高考数学一轮复习 6.7数学归纳法 理

合集下载

【创新方案】2021届高考数学一轮复习 6.7数学归纳法讲解与练习 理 新人教A版

【创新方案】2021届高考数学一轮复习 6.7数学归纳法讲解与练习 理 新人教A版

第七节数学归纳法[备考方向要明了]考什么怎么考1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题. 1.与数列等知识相结合,以解答题的形式考查等式、不等式的证明,如2012年安徽T21等.2.以解答题的形式考查“观察—归纳—猜想—证明”的问题,如2012年湖北T22等.[归纳·知识整合]1.数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.[探究] 1.数学归纳法证题的基本原理是什么?提示:数学归纳法是一种只适用于与正整数有关的命题的证明方法,它的表述严格而且规范,两个步骤缺一不可.第一步是递推的基础,第二步是递推的依据,第二步中,归纳假设起着“已知条件”的作用,在第二步的证明中一定要运用它,否则就不是数学归纳法.第二步的关键是“一凑假设,二凑结论”.2.用数学归纳法证明问题应该注意什么?提示:(1)第一步验证n=n0时命题成立,这里的n0并不一定是1,它是使命题成立的最小正整数.(2)第二步证明的关键是合理运用归纳假设,特别要弄清由k到k+1时命题的变化情况.(3)由假设n=k时命题成立,证明n=k+1命题也成立时,要充分利用归纳假设,即要恰当地“凑”出目标.2.数学归纳法的框图表示[自测·牛刀小试]1.在应用数学归纳法证明凸n 边形的对角线为n n -32条时,第一步检验n 等于( )A .1B .2C .3D .0解析:选C ∵n ≥3,∴第一步应检验n =3. 2.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( )A .k 2+1 B .(k +1)2C.k +14+k +122D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2解析:选D ∵当n =k 时,左侧=1+2+3+…+k 2,当n =k +1时, 左侧=1+2+3+…+k 2+(k 2+1)+…+(k +1)2, ∴当n =k +1时,左端应在n =k 的基础上加上 (k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.3.利用数学归纳法证明“(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1解析:选B 当n =k (k ∈N *)时, 左式为(k +1)(k +2)…(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1),则左边应增乘的式子是2k +12k +2k +1=2(2k +1).4.(教材习题改编)用数学归纳法证明1+12+13+…+12n -1<n (n ∈N ,且n >1),第一步要证的不等式是________.解析:当n =2时,左边=1+12+122-1=1+12+13,右边=2,故填1+12+13<2.答案:1+12+13<25.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+________. 解析:由凸k 边形变为凸k +1边形时,增加了一个三角形. 答案:π用数学归纳法证明等式[例1] n ∈N *,求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .[自主解答] (1)当n =1时,左边=1-12=12,右边=11+1=12.左边=右边. (2)假设n =k 时等式成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k ,则当n =k +1时,⎝⎛⎭⎪⎫1-12+13-14+…+12k -1-12k +⎝ ⎛⎭⎪⎫12k +1-12k +2=⎝ ⎛⎭⎪⎫1k +1+1k +2+…+12k +⎝ ⎛⎭⎪⎫12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2. 即当n =k +1时,等式也成立.综合(1),(2)可知,对一切n ∈N *,等式成立. ——————————————————— 用数学归纳法证明等式应注意的问题(1)用数学归纳法证明等式问题是常见题型,其关键点在于弄清等式两边的构成规律,等式两边各有多少项,以及初始值n 0的值.(2)由n =k 到n =k +1时,除考虑等式两边变化的项外还要充分利用n =k 时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明.1.求证:12+22+…+n 2=n n +12n +16. 证明:(1)当n =1时,左边=1,右边=1·1+12+16=1,左边=右边,等式成立;(2)假设n =k (k ∈N *,且k ≥1)时,等式成立, 即12+22+…+k 2=k k +12k +16,则当n =k +1时,12+22+…+k 2+(k +1)2=k k +12k +16+(k +1)2=k +1[k +1+1][2k +1+1]6,所以当n =k +1时,等式仍然成立. 由(1)、(2)可知,对于∀n ∈N *等式恒成立.用数学归纳法证明不等式[例2] 已知数列{a n },a n ≥0,a 1=0,a 2n +1+a n +1-1=a 2n . 求证:当n ∈N *时,a n <a n +1.[自主解答] (1)当n =1时,因为a 2是方程a 22+a 2-1=0的正根,所以a 1<a 2. (2)假设当n =k (k ∈N *,k ≥1)时,0≤a k <a k +1, 则由a 2k +1-a 2k=(a 2k +2+a k +2-1)-(a 2k +1+a k +1-1) =(a k +2-a k +1)(a k +2+a k +1+1)>0, 得a k +1<a k +2,即当n =k +1时,a n <a n +1也成立.根据(1)和(2),可知a n <a n +1对任何n ∈N *都成立.把题设条件中的“a n ≥0”改为“当n ≥2时,a n <-1”,其余条件不变,求证:当n ∈N *时,a n +1<a n .证明:(1)当n =1时, ∵a 2是a 22+a 2-1=0的负根, ∴a 1>a 2.(2)假设当n =k (k ∈N *,k ≥1)时,a k +1<a k ,∵a 2k +1-a 2k =(a k +2-a k +1)(a k +2+a k +1+1),a k +1<a k ≤0,∴a 2k +1-a 2k >0,又∵a k +2+a k +1+1<-1+(-1)+1=-1, ∴a k +2-a k +1<0,∴a k +2<a k +1, 即当n =k +1时,命题成立.由(1)(2)可知,当n ∈N *时,a n +1<a n .——————————————————— 应用数学归纳法证明不等式应注意的问题(1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法等证明.2.等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *),证明:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立. 解:(1)由题意,S n =b n+r , 当n ≥2时,S n -1=bn -1+r . 所以a n =S n -S n -1=b n -1(b -1).由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列. 又a 1=b +r ,a 2=b (b -1), 故a 2a 1=b ,即b b -1b +r=b ,解得r =-1.(2)证明:由(1)知a n =2n -1,因此b n =2n (n ∈N *),所证不等式为2+12·4+14·…·2n +12n >n +1.①当n =1时,左式=32,右式=2,左式>右式,所以结论成立.②假设n =k (k ≥1,k ∈N *)时结论成立,即2+12·4+14·…·2k +12k>k +1,则当n =k +1时, 2+12·4+14·…·2k +12k ·2k +32k +1>k +1·2k +32k +1=2k +32k +1, 要证当n =k +1时结论成立, 只需证2k +32k +1≥k +2,即证2k +32≥k +1k +2, 由均值不等式2k +32=k +1+k +22≥k +1k +2成立,故2k +32k +1≥k +2成立,所以,当n =k +1时,结论成立. 由①②可知,n ∈N *时,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.“归纳—猜想—证明”问题[例3] 已知f (n )=1+123+133+143+…+1n3,g (n )=32-12n2,n ∈N *. (1)当n =1,2,3时,试比较f (n )与g (n )的大小关系; (2)猜想f (n )与g (n )的大小关系,并给出证明.[自主解答] (1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1); 当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2);当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3).(2)由(1),猜想f (n )≤g (n ),下面用数学归纳法给出证明. ①当n =1,2,3时,不等式显然成立,②假设当n =k (k ≥3)时不等式成立,即1+123+133+143+…+1k 3<32-12k 2.那么,当n =k +1时,f (k +1)=f (k )+1k +13<32-12k 2+1k +13.因为12k +12-⎣⎢⎡⎦⎥⎤12k 2-1k +13=k +32k +13-12k 2=-3k -12k +13k2<0, 所以f (k +1)<32-12k +12=g (k +1).由①②可知,对一切n ∈N *,都 有f (n )≤g (n )成立. ——————————————————— 归纳—猜想—证明类问题的解题步骤(1)利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.(2)“归纳—猜想—证明”的基本步骤是“试验—归纳—猜想—证明”.高中阶段与数列结合的问题是最常见的问题.3.设数列{a n }满足a n +1=a 2n -na n +1,n =1,2,3,….(1)当a 1=2时,求a 2,a 3,a 4,并由此猜想出a n 的一个通项公式; (2)当a 1≥3时,证明对所有的n ≥1,有a n ≥n +2. 解:(1)由a 1=2,得a 2=a 21-a 1+1=3, 由a 2=3,得a 3=a 22-2a 2+1=4, 由a 3=4,得a 4=a 23-3a 3+1=5,由此猜想a n 的一个通项公式:a n =n +1(n ≥1). (2)证明:用数学归纳法证明:①当n =1时,a 1≥3=1+2,不等式成立. ②假设当n =k 时不等式成立,即a k ≥k +2,那么,a k +1=a k (a k -k )+1≥(k +2)(k +2-k )+1≥k +3, 也就是说,当n =k +1时,a k +1≥(k +1)+2. 根据①和②,对于所有n ≥1,都有a n ≥n +2.1种方法——寻找递推关系的方法(1)在第一步验证时,不妨多计算几项,并争取正确写出来,这样对发现递推关系是有帮助的.(2)探求数列通项公式要善于观察式子或命题的变化规律,观察n 处在哪个位置. (3)在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项,除此之外,多了哪些项,少了哪些项都要分析清楚.4个注意点——应用数学归纳法应注意的问题(1)数学归纳法是证明与正整数有关的命题的常用方法,特别是数列中等式、不等式的证明,在高考试题中经常出现.(2)数学归纳法证题的关键是第二步,证题时应注意:①必须利用归纳假设作基础;②证明中可利用综合法、分析法、反证法等方法;③解题时要搞清从n =k 到n =k +1增加了哪些项或减少了哪些项.(3)数学归纳法证题时,第一个值n 0不一定为1,如证明多边形内角和定理(n -2)π时,初始值n 0=3.(4)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.易误警示——应用数学归纳法解决证明问题的易误点[典例] (2013·九江模拟)设数列{a n }的前n 项和为S n ,并且满足2S n =a 2n +n ,a n >0(n ∈N *).(1)猜想{a n }的通项公式,并用数学归纳法加以证明. (2)设x >0,y >0,且x +y =1,证明:a n x +1+a n y +1≤2n +2.[解] (1)分别令n =1,2,3,得⎩⎪⎨⎪⎧2a 1=a 21+1,2a 1+a 2=a 22+2,2a 1+a 2+a 3=a 23+3.∵a n >0,∴a 1=1,a 2=2,a 3=3. 猜想:a n =n . 由2S n =a 2n +n ,①可知,当n ≥2时,2S n -1=a 2n -1+(n -1).② ①-②,得2a n =a 2n -a 2n -1+1, 即a 2n =2a n +a 2n -1-1.(ⅰ)当n =2时,a 22=2a 2+12-1, ∵a 2>0,∴a 2=2.(ⅱ)假设当n =k (k ≥2)时,a k =k ,那么当n =k +1时,a 2k +1=2a k +1+a 2k -1=2a k +1+k 2-1⇒[a k +1-(k +1)][a k +1+(k -1)]=0, ∵a k +1>0,k ≥2,∴a k +1+(k -1)>0, ∴a k +1=k +1.即当n =k +1时也成立.∴a n =n (n ≥2).显然n =1时,也成立,故对于一切n ∈N *,均有a n =n . (2)要证nx +1+ny +1≤2n +2,只要证nx +1+2nx +1ny +1+ny +1≤2(n +2).即n (x +y )+2+2n 2xy +nx +y +1≤2(n +2),将x +y =1代入,得2n 2xy +n +1≤n +2, 即只要证4(n 2xy +n +1)≤(n +2)2, 即4xy ≤1.∵x >0,y >0,且x +y =1,∴xy ≤x +y 2=12, 即xy ≤14,故4xy ≤1成立,所以原不等式成立.[易误辨析]1.在解答本题时有以下易误点(1)在代入n =1,2,3时,不能准确求得a 1,a 2,a 3,从而猜想不出a n .(2)证明不等式时,不会应用x +y =1这一条件代换,导致无法证明不等式成立. 2.解决数学归纳法中“归纳—猜想—证明”及不等式证明问题时,还有以下几点容易造成失分(1)归纳整理不到位得不出正确结果,从而给猜想造成困难.(2)证明n =k 到n =k +1这一步时,忽略了利用假设条件去证明,造成不是纯正的数学归纳法.(3)不等式证明的过程中,不能正确合理地运用分析法、综合法来求证.另外需要熟练掌握数学归纳法中几种常见的推证技巧,只有这样,才能快速正确地解决问题.[变式训练] 若不等式1n +1+1n +2+…+13n +1>a24对一切正整数n 都成立,求正整数a 的最大值,并证明结论.解:当n =1时,11+1+11+2+13+1>a 24,即2624>a24,所以a <26. 而a 是正整数,所以取a =25,下面用数学归纳法证明 1n +1+1n +2+…+13n +1>2524.(1)当n =1时,已证得不等式成立. (2)假设当n =k (k ∈N *)时,不等式成立, 即1k +1+1k +2+…+13k +1>2524. 则当n =k +1时, 有1k +1+1+1k +1+2+…+13k +1+1=1k +1+1k +2+…+13k +1+13k +2+13k +3+13k +4-1k +1>2524+⎣⎢⎡⎦⎥⎤13k +2+13k +4-23k +1.因为13k +2+13k +4-23k +1=6k +13k +23k +4-23k +1=18k +12-29k 2+18k +83k +23k +43k +3=23k +23k +43k +3>0,所以当n =k +1时不等式也成立. 由(1)(2)知,对一切正整数n ,都有1n +1+1n +2+…+13n +1>2524, 所以a 的最大值等于25.一、选择题(本大题共6小题,每小题5分,共30分)1.如果命题P (n )对n =k 成立,则它对n =k +2也成立,若P (n )对n =2也成立,则下列结论正确的是( )A .P (n )对所有正整数n 都成立B .P (n )对所有正偶数n 都成立C .P (n )对所有正奇数n 都成立D .P (n )对所有自然数n 都成立解析:选B 由题意n =k 时成立,则n =k +2时也成立,又n =2时成立,则P (n )对所有正偶数都成立.2.用数学归纳法证明“1+a +a 2+…+a n +1=1-an +21-a(a ≠1)”,在验证n =1时,左端计算所得的项为( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3解析:选C ∵等式的左端为1+a +a 2+…+an +1,∴当n =1时,左端=1+a +a 2.3.利用数学归纳法证明不等式1+12+13+…+12n -1<f (n )(n ≥2,n ∈N *)的过程,由n=k 到n =k +1时,左边增加了( )A .1项B .k 项C .2k -1项D .2k项解析:选D 1+12+13+…+12k +1-1-⎝ ⎛⎭⎪⎫1+12+13+…+12k -1=12k +12k +1+…+12k +1-1,共增加了2k项.4.用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”的第二步是( ) A .假设n =2k +1时正确,再推n =2k +3时正确(其中k ∈N *) B .假设n =2k -1时正确,再推n =2k +1时正确(其中k ∈N *) C .假设n =k 时正确,再推n =k +1时正确(其中k ∈N *) D .假设n ≤k (k ≥1)时正确,再推n =k +2时正确(其中k ∈N *) 解析:选B ∵n 为正奇数,∴n =2k -1(k ∈N *).5.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( ) A.1n -1n +1B.12n2n +1C.12n -12n +1D.12n +12n +2解析:选C 由a 1=13,S n =n (2n -1)a n 求得a 2=115=13×5,a 3=135=15×7,a 4=163=17×9.猜想a n =12n -12n +1.6.设函数f (n )=(2n +9)·3n +1+9,当n ∈N *时,f (n )能被m (m ∈N *)整除,猜想m 的最大值为( )A .9B .18C .27D .36解析:选D f (n +1)-f (n )=(2n +11)·3n +2-(2n +9)·3n +1=4(n +6)·3n +1,当n =1时,f (2)-f (1)=4×7×9为最小值,据此可猜想D 正确. 二、填空题(本大题共3小题,每小题5分,共15分)7.用数学归纳法证明“2n >n 2+1对于n ≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取________.解析:当n =1时,21=2,12+1=2;当n =2时,22=4,22+1=5;当n =3时,23=8,32+1=10;当n =4时,24=16,42+1=17;当n =5时,25=32,52+1=26,满足2n >n 2+1.故n 0应取5. 答案:58.对大于或等于2的自然数 m 的n 次方幂有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19. 根据上述分解规律,若n 2=1+3+5+…+19, m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.解析:∵依题意得 n 2=10×1+192=100, ∴n =10. 易知 m 3=21m +m m -12×2,整理得(m -5)(m +4)=0,又 m ∈N *,所以 m =5, 所以m +n =15. 答案:159.若数列{a n }的通项公式a n =1n +12,记c n =2(1-a 1)(1-a 2)…(1-a n ),试通过计算c 1,c 2,c 3的值,推测c n =________.解析:c 1=2(1-a 1)=2×⎝ ⎛⎭⎪⎫1-14=32,c 2=2(1-a 1)(1-a 2)=2×⎝⎛⎭⎪⎫1-14×⎝ ⎛⎭⎪⎫1-19=43,c 3=2(1-a 1)(1-a 2)(1-a 3)=2×⎝⎛⎭⎪⎫1-14×⎝⎛⎭⎪⎫1-19×⎝⎛⎭⎪⎫1-116=54,故由归纳推理得c n =n +2n +1. 答案:n +2n +1三、解答题(本大题共3小题,每小题12分,共36分) 10.用数学归纳法证明:12+32+52+…+(2n -1)2= 13n (4n 2-1). 证明:(1)当n =1时,左边=12=1,右边=13×1×(4-1)=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即12+32+52+…+(2k -1)2=13k (4k 2-1).则当n =k +1时,12+32+52+…+(2k -1)2+(2k +1)2=13k (4k 2-1)+(2k +1)2=13k (4k2-1)+4k 2+4k +1=13k [4(k +1)2-1]-13k ·4(2k +1)+4k 2+4k +1 =13k [4(k +1)2-1]+13(12k 2+12k +3-8k 2-4k ) =13k [4(k +1)2-1]+13[4(k +1)2-1] =13(k +1)[4(k +1)2-1]. 即当n =k +1时等式也成立.由(1),(2)可知,对一切n ∈N *,等式都成立.11.设0<a <1,定义a 1=1+a ,a n +1=1a n +a ,求证:对任意n ∈N *,有1<a n <11-a .证明:(1)当n =1时,a 1=1+a >1,又a 1=1+a <11-a ,显然命题成立.(2)假设n =k (k ∈N *)时,命题成立,即1<a k <11-a. 即当n =k +1时,由递推公式,知a k +1=1a k+a ,由假设可得(1-a )+a <1a k +a <1+a <11-a .于是当n =k +1时,命题也成立,即1<a k +1<11-a. 由(1)(2)可知,对任意n ∈N *,有1<a n <11-a .12.已知数列{a n },其中a 2=6且a n +1+a n -1a n +1-a n +1=n .(1)求a 1,a 3,a 4;(2)求数列{a n }的通项公式; (3)设数列{b n }为等差数列,其中b n =a nn +c且c 为不等于零的常数,若S n =b 1+b 2+…+b n ,求1S 1+1S 2+…+1S n.解:(1)∵a 2=6,a 2+a 1-1a 2-a 1+1=1,a 3+a 2-1a 3-a 2+1=2,a 4+a 3-1a 4-a 3+1=3,解得a 1=1,a 3=15,a 4=28.(2)由上面的a 1,a 2,a 3,a 4的值可以猜想a n =n (2n -1). 下面用数学归纳法加以证明:①当n =1时,a 1=1×(2-1)=1,结论成立.②假设当n =k 时,结论正确,即a k =k (2k -1), 则当n =k +1时,有a k +1+a k -1a k +1-a k +1=k ,∴(k -1)a k +1=(k +1)a k -(k +1)=(k +1)·k (2k -1)-(k +1)=(k +1)(2k 2-k -1) =(k +1)(2k +1)(k -1)(k -1≠0). ∴a k +1=(k +1)[2(k +1)-1]. 即当n =k +1时,结论也成立.由①②可知,{a n }的通项公式a n =n (2n -1). (3)∵{b n }是等差数列,∴2b 2=b 1+b 3, 即2a 22+c =a 11+c +a 33+c. ∵a 1=1,a 2=6,a 3=15且c ≠0, 由上式解得c =-12,∴b n =a nn -12=n 2n -1122n -1=2n . 故S n =b 1+b 2+…+b n =n (n +1). ∴1S 1+1S 2+…+1S n =11×2+12×3+…+1n n +1=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=nn +1.1.已知△ABC 的三边长都是有理数. (1)求证:cos A 是有理数;(2)求证:对任意正整数n ,cos nA 是有理数.证明:(1)由AB 、BC 、AC 为有理数及余弦定理知cos A =AB 2+AC 2-BC 22AB ·AC是有理数.(2)用数学归纳法证明cos nA 和sin A ·sin nA 都是有理数.①当n =1时,由(1)知cos A 是有理数,从而有sin A ·sin A =1-cos 2A 也是有理数. ②假设当n =k (k ∈N *)时,cos kA 和sin A ·sin kA 都是有理数. 当n =k +1时,由cos(k +1)A =cos A ·cos kA -sin A ·sin kA ,sin A ·sin(k +1)A =sin A ·(sin A ·cos kA +cos A ·sin kA ) =(sin A ·sin A )·cos kA +(sin A ·sin kA )·cos A ,由①和归纳假设,知cos(k +1)A 和sin A ·sin(k +1)A 都是有理数. 即当n =k +1时,结论成立.综合①②可知,对任意正整数n ,cos nA 是有理数.2.用数学归纳法证明11×3+13×5+…+12n -12n +1=n 2n +1(n ∈N *).证明:(1)当n =1时,左边=11×3=13,右边=12×1+1=13,左边=右边.所以n =1时等式成立. (2)假设n =k 时等式成立,即有11×3+13×5+…+12k -12k +1=k 2k +1.则当n =k +1时,11×3+13×5+…+12k -12k +1+12k +12k +3 =k 2k +1+12k +12k +3=2k 2+3k +12k +12k +3=k +12k +12k +12k +3=k +12k +3=k +12k +1+1. 这就是说,n =k +1时等式也成立. 由(1)(2)可知,等式对一切n ∈N *都成立.3.已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n ∈N *.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性. 解:(1)∵当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0.∴a 1=3-1或a 1=-3-1(舍去).当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0.∴a 2=5-3或a 2=-5-3(舍去). 同理可得a 3=7- 5.由a 1,a 2,a 3,猜想a n =2n +1-2n -1(n ∈N *).(2)证明:①由(1)的计算过程知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N *)时,通项公式成立, 即a k =2k +1-2k -1. 那么由a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k, 将a k =2k +1-2k -1代入上式并整理得a 2k +1+22k +1a k +1-2=0,解得a k +1=2k +3-2k +1, 或a k +1=-2k +3-2k +1(舍去). 即当n =k +1时,通项公式也成立. 由①和②,可知对所有n ∈N *,a n =2n +1-2n -1都成立.4.用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).证明:(1)当n =2时,1+122=54<2-12=32,命题成立.(2)假设n =k 时命题成立,即 1+122+132+…+1k 2<2-1k. 当n =k +1时,1+122+132+…+1k 2+1k +12<2-1k+1k +12<2-1k +1kk +1=2-1k +1k -1k +1=2-1k +1命题成立. 由(1),(2)知原不等式在n ∈N *,n ≥2时均成立.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

高三数学一轮复习知识点讲解7-6数学归纳法

高三数学一轮复习知识点讲解7-6数学归纳法

精品基础教育教学资料,仅供参考,需要可下载使用!专题7.6 数学归纳法【考纲解读与核心素养】1.了解数学归纳原理,会用数学归纳法证明简单的数学命题.2.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等.3.高考预测:利用数学归纳法证明数列问题.4.备考重点:(1)数学归纳法原理;(2)数学归纳法的简单应用.【知识清单】知识点1.数学归纳法1.证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立.(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.2.数学归纳法的框图表示【典例剖析】高频考点一利用数学归纳法证明等式【典例1】已知a,b,c,使等式N+都成立,(1)猜测a,b,c的值;(2)用数学归纳法证明你的结论.【答案】(1);(2)见解析【解析】(1):假设存在符合题意的常数a,b,c,在等式1•22+2•32+…+n(n+1)2=(an2+bn+c)中,令n=1,得4=(a+b+c)①令n=2,得22=(4a+2b+c)②令n=3,得70=9a+3b+c③由①②③解得a=3,b=11,c=10,于是,对于n=1,2,3都有1•22+2•32+…+n(n+1)2=(3n2+11n+10)(*)成立.(2)下面用数学归纳法证明:对于一切正整数n,(*)式都成立.(1)当n=1时,由上述知,(*)成立.(2)假设n=k(k≥1)时,(*)成立,即1•22+2•32+…+k(k+1)2=(3k2+11k+10),那么当n=k+1时,1•22+2•32+…+k(k+1)2+(k+1)(k+2)2=(3k2+11k+10)+(k+1)(k+2)2=(3k2+5k+12k+24)=[3(k+1)2+11(k+1)+10],由此可知,当n=k+1时,(*)式也成立.综上所述,当a=3,b=11,c=10时题设的等式对于一切正整数n都成立.【总结提升】数学归纳法证明等式的思路和注意点(1)思路:用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n0是多少.(2)注意点:由n=k时等式成立,推出n=k+1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,不利用归纳假设的证明,就不是数学归纳法.【变式探究】(2018·江苏高考模拟(理))在正整数集上定义函数,满足,且.(1)求证:;(2)是否存在实数a,b,使,对任意正整数n恒成立,并证明你的结论.【答案】(1)见解析(2)【解析】(1)因为,整理得,由,代入得,,所以.(2)由,,可得.以下用数学归纳法证明存在实数,,使成立.① 当时,显然成立.② 当时,假设存在,使得成立,那么,当时,,即当时,存在,使得成立.由①,②可知,存在实数,,使对任意正整数n 恒成立.【易错提醒】 数学归纳法的注意事项由n=k 到n=k+1时,除等式两边变化的项外还要利用n=k 时的式子,即利用假设,正确写出归纳证明的步骤,从而使问题得以证明.高频考点二 利用数学归纳法证明不等式【典例2】(2019·浙江嘉兴一中高一期中)已知数列{}n a 满足12a =,()*12(1)n n n a a n N ++=-∈.(Ⅰ)求证:数列{}(1)nn a --是等比数列;(Ⅱ)比较n a 与312n +的大小,并用数学归纳法证明;(Ⅲ)设12nn n n b a a +-=,数列{}n b 的前n 项和为n T ,若n T m <对任意*n N ∈成立,求实数m 的取值范围.【答案】(Ⅰ)见证明(Ⅱ)312n n a +≥(Ⅲ)13m ≥ 【解析】 (Ⅰ)()()()()()()()11112112212111n nn nn n n nnnn n n a a a a a a +++---+----+-===-------且1130a +=≠,(){}1nn a ∴--是以3为首项,2-为公比的等比数列,(Ⅱ)由(Ⅰ)知:()()1132nn n a ---=⨯-()()()()11132+11321n n n n n a ---∴=⨯--=-⨯-1321n n a -∴=⨯-312n n a +≥,下面用数学归纳法证明 (1)当1n =时,3122n n a +=≥(2)假设当*,n k k N =∈时,312k k a +≥, 当1n k =+时,()()1311313212112113222kk k k k a a k ++++⎛⎫=⨯-=+-≥+-=+> ⎪⎝⎭,即当1n k =+时,结论成立, 由(1)(2)得312n n a +≥, (Ⅲ)因为()()()()1112213211321n nn n n n n n n b a a --+--==-⨯--⨯- ()()1122113321321321321n n nn n --⎛⎫==- ⎪⨯-⨯-⨯-⨯-⎝⎭011212112112112111332132133213213321321323213n n n n T -⎛⎫⎛⎫⎛⎫⎛⎫∴=-=-+=-=-< ⎪ ⎪ ⎪ ⎪⨯-⨯-⨯-⨯-⨯-⨯-⨯-⎝⎭⎝⎭⎝⎭⎝⎭ 13m ∴≥【典例3】(2020届浙江湖州、衢州、丽水三地市高三上期中)已知数列{}n a 满足()*11()11,1n n a an N n a +==∈+.(1)求23,aa ,并猜想{}n a 的通项公式(不需证明); (2)求证()*)1n N <∈.【答案】(1) 2311,23a a ==;猜想1n a n=;(2)证明见解析 【解析】(1)2311,23aa == 猜想1n a n====<=<1⋅⋅⋅+)1=-(2)方法二用数学归纳法证明:(1)当1n=时,左边1==,右边)1==左边<右边,不等式成立;(2)假设*()n k k N=∈)1⋅⋅⋅+<,那么当1n k=+)1成立,))11+<只要证明()()12212231k kk+++++即证141k++,即证43k<+只要证明221624816249k k k k++<++,显然成立,所以1n k=+时不等式也成立.综合(1)(2)可得对一切的*n N∈不等式均成立.【例4】(2020届浙江省温州市11月适应测试)已知等差数列{}n a的首项11a=,数列{}2n a的前n项和为nS,且12S+,22S+,32S+成等比数列.(1)求通项公式n a;(2)求证:11nnan a⎫+<⎪⎪⎭*n N∈);【答案】(1)n a n=;(2)见解析【解析】(1)记d为{}n a的公差,则对任意n*∈N,112222nn nnaa a da++-==,即{}2na 为等比数列,公比20dq =>.由12S +,22S +,32S +成等比数列,得2213(2)(2)(2)S S S +=++,即22[2(1)2](22)[2(1)2]q q q ++=++++,解得2q,即1d =.所以1(1)n a a n d n =+-=,即()n a n n N *=∈;(2)由(1)1)n N n*+<+∈.下面用数学归纳法证明上述不等式.①当1n =时,不等式显然成立;②假设当()n k k N *=∈1k+<,则当1n k =+1k+++<+因0+=<,<.1k+++<+,即当1nk =+时,不等式仍成立.1)n N n*+<+∈.所以1)1)n n a n N n a *+<∈ 【总结提升】数学归纳法证明不等式的适用范围及关键(1)适用范围:当遇到与正整数n 有关的不等式证明时,若用其他办法不容易证,则可考虑应用数学归纳法.(2)关键:由n =k 时命题成立证n =k +1时命题也成立,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用均值不等式、不等式的性质等放缩技巧,使问题得以简化【变式探究】1.(2018·浙江高一期末)已知数列满足,且.Ⅰ使用数学归纳法证明:;Ⅱ证明:;Ⅲ设数列的前n项和为,证明:.【答案】(I)详见解析;(II)详见解析;(III)详见解析.【解析】Ⅰ当时,,故当时命题成立;假设时命题成立,即,当时,注意在单调递增,所以,故,故当时命题成立.因此对任意的,有;Ⅱ由,由Ⅰ知,故.Ⅲ因为,所以因为,所以,故有,.综上所述,.2. (2020届浙江省浙南名校联盟高三上学期第一次联考)已知等比数列{}n a 的公比1q >,且13542a a a ++=,39a +是15,a a 的等差中项,数列{}n b 的通项公式111nn n n b a a +=-+-,*n N ∈.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)证明:11221n n b b b ++++<-,*n N ∈.【答案】(Ⅰ)2nn a =;(Ⅱ)详见解析.【解析】(Ⅰ)由39a +是1a ,5a 的等差中项得153218a a a +=+,所以135a a a ++331842a =+=, 解得38a =, 由1534a a +=,得228834q q+=, 解得24q =或214q =, 因为1q >,所以2q.所以,2nn a =.(Ⅱ)法1:由(Ⅰ)可得12121nn n n b +=-+-,*n N ∈.122121nn nn b +==-+-1112(2121)(2121)(2121)n n n nn n n +++----+----112(2121)2121n n n n n ++---==--+112(2121)21212n n n n n n++---=----, ∴2112(2121)n b b b +++=---+321(2121)2121n n +---++---1121121n n ++=--<-.法2:由(Ⅰ)可得122121nn n n b +=-+-,*n N ∈.我们用数学归纳法证明. (1)当1n =时,1231313b ==-<+,不等式成立;(2)假设n k =(*k N ∈)时不等式成立,即11221k k b b b ++++<-.那么,当1n k =+时,121k k b b b b +++++11122212121k k k k ++++<-+-+-121k +=-+11212122(2121)(2121)(2121)k k k k k k k +++++++----+----112112(2121)212k k k k k +++++---=-+-221k +=-, 即当1n k =+时不等式也成立. 根据(1)和(2),不等式11221n n b b b ++++<-,对任意*n N ∈成立.3.(2018·浙江余姚中学高考模拟)设,对于,有.(1)证明:(2)令,证明:(I)当时,(II)当时,【答案】(1)见解析;(2)(I)见解析;(II)见解析.【解析】(1)若,则只需证只需证成立只需要证成立,而该不等式在时恒成立…故只需要验证时成立即可,而当时,均满足该不等式.综上所得不等式成立.(2)、(I)当时,用数学归纳法很明显可证当时,有;下证:,只需要证,只需证只需证,只需证,只需证.由(1)可知,我们只需要证,只需证,只需证.当时该不等式恒成立 当时,,故该不等式恒成立综上所得,上述不等式成立(II )、当时,用数学归纳法很明显可证当时,有下证:只需证:,只需证:只需证:,只需证:只需证:,……同理由(2)及数学归纳法,可得该不等式成立. 综上所述,不等式成立高频考点三 归纳、猜想、证明【典例5】(2019·浙江高二期中)已知正项数列{}n a 满足11a =,前n 项和n S 满足()()2*41n n S a n N =+∈,(Ⅰ)求234,,a a a 的值;(Ⅱ)猜测数列{}n a 的通项公式,并用数学归纳法证明. 【答案】(Ⅰ)2343,5,7a a a === ;(Ⅱ)见解析 【解析】(Ⅰ)当2n =时,()22241S a =+,()()222411a a +=+ 解得23a = 当3n =时,()()()2233233341,415S a S a a a =++=+∴=,当4n =时,()24441S a =+,47a = . (Ⅱ)猜想得21n a n =- 下面用数学归纳法证明:①1,2n =时121,3a a ==,满足21n a n =-.②假设n k =时,结论成立,即21k a k =-,则1n k =+时()21141k k S a ++=+()()()221114141k k k k k S a a a a +++∴+=++=+,将21k a k =-代入化简得()22114k a k +-= ,()121211k a k k +∴=+=+-故1n k =+时 结论成立 . 综合①②可知,21n a n =-.【典例6】(2019·吉林高考模拟(理))已知数列{}n a 满足:11a =,点()()*1,n n a a n +∈N 在直线21y x =+上.(1)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中你的猜想.【答案】(Ⅰ)2343,7,15a a a ===;21n n a =-.(Ⅱ)见解析.【解析】(Ⅰ)因为点()()*1,n n a a n N+∈在直线21y x =+上所以121n n a a +=+, 因为11a =,故22113a =⨯+=,32317a =⨯+=, 427115a =⨯+=,由上述结果,猜想:21nn a =-.(Ⅱ)1︒,当1n =时,1211a =-=成立,2︒,假设当()1,n k k k N =≥∈时,21kk a =-成立,那么,当1n k =+时,()1121221121kk k k a a ++=+=-+=-成立,由1︒,2︒可得21n n a =-.【总结提升】(1)“归纳——猜想——证明”的一般步骤 ①计算(根据条件,计算若干项).②归纳猜想(通过观察、分析、综合、联想,猜想出一般结论). ③证明(用数学归纳法证明).(2)与“归纳——猜想——证明”相关的常用题型的处理策略①与函数有关的证明:由已知条件验证前几个特殊值正确得出猜想,充分利用已知条件并用数学归纳法证明.②与数列有关的证明:利用已知条件,当直接证明遇阻时,可考虑应用数学归纳法. 【变式探究】1.(2019·浙江高二期末)数列{}n a 的前n 项和为n S ,且满足()*12N n n na S n S =+-∈.(Ⅰ)求1S ,2S ,3S ,4S 的值;(Ⅱ)猜想数列{}n S 的通项公式,并用数学归纳法证明你的结论. 【答案】(Ⅰ)112S =,223S =,334S =,445S =;(Ⅱ)见证明【解析】(Ⅰ)当1n =时,∵111112a S S S ==+-,∴112S =, 又2212212a S S S S =-=+-,∴223S =, 同理334S =,445S =; (Ⅱ)猜想()*N 1n nS n n =∈+ 下面用数学归纳法证明这个结论. ①当1n =时,结论成立.②假设()*,1n k k N k =∈≥时结论成立,即1k kS k =+, 当1n k =+时,111112k k k k k a S S S S ++++=-=+-, ∴112k k S S +=-,∴11112221k k k S k S k k ++===-+-+ 即当1n k =+时结论成立. 由①②知1n nS n =+对任意的正整数n 都成立. 2.给出下列不等式:,,,,,……(1)根据给出不等式的规律,归纳猜想出不等式的一般结论;(2)用数学归纳法证明你的猜想.【答案】(1);(2)详见解析. 【解析】(1)观察不等式左边最后一个数分母的特点:,……猜想不等式左边最后一个数分母,对应各式右端为,所以,不等式的一般结论为:. (2)证明:①当时显然成立;②假设时结论成立,即:成立当时,即当时结论也成立.由①②可知对任意,结论都成立.。

高考数学大一轮复习 第六章 第七节 数学归纳法课件

高考数学大一轮复习 第六章 第七节 数学归纳法课件

[类题通法] 用数学归纳法证明等式应注意的问题 (1)用数学归纳法证明等式问题是常见题型,其关键点在于 弄清等式两边的构成规律,等式两边各有多少项,以及初始值 n0的值. (2)由n=k到n=k+1时,除考虑等式两边变化的项外还要充 分利用n=k时的式子,即充分利用假设,正确写出归纳证明的 步骤,从而使问题得以证明.
[类题通法] 用数学归纳法证明不等式的注意问题 (1)当遇到与正整数n有关的不等式证明时,应用其他办法 不容易证,则可考虑应用数学归纳法. (2)用数学归纳法证明不等式的关键是由n=k成立,推证n =k+1时也成立,证明时用上归纳假设后,可采用分析法、综 合法、作差(作商)比较法、放缩法等证明.
[演练冲关] 1.用数学归纳法证明:
2.设f(n)=1+
1 2

1 3
+…+
1 n
(n∈N*).求证:f(1)+f(2)+…+
f(n-1)=n[f(n)-1](n≥2,n∈N*).
证明:(1)当n=2时,左边=f(1)=1,
右边=21+12-1=1, 左边=右边,等式成立.
(2)假设n=k(k≥2,k∈N*)时,结论成立,即 f(1)+f(2)+…+f(k-1)=k[f(k)-1], 那么,当n=k+1时, f(1)+f(2)+…+f(k-1)+f(k)=k[f(k)-1]+f(k) =(k+1)f(k)-k=(k+1)fk+1-k+1 1-k =(k+1)f(k+1)-(k+1)=(k+1)[f(k+1)-1], ∴当n=k+1时结论仍然成立. 由(1)(2)可知:f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).
1.求证:1-12+13-14+…+2n1-1-21n=n+1 1+n+1 2+…+21n(n∈N*). 证明:(1)当n=1时,左边=1-12=12, 右边=1+1 1=12.左边=右边. (2)假设n=k(k∈N*)时等式成立,即1-12+13-14+…+2k1-1-21k =k+1 1+k+1 2+…+21k,

高考数学一轮复习 第六章 第七节 数学归纳法课件 理 新人教版

高考数学一轮复习 第六章 第七节 数学归纳法课件 理 新人教版

数n都成立.上述证明方法叫做数学归纳法.
[基础自测自评] 1.用数学归纳法证明3n≥n3(n∈N,n≥3),第一步应验证 ( A.n=1 B.n=2 )
C.n=3
C
D.n=4
1 1 2. (教材习题改编)已知 n 为正偶数, 用数学归纳法证明 1- + - 2 3 1 1 1 1 1 +…- =2 + +…+ 时,若已假设 n=k(k≥2 且 k 4 n n+2 n+4 2n 为偶数)时命题为真,则还需要用归纳假设再证 ( )
=(k+1)f(k+1)-(k+1) =(k+1)[f(k+1)-1], ∴当 n=k+1 时结论仍然成立. 由(1)(2)可知:f(1)+f(2)+…+f(n-1) =n[f(n)-1](n≥2,n∈N*).
[规律方法] 用数学归纳法证明等式的规则
(1)数学归纳法证明等式要充分利用定义,其中两个步骤缺一
A.n=k+1时等式成立
B.n=k+2时等式成立
C.n=2k+2时等式成立 D.n=2(k+2)时等式成立 B [因为n为偶数,故假设n=k成立后,再证n=k+2时等式 成立.]
1 1 1 1 3.已知 f(n)= + + +…+ 2,则 n n+1 n+2 n ( 1 1 A.f(n)中共有 n 项,当 n=2 时,f(2)= + 2 3 1 1 1 B.f(n)中共有 n+1 项,当 n=2 时,f(2)= + + 2 3 4 1 1 C.f(n)中共有 n -n 项,当 n=2 时,f(2)= + 2 3
左边=右边,等式成立. (2)假设 n=k(k≥2,k∈N*)时,结论成立,即 f(1)+f(2)+…+f(k-1)=k[f(k)-1],
那么,当 n=k+1 时, f(1)+f(2)+…+f(k-1)+f(k)=k[f(k)-1]+f(k) =(k+1)f(k)-k

【全套解析】高三数学一轮复习 6-7 数学归纳法课件 (理) 新人教A版

【全套解析】高三数学一轮复习 6-7 数学归纳法课件 (理) 新人教A版
D.假设n=k(k≥1)正确,再推n=k+2正确 解析:首先要注意n为奇数,其次还要使“n=k”能取到1,故选 B. 答案:B
高三总复习
人教A 版 · 数学 (理)
热点之二
用数学归纳法证明有关问题
用数学归纳法可以证明与正整数有关的恒等式、不等式、整除性 问题和几何问题等,应用数学归纳法要注意其基本步骤.
1 1 解析:f(n)表示n项的和,则f(n+1)= + n+1+1 n+1+2 1 1 +…+ + . n+1+n n+1+n+1 ∴f(n+1)-f(n) 1 1 1 = + - 2n+1 2n+2 n+1 1 1 = - . 2n+1 2n+2
答案:D
高三总复习
人教A 版 · 数学 (理)
高三总复习
人教A 版 · 数学 (理)
第七节
数学归纳法
高三总复习
人教A 版 · 数学 (理)
1.了解数学归纳法的原因,掌握用数学归纳法证 明问题的基本步骤. 2.能用数学归纳法证明一些简单的数学命题.
高三总复习
人教A 版 · 数学 (理)
1.归纳法 由一系列有限的特殊事例得出一般结论 的推理方法叫归纳法.根
高三总复习
人教A 版 · 数学 (理)
=(k+1)f(k+1)-(k+1) =(k+1)[f(k+1)-1], ∴当n=k+1时结论仍然成立. ∴f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N*).
高三总复习
人教A 版 · 数学 (理)
即时训练用数学归纳法证明: n 1 1 1 1 1+ ≤1+ + +…+ n≤ +n(n∈N*). 2 2 3 2 2 1 1 证明:(1)当n=1时,左式=1+ ,右式= +1, 2 2
1 1 1 4.用数学归纳法证明:“1+ + +…+ n <n(n∈N*, 2 3 2 -1 n>1)”时,由n=k(k>1)不等式成立,推理n=k+1时,左边应增 加的项数是________.

高考数学一轮复习 数学归纳法(理)课件

高考数学一轮复习 数学归纳法(理)课件

(nN*).
求证:f(1)+f(2)+…+f(n-1)=n·[f(n)-1](n≥2,n∈N*).
按数学归纳法的步骤进行证明即可.
【证明】 (1)当n=2时,左边=f(1)=1, 右边=2[1+ -1]=1, 左边=右边,等式成立. (2)假设n=k时,结论成立,即 f(1)+f(2)+…+f(k-1)=k[f(k)-1], 那么,当n=k+1时,
利用假设后,要注意不等式的放大和缩小.
【证明】 (1)当n=1时,左式=1+ ,右式 = +1,
即命题成立.
(2)假设当n=k(k∈N*)时命题成立,即 1k 2≤ 11 21 3...2 1 k≤ 1 2k, 则当n=k+1时,
又1+
1 2k2k.21k 1 2(k1), 即n=k+1时,命题成立. 由(1)(2)可知,命题对所有n∈N*都成立.
22+42+…+(2k)2+(2k+2)2 = k(k+1)(2k+1)+4(k+1)2 = (k+1)[k(2k+1)+6(k+1)] = (k+1)(2k2+7k+6)= (k+1) (k+2)(2k+3)=
(k+1)[(k+1)+1][2(k+1)+1], 即n=k+1时,等式成立. 由(1)、(2)可知,等式对所有的n∈N*都成立.
3.设Sn是数列{ }的前n项的和. 是否存在关于正整数n的函数f(n),使S1+S2+…+Sn-1= f(n)(Sn-1)对于大于1的正整数n都成立?并证明你的结论;
解:假设存在f(n),使等式成立.
当n=2时,S1=f(2)(S2-1), 即1=f(2)(1+ -1),解得f(2)=2.
当n=3时,S1+S2=f(3)(S3-1),
【解】 (1)由已知得 又∵{an}的公差大于0,∴a5>a2.∴a2=3,a5=9.

高考数学一轮总复习第6章6.7数学归纳法课件理171.ppt

高考数学一轮总复习第6章6.7数学归纳法课件理171.ppt

[双基夯实] 一、疑难辨析 判 断 下 列 结 论 的 正 误 . ( 正 确 的 打 “√” , 错 误 的 打 “×”) 1.用数学归纳法证明问题时,第一步是验证当 n=1 时结论成立.( × ) 2.所有与正整数有关的数学命题都必须用数学归纳法 证明.( × )
3.用数学归纳法证明问题时,归纳假设可以不 用.( × )
2.解题中要注意步骤的完整性和规范性,过程中要体现 数学归纳法证题的形式.
板块三 启智培优·破译高考
规范答题系列 5——怎样解决数学归纳法中的“归纳— 猜想—证明”问题
[2014·广东高考]设数列{an}的前 n 项和为 Sn,满足 Sn =2nan+1-3n2-4n,n∈N*,且 S3=15.
4.不论是等式还是不等式,用数学归纳法证明时,由 n=k 到 n=k+1 时,项数都增加了一项.( × )
二、小题快练
1.[课本改编]在应用数学归纳法证明凸 n 边形的对角
线为12n(n-3)条时,第一步检验 n 等于(
)
A.1 B.2 C.3 D.0
解析 凸 n 边形的边最少有三条,故第一个值 n0 取 3.
核心规律
数学归纳法是一种重要的数学思想方法,只适用于与正 整数有关的命题,证明过程的表述严格而且规范,两个步骤 缺一不可.第二步中,归纳假设起着“已知条件”的作用, 当 n=k+1 时一定要运用它,否则就不是数学归纳法.第二 步的关键是“一凑假设,二凑结论”.
满分策略
1.在用数学归纳法证明问题的过程中,要注意从 k 到 k +1 时命题中的项与项数的变化,防止对项数估算错误.
②假设 n=k(k∈N*)时等式成立,即有 2× 1 4+4× 1 6+6× 1 8+…+2k21k+2=4k+ k 1,

高考数学一轮复习 6.7数学归纳法练习 理

高考数学一轮复习 6.7数学归纳法练习 理

第七节 数学归纳法基础回顾数学归纳法:对于某些与正整数n 有关的命题常常采用下面的方法来证明它的正确性.先证明当n 取第一个值n 0时命题成立;然后假设当n =k(k∈N *,k ≥n 0)时命题成立,证明当n =k +1时命题也成立.这种证明方法就叫做数学归纳法.用数学归纳法证明一个与正整数(或自然数)有关的命题的步骤:(1)(归纳奠基)证明当n 取第一个值n 0(例如n 0=1,n 0=2等)时结论正确;(2)(归纳递推)假设当n =k(k ∈N *,且k≥n 0)时结论正确,证明当n =k +1时结论也正确.由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确.用数学归纳法来证明与正整数有关的命题时,要注意: 递推基础不可少,归纳假设要用到,结论写明莫忘掉.基础自测1.用数学归纳法证明“2n>n 2+1对于n≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取(C )A .2B .3C .5D .6解析:当n ≤4时,2n >n 2+1不成立,n ≥5时,2n >n 2+1成立,所以取n 0=5.2.下列代数式中(其中k∈N *),能被9整除的是(C )A .6+6×7kB .2+7k -1C .3(2+7k )D .2(2+7k +1)解析:(1)当k =1时,显然只有3(2+7k)能被9整除.(2)假设当k =n(n∈N *)命题成立,即3(2+7n )能被9整除,那么3(2+7n +1)=21(2+7n)-36,这就说明,当k =n +1时命题也成立.故选C.3.(2013·厦门质检)观察下列不等式:1>12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13+…+131>52,…,由此猜测第n 个不等式为1+12+13+…+12n -1>n 2(n∈N *). 解析:3=22-1,7=23-1,15=24-1,可猜测:1+12+13+…+12n -1>n 2.4.在数列{a n }中,a 1=13,且S n =n(2n -1)a n ,通过计算a 2,a 3,a 4,猜想a n 的表达式是a n =1(2n -1)(2n +1)(n∈N *).解析:a 1=13=11×3,a 2=115=13×5,a 3=135=15×7,猜想a n =1(2n -1)(2n +1).高考方向1.高考对数学归纳法较少单独考查,一般和合情推理、数列、不等式、平面几何等知识结合,在知识交汇点处命题.2.题型以解答题为主,难度中等偏上.品味高考 1.已知f(x)=12⎝⎛⎭⎪⎫x -1x .(1)若x≥1时,证明:f(x)≥ln x ;(2)证明:1+12+13+…+1n >ln(n +1)+n2(n +1)(n ≥1).证明:(1)设g(x)=f(x)-ln x =x 2-12x -ln x (x≥1),则g ′(x)=12x 2-1x +12=x 2-2x +12x 2=(x -1)22x 2≥0(x≥1),所以g(x)在[1,+∞)上单调递增,即当x≥1时,g (x)≥g(1)=0,即f(x)≥ln x.(2)方法一 由(1)有f(x)=12⎝ ⎛⎭⎪⎫x -1x ≥ln x (x≥1),且当x >1时,12⎝ ⎛⎭⎪⎫x -1x >ln x.令x =k +1k ,有ln k +1k <12[k +1k -k k +1]=12[⎝ ⎛⎭⎪⎫1+1k -⎝ ⎛⎭⎪⎫1-1k +1],即ln(k +1)-ln k <12⎝ ⎛⎭⎪⎫1k +1k +1,k =1,2,3,…,n.将上述n 个不等式依次相加,得ln(n +1)<12+(12+13+…+1n )+12(n +1).整理得1+12+13+…+1n >ln(n +1)+n2(n +1).方法二 用数学归纳法证明.①当n =1时,左边=1,右边=ln 2+14<1,不等式成立.②假设n =k(k≥1,k ∈N *)时,不等式成立,即 1+12+13+…+1k >ln(k +1)+k 2(k +1). 那么n =k +1时,1+12+13+…+1k +1k +1>ln(k +1)+k 2(k +1)+1k +1=ln(k +1)+k +22(k +1).由(1)有f(x)=12⎝⎛⎭⎪⎫x -1x ≥ln x (x≥1).令x =k +2k +1,得12⎝ ⎛⎭⎪⎫k +2k +1-k +1k +2≥ln k +2k +1=ln(k +2)-ln(k +1). ∴ln(k +1)+k +22(k +1)≥ln(k +2)+k +12(k +2).∴1+12+13+…+1k +1k +1>ln(k +2)+k +12(k +2).这就是说,当n =k +1时,不等式也成立.根据①,②,可知不等式对任何n∈N *都成立.2.函数f(x)=x 2-2x -3.定义数列{x n }如下:x 1=2,x n +1是过两点P(4,5),Q n (x n ,f(x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x x +1<3; (2)求数列{x n }的通项公式.(1)证明:因为f(4)=42-8-3=5,故点P(4,5)在函数f(x)的图象上,故由所给出的两点P(4,5),Q n (x n ,f(x n ))可知,直线PQ n 斜率一定存在. 故有直线PQ n 的直线方程为y -5=f (x n )-5x n -4·(x -4).令y =0,可求得-5=x 2n -2x n -8x n -4·(x -4)⇔-5x n +2=x -4⇔x =4x n +3x n +2.所以x n +1=4x n +3x n +2.下面用数学归纳法证明2≤x n <3. ①当n =1时,x 1=2,满足2≤x 1<3.②假设n =k(k≥1,k ∈N *)时,2≤x k <3成立,则当n =k +1时,x k +1=4x k +3x k +2=4-5x k +2,由2≤x k <3⇒4≤x k +2<5⇒1<5x k +2≤54⇒2<114≤4-5x k +2<3,即2≤x k +1<3也成立. 综上可知,2≤x n <3对任意正整数恒成立.下面证明x n <x n +1:由x n +1-x n =4x n +3x n +2-x n =4x n +3-x 2n -2x n x n +2=-(x n -1)2+4x n +2,由2≤x n <3⇒0<-(x n -1)2+4≤3,故有x n +1-x n >0,即x n <x n +1.综合①②可知,2≤x n <x n +1<3恒成立. (2)解析:由(1)及题意得x n +1=3+4x n2+x n.设b n =x n -3,则1b n +1=5b n +1,1b n +1+14=5⎝ ⎛⎭⎪⎫1b n +14,所以数列⎩⎨⎧⎭⎬⎫1b n +14是首项为-34,公比为5的等比数列.因此1b n +14=-34·5n -1,即b n =-43·5n -1+1,所以数列{x n }的通项公式为x n =3-43·5n -1+1(n∈N *). 高考测验 1.观察下表:1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10… 设第n 行的各数之和为S n ,则S n =(2n -1)2.解析:第一行,1=12,第二行,2+3+4=9=32,第三行,3+4+5+6+7=25=52,第四行,4+5+6+7+8+9+10=49=72,归纳:第n 行的各数之和S n =(2n -1)2. 2.已知函数f(x)=ax 1+x a (x>0,a 为常数),数列{a n }满足:a 1=12,a n +1=f(a n ),n ∈N *. (1)当a =1时,求数列{a n }的通项公式;(2)在(1)的条件下,证明对∀n ∈N *有:a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2=n (n +5)12(n +2)(n +3).(1)解析:当a =1时,a n +1=f(a n )=a n 1+a n ,两边取倒数,得1a n +1-1a n =1,故数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=2为首项,1为公差的等差数列,所以1a n =n +1,a n =1n +1,n∈N *. (2)证明:方法一 由(1)知a n =1n +1,故对k =1,2,3,…,a k a k +1a k +2=1(k +1)(k +2)(k +3)=12⎣⎢⎡⎦⎥⎤1(k +1)(k +2)-1(k +2)(k +3) 所以a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2 =12⎣⎢⎡⎝ ⎛⎭⎪⎫12×3-13×4+⎝ ⎛⎭⎪⎫13×4-14×5+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1(n +1)(n +2)-1(n +2)(n +3)=12⎣⎢⎡⎦⎥⎤12×3-1(n +2)(n +3)=n (n +5)12(n +2)(n +3). 方法二 ①当n =1时,等式左边=12×3×4=124,等式右边=1×(1+5)12×(1+2)(1+3)=124,左边=右边,等式成立;②假设当n =k(k≥1)时等式成立,即a 1a 2a 3+a 2a 3a 4+…+a k a k +1a k +2=k (k +5)12(k +2)(k +3),则当n =k +1时,a 1a 2a 3+a 2a 3a 4+…+a k a k +1a k +2+a k +1a k +2a k +3 =k (k +5)12(k +2)(k +3)+1(k +2)(k +3)(k +4)=k (k +5)(k +4)+1212(k +2)(k +3)(k +4)=k 3+9k 2+20k +1212(k +2)(k +3)(k +4) =k 2(k +1)+4(k +1)(2k +3)12(k +2)(k +3)(k +4)=(k +1)(k +2)(k +6)12(k +2)(k +3)(k +4)=(k +1)[(k +1)+5]12[(k +1)+2][(k +1)+3].这就是说当n =k +1时,等式成立,综①②知对于∀n ∈N *有:a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2=n (n +5)12(n +2)(n +3).课时作业1.(2013·福建三明模拟)某个与正整数n 有关的命题,如果当n =k(n∈N *,k ≥1)时,该命题成立,则一定可推得当n =k +1时,该命题也成立,现已知n =5时,该命题不成立,则(C )A .n =4时该命题成立B .n =6时该命题成立C .n =4时该命题不成立D .n =6时该命题不成立解析:因为“当n =k(k∈N *,k ≥1)时,该命题成立,则一定能推出当n =k +1时,该命题也成立”,故可得n =5时该命题不成立,则一定有n =4时,该命题也不成立.故选C.2.若f(n)=1+12+13+14+…+16n -1(n∈N *),则f(1)为(C )A .1B .15C .1+12+13+14+15D .非以上答案解析:注意f(n)的项的构成规律,各项分子都是1,分母是从1到6n -1的自然数,故f(1)=1+12+13+14+15.故选C.3.(2013·杭州质检)用数学归纳法证明不等式1n +1+1n +2+…+12n <1314(n≥2,n ∈N *)的过程中,由n =k 递推到n =k +1时不等式左边(C )A .增加了一项12(k +1)B .增加了两项12k +1、12k +2C .增加了B 中两项但减少了一项1k +1D .以上各种情况均不对解析:当n =k 时,左边=1k +1+1k +2+…+12k,当n =k +1时,左边=1k +2+1k +3+…+12k +12k +1+12k +2,∴增加了12k +1+12k +2,减少了1k +1,故选C.4.已知f(n)=(2n +7)·3n+9,存在自然数m ,使得对任意n ∈N ,都能使m 整除f(n),则最大的m 的值为(C )A .30B .26C .36D .6解析:∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36, ∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除.证明:n =1,2时,由上得证,设n =k(k≥2)时,f(k)=(2k +7)·3k+9能被36整除,则n =k +1时,f(k +1)-f(k)=(2k +9)·3k +1-(2k +7)·3k =(6k +27)·3k -(2k +7)·3k=(4k +20)·3k =36(k +5)·3k -2(k≥2).∴f(k +1)能被36整除.∵f(1)不能被大于36的数整除, ∴所求最大的m 值等于36.故选C.5.用数学归纳法证明等式:1+2+3+…+n 2=n 4+n 22(n∈N *),则从n =k 到n =k +1时,左边应添加的关于k 的表达式为(k 2+1)+(k 2+2)+…+(k +1)2.解析:n =k 时,等式左边=1+2+3+…+k 2,n =k +1时,等式左边=1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2.比较上述两个式子,n =k +1时,等式的左边是在假设n =k 时等式成立的基础上,等式的左边加上了(k 2+1)+(k 2+2)+…+(k +1)2.6.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有:(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =nn +1. 解析:由(S 1-1)2=S 21,得:S 1=12;由(S 2-1)2=(S 2-S 1)S 2,得:S 2=23;由(S 3-1)2=(S 3-S 2)S 3,得:S 3=34.猜想:S n =n n +1. 7.平面内有n(n≥2)条直线,任何两条都不平行,任何三条不过同一点,利用数学归纳法证明线段的条数为f(n),则由n =k 到n =k +1增加的线段数是2k -1.解析:增加一条直线,该直线被原来的k 条直线分出k -1段线段,而原来的k 条线段中的每一条,都多出1条线段,因此增加了k -1+k =2k -1条.8.数列{a n }中,a n >0,a n ≠1,且a n +1=3a n 2a n +1(n∈N *).(1)证明:a n ≠a n +1;(2)若a 1=34,计算a 2,a 3,a 4的值,并求出数列的通项公式.(1)证明:若a n =a n +1,即3a n2a n +1=a n ,得a n =0或a n =1与题设矛盾, ∴a n ≠a n +1.(2)解析:a 2=910,a 3=2728,a 4=8182,猜想a n =3n3n +1(n∈N *),用数学归纳法证明:①当n =1时,由上可得结论成立.②假设当n =k 时,结论成立,即a k =3k3k +1,那么当n =k +1时,a k +1=3a k 2a k +1=3·3k3k +12·3k 3k +1+1=3k +12·3k +3k+1=3k +13k +1+1, ∴当n =k +1时,结论也成立.由①②,可知a n =3n 3n +1对一切正整数都成立.9.设曲线y =ax 33+12bx 2+cx 在点A(x ,y)处的切线斜率为k(x),且k(-1)=0.对一切实数x ,不等式x≤k(x)≤12(x 2+1)恒成立(a≠0).(1)求k(1)的值;(2)求函数k(x)的表达式;(3)求证:1k (1)+1k (2)+…+1k (n )>2nn +2.(1)解析:由x≤k(x)≤12(x 2+1)得1≤k(1)≤1,所以k(1)=1.(2)解析:k(x)=y′=ax 2+bx +c(a≠0), 由k(1)=1,k(-1)=0得⎩⎪⎨⎪⎧a +b +c =1,a -b +c =0 ⇒a +c =12,b =12.又x≤k(x)≤12(x 2+1)对x∈R 恒成立,则由x≤k(x)恒成立,得ax 2-12x +c≥0(a≠0)恒成立,得⎩⎪⎨⎪⎧a>0,Δ=14-4ac≤0,a +c =12⇒a =c =14. 同理,由k(x)≤12(x 2+1)恒成立,得⎝ ⎛⎭⎪⎫12-a x 2-12x +12-c ≥0恒成立,也可得a =c =14.综上所述,a =c =14,b =12,所以k(x)=14x 2+12x +14.(3)证明:证法一 k(n)=n 2+2n +14=(n +1)24⇒1k (n )=4(n +1)2,要证原不等式成立,即证122+132+…+1(n +1)2>n2n +4, 因为1(n +1)2>1(n +1)(n +2)=1n +1-1n +2, 所以122+132+…+1(n +1)2>12-13+13-14+…+1n +1-1n +2=12-1n +2=n 2n +4, 所以1k (1)+1k (2)+…+1k (n )>2n n +2.证法二 由k(n)=n 2+2n +14=(n +1)24⇒1k (n )=4(n +1)2,①当n =1时,左边=1,右边=23,左边>右边,所以n =1时,不等式成立;②假设当n =m 时,不等式成立,即1k (1)+1k (2)+…+1k (m )>2mm +2.当n =m +1时,左边=1k (1)+1k (2)+…+1k (m )+1k (m +1)>2m m +2+4(m +2)2=2m 2+4m +4(m +2)2,由于2m 2+4m +4(m +2)2-2(m +1)m +3=4(m +2)2(m +3)>0, 所以1k (1)+1k (2)+…+1k (m )+1k (m +1)>2(m +1)(m +1)+2,即当n =m +1时,不等式也成立. 综合①②可知,1k (1)+1k (2)+…+1k (n )>2nn +2.。

高考数学 6.7 数学归纳法知识研习课件 理(通用版)

高考数学 6.7 数学归纳法知识研习课件 理(通用版)

(a≠0),在验证 n=1 时,等式左端计算所得的项是( )
A.1 C.1+a+a2
B.1+a D.1+a+a2+a3
解析:n=1,左边为1+a+a2. 答案:C
立体设计·走进新课堂
第六章 不等式、推理与证明
3.设 f(n)=n+1 1+n+1 2+n+1 3+…+21n(n∈N*),那么
f(n+1)-f(n)等于( )
立体设计·走进新课堂
第六章 不等式、推理与证明
因为an≥0恒成立,所以ak+2+ak+1+1>0, 所以ak+2-ak+1>0,即ak+1<ak+2, 所以命题对n=k+1时也成立. 综上①②可知,原命题成立.
立体设计·走进新课堂
第六章 不等式、推理与证明
【即时巩固 2】 数列{an}中,a1=52,an+1=2aan-n2 1 (n∈N*),用数学归纳法证明:an>2(n∈N*).
.
1
第六章 不等式、推理与证明
一般地,证明一个与正整数n有关的命题,可按下列步 骤进行:
(1)(归纳奠基) 证明当n取第一个值n0时命题成立 ; (2)(归纳递推) 假设n=k(k∈N*,k≥n0)时命题成立, 证明当n=k+1时结论也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所 有正整数n都成立.上述证明方法叫做 数学归纳法 .
第六章 不等式、推理与证明
考点三 证明整除问题 【案例3】 用数学归纳法证明:f(n)=3·52n+1+23n+ 1(n∈N*)能被17整除. 关键提示:用数学归纳法证明整除问题,由k过渡到k+ 1时常使用拼凑法. 证明:(1)当n=1时, f(1)=3×53+24=391=17×23, 故f(1)能被17整除,命题成立.
第六章 不等式、推理与证明

高考数学 6-7数学归纳法课件 理 新人教B版

高考数学 6-7数学归纳法课件 理 新人教B版

1.用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时, 从n=k到n=k+1,左边需增添的代数式是( A. 2k+ 2 C. 2k+ 1 B.2k+3 D.(2k+2)+(2k+3) )
解析:当n=k时,左边共有2k+1个连续自然数相加, 即1+2+3+…+(2k+1),
所以当n=k+1时,左边共有2k+3个连续自然数相加,即1+2+
1 答案:an= 2n-12n+1
5.(2013年徐州模拟)用数学归纳法证明“当n为正奇数时,xn+yn 能被x+y整除”,当第二步假设n=2k-1(k∈N*)命题为真时,进而需 证n=________时,命题亦真. 解析:∵n为正奇数,假设n=2k-1成立后,需证明的应为n=2k
+1时成立.
即(an-an-1)2=2(an-1+an). 由(1)可猜想:an=n(n+1)(n∈N*).
下面用数学归纳法予以证明: ①当 n=1 时,命题显然成立. ②假设当 n=k(k∈N*)时命题成立,即有 ak=k(k+1),则当 n=k+1 时,由归纳假设及(ak+1-ak)2=2(ak+ak+1), 得[ak+1-k(k+1)]2=2[k(k+1)+ak+1],

)
B.k 项 D.2k 项
1 1 1 1 1 1 解析:1+ + +…+ k+1 -1+2+3+…+ k 2 3 2 -1 2 -1
1 1 1 = k+ k +…+ k+1 ,共增加了 2k 项,故选 D. 2 2 +1 2 -1
答案:D
3.某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可 推得当 n= k+ 1时该命题也成立,现已知 n = 5 时,该命题不成立,那
(1)写出a1,a2,a3;

高考理科第一轮复习课件(6.7数学归纳法)

高考理科第一轮复习课件(6.7数学归纳法)

1.用数学归纳法证明2n≥n2(n≥4,n∈N+)第一步应验证n等
于(
(A)1
)
(B)2 (C)3 (D)4
【解析】选D.由n≥4,n∈N+可知,应验证n=4时不等式成立.
2.若 f n 1 1 1
1 则f(1)为( n N , 2 3 5n 1 1 A 1 B 4 1 1 1 1 C 1 D 1 4 2 3 4 【解析】选D. f 1 1 1 1 1 . 2 3 4
(3n 2+ + 11n 10)
对一切n∈N+都成立.
下面用数学归纳法证明:
(1)当n=1时,由上面可知等式成立.
(2)假设n=k(k≥1,k∈N+)时等式成立,
即 122+232++k k+ 2 = k k 1 3k 2+ + , 1 11k 10
12
则当n=k+1时,
2k 1 2k 2 k 1
=(k+1)(k+2)„(k+k)·2(2k+1), 所以多乘了2(2k+1).
5.在数列{an}中,a1= 1 且Sn=n(2n-1)an,通过求a2,a3,
3
a4,猜想an的表达式,其结果是. 【解析】由 a1=1 且Sn=n(2n-1)an得, 2= 1 ,a 3= 1 ,a 4= 1 , a
)
3.用数学归纳法证明:+ 1 1+ + 1
2 3
1 n (n∈N+且n>1) n 2 1
时,在第二步证明从 n=k 到 n=k+1 成立时,左边增加 的项数是( (A)2k ) (B)2k-1 (C)2k-1 (D)2k+1

高考数学一轮复习 6.7 数学归纳法课件 理 新人教A版

高考数学一轮复习 6.7 数学归纳法课件 理 新人教A版
第十页,共49页。
考点
互动探究
核心突破 · 导与练
(对应学生用书 P147)
第十一页,共49页。
考点 1 用数学归纳法证明等式 用数学归纳法证明与正整数有关的一些等式时,关键在于
“先看项”,弄清等式两边的构成规律,等式的两边各有多少项, 项的多少与 n 的取值是否有关,由 n=k 到 n=k+1 时等式的两边 变化的项,然后正确写出归纳证明的步骤,使问题得以证明.
第四页,共49页。
基础
知识回顾
感悟教材 · 学与思
(对应学生用书 P146)
第五页,共49页。
1.数学归纳法的适用对象
数学归纳法是用来证明关于与 正整数n
有关命题
的一种方法,若 n0 是起始值,则 n0 是 使命题成立的最小正整数 .
第六页,共49页。
2.数学归纳法的步骤 用数学归纳法证明命题时,其步骤如下: ①当 n=n0(n0∈N*)时,验证命题成立; ②假设 n=k(k≥n0,k∈N*)时命题成立,推证 n= k+1 时命题也成立,从而推出命题对所有的 从n0开始的正整数n 命题成立,其中第一步是归纳奠基,第二步是归纳递推,二者缺 一不可.
第十四页,共49页。
=(k+1)fk+1-k+1 1-k =(k+1)f(k+1)-(k+1) =(k+1)[f(k+1)-1], ∴当 n=k+1 时结论仍然成立. 由(1)(2)可知:f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n ∈N*).
第十五页,共49页。
用数学归纳法证明恒等式应注意:明确初始值 n0 的取值并 验证 n=n0 时命题的真假(必不可少).“假设 n=k(k∈N*且 k≥n0) 时命题正确”并写出命题形式分析“n=k+1 时”命题是什么, 并找出与“n=k”时命题形式的差别.弄清左端应增加的项,明 确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、 因式分解、添拆项、配方等.简言之:两个步骤、一个结论;递 推基础不可少,归纳假设要用到,结论写明莫忘掉.

高中数学高三第六章不等式数学归纳法(教案)

高中数学高三第六章不等式数学归纳法(教案)

高三一轮复习 6.7 数学归纳法【教学目标】1.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.【重点难点】1。

教学重点:了解数学归纳法的原理并能用数学归纳法证明一些简单的数学命题;2。

教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】叫做数学归纳法.2.数学归纳法的框图表示1.必知关系;数学归纳法是一种只适用于与正整数有关的命题的证明方法,第一步是递推的“基础”,第二步是递推的“依据",两个步骤缺一不可.2.必清误区;运用数学归纳法应注意以下两点:(1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值.(2)第二步中,归纳假设起着“已知条件”的作用,在证明n =k+1时,命题也成立的过程中一定要用到它,否则就不是拨从而提高学生的解题能力和兴教师引导学生及时总结,以帮助学生形成完整的认知结构。

强理解记忆,提高解题技能。

k+1·错误!=错误!,要证当n=k+1时结论成立,只需证错误!≥错误!,即证错误!≥k+1k+2,由基本不等式得错误!=错误!≥错误!成立,故错误!≥错误!成立,所以,当n=k+1时,结论成立.由①②可知,n∈N*时,不等式错误!·错误!·……·错误!〉错误!成立.跟踪训练:1。

已知数列{a n},a n≥0,a1=0,a错误!+a n+1-1=a错误!。

求证:当n∈N*时,a n<a n+1.【证明】(1)当n=1时,因为a2是方程a错误!+a2-1=0的正根,所以a1〈a2。

(2)假设当n=k(k∈N*)时,。

高考一轮复习理科数学课件数学归纳法

高考一轮复习理科数学课件数学归纳法

不等式证明中的数学归纳法应用
02
选取典型的不等式证明问题,通过数学归纳法简化证明过程,
体现数学归纳法在不等式证明中的有效性。
几何级数求和公式的数学归纳法推导
03
结合几何级数的特点,利用数学归纳法推导其求和公式,展示
数学归纳法在推导公式方面的应用。
解题思路与方法总结
01
明确数学归纳法的使用条件
强调在使用数学归纳法时,必须明确问题的性质,确保问题满足数学归
多样化题型
为了全面提高学生的解题 能力,应设置多样化的题 型,包括选择题、填空题 、解答题等。
答案解析与点评
详细解析
对每道提高训练题目,都应给出详细的答案解析,帮 助学生理解解题思路和方法。
点评到位
在解析过程中,要对学生的解题思路和方法进行点评 ,指出其优点和不足,提出改进建议。
举一反三
通过答案解析和点评,引导学生举一反三,掌握一类 题目的解题方法和技巧。
定义
数学归纳法是一种数学证明方法 ,通常用于证明某个与自然数n有 关的命题P(n)对于所有正整数n都 成立。
作用
通过假设n=k时命题成立,推导 出n=k+1时命题也成立,从而证述与证明过程
原理
数学归纳法基于自然数的序性质,即若P(n)对n成立,则P(n+1)也对n+1成立 。
坚定信心,积极备战
高考是人生的重要转折点,要坚定信 心,积极备战,相信自己一定能够取 得好成绩。
制定计划,合理安排时间
制定合理的复习计划,合理安排时间 ,做到高效复习,避免盲目、无计划 的复习。
注重基础,提高能力
高考数学注重基础知识和能力的考查 ,因此要注重基础知识的学习和掌握 ,提高自己的解题能力。

7-6 专题研究 数学归纳法 PPT课件 【2021衡水中学高考一轮总复习 理科数学】

7-6 专题研究  数学归纳法 PPT课件  【2021衡水中学高考一轮总复习 理科数学】

第12页
高考一轮总复习 · 数学·理(新课标版)
题型二 证明不等式
第13页
高考一轮总复习 · 数学·理(新课标版)
例 2 用数学归纳法证明:对一切大于 1 的自然数 n,不等 式1+131+15…1+2n1-1> 2n2+1成立.
【证明】 (1)当 n=2 时,左=1+13=43,右= 25,左>右,∴ 不等式成立.
1.数学归纳法的适证对象 数学归纳法是用来证明关于正整数命题的一种方法,若 n0 是起始值,则 n0 是使命题成立的最小正整数. 2.数学归纳法的步骤 用数学归纳法证明命题时,其步骤如下: (1)当 n=n0(n0=N*)时,验证命题成立; (2)假设 n=k,(k≥n0,k∈N*)时命题成立,推证 n=k+1 时 命题也成立,从而推出对所有的 n≥n0,n∈N*命题成立,其中第 一步是归纳基础,第二步是归纳递推,二者缺一不可.
(2)证明的关键:由 n=k 时命题成立证 n=k+1 时命题也成 立,在归纳假设使用后可运用比较法、综合法、分析法、放缩法 等来加以证明,充分应用均值不等式、不等式的性质等放缩技巧, 使问题得以简化.
第16页
高考一轮总复习 · 数学·理(新课标版)
思考题 2 求证:n+1 1+n+1 2+…+31n>56(n≥2,n∈N*). 【证明】 (1)当 n=2 时,左边=13+14+15+16=5670>56,不等式 成立. (2)假设 n=k(k≥2,k∈N*)时命题成立,即k+1 1+k+1 2+…+31k 5 >6.
∴当 n=k+1 时不等式亦成立. ∴原不等式对一切 n≥2,n∈N*均成立. 【答案】 略
第18页
高考一轮总复习 · 数学·理(新课标版)
题型三 证明整除问题

【金牌精品】高考数学(理)一轮复习:6-7数学归纳法

【金牌精品】高考数学(理)一轮复习:6-7数学归纳法

课后课时作业[A 组·基础达标练]1.用数学归纳法证明不等式1+12+14+…+12n -1>12764成立,起始值至少应取为( )A .7B .8C .9D .10答案 B解析 左边的和为1-12n1-12=2-21-n ,当n =8时,和为2-2-7>12764,故选B.2.[2016·青岛高三月考]用数学归纳法证明1n +1+1n +2+…+12n >1134时,由k 到k +1,不等式左边的变化是( )A .增加12(k +1)项B .增加12k +1和12k +2两项C .增加12k +1和12k +2两项同时减少1k +1项D .以上结论都不对 答案 C 解析 n =k 时,左边=1k +1+1k +2+…+1k +kn =k +1时,左边=1(k +1)+1+1(k +1)+2+…+1(k +1)+(k +1),由“n =k ”变成“n =k +1”时,不等式左边的变化是12k +1+12k +2-1k +1. 3.[2016·安庆高三月考]用数学归纳法证明2n >n 2(n ≥5,n ∈N +),第一步应验证( )A .n =4B .n =5C .n =6D .n =7答案 B解析 根据数学归纳法的步骤,首先要验证n 取第一个值时命题成立,又n ≥5,故第一步验证n =5,故选B.4.[2015·德州一模]用数学归纳法证明“1+2+22+…+2n +2=2n+3-1”,在验证n =1时,左边的式子为( ) A .1 B .1+2 C .1+2+22 D .1+2+22+23答案 D解析 根据数学归纳法的步骤可得,n =1,左边为1+2+22+23. 5.[2015·潍坊模拟]某个命题与正整数有关,若当n =k (k ∈N *)时该命题成立,那么可推得当n =k +1时该命题也成立,现已知当n =4时该命题不成立,那么可推得( )A .当n =5时,该命题不成立B .当n =5时,该命题成立C .当n =3时,该命题成立D .当n =3时,该命题不成立 答案 D解析 由n =k 时成立可推得n =k +1时成立,取逆否命题,可知选D.6.[2015·南昌模拟]已知f (n )=12+22+33+…+(2n )2,则f (k +1)与f (k )的关系是( )A .f (k +1)=f (k )+(2k +1)2+(2k +2)2B .f (k +1)=f (k )+(k +1)2C .f (k +1)=f (k )+(2k +2)2D .f (k +1)=f (k )+(2k +1)2 答案 A解析 根据数学归纳法步骤可得f (k +1)=12+22+33+…+(2k )2+(2k +1)2+(2k +2)2=f (k )+(2k +1)2+(2k +2)2,可知选A.7.设S n =1+12+13+14+…+12n ,则S n +1-S n =______. 答案 12n +1+12n +2+12n +3+…+12n +2n解析 S n +1=1+12+13+14+…+12n +1S n +1-S n =12n +1+12n +2+12n +3+…+12n +2n .8.设数列{a n }的前n 项和为S n ,且对任意的正整数n 都有(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =______.答案 nn +1解析 令n =1, S 1=a 1=12 n =2,S 2=a 1+a 2=23 n =3,S 3=a 1+a 2+a 3=34 猜想n =n ,S n =nn +1.9.[2015·陕西一模]观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,由以上可推测出一个一般性结论:对于n ∈N *,1+2+…+n +…+2+1=________.答案 n 2解析 ∵1=12,1+2+1=22,1+2+3+2+1=32,1+2+3+4+3+2+1=42,…,∴归纳可得1+2+…+n +…+2+1=n 2.10.[2016·云南名校联考]观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为________.答案 ⎣⎢⎡⎦⎥⎤n (n +1)22解析 由第一个等式13=12,得13=(1+0)2;第二个等式13+23=32,得13+23=(1+2)2;第三个等式13+23+33=62,得13+23+33=(1+2+3)2;第四个等式13+23+33+43=102,得13+23+33+43=(1+2+3+4)2,由此可猜想第n 个等式为13+23+33+43+…+n 3=(1+2+3+…+n )2=⎣⎢⎢⎡⎦⎥⎥⎤n (n +1)22. [B 组·能力提升练]1.[2015·湖北高考]已知数列{a n }的各项均为正数,b n =n ⎝⎛⎭⎪⎫1+1n na n (n ∈N +),e 为自然对数的底数.(1)求函数f (x )=1+x -e x的单调区间,并比较⎝ ⎛⎭⎪⎫1+1n n 与e 的大小; (2)计算b 1a 1,b 1b 2a 1a 2,b 1b 2b 3a 1a 2a 3,由此推测计算b 1b 2…b n a 1a 2…a n 的公式,并给出证明;(3)令c n =(a 1a 2…a n )1n ,数列{a n },{c n }的前n 项和分别记为S n ,T n ,证明:T n <e S n .解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=1-e x .当f ′(x )>0,即x <0时,f (x )单调递增; 当f ′(x )<0,即x >0时,f (x )单调递减.故f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞). 当x >0时,f (x )<f (0)=0,即1+x <e x . 令x =1n ,得1+1n <e 1n ,即⎝⎛⎭⎪⎫1+1n n <e.① (2)b 1a 1=1·⎝ ⎛⎭⎪⎫1+111=1+1=2;b 1b 2a 1a 2=b 1a 1·b 2a 2=2·2⎝ ⎛⎭⎪⎫1+122=(2+1)2=32;b 1b 2b 3a 1a 2a 3=b 1b 2a 1a 2·b 3a 3=32·3⎝ ⎛⎭⎪⎫1+133=(3+1)3=43. 由此推测:b 1b 2…b na 1a 2…a n =(n +1)n .②下面用数学归纳法证明②.a .当n =1时,左边=右边=2,②成立.b .假设当n =k (k ∈N *且k ≥1)时,②成立,即b 1b 2…b ka 1a 2…a k=(k +1)k .当n =k +1时,b k +1=(k +1)⎝ ⎛⎭⎪⎪⎫1+1k +1k +1·a k +1,由归纳假设可得 b 1b 2…b k b k +1a 1a 2…a k a k +1=b 1b 2…b k a 1a 2…a k ·b k +1a k +1=(k +1)k ·(k +1)⎝ ⎛⎭⎪⎪⎫1+1k +1k +1=(k +2)k+1.所以当n =k +1时,②也成立.根据a 、b ,可知②对一切正整数n 都成立.(3)证明:由c n 的定义,②,算术-几何平均不等式,b n 的定义及①得T n =c 1+c 2+c 3+…+c n=(a 1)11+(a 1a 2)12+(a 1a 2a 3)13+…+(a 1a 2…a n )1n =(b 1)112+(b 1b 2)123+(b 1b 2b 3)134+…+(b 1b 2…b n )1n n +1 ≤b 11×2+b 1+b 22×3+b 1+b 2+b 33×4+…+b 1+b 2+…+b n n (n +1)=b 1⎣⎢⎢⎡⎦⎥⎥⎤11×2+12×3+…+1n (n +1)+b 2⎣⎢⎡12×3+13×4+…+⎦⎥⎥⎤1n (n +1)+…+b n ·1n (n +1)=b 1⎝ ⎛⎭⎪⎪⎫1-1n +1+b 2⎝ ⎛⎭⎪⎪⎫12-1n +1+…+b n ⎝ ⎛⎭⎪⎪⎫1n -1n +1 <b 11+b 22+…+b n n=⎝ ⎛⎭⎪⎫1+111a 1+⎝ ⎛⎭⎪⎫1+122a 2+…+⎝ ⎛⎭⎪⎫1+1n n a n <e a 1+e a 2+…+e a n =e S n .即T n <e S n .2.[2015·江苏高考]已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n }.令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明. 解 (1)f (6)=13. (2)当n ≥6时,f (n )=下面用数学归纳法证明:①当n =6时,f (6)=6+2+62+63=13,结论成立;②假设n =k (k ∈N *且k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:a .若k +1=6t ,则k =6(t -1)+5,此时有f (k +1)=f (k )+3=k +2+k -12+k -23+3=(k +1)+2+k +12+k +13,结论成立;b .若k +1=6t +1,则k =6t ,此时有f (k +1)=f (k )+1=k +2+k 2+k3+1=(k +1)+2+(k +1)-12+(k+1)-13,结论成立;c.若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+k-12+k-13+2=(k+1)+2+k+12+(k+1)-23,结论成立;d.若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+k2+k-23+2=(k+1)+2+(k+1)-12+k+13,结论成立;e.若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+k-12+k3+2=(k+1)+2+k+12+(k+1)-13,结论成立;f.若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+1=k+2+k2+k-13+1=(k+1)+2+(k+1)-12+(k+1)-23,结论成立.综上所述,结论对满足n≥6的自然数n均成立.。

高三一轮复习6.7 数学归纳法

高三一轮复习6.7 数学归纳法

)
【解析】 当 n=1 时,左边=1+2+22,故选 C.
3.用数学归纳法证明:(n+1)+(n+2)+„+(n+n) n3n+1 * = ( n ∈ N )的第二步中,当n=k+1时等式左边与n 2 =k时的等式左边的差等于________.
答案
解析
3k+2
n=k+1比n=k时左边变化的项为(2k+1)+(2k
答案 B
)
B.8 D.10
1 1- n 1 1 1 2 127 解析 1+ + +„+ n-1= > 2 4 1 64 2 1- 2 整理得2n>128,解得n>7 ∴初始值至少应取8.
2.用数学归纳法证明 1+2+22+„+2n 1=2n 2-1(n∈N*)
+ +
的过程中,在验证 n=1 时,左端计算所得的式子应为( A.1 C.1+2+22 B.1+2 D.1+2+21 6×8
+„+
1 2k2k+2

1 2k+1[2k+1+2] k 1 = + 4k+1 4k+1k+2 kk+2+1 k+12 = = 4k+1k+2 4k+1k+2 k+1 = , 4[k+1+1]
即n=k+1时等式成立. 由(1)、(2)可知,对任意n∈N*等式均成立.
5 1 1 1 1 > +( + + - ) 6 3k+1 3k+2 3k+3 k+1 5 1 1 5 > +(3× - )= 6 3k+3 k+1 6 ∴当n=k+1时不等式亦成立. ∴原不等式对一切n≥2,n∈N*均成立.
探究2
由n=k到n=k+1时,要弄清命题的变化,
应用放缩技巧. 思考题2 1 (2009· 陕西理)已知数列{xn}满足x1= ,xn 2
这两个步骤缺一不可,前一步是递推的基础,后一 步是递推的依据,缺了哪一步得出的结论也是错误的. 另外,归纳假设中要保证 n 从第一个数 n0 开始,即 假设 n= k(k≥n0)时结论成立,括号内限制条件改为 k>n0 就错了.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点探究
=tanπ4 +(k-1)·π4 +x =tan(k+1-1)·π4 +x,猜想也正确.
由①,②知对任何 n∈N*,an=tanπ4 (n-1)+x都正确.
考点探究
考点2 用数学归纳法证明恒等式
【 例 2 】 用 数 学 归 纳 法 证 明 : 12 + 22 + … + n2 = n(n+1)6(2n+1)(n∈N*).
(1)写出 a1,a2,a3; (2)求出点 An(an,0)(n∈N*)的横坐标 an 关于 n 的表达 式并证明. 自主解答:
考点探究
解析:(1)由题意解得 a1=2,a2=6,a3=12.
(2)依题意,得 xn=an-12+an,yn= 3·an-2an-1,
由此及 yn2=3·xn 得
考点探究
a4=tan3·π4 +x.
(2)猜想:an=tan(n-1)·π4 +x.
下面用数学归纳法证明:
①当 n=1 时,显然成立; ②假设 n=k(k≥1,k∈N*)时猜想正确,
即 ak=tan(k-1)·π4 +x.
则当 n=k+1 时,
ak+1=11-+aakk=11+ -ttaann((kk--11))··π π44 + +xx
考点探究
(1+1)1+12…1+21k1+2k1+1≤61-21k·1+2k1+1 =61+2k1+1-21k-221k+1=61-2k1+1-221k+1 <61-2k1+1. 当 n=k+1 时,不等式也成立. 根据(1)(2)可知,对任意 n∈N*,都有(1+1)1+12…1+21k≤61-21k. 点评:用数学归纳法证明不等式的关键是由 n=k 时成立得到 n=k+1 时成立,主要 方法有放缩法、基本不等式法,作差比较法等.
高考总复习数学(理科)
第六章 不等式、推理与证明
第七节 数学归纳法
考纲要求
了解数学归纳法的原理,能用数学归纳法证明一些简单 的数学命题.
考点探究
考点1 探索、归纳、猜想与证明
【例 1】 如图,P1(x1,y1),P2(x2,y2),…,Pn(xn, yn)(0<y1<y2<…<yn)是曲线 C:y2=3x(y≥0)上的 n 个点, 点 Ai(ai,0)(i=1,2,3,…,n)在 x 轴的正半轴上,且△Ai1AiPi 是正三角形(A0 是坐标原点).
考点探究
变式探究 1.在数列{an}中,a1=tan x,an+1=11-+aann. (1)写出 a2,a3,a4; (2)猜想{an}的通项公式,并加以证明. 解析:(1)a2=11+ -ttaann xx=tanπ4 +x, a3=11+ -ttaannππ44 + +xx=tan2·π4 +x,
②假设 n=k(k≥1,k∈N*)时,等式成立, 即 12+22+…+k2=k(k+1)6(2k+1). 当 n=k+1 时,12+22+…+k2+(k+1)2=k(k+1)6(2k+1) +(k+1)2=(k+1)[(k+1)6+1][2(k+1)+1]. 所以,当 n=k+1 时,等式仍然成立.
考点探究
由①,②可知,对于一切 n∈N*等式恒成立. 点评:用数学归纳法证明恒等式时应注意:明确初始值 n0 的取 值并验证 n=n0 时命题的真假(必不可少).“假设 n=k 时命题正确” 并写出命题形式.分析“n=k+1”时命题是什么,并找出与“n= k”时命题形式的差别.弄清左端应增加的项,明确等式左端变形目 标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配 方等.可明确为:两个步骤、一个结论;递推基础不可少,归纳假设 要用到,结论写明莫忘掉.
考点探究
则当 n=k+1 时,1×1 3+3×1 5+…+(2k-1)1(2k+1)+ 1
(2k+1)(2k+3) =2kk+1+(2k+1)1(2k+3)=(2kk(+21k)+(3)2k++13) =(2k+2k12+)3(k+2k1+3)=2kk++13=2(kk++11)+1, 所以当 n=k+1 时,等式也成立. 由①②可知,对一切 n∈N*等式都成立.
考点探究
变式探究
2.用数学归纳法证明:对任意的
n∈N*,1×1 3+
1 3×5
+…

(2n-1)1(2n+1)=2nn+1.
证明:①当 n=1 时,左边=1×1 3=31,ห้องสมุดไป่ตู้
右边=2×11+1=13,左边=右边,等式成立. ②假设当 n=k(k∈N*且 k≥1)时等式成立,
即有1×1 3+3×1 5+…+(2k-1)1(2k+1)=2kk+1,
3·an-2an-12=32(an+an-1),
即(an-an-1)2=2(an-1+an).
由(1)可猜想:an=n(n+1)(n∈N*).
下面用数学归纳法予以证明:
①当 n=1 时,命题显然成立.
考点探究
②假设当 n=k(k∈N*)时命题成立,即有 ak=k(k+1), 则当 n=k+1 时,由归纳假设及(ak+1-ak)2=2(ak+ak+1), 得[ak+1-k(k+1)]2=2[k(k+1)+ak+1],即 a2k+1-2(k2+k+1)ak+1+ [k(k-1)]·[(k+1)(k+2)]=0,解得 ak+1=(k+1)(k+2)(ak+1=k(k-1)< ak 不合题意,舍去),即当 n=k+1 时,命题也成立.由①②可知,命题 成立. 点评:解“归纳——猜想——证明”题的一般步骤:(1)准确计算出 前若干具体项,这是归纳、猜想的基础;(2)通过观察、分析、比较、联 想,猜出一般结论;(3)用数学归纳法证明猜想的正确性.
思路点拨:明确初始值 n0 的取值并验证 n=n0 时命题的真假(必 不可少),“假设 n=k 时命题正确”并写出命题形式.分析“n=k+ 1”时命题是什么,并找出与“n=k”时命题形式的差别,并弄清左 端应增加的项.
自主解答:
考点探究
证明:①当 n=1 时,左端=1,右端=1×(1+1) 6 (2+1)=1, 左端=右端,等式成立.
考点探究
考点3 用数学归纳法证明不等式
【例 3】 已知 n∈N*,证明:(1+1)1+12…1+21n≤61-21n. 证明:(1)当 n=1 时,左边=(1+1)1+12=3,右边=3,不等式 成立. (2)假设当 n=k 时不等式成立,即 (1+1)1+12…1+21k≤61-21k, 那么当 n=k+1 时,
相关文档
最新文档