运算放大器开环电压增益剖析
开环增益和放大倍数的关系
温馨小提示:本文主要介绍的是关于开环增益和放大倍数的关系的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。
文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。
本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。
愿本篇开环增益和放大倍数的关系能真实确切的帮助各位。
本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。
感谢支持!(Thank you for downloading and checking it out!)阅读本篇文章之前,本店铺提供大纲预览服务,我们可以先预览文章的大纲部分,快速了解本篇的主体内容,然后根据您的需求进行文档的查看与下载。
开环增益和放大倍数的关系(大纲)一、引言1.1背景介绍1.2开环增益与放大倍数的概念1.3研究目的与意义二、开环增益的定义与计算2.1开环增益的概念2.2开环增益的数学表达式2.3开环增益的测量方法三、放大倍数的定义与计算3.1放大倍数的概念3.2放大倍数的数学表达式3.3放大倍数的测量方法四、开环增益与放大倍数的关系4.1理论分析4.1.1开环增益与放大倍数的数学关系4.1.2影响因素分析4.2实验验证4.2.1实验设计4.2.2实验结果分析五、开环增益与放大倍数在实际应用中的优化5.1优化原则5.2优化方法5.2.1参数调整5.2.2结构优化5.3优化案例分析六、总结与展望6.1研究成果总结6.2存在问题与展望6.3未来研究方向一、引言在现代电子技术中,放大器电路是不可或缺的核心组成部分,它能够对微弱的信号进行增强,从而满足各种实际应用的需求。
放大器的性能优劣直接关系到整个电子系统的准确性和稳定性,因此,深入研究放大器的关键参数和特性具有重要意义。
其中,开环增益和放大倍数作为衡量放大器性能的两个重要指标,它们之间的关系备受关注。
1.1背景介绍随着科技的不断发展,放大器在通信、自动控制、生物医学等领域发挥着越来越重要的作用。
运算放大器的参数选择
运算放大器的参数指标1. 开环电压增益Avd开环电压增益(差模增益)为运算放大器处于开环状态下,对小于200Hz的交流输入信号的放大倍数,即输出电压与输入差模电压之比。
它一般为104~106,因此它在电路分析时可以认为无穷大。
2. 闭环增益AF闭环增益是运算放大器闭环应用时的电压放大倍数,其大小与放大电路的形式有关,与放大器本身的参数几乎无关,只取决于输入电组和反馈电阻值的大小。
反相比例放大器,其增益为AF=-3. 共模增益Avc和共模抑制比当两个输入端同时加上频率小于200Hz的电压信号Vic时,在理想情况下,其输出电压应为零。
但由于实际上内部电路失配而输出电压不为零。
此时输出电压和输入电压之比成为共模增益Avc。
共模抑制比Kcmr=,通常以对数关系表示:Kcmr=20log共模抑制比一般在80~120Db范围内,它是衡量放大器对共模信号抑制能力高低的重要指标。
这不仅是因为许多应用电路中要求抑制输入信号中夹带的共模干扰,而且因为信号从同相端输入时,其两个输入端将出现较大的共模信号而产生较大的运算误差。
4. 输入失调电压在常温(25℃)下当输入电压为零时,其输出电压不为零。
此时将其折算到输入端的电压称为输入失调电压。
它一般为±(0.2~15)mV。
这就是说,要使放大器输出电压为零,就必须在输入端加上能抵消Vio的差值输入电压。
5. 输入偏置电流在常温(25℃)下输入信号为零(两个输入端均接地)时,两个输入端的基极偏置电流的平均值称为输入偏置电流,即IIB=( IIB -+ IIB+)它一般在10nA~1uA的范围内,随温度的升高而下降,是反映放大器动态输入电阻大小的重要参数。
6. 输入失调电流IIO输入失调电流可表示为IIO=︱IIB --IIB+∣在双极晶体管输入级运算放大器中,IIO约为(0.2~0.1)IIB -或(0.2~0.1)IIB+。
当IIO流过信号源内阻时,产生输入失调电压。
运算放大器的工作原理
运算放大器的工作原理
首先,让我们来了解一下运算放大器的基本特性。
运算放大器具有高输入阻抗、低输出阻抗、大增益和宽带宽等特点。
这些特性使得运算放大器在信号处理中具有非常重要的作用。
其次,我们来看一下运算放大器的内部结构。
运算放大器通常由多个晶体管、电阻和电容等元件组成,通过这些元件的合理组合,可以实现对输入信号的放大和处理。
此外,运算放大器还包括正、负电源电压引脚,以及非反相输入端、反相输入端和输出端等引脚。
这些引脚的连接方式和电压分布对运算放大器的工作状态有着重要的影响。
接下来,让我们来详细了解一下运算放大器的工作模式。
运算放大器有两种基
本的工作模式,分别是开环模式和闭环模式。
在开环模式下,运算放大器的输出电压与输入电压成正比,增益非常大。
而在闭环模式下,通过反馈网络的连接,可以控制运算放大器的增益和频率特性,从而实现对输入信号的精确放大和处理。
在实际应用中,闭环模式的运算放大器更为常见,因为它可以提供稳定、可靠的放大性能。
除了基本特性、内部结构和工作模式,运算放大器还有许多其他重要的应用。
例如,运算放大器可以用于信号滤波、信号调理、比较器、积分器、微分器等电路中。
通过合理选择反馈网络和外部元件,可以实现对不同类型信号的处理和放大,从而满足各种应用的需求。
总的来说,运算放大器是一种功能强大的集成电路,它在电子设备中有着广泛
的应用。
通过对其工作原理的深入了解,我们可以更好地应用运算放大器,实现对信号的精确处理和放大。
希望本文对您有所帮助,谢谢阅读!。
运算放大器
运算放大器绪论运算放大器是电压控制型电压源模型,其增益(放大倍数)非常大。
运算放大器有5个端子、4个端口的有源器件。
其符号和内部结构如图1所示:图1 运算放大器模型和内部结构图图中电压VCC和VEE是由外部电源提供,通常决定运算放大器的输出电压等级。
符号“+”和“—”分别表示同相和反相。
输入电压Vp和Vn以及输出电压Vo都是对地电压。
运算放大器的五个接线端构成了一个广义节点,如果电流按照图1所示定义,根据KCL (基尔霍夫电流定律)有如下公式:因此,为了保持电流平衡,我们必须将所有电流都包括进来,这是根据有源器件的定义得出的。
如果我们仅仅考虑输入和输出电流来列出KCL,则等式不成立,即:运算放大器的等效电路模型如图2所示。
电压Vi是输入电压Vp和Vn的差值即Vi=Vp -Vn。
Ri是放大器的输入电阻,Ro是输出电阻。
放大参数A称为开环增益。
运算放大器的开环结构定义为:运算放大器的结构中不包括将输入和输出端连接起来的回路。
图2 运算放大器的等效电路模型如果输出端不接任何负载,输出电压为:该公式说明,输出电压Vo是与输入电压Vp和Vn之差的函数。
因此可以说该运算放大器是差值放大器。
大多数实际的运算放大器的开环放大倍数是非常大的。
例如,比较常用的741型运算放大器,它的放大倍数为200000Vo/Vi,甚至一些运算放大器的放大倍数达到108 Vo/Vi。
反映输入电压和输出电压关系的曲线称为电压传输特性,而且该曲线是放大器电路设计和分析的基础。
运算放大器的电压传输曲线如图3所示:图3 电压传输特性曲线注意:该曲线有2个变化区域,一个为在Vi=0V附近时,输出电压和输入电压成正比例放大,称之为线性区域;另一个为Vo随Vi改变而不变的区域,称之为饱和区(或非线性区)。
可以通过设计让运算放大电路工作在上述的2个区域。
在线性区域Vo和Vi直线的斜率是非常大的,实际上,它与开环放大倍数A相等。
例如,741运算放大器正负电源电压为VCC=+10V,VEE=-10V,Vo的饱和值(最大输出电压)一般在±10 V,而当A=200000 Vo/Vi 时,可以算出输入的电压非常小:10/200,000 = 50μV。
运算放大器参数详解
运算放⼤器参数详解运算放⼤器参数详解技术2010-12-19 22:05:36 阅读80 评论0 字号:⼤中⼩订阅运算放⼤器(常简称为“运放”)是具有很⾼放⼤倍数的电路单元。
在实际电路中,通常结合反馈⽹络共同组成某种功能模块。
由于早期应⽤于模拟计算机中,⽤以实现数学运算,故得名“运算放⼤器”,此名称⼀直延续⾄今。
运放是⼀个从功能的⾓度命名的电路单元,可以由分⽴的器件实现,也可以实现在半导体芯⽚当中。
随着半导体技术的发展,如今绝⼤部分的运放是以单⽚的形式存在。
现今运放的种类繁多,⼴泛应⽤于⼏乎所有的⾏业当中。
历史直流放⼤电路在⼯业技术领域中,特别是在⼀些测量仪器和⾃动化控制系统中应⽤⾮常⼴泛。
如在⼀些⾃动控制系统中,⾸先要把被控制的⾮电量(如温度、转速、压⼒、流量、照度等)⽤传感器转换为电信号,再与给定量⽐较,得到⼀个微弱的偏差信号。
因为这个微弱的偏差信号的幅度和功率均不⾜以推动显⽰或者执⾏机构,所以需要把这个偏差信号放⼤到需要的程度,再去推动执⾏机构或送到仪表中去显⽰,从⽽达到⾃动控制和测量的⽬的。
因为被放⼤的信号多数变化⽐较缓慢的直流信号,分析交流信号放⼤的放⼤器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放⼤。
能够有效地放⼤缓慢变化的直流信号的最常⽤的器件是运算放⼤器。
运算放⼤器最早被发明作为模拟信号的运算(实现加减乘除⽐例微分积分等)单元,是模拟电⼦计算机的基本组成部件,由真空电⼦管组成。
⽬前所⽤的运算放⼤器,是把多个晶体管组成的直接耦合的具有⾼放⼤倍数的电路,集成在⼀块微⼩的硅⽚上。
第⼀块集成运放电路是美国仙童(fairchild)公司发明的µA741,在60年代后期⼴泛流⾏。
直到今天µA741仍然是各⼤学电⼦⼯程系中讲解运放原理的典型教材。
原理运放如上图有两个输⼊端a,b和⼀个输出端o.也称为倒向输⼊端(反相输⼊端),⾮倒向输⼊端(同相输⼊端)和输出端.当电压加U-加在a端和公共端(公共端是电压的零位,它相当于电路中的参考结点.)之间,且其实际⽅向从a 端指向公共端时,输出电压U实际⽅向则⾃公共端指向o端,即两者的⽅向正好相反.当输⼊电压U+加在b端和公共端之间,U与U+两者的实际⽅向相对公共端恰好相同.为了区别起见,a端和b 端分别⽤"-"和"+"号标出,但不要将它们误认为电压参考⽅向的正负极性.电压的正负极性应另外标出或⽤箭头表⽰.反转放⼤器和⾮反转放⼤器如下图:⼀般可将运放简单地视为:具有⼀个信号输出端⼝(Out)和同相、反相两个⾼阻抗输⼊端的⾼增益直接耦合电压放⼤单元,因此可采⽤运放制作同相、反相及差分放⼤器。
电压反馈型运算放大器的增益和带宽
Page 3 of 8
-
-
-
R1
+
+
IN
B
R1
C
R2
MT-033
环路增益 开环增益与闭环增益之差称为环路增益,如图3所示。环路增益给出了可以在给定频率下 施加于放大器的负反馈量。
GAIN dB
OPEN LOOP GAIN
LOOP GAIN
CLOSED LOOP GAIN
NOISE GAIN
fCL
LOG f
LOG f
图5:增益带宽积
Page 5 of 8
MT-033
例如,如果有这样一个应用,要求闭环增益为10,带宽为100 kHz,则需要一个最低增益带宽 积为1 MHz的运算放大器。但这有点把问题过度简单化了,因为增益带宽积变化极大,而且在 闭环增益与开环增益相交的位置,响应实际上要低3 dB。另外,还应该允许一定的额外余量。 在上述应用中,增益带宽积为1 MHz的运算放大器是最低要求。保险起见,为了实现要求的 性能,因数至少应该是5。因此选择了增益带宽积为5 MHz的运算放大器。 稳定性标准 反馈稳定性理论认为,闭环增益必须在不大于6 dB/8倍频程(单极点响应)的斜率下与开环增 益相交,才能使系统实现无条件稳定。如果响应为12 dB/8倍频程(双极点响应),则运算放 大器会发生振荡。简单起见,不妨这样设想,每个极点增加90°相移。两个极点则会产生 180°的相移,而180°的相移会使负反馈变成正反馈,即振荡。 那么问题是:为什么要用单位增益下不稳定的放大器呢?答案是,对于给定的放大器,如 果该放大器设计时未考虑单位增益稳定性,则可在较高增益下提高带宽。这类运算放大器 有时被称为非完全补偿运算放大器。然而,仍需满足稳定性标准,即闭环增益必须在6 dB/8倍频程(单极点响应)的斜率下与开环增益相交。否则,放大器将会振荡。因此,非完 全补偿运算放大器仅在数据手册中规定的较高增益下保持稳定。 举例来说,不妨比较图6中的开环增益图。图中的三种器件,AD847、AD848 和 AD849基 本上采用相同的设计,只是内部补偿机制不同。AD847为单位增益稳定型,规定增益带宽 为50 MHz。AD848在增益为5或以上时保持稳定,其增益带宽为175 MHz。AD849在增益为 25或以上时保持稳定,其增益带宽为725 MHz。由此可见,在基本设计相同的情况下,可 以通过修改运算放大器的内部补偿机制来产生不同的增益带宽积,其为最低稳定增益的函 数。
理想运算放大器
2.理想运放的输入电流等于0──“虚断” • 由于理想运放r id = ∞ ,因此两输入端均没有电流。
i+ =i- =0
→ →
i-
i+
• 运放的输入电流等于0,如何将两点断开,但实际上并未真正被断开,将这 种现象称为“虚断”。
• 实际运放rid越大,将输入端视为“虚断”带来的误差越小。
理想运算放大器工作在非线性区的特点
理想运算放大器工作在线性区的特点
1.理想运放的差模输入电压等于0──“虚短”
运放工作在线性区时:uo=Αod(u+─ 因理想运放 Αod=∞
u-) u+ = u-
u+─ u-=uo/Αod =0
ᵘ ᵘ
+ -
ο─── + ───ο ο───
-
ᵘ
o
运放的两输入端电位相等,如同将两点短路一样,但实际上并未真正被短路,将这种现象称 为“虚短”。 实际运放Αod越大,将输入端视为''虚短Ƈ.输出电压的值只有两种可能:或等于正向饱和值;或等于负向饱和值。
u+> u- ;→uo= UOH
u +< u -
;→uo= UOL
u+= u- 时 ,发生状态的转换。
※注意:运放工作在非线性区时,差模输入电压可以较大,所以“虚短”现象不复存在。
2.理想运放的输入电流等于0 ── “虚断”
理想运放rid=∞, 实际运放Αod≠∞,当up与uN差值比较小时,仍有Αod﹙u+ -u-﹚,运放工作在线性区。 但线性区范围很小。
注意问题
理想运放工作在线性区和非线性区时,各有不同的特点。
线性区:虚短,虚断 u+=u- ; i+=i-=0 非线性区:有虚断无虚短;输出为正向(负向)饱和值。
运放性能参数详解大全
运放参数解析定义全一、单位增益带宽GB单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。
单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。
这用于小信号处理中运放选型。
二、运放的带宽是表示运放能够处理交流信号的能力对于小信号,一般用单位增益带宽表示。
单位增益带宽,也叫做增益带宽积,能够大致表示运放的处理信号频率的能力。
例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率1MHz/100=10KHz。
对于大信号的带宽,即功率带宽,需要根据转换速度来计算。
对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。
1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。
2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。
3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。
就是Gain Bandwidth=放大倍数*信号频率。
当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。
在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。
也就是在设计电路时要同时满足增益带宽和功率带宽。
三、运放关于带宽和增益的主要指标以及定义1、开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。
详解运放的参数和选择
详解运放的参数和选择以后将在使用运放中接触到的关于运放的参数含义记在这里。
最近在使用一款PGA,在PGA输入端接地时发现输出总有个矩形波信号,放大1000倍后非常明显,怀疑是电源引起的干扰。
开始的时候在输入正负电源处都加了100uf和0.1的电容,但效果不明显,后来准备再电源输入端再串联一个电阻,一开始电阻选择的是1k,但上电后发现芯片根本都无法工作,测量芯片两端的电源电压发现才一点多v。
这时候就看了下数据手册的静态电流,发现竟然是5mA,然后这个PGA是5v供电的,如果PGA正常工作,1k电阻上的分压都能到5v。
所以后来用了个50欧的电阻配合着100uf和0.1uf构成了个低通滤波,这样一来芯片工作正常了,然后输出的波纹也小了很多。
在选择运放时应该知道自己的设计需求是什么?从而在运放参数表中来查找。
一般来说在设计中需要考虑的问题包括:1、运放供电电压大小和方式选择;2、运放封装选择;3、运放反馈方式,即是VFA (电压反馈运放)还是CFA(电流反馈运放);4、运放带宽;5、偏置电压和偏置t电流选择;6、温漂;7、压摆率;8、运放输入阻抗选择;9、运放输出驱动能力大小选择;10、运放静态功耗,即ICC电流大小选择;11、运放噪声选择;12、运放驱动负载稳定时间等等。
偏置电压和输入偏置电流在精密电路设计中,偏置电压是一个关键因素。
对于那些经常被忽视的参数,诸如随温度而变化的偏置电压漂移和电压噪声等,也必须测定。
精确的放大器要求偏置电压的漂移小于200μV和输入电压噪声低于6nV/√Hz。
随温度变化的偏置电压漂移要求小于1μV/℃ 。
低偏置电压的指标在高增益电路设计中很重要,因为偏置电压经过放大可能引起大电压输出,并会占据输出摆幅的一大部分。
温度感应和张力测量电路便是利用精密放大器的应用实例。
低输入偏置电流有时是必需的。
光接收系统中的放大器就必须具有低偏置电压和低输入偏置电流。
比如光电二极管的暗电流电流为pA 量级,所以放大器必须具有更小的输入偏置电流。
运算放大器之开环增益
运算放大器之开环增益大多数电压反馈(VFB)型运算放大器的开环电压增益(通常称为AVOL,有时简称 AV)都很高。
常见值从100000到1000000,高精度器件则为该数值的10至100倍。
有些快速运算放大器的开环增益要低得多,但是几千以下的增益不适合高精度应用。
此外还要注意,开环增益对温度变化并不高度稳定,同一类型的不同器件也会存在极大差异,因此,增益值必须很高。
电压反馈运算放大器采用电压输入/电压输出方式工作,其开环增益为无量纲比,所以不需要单位。
但是,数值较小时,为方便起见,数据手册会以V/mV 或V/μV代替V/V表示增益,电压增益也可以dB 形式表示,换算关系为dB = 20×logAVOL。
因此,1V/μV的开环增益相当于120 dB,以此类推。
电流反馈(CFB)型运算放大器采用电流输入和电压输出,因此,其开环跨导增益以V/A或Ω(或kΩ、MΩ)表示。
增益值通常介于几百kΩ与几十MΩ之间。
根据基本反馈原理,为了保持精度,精密放大器的直流开环增益AVOL必须很高。
通过检查闭环增益公式就能发现这点,该公式包含由有限增益引起的误差。
包含有限增益误差的闭环增益公式如下:其中,β是反馈环路衰减,也称反馈因子(反馈网络的电压衰减)。
噪声增益等于1/β,因此,该公式还可以其它形式表示。
将公式右端两项合并,把NG(噪声增益)代入,可得到如下公式:公式1和2是等效的,两者均可使用。
如前所述,噪声增益(NG)只是从与运算放大器输入串联的小电压源获得的增益,是同相模式下的理想放大器信号增益。
如果公式1和2中的AVOL无限大,闭环增益就和噪声增益1/β完全相等。
但是,由于NG <>注意,公式3中的百分比形式增益误差直接与噪声增益成比例(即噪声增益较小时增益误差也较小),因此,有限AVOL对低增益的影响较小。
一些示例可以说明上述增益关系的要点。
〖开环增益不确定性〗下图1中,第一个示例中噪声增益为1000,可以看出,开环增益为200万时,闭环增益误差约为0.05%。
模拟电路:7-2、7-3运放的参数及理想运放
1、开环差模电压增益AOd 集成运放在无外加反馈情况下的差模电压增益。
A Od
uO uO u id u u
u+ u-
+ -
uO
AOd越大越好,一般在70~120dB范围内。 2、输入失调电压 UI0及其温漂UI0 静态时为使输出电压为0,需要在输入端所加的补偿电压, 其值表征了运放输入级的对称性,在一定程度上也反映了温 漂的大小。
U IO
dU IO 输入失调电压 UI0的温度变化率。 dT
C; UI0:1~10mV; UI0:5~10V/º
3、输入偏置电流 IIB
I IB
1 ( I B1 I B 2 ) 2
典型值:10~几千nA
输出电压为0时,两个输入端偏置电流的平均值。 4、输入失调电流 II0及其温漂II0
u+ u-
+ -
uO
rid:几兆欧; 若以场效应管作为输入级可达106M 6、共模抑制比KCMR 开环差模电压增益与开环共模电压增益之比。
K CMR
A Od 20 lg | | A OC
KCMR越大越好,一般在80~160dB范围内。
7、最大共模输入电压UICm 表示集成运放所能承受的最大共模电压。若超过此值,运 放的共模抑制比将显著恶化。 8、最大差模输入电压UIdm
非线性区:虚断;输出为正向(负向)饱和值。
i i 0;
在分析运放的各种应用电路时,首先必须判断其中的运放 工作在哪个区域。 线性区: 必须要在电路中引入深度负反馈。 非线性区: 运放工作在开环状态。
2、非线性区
u+- u非线 性区
若差模输入信号过大,超出其线性范围时,会导致运放内 部的某些晶体管饱和或截止,此时运放的输出电压只有两 种情况,要么为正向饱和值,要么为负向饱和值。
运算放大器常见参数解析
运放常见参数总结1.输入阻抗和输出阻抗(Input Impedance And Output Impedance)一、输入阻抗输入阻抗是指一个电路输入端的等效阻抗。
在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。
你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。
输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。
对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。
因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。
另外如果要获取最大输出功率时,也要考虑阻抗匹配问题二、输出阻抗无论信号源或放大器还有电源,都有输出阻抗的问题。
输出阻抗就是一个信号源的内阻。
本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。
输出阻抗在电路设计最特别需要注意但现实中的电压源,则不能做到这一点。
我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。
这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)的内阻了。
当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r的电压降。
这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”一问)。
同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的三、阻抗匹配阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。
阻抗匹配分为低频和高频两种情况讨论。
我们先从直流电压源驱动一个负载入手。
由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。
集成运算放大器主要参数
集成运算放大器主要参数
集成运放的参数较多,其中主要参数分为直流指标和交流指标。
其中主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。
主要交流指标有开环带宽、单位增益带宽、转换速率SR、全功率带宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。
1.直流指标
输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。
输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。
输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。
输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。
对于精密运放,输入失调电压一般在1mV 以下。
输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。
所以对于精密运放是一个极为重要的指标。
输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。
这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。
一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。
第四章 集成运算放大器各种运用
的R1对应于当具用有R1内+R阻s代Rs替的,信为号了源不,使上电面压公增式益中 受Rs的太大影响,R1应该取大一些。但为了 保运证 放输 的入 内电 阻流,远对大于于通偏用置型电运流放,,RR11应 不宜远小超于过 数十千欧,反馈电阻RF越大则电压增益越大, 但要求反馈电流也应远大于偏置电流,所以 RF也不能取得过大,通常不宜超过兆欧。因 此,当Rs达到数千欧时,这个电路难以获得 高增益。另外,反相放大器是并联负反馈电
集成运放的基本组成
右图是运算放大器
的电路符号。它有两个 输入端和一个输出端。 反相输入端标“-”号, 同相输入端标“+”号。 输出电压与反相输入电 压相位相反,与同相输 入电压相位相同。此外 还有两个端分别接正、 负电源,有些集成运放 还有调零端和相位补偿 端。在电路中不画出。
二. 集成运算放大器的使用
由于集成运放具有性能稳定、可靠性高、寿命 长、体积小、重量轻、耗电量少等优点得到了广泛 应用。可完成放大、振荡、调制、解调及模拟信号 的各种运算和脉冲信号的产生等。
本章将介绍集成运放的基本知识、基本电路及 其主要应用。
主要内容
第一节 运算放大器的基本知识 第二节 运算放大器的基本电路 第三节 运算放大器的应用
因Ii=0,故i1≈if,因此 又因u+≈u-,因此
uo与ui之间的比例 关系也与运放本身
的参数无关,电路
精度和稳定度都很 高。KF为正表示uo 与ui同相,并且KF 总是大于或等于1, 这一点与反相放大 器不同。
当RF=0时KF=1,电路就变成电压 跟随器。
同相放大器实际上是一个电压串 联负反馈放大器,因此其输入阻抗高、 输出阻抗低,而且增益不受信号源内 阻的影响。该电路的不足是其共模抑 制比CMRR不太大。
运算放大器开环差模电压放大倍数为
运算放大器开环差模电压放大倍数为
1开环差模电压放大器
开环差模电压放大器是一种很常见的逻辑电路运算放大器,它的主要作用是把比较小的信号电压,放大成一个较大的信号电压。
开环差模电压放大器由一个放大器和一个负反馈环路组成,它的放大倍数可以通过调节负反馈环路的电路参数进行调节。
2开环差模电压放大器的放大倍数
开环差模电压放大器的放大倍数是一个重要指标,它受到多种因素的影响,包括放大器增益、电源电压和负反馈电路的电路参数等。
通常情况下,开环差模电压放大器的放大倍数在20~1000倍之间,具体的放大倍数还受电路外部参数的影响。
3如何调节开环差模电压放大器的放大倍数
要调节开环差模电压放大器的放大倍数,首先要根据要求来确定开环差模电压放大器的电路参数,这里,根据电路外部参数,包括放大器增益、电源电压和负反馈电路的电路参数等,来调节开环差模电压放大器的放大倍数。
4结论
开环差模电压放大器的放大倍数是一个重要的指标,它的放大范围主要受电路外部参数的影响,包括放大器增益、电源电压和负反馈
电路的电路参数等,要正确调节开环差模电压放大器的放大倍数,需要根据具体需求来确定开环差模电压放大器的电路参数。
运算放大器电路比较器和正反馈比较器-EEFOCUS
运算放大器电路 比较器和正反馈比较器:开环结构如图1的电路所示,基本比较器电路是一个开环运算放大电路。
开环增益A 是运算放大器的一个重要特征,我们假定输出电压的两个极值为V 0V DD 和V EE ,输出电压可以表达为0(V A V V )+−=− (1.1)这里V 和V 分别代表同相端和反相端电压。
+−图1 基本同相比较器如图1中的电路,,。
当in V V +=ref V V −=0ref V =,对于的电压传输特性如图2所示。
0V in V图2 同相比较器的电压转换特性当,in V v >δ+0DD V V =;当,in V v <δ-0EE V V =。
v δ+和的值和开环增益v δ-A 的倒数成比例关系。
DDV v A =δ+ EE Vv A=δ+(1.2)运放线性区的范围为:,超出这个范围,运放工作在饱和区。
in v V v <<δ-δ+对于一个A 200000=、、10DD V V =10EE V V =−的实际运放,是一个非常小的电压。
因此,运放很容易就趋向饱和。
50v +−=δ+,-uV当,对于的电压传输特性如图3所示。
ref V 0>0V inV图3 参考电压不为零时的同相比较器的电压传输特性这里特性曲线向右移动,运放工作在线性段时的范围和以前一样,饱和电压还是ref V in V DD V 和。
EE V由于A 的值很大,电压范围[很小,假定开环增益为无限大,则不存在线性区。
图3的传输特性将变成图4所示,从图中我们能看到当电压在从一个饱和区域到另一个饱和区的跳变。
]v v δ-δ+,ref V图4 理想比较器如图5所示,比较器也可以采用反相输入的形式,输入电压接在同相端,参考电压接在反相端。
图5 反相比较器由于,相应的电压转换特性曲线如图6所示。
0(ref in V A V V =−)图6另外一种反相比较器的结构和它的电压转换特性如图7(所示。
OP—77超低Vos,高开环增益运算放大器
OP—77超低Vos,高开环增益运算放大器
杉本;沈志钢
【期刊名称】《电子与仪表》
【年(卷),期】1989(000)004
【总页数】5页(P30-33,7)
【作者】杉本;沈志钢
【作者单位】不详;不详
【正文语种】中文
【中图分类】TN722.77
【相关文献】
1.OP—07的更新换代产品——OP—77运算放大器 [J], 张强
2.一种带增益提高技术的高增益CMOS运算放大器的设计 [J], 王学权;梁齐
3.集成运算放大器的特性及其在音频放大器中的应用(二)——开环增益特性和增益带宽积 [J], 张达
4.负阻负载和复制运放增益增强技术相结合的低电压低功耗高增益端到端输出范围运算放大器(英文) [J], 刘爱荣;杨华中
5.运算放大器电源电压抑制比、开环电压增益和共模抑制比的关系 [J], 卢希敢因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运算放大器开环电压增益开环电压增益AVOL的定义与量测方法1. AVOL的定义:在不具负反馈情况下(开环路状况下),运算放大器的放大倍数称为开环增益,简称AVOL 。
AVOL的理想值为无限大,一般约为数千倍至数万倍的间,其表示法有使用dB 及V/mV等,例如μA741C及LM318的AVOL典型值均为200V/mV或106dB。
在运算放大器中为使计算简便而有虚接地(Virtual Ground) 的假设,在此假设AVOL必须越大越容易满足此需接地的条件。
2. AVOL的量测方法:AVOL 的量测方法有很多种,介绍较易量测的方法如下:如图1所示为一种AVOL的测试方式,此图的动作原理很类似图2的电路,除了R4对地的间加入一电压源VA外,并无差别。
图中AUT(Amplifier Under Test)为待测放大器;BUF(Buffer)为缓冲放大器。
如运算放大器输入偏置电流所述,当VA为0V时,由于电路具有负反馈作用,此时的VO1自动趋近于0V,而VO2就等于待测运算放大器输入抵补电压的一千倍;同理,当VA为10V时,由于负反馈的作用,VO1亦自动的平衡于-10V(实际上由于运算放大器皆不可能达到理想状态,故VO1只能趋近于-0V)。
VA等于0V时VO1趋近于 0V,VA等于10V时VO1则趋近于-0V,因此VO1的输出约有10V的变化量,所以我们将此变化量以△VO代替的。
VO1的输出有变化,在该放大器的输入端必也引起相对应的变化,我们将此变化量以△V1代替的。
在图1中待测放大器本身不具有负反馈,因此求出△VO 与△V1的比值即为待测放大器的开环路电压增益(AVOL)。
在量测的技术上,因∆Vi很小,不容易准确测得,故利用缓冲放大器与R1、R2分压的关系,VO2的相对应变化量∆VO2为∆Vi的一千倍(实际上是1001倍)。
因此,我们仅需将∆VO2测出就可以利用1式导出待测放大器AVOL的值。
(1)在上述实验中,VA不一定要用10V代入,用VA为-10V代入亦可,只不过此时V O1会趋近于正10V。
同理VA亦可用±5V 代入,以求取AVOL;但VA不能用大于电源电压的电压源代入,以免使待测放大器进入饱和区或毁损,AVOL是电源电压的函数,以μA741C为例,电源电压为时AVOL约为2×105,但电源电压为±9V时AVOL仅为1×105。
图1 AVOL的量测电路1.#include<reg51.h>2.#include<intrins.h>3.#include "wave.h"4.void da_out(void); //声明函数5.sbit DIN=0x97; //P1.7位定义6.sbit SCLK=0x96; //P1.6位定义7.sbit DACS=0x95; //P1.5位定义8.sbit SWF1 =0x94; //P1.4位定义9.sbit SWF0 =0x93; //P1.3位定义10.sbit WDI =0x92; //P1.2位定义11.sbit FLAG = 0x90;12.IUI word; //IUI即idata unsigned int,在wave.h中预定义13.void main(void)14.{15. IUI i;16. TMOD =0x01; //定时器0方式1;17. TH0=0xff;TL0=0x00; //置定时器0常数;18. TR0=1; //启动定时器019. ET0=1;EA=1; //开定时器中断及总中断20. SWF0=1;SWF1=1; //设P1.3,P1.4为输入21. WDI=1; //看门狗输入置高电平22.while(1)23. {24.for(i=0;i<128;i++)25. {26. FLAG=1; //置标志,FLAG在定时器0中断程序中被清除27. WDI=0;_nop_();WDI= 1;//看门狗复位28.if(SWF1) word=512; //SWF1=1时,DA输出同一量,无正弦信号输出29.else30. {31.if(SWF0) word=waveh[i];//取倍频数字量32.else word=wavel[i]; //取基频数字量33. }34. word=word<<6; //10位数字量移至高位35.while(FLAG); //等待,直至定时器中断程序中清FLA G36. da_out(); //调用DA输出子程序37. }38. }39.}40.void timer0(void) interrupt 1 using 241.{42. TH0=0xff;TL0=0x00;//重置定时器常数43. FLAG=0;//清主程序中的等待标志44.}45.void da_out(void){46. IUI i;47. SCLK =0;_nop_();DACS=0; //准备传送数据48.for(i=0;i<10;i++)49. {50. DIN= (bit)(word&Ox80); //取最高位送数据线51. word = word << 1; //左移,准备下一位传送52. SCLK =1;_nop_();SCLK =0; //一个CLK信号53. }54. DACS= 1;_nop_();SCLK=1; //传送结束55.}hhh1.typedef idata unsigned int IUI;2.int code wavel[]=3.{4. 512,524,537,550,563,698,707,715,723,731,775,775,774,772,770,698,689,679,669,658,5. 512,499,486,473,460,325,316,308,300,292,248,248,249,251,253,325,334,344,354,365,6.};7.int code waveh[]=8.{9. 512,562,611,660,707,753,796,836,874,907,937,963,985,1001,1014,1021,10. 1023,1021,1014,1001,985,963,937,907,874,836,796,753,707,660,611,562,11. 512,46l,412,363,316,270,227,187,149,116,86,60,38,22,9,2,12. 0,2,9,22,38,60,86,116,149,187,227,270,316,363,412,461,13. 512,562,611,660,707,753,796,836,874,907,937,963,985,1001,1014,1021,14. 1023,1021,1014,1001,985,963,937,907,874,836,796,753,707,660,611,562,15. 512,461,412,363,316,270,227,187,149,116,86,60,38,22,9,2,16. 0,2,9,22,38,60,86,116,149,187,227,270,316,363,412,46117.};电子元器件基础知识常用元器件的识别一、电阻电阻在电路中用“R”加数字表示,如:R15表示编号为15的电阻。
电阻在电路中的主要作用为分流、限流、分压、偏置、滤波(与电容器组合使用)和阻抗匹配等。
参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。
换算方法是:1兆欧=1000千欧=1000000欧电阻的参数标注方法有3种,即直标法、色标法和数标法。
数标法主要用于贴片等小体积的电路,如:472 表示47×102Ω(即4.7K);104则表示100K色环标注法使用最多,现举例如下:四色环电阻五色环电阻(精密电阻)电阻的色标位置和倍率关系如下表所示:颜色有效数字倍率允许偏差(%)银色/ 10-2 ±10金色/ 10-1 ±5黑色0 100 /棕色1 101 ±1红色2 102 ±2橙色3 103 /黄色4 104 /绿色5 105 ±0.5蓝色6 106 ±0.2紫色7 107 ±0.1灰色8 108 /白色9 109 +5至-20无色/ / ±20二、电容1、电容在电路中一般用“C”加数字表示(如C25表示编号为25的电容)。
电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件。
电容的特性主要是隔直流通交流。
电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。
容抗XC=1/2πf c(f表示交流信号的频率,C表示电容容量)电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。
2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。
电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。
其中:1法拉=103毫法=106微法=109纳法=1012皮法容量大的电容其容量值在电容上直接标明,如10 uF/16V容量小的电容其容量值在电容上用字母表示或数字表示字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率。
如:102表示10×102PF=1000PF 224表示22×104PF=0.22 uF3、电容容量误差表符号FGJKLM允许误差±1% ±2% ±5% ±10% ±15% ±20%如:一瓷片电容为104J表示容量为0. 1 uF、误差为±5%。
4、故障特点在实际维修中,电容器的故障主要表现为:(1)引脚腐蚀致断的开路故障。
(2)脱焊和虚焊的开路故障。
(3)漏液后造成容量小或开路故障。
(4)漏电、严重漏电和击穿故障。
三、晶体二极管晶体二极管在电路中常用“D”加数字表示,如:D5表示编号为5的二极管。
1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。
正因为二极管具有上述特性,无绳电话机中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。
电话机里使用的晶体二极管按作用可分为:整流二极管(如1N4004)、隔离二极管(如1N4148)、肖特基二极管(如BAT85)、发光二极管、稳压二极管等。