GSDE-新凯恩斯模型-ch3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lectures on Monetary Policy,In‡ation and the Business Cycle
The Basic New Keynesian Model
by
Jordi Galí
February2007
Motivation and Outline
Evidence on Money,Output,and Prices:
The Long Run
Short Run E¤ects of Monetary Policy Shocks
(i)persistent e¤ects on real variables
(ii)slow adjustment of aggregate price level
(iii)liquidity e¤ect
Micro Evidence on Price-setting Behavior:signi…cant price and wage rigidities
Failure of Classical Monetary Models
A Baseline Model with Nominal Rigidities
monopolistic competition
sticky prices(staggered price setting)
competitive labor markets,closed economy,no capital accumulation
Households
Representative household solves
1X t=0 t U(C t;N t)
max E0
where
C t Z10C t(i)1 1 di 1 subject to Z10P t(i)C t(i)di+Q t B t B t 1+W t N t T t
for t=0;1;2;:::plus solvency constraint.
Optimality conditions
1.Optimal allocation of expenditures
C t(i)= P t(i)P t C t implying Z10P t(i)C t(i)di=P t C t where
P t Z10P t(i)1 di 11 2.Other optimality conditions
U n;t U
c;t =
W t
P t
Q t= E t U c;t+1U c;t P t P t+1
Speci…cation of utility:
U(C t;N t)=C1
t
1
N1+'
t
1+'
implied log-linear optimality conditions(aggregate variables)
w t p t= c t+'n t
c t=E t f c t+1g 1 (i t E t f t+1g )
where i t log Q t is the nominal interest rate and log is the discount rate.
Ad-hoc money demand
m t p t=y t i t
Firms
Continuum of…rms,indexed by i2[0;1]
Each…rm produces a di¤erentiated good
Identical technology
Y t(i)=A t N t(i)1
Probability of being able to reset price in any given period:1 , independent across…rms(Calvo(1983)).
2[0;1]:index of price stickiness
Implied average price duration11
Aggregate Price Dynamics
P t= (P t 1)1 +(1 )(P t)1 11
Dividing by P t 1:
= +(1 ) P t P t 1 1
1
t
Log-linearization around zero in‡ation steady state
t=(1 )(p t p t 1)(1) or,equivalently
p t= p t 1+(1 )p t
Optimal Price Setting
1X k=0 k E t Q t;t+k P t Y t+k j t t+k(Y t+k j t) max
P t
subject to
Y t+k j t=(P t=P t+k) C t+k
for k=0;1;2;:::where
Q t;t+k k C t+k C t P t P t+k
Optimality condition:
1X k=0 k E t Q t;t+k Y t+k j t P t M t+k j t =0 where t+k j t 0t+k(Y t+k j t)and M 1
Equivalently,
1X k=0 k E t Q t;t+k Y t+k j t P t P t 1 M MC t+k j t t 1;t+k =0 where MC t+k j t t+k j t=P t+k and t 1;t+k P t+k=P t 1
Perfect Foresight,Zero In‡ation Steady State:
P t P t 1=1; t 1;t+k=1;Y t+k j t=Y;Q t;t+k= k;MC=
1
M