OE=CB;(2)如果OC:OB=1:2,CD=,则菱形的面积为4.【考点】相似三角形的判定与性质;菱形的性质.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC 中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵四边形ABCD是菱形,∴BC=CD=,由(1)知,AC⊥BD,OC:OB=1:2,∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积=BD•AC=4;故答案为:4.【点评】本题考查了菱形的性质和勾股定理.解题时充分利用了菱形的对角线互相垂直平分、矩形的对角线相等的性质.23.某报社为了解苏州市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,其中有一个问题是:“您觉得雾霾天气对您哪方面的影响最大?”五个选项分别是;A.身体健康;B.出行;C.情绪不爽;D.工作学习;E.基本无影响,根据调查统计结果,绘制了不完整的三种统计图表.百分比雾霾天气对您哪方面的影响最大A、身体健康mB、出行15%C、情绪不爽10%D、工作学习nE、基本无影响5%(1)本次参与调查的市民共有200人,m=65%,n=5%;(2)请将图1的条形统计图补充完整;(3)图2所示的扇形统计图中A部分扇形所对应的圆心角是234度.【考点】条形统计图;统计表;扇形统计图.【分析】(1)由等级B的人数除以占的百分比,得出调查总人数即可,进而确定出等级C与等级A的人数,求出A占的百分比,进而求出m与n的值;(2)由A占的百分比,乘以360即可得到结果;(3)根据比例的定义求得A和C类的人数,即可补全统计图.【解答】解:(1)根据题意得:30÷15%=200(人),等级C的人数为200×10%=20(人),则等级A的人数为200﹣(30+20+10+10)=130,占的百分比为×100%=65%,n=1﹣(65%+15%+10%+5%)=5%;故答案为:200;65%;5%;(2)如图所示:(3)根据题意得:360°×65%=234°;故答案为:234.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.已知函数y=(k﹣2)x为反比例函数.(1)求k的值;(2)若点A(x1,2)、B(x2﹣1)、C(x3,﹣)是该反比例函数的图象上的三点,则x1、x2、x3的大小关系是x1<x3<x2(用“<”号连接);(3)当﹣3≤x≤﹣时,求y的取值范围.【考点】反比例函数图象上点的坐标特征;反比例函数的定义;反比例函数的性质.【分析】(1)根据反比例函数的定义可知:k2﹣5=﹣1,且k﹣2≠0,从而可求得k的值.(2)根据反比例合适的性质即可判断.(3)把x=﹣3和x=﹣分别代入解析式求得函数值,即可求得y的取值范围.【解答】解:(1)∵函数y=(k﹣2)x为反比例函数,∴k2﹣5=﹣1,且k﹣2≠0.解得:k=﹣2;(2)∵k=﹣2,∴反比例函数为y=﹣,∴函数在二四象限,y随x的增大而增大,∴A(x1,2)在第二象限,B(x2﹣1)、C(x3,﹣)在第四象限,∴x1<x3<x2.故答案为x1<x3<x2.(3)把x=﹣3代入y=﹣得:y=,把x=﹣代入y=﹣得:y=8,∴y的取值范围是≤y≤8.【点评】本题考查了反比例函数的定义、反比例函数是性质以及反比例函数图象上点的坐标特征,根据定义求得kd的值是解题的关键.25.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.26.(10分)(2016春•张家港市期末)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求∠EAG的度数;(3)求BG的长.【考点】四边形综合题.【分析】(1)利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;(2)由(1)可得∠FAG=∠BAF,由折叠的性质可得∠EAF=∠DAF,继而可得∠EAG=∠BAD=45°;(2)首先设BG=x,则可得CG=6﹣x,GE=EF+FG=x+3,然后利用勾股定理GE2=CG2+CE2,得方程:(x+3)2=(6﹣x)2+32,解此方程即可求得答案.【解答】(1)证明;在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴∠BAG=∠FAG,∴∠FAG=∠BAF,由折叠的性质可得:∠EAF=∠∠DAE,∴∠EAF=∠DAF,∴∠EAG=∠EAF+∠FAG=(∠DAF+∠BAF)=∠DAB=×90°=45°;(3)∵E是CD的中点,∴DE=CE=CD=×6=3,设BG=x,则CG=6﹣x,GE=EF+FG=x+3,∵GE2=CG2+CE2∴(x+3)2=(6﹣x)2+32,解得x=2,∴BG=2.【点评】此题属于四边形的综合题.考查了正方形的性质、折叠的性质、全等三角形的判定与性质以及勾股定理等知识.注意折叠中的对应关系、注意掌握方程思想的应用是解此题的关键.27.(10分)(2016•苏州一模)如图,在直角坐标系xOy中,一直线y=2x+b经过点A(﹣1,0)与y轴正半轴交于B点,在x轴正半轴上有一点D,且OB=OD,过D点作DC⊥x轴交直线y=2x+b于C 点,反比例函数y=(x>O)经过点C.(1)求b,k的值;(2)求△BDC的面积;(3)在反比例函数y=(x>0)的图象上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可求得b,进而求得D的坐标,根据D的坐标求得C的坐标,代入反比例函数的解析式即可求得k的值;(2)根据三角形的面积公式求得即可;(3)过点C作BD的平行线,交反比例函数y=(x>0)的图象于P,此时△BDP与△BDC同底等高,所以△BDP与△BDC面积相等,先求得直线BD的解析式,进而求得直线PC的解析式,然后联立方程即可求得P的坐标.【解答】解:(1)∵直线y=2x+b经过点A(﹣1,0),∴0=﹣2+b,解得b=2,∴直线的解析式为y=2x+2,由直线的解析式可知B(0,2),∵OB=OD=2∴D(2,0),把x=2代入y=2x+2得,y=2×2+2=6,∴C(2,6),∵反比例函数y=(x>O)经过点C,∴k=2×6=12;(2)S△BDC=DC×OD=×6×2=6;(3)过点C作BD的平行线,交反比例函数y=(x>0)的图象于P,此时△BDP与△BDC同底等高,所以△BDP与△BDC面积相等,∵B(0,2),D(2,0),∴直线BD的解析式为y=﹣x+2,∴直线CP的解析式为y=﹣x+2+6=﹣x+8,解得或,∴P点坐标为(6,2).【点评】本题考查了待定系数法求直线的解析式和反比例函数的解析式,平移的性质,三角形的面积等,数形结合思想的运用是解题的关键.28.(10分)(2016春•张家港市期末)如图,直线l1:y=﹣x+b 分别与x轴、y轴交于A、B两点,与直线l2:y=kx﹣6交于点C(4,2).(1)点A坐标为(8,0),B为(0,4);(2)在线段BC上有一点E,过点E作y轴的平行线交直线l2于点F,设点E的横坐标为m,当m为何值时,四边形OBEF是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)由点C的坐标利用待定系数法即可求出直线l1的解析式,再分别令直线l1的解析式中x=0、y=0求出对应的y、x值,即可得出点A、B的坐标;(2)由点C的坐标利用待定系数法即可求出直线l2的解析式,结合点E的横坐标即可得出点E、F的坐标,再根据平行四边形的性质即可得出关于m的一元一次方程,解方程即可得出结论;(3)分AB为边和AB为对角线两种情况讨论.当AB为边时,根据菱形的性质找出点P的坐标,结合A、B的坐标即可得出点Q的坐标;当AB为对角线时,根据三角形相似找出点P的坐标,再根据菱形对角线互相平分即可得出点Q的坐标.综上即可得出结论.【解答】解:(1)将点C(4,2)代入y=﹣x+b中,得:2=﹣2+b,解得:b=4,∴直线l1为y=﹣x+4.令y=﹣x+4中x=0,则y=4,∴B(0,4);令y=﹣x+4中y=0,则x=8,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019版八年级数学下学期期末检测试题新人教版 (I)一、选择题(每题3分,共36分)1.如图,四边形ABCD 中,对角线AC 与BD 相交于O ,不能判定四边形ABCD 是平行四边形的是( ) A.AB ∥CD,AO=CO B.AB ∥DC,∠ABC=∠ADC C.AB=DC,AD=BCD.AB=DC,∠ABC=∠ADC2.要使式子32--x x 有意义的x 的取值范围( ) A.2>xB.x ≧2C.3>xD.x ≧2且x ≠33.如图,直线m x y +-=与3+=x y 的交点的横坐标为-2,则关于x 的不等式03>+>+-x m x 的取值范围( ) A.2->xB.2-<xC.23-<<-xD.13-<<-x4.下列命题:①任何数的平方根有两个;②如果一个数有立方根,那么它一定有平方根;③算术平方根一定是正数;④非负数的立方根不一定是非负数。

错误的个数为( ) A.1B.2C.3D.45.若实数3是不等式022<--a x 的一个解,则a 可取的最小正整数为( ) A.2B.3C.4D.56.b kx y +=图像不经过第三象限,则k 、b 应满足的是( ) A.0,0<>b kB.0,0><b kC.0,0<<b kD.b k ,0<≧07.已知0>xy ,化简二次根式2xyx -的正确结果为( ) A.yB.y -C.y -D.y --8.一元一次不等式组⎩⎨⎧>>bx ax 的解集为a x >,则a 与b 的关系为( )A.b a >B.b a <C.a ≥bD.a ≤b9.如图,菱形ABCD 对角线AC ,BD 分别是6cm ,8cm,AE ⊥BC 于E ,则AE 长是( )A.cm 524B.cm 52C.cm 548D.cm 3510.如图,△ABC 中,∠C=90°,AC=2,D 在BC 上,∠ADC=2∠B ,AD=5,则BC 长为( ) A.13-B.13+C.15+D.15-11.如图,A,B 坐标分别为(2,0)(0,1),若将线段AB 平移至A 1B 1,则b a +的值为( ) A.2B.3C.4D.512.如图,P 是矩形ABCD 的AD 边上一个动点,矩形的两条边AB 、BC 长分别是6和8,则点P 到矩形的两条对角线距离之和PE+PF 是( ) A.4.8B.5C.6D.7.2二.填空题(每题3分,共18分)13.表①给出了直线1l 上部分(y x ,)坐标值,表②给出了直线2l 上部分点(y x ,)坐标值,那么直线1l 和直线2l 的交点坐标为_______。

x -2 0 2 x -2 0 2 y3 1-1y-5-3-1①②14.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少定为_______元/千克。

15.在一个长6m 、宽3m 、高2m 的房间里放进一根竹竿,竹竿最长可以是________.16.若n 28是整数,则满足条件的最小正整数n 为______.17.如图,∠A=90°,∠AOB=30°,AB=2,△''OB A 可以看作由△AOB 绕点O 逆时针旋转60°得到的,则点'A 与点B 的距离为_______。

18.如图,Rt △ABC 中,∠BAC=90°,AB=6,AC=8,P 为BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F,则EF 最小值是________。

三.解答:(66分)19.计算(每题4分,共12分) (1)4554452021515+-+ (2)()1327132--+-(3)241221348+⨯-÷ 20.(8分)如图:△ABC 中,∠BAC=90°,DE,DF 是△ABC 的中位线,连接EF,AD ,求证:EF=AD.21.(8分)如图,D 为AB 上一点,△ACE ≌△BCD ,222DE DB AD =+,试判断△ABC 的形状,并说明理由。

22.(8分)课堂上老师讲解了比较1011-和1415-的方法,观察发现11-10=15-14=1,于是比较这两个数的倒数:()()101110111011101110111+=+-+=-()()141514151415141514151+=+-+=-因为10111415+>+,所以1011114151->-,则有10111415-<-.请你设计一种方法比较38+与56+的大小.23.(10分)已知一次函数y =kx +b 的图象经过点A (−1,−1)和 点B (1,−3).求: (1)求一次函数的表达式;(2)求直线AB 与坐标轴围成的三角形的面积;(3)请在x 轴上找到一点P ,使得PA +PB 最小,并求出P 的坐标。

24.(10分)如图,E 与F 分别在正方形ABCD 边BC 与CD 上,∠EAF=45°. (1)以A 为旋转中心,将△ABE 按顺时针方向旋转90°,画出旋转后得到的图形。

(2)已知BE=2cm ,DF =3cm ,求EF 的长。

25.(10分)小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲、乙两种运动鞋,甲种每双进价80元,售价120元,乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双。

(1)若购进100双运动鞋的费用不得超过7500元,则甲运动鞋最多购进多少双?(2)在(1)条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋每双优惠a (200<<a )元价格进行优惠促销活动,乙运动鞋价格不变,请写出总利润w 与a 的函数关系,若甲运动鞋每双优惠11元,那么该运动鞋店如何进货才能获得最大利润。

初二数学期末试卷答案一.选择题(每题3分,共36分) 1-5:DDCDD6-10:DDCAC11-12:AA二.填空题(每题3分,共18分)13. (2,-1) 14. 10 15. 7 16. 7 17. 2 18. 4.8 三.解答(12+8+8+8+10+10+10) 19.(每题4分,共12分) ①259 (4分)②34 (4分)③4+√6 (4分)20.(8分)证明:∵DE ,DF 是△ABC 的中位线, ∴DE ∥AF ,DF ∥AE ,∴四边形AEDF 是平行四边形,…………………………………(4分) 又∵∠BAC=90°,∴平行四边形AEDF 是矩形,∴EF=AD 。

…………………………………………………………(8分) 22.(8分)解:△ABC 是等腰直角三角形, 理由:∵△ACE ≌△BCD , ∴AC=BC ,∠EAC=∠B ,AE=BD , ∵AD 2+DB 2=DE 2,∴AD 2+AE 2=DE 2,∴∠EAD=90°,……………………………………………………(4分) ∴∠EAC+∠DAC=90°,∴∠DAC+∠B=90°,∵AC=BC ,∴△ABC 是等腰直角三角形.……………………………………(8分)22.(8分) 解:()()()242113382838222+=+⨯+=+()()()302115562656222+=+⨯+=+∵3021124211+<+ ∴()()225638+<+……………………………………(4分)∵038>+056>+ ∴<+3856+……………………(8分)23.(10分)解:①解:(1)设y 与x 的函数关系式为y=kx+b ,A (-1,-1)B(1,-3) 带入得: -k+b=-1 得: k=-1 k+b=-3 b=-2 ∴一次函数表达式为:y=-x-2………………………3分(2)设直线与x 轴交于C ,与y 轴交于D ,y=0代入y=-x-2得x=-2,∴OC=2 X=0代入y=-x-2 得:y=-2 ,∴OD=2∴S △COD =×OC ×OD=×2×2=2…………………6分 (3)作A 与A 1关于x 轴对称,连接A 1B 交x 轴于P ,则P 即为所求 由对称知:A1(-1,1),设直线A1B 解析式为y=ax+c,得 -k+b=1K+b=-3得 k=-2b=-1 ∴y=-2x-1………………………8分 另y=0得 -2x-1=0 得x=- ∴P (-)………………………10分24.(10分)(1)解:旋转90°,AB 与AD 重合,在CD 延长线上截取AM=AE 连接AM ………(4分) (2)由(1)知:△ADM ≌△ABE,∴AD=AB,AM=AE,∠MAD=∠BAE. ∵四边形ABCD 为正方形,∠EAF=45°.∴∠BAE+∠DAF=45°∴∠MAD+∠DAF=45° ∴△AMF ≌△AEF(SAS)……………………………………(7分) ∵MD=BE=2,∴EF=MF=MD+DF=2+3=5cm …………………………………………………(10分) 25.(10分)(1)设购进甲种运动鞋x 双,由题意可知:80x +60(100-x )≤7500, 解得:x ≤75.答:甲种运动鞋最多购进75双.(2)因为甲种运动鞋不少于65双,所以65≤x ≤75,总利润w=(120-80-a )x +(90-60)(100-x )=(10-a )x +3000, ∵当2010<<a 时,010<-a ,w 随x 的增大而减少,∴当x =65时,w 有最大值,此时运动鞋店应购进甲种运动鞋65双,乙种运动鞋35双.欢迎您的下载,资料仅供参考!。

相关文档
最新文档