不等式方案设计专题练习汇编
高考数学专题专练(浙江版)(基本不等式汇编)
班级:姓名:时间:专练主题:多元变量最值问题总第练基础部分:1.已知正数,x y 满足21x y +=,则11xy+的最小值为;2.已知正数,x y 满足21x y +=,则1x x y +的最小值为;3.已知正数,x y 满足1x y +=,则49+1+2x y +的最小值为;4.已知正数,x y 满足0x y >>且2x y +=,则21+3y x x y+-的最小值为;5.已知正数,x y ,则2+y x+2x y x y+的最大值为;+2y 2x+x y x y+的最小值为;6.已知正数,x y 满足24xy x y ++=,则x y +的最小值为;7.已知正数,x y 满足2+6x y xy +=,则xy 的最小值为;解题笔记:9.已知正数,x y 满足221x y +=,则2241+2+1x y +的最小值为;10.已知3030x y x y >><<或,则()()2423x y y x y -+-的最小值为;11.在锐角三角形ABC 中,角,,A B C 的对边分别为,,a b c ,若已知224sin()6b c bc A π+=+,则tan tan tan A B C ++的最小值是;12.若,,x y z 均为正实数,且满足1xyz =,则()()()111x y z +++的最小值为;13.若已知0,,>c b a ,则bcab c b a 2222+++的最小值为;14.设,,x y z 是正实数,则2221010x y z xy yz zx++++的最小值为;15.设正实数,,x y z 满足22340x xy y z -+-=,则当xy z 取得最大值时,212x y z+-的最大值为;解题笔记:22.已知,且,则的最小值为;23.已知A,B,C是平面上任意三点,BC=a,CA=b,AB=c,则y=ca+b+bc的最小值是________;24.已知函数f(x)=3x+a与函数g(x)=3x+2a在区间(b,c)上都有零点,则a2+2ab+2ac+4bcb2-2bc+c2的最小值为________;25.设二次函数f(x)=ax2+bx+c(a、b、c为常数)的导函数为f′(x).对任意x∈R,不等式f(x)≥f′(x)恒成立,则b2a2+c2的最大值为____________.解题笔记:。
23个经典的不等式专题
1、 证明:2221111+...223n +++<; 2、 若:332a b +=,求证:2a b +≤ ; 3、 若:n N +∈,求证:1111...12122n n n≤+++<++; 4、 若:,0a b >,且3ab a b =++,求:a b +的取值范围 ;5、 若:,,a b c 是ABC ∆的三边,求证:111a b ca b c+>+++ ; 6、当2n ≥时,求证:222111111...12123n n n-<+++<-+ ;7、 若x R ∈,求y =的值域 ; 8、求函数2cos y θθ=-的最大值和最小值 ;9、 若,,0a b c >,求证:2229a b b c c a a b c++>+++++ ; 10、 若,,a b c R ∈,且22225a b c ++=,试求:22a b c -+的取值范围 11、 若,,a b c R ∈,且226a b c --=,求222a b c ++的最小值12、 若,,a b c R ∈,且222(1)(2)(3)11654a b c -+-++=,求a b c ++的最大值和最小值; 13、 若,,0a b c >,,,0x y z >,且满足22225a b c ++=,22236x y z ++=,30ax by cz ++=,求:a b cx y z++++的值;14、 求证:21153nk k =<∑; 15、 当2n ≥时,求证:12(1)3n n<+<;16、求证:113135135 (21)...224246246 (2)n n ⋅⋅⋅⋅⋅⋅⋅-++++<⋅⋅⋅⋅⋅⋅⋅ ; 17、求证:1)1...1)<+< ; 18、 已知:0x >,求证:ln(1)1xx x x <+<+ ; 19、 已知:n N +∈,求证:11111...ln(1)1...2312x n n+++<+<++++ ;20、 已知:2n ≥,求证:2(1)n n n >- ;21、 已知:n N +∈,求证:1111 (23212)n n++++>- ;22、设:...n S 2(1)2(1)n n n S n +<<+ ; 23、 已知:n N +∈,求证:1111 (21231)n n n <+++<+++ .【解答】 1. 证明:2221111+...223n+++< ; 1、证明:221222111111111112(1)1nn n n k k k k k k k k k k n ====⎡⎤⎛⎫=+<+=+-=+-< ⎪⎢⎥--⎣⎦⎝⎭∑∑∑∑. 从第二项开始放缩后,进行裂项求和.另:本题也可以采用积分法证明.构建函数:1()2f x x =,则()f x 在x R +∈区间为单调递减函数.于是:222112111111111111()221nnn n k k dx k kx x n n ===+<+=-=--=-<∑∑⎰从第二项开始用积分,当函数是减函数时,积分项大于求和项时,积分限为[1,]n ;积分项小于求和项时,积分限为[2,1]n +. 2. 若:332a b +=,求证:2a b +≤;2、证明:3322()()()a b a b a b ab ab a b +=++-≥+,即:()2ab a b +≤则:3()6ab a b +≤,333()8a b ab a b +++≤,即:3()8a b +≤,即:2a b +≤. 立方和公式以及均值不等式配合.另:本题也可以采用琴生不等式证明.构建函数:3()f x x =,则在在x R +∈区间为单调递增函数,且是下凸函数. 对于此类函数,琴生不等式表述为:函数值得平均值不小于平均值的函数值.即:()()...() (1212)()f x f x f x x x x n n f n n++++++≥ 对于本题:()()()22f a f b a b f ++≥ 即:33322a b a b ++⎛⎫≥ ⎪⎝⎭即:33321222a b a b ++⎛⎫≤== ⎪⎝⎭,即:12a b +≤,即:2a b +≤ 琴生不等式可秒此题.3. 若:n N +∈,求证:1111...12122n n n≤+++<++;3、由:n n n k n +≥+> (1,2,...,)k n =得:1112n n k n≤<+ ,则:1111112nn nk k k n n k n===≤<+∑∑∑, 即: 111...212n n n n n n n n ≤+++<+++故:1111...12122n n n ≤+++<++ . 从一开始就放缩,然后求和.另:本题也可以采用不等式性质证明.所证不等式中的任何一项如第k 项,均满足1112n n k n≤<+,当有n 项累加时, 不等式两个边界项乘以n 倍,则不等式依然成立. 即:大于最小值得n 倍,小于最大值的n 倍.另外,111...122n n n+++++的最大值是ln 20.693147...≈,本题有些松. 4.若:,0a b >,且3ab a b =++,求:a b +的取值范围 ; 4、解:222()244(3)4()12a b a b ab ab a b a b +=++≥=++=++,令:t a b =+,则上式为:24120t t --≥. 解之得:6t ≥. 均值不等式和二次不等式. 5. 若:,,a b c 是ABC ∆的三边,求证:111a b ca b c+>+++ ; 5、证明:构造函数()1xf x x=+,则在0x >时,()f x 为增函数. 所以,对于三角形来说,两边之和大于第三边,即:a b c +>,那么,()()f a b f c +>,即:11a b ca b c+>+++ . 111111a b a b a b c a b a b a b a b c ++>+=>+++++++++. 构造函数法,利用单调性,再放缩,得到结果.另:不等式的入门证法就是“作差法”和“作商法”. “作差法”即两项相减得差与0比较;作商法”即同号两项相除得商与1比较.本题亦可以采用“作差法”.6. 当2n ≥时,求证:222111111...12123n n n-<+++<-+ ; 6. 证明:当2n ≥时,11n n n -<<+,都扩大n 倍得:2(1)(1)n n n n n -<<+, 取倒数得:2111(1)(1)n n n n n >>-+,裂项:21111111n n n n n ->>--+, 求和:222211111()()11nn nk k k k k k k k ===->>--+∑∑∑, 即: 2221111111 (2321)n n n ->+++>-+ 先放缩,裂项求和,再放缩. 另:本题也可以采用积分证明.构建函数:1()2f x x =,则()f x 在x R +∈区间为单调递减函数. 由面积关系得到:111()122k k dx f k dx k kx x +>>⎰⎰- 即:111121k k x x k k k+->>-- 即:11111211k kkk k ->>--+本式实际上是放缩法得到的基本不等式,同前面裂项式.后面的证法同前.7、若x R ∈,求y = ;7、解:y ==设:1(,)22m x =+,1(,22n x =-,则:3m x ⎛=+ ,1n x ⎛=- (1,0)m n -=代入向量不等式:m n m n -<-得:1y m n m n =-<-=,故:11y -<<. 这回用绝对值不等式.本题另解.求函数y =.求导得:'0y ==则:x =±∞,故函数y =x =±∞. 函数为奇函数,故我们仅讨论正半轴就可以了,即在[0,)x ∈+∞.y ===lim 1m x y →+∞==由于是奇函数,故在(,0)x ∈-∞,y ===lim (1m x y →-∞==-故:(1,1)y ∈-. 8、求函数2cos y θθ=-的最大值和最小值 ;8、解:将函数稍作变形为:M Ny == ,设点(,)M M M x y ,点(,)N N N x y ,则(2,0)M ,(cos ,sin )N θθ-, 而点N 在单位圆上,y 就是一条直线的斜率,是过点M 和圆上点N 直线倍,关键是直线过圆上的N 点.直线与单位圆的交点的纵坐标范围 就是:11y -≤≤ .故y 的最大值是1,最小值是-1.原本要计算一番,这用分析法,免计算了.另:如果要计算.先变形:y =2cos cos y y y θθθθ-==+;即:2))y θθθϕ=+=+;sin()θϕ=+,即:1sin()1θϕ-≤=+≤;即:22413y y≤+,即:2243y y ≤+,即:21y ≤,即:11y -≤≤ 如果要计算,需要用到辅助角公式.9、若,,0a b c >,求证:2229a b b c c a a b c++≥+++++ 9、证明:由柯西不等式:()()()2111a b b c c a a b b c c a ⎛⎫++⋅+++++≥⎡⎤ ⎪⎣⎦+++⎝⎭ 即:()()2111239a b c a b b c c a ⎛⎫++⋅++≥=⎡⎤ ⎪⎣⎦+++⎝⎭即:()2229a b b c c a a b c ⎛⎫++≥ ⎪+++++⎝⎭ 柯西不等式.本题也可以采用排序不等式证明.首先将不等式变形:92a b c a b c a b c a b b c c a ++++++++≥+++; 即:932c a b a b b c c a +++≥+++,即:32c a b a b b c c a ++≥+++. 由于对称性,不妨设:a b c ≥≥,则:a b a c b c +≥+≥+;即:111b c a c a b≥≥+++. 有排序不等式得:正序和a b c a b cb c a c a b a c a b b c ++≥++++++++乱序和; 正序和a b c a b cb c a c a b a b b c a c++≥++++++++乱序和; 上两式相加得:23a b c a b b c a cb c a c a b a b b c a c+++⎛⎫++≥++= ⎪++++++⎝⎭ 即:32c a b a b b c c a ++≥+++ 证毕. 排序不等式.10、若,,a b c R ∈,且22225a b c ++=,试求:22a b c -+的取值范围 ; 10、解:柯西不等式:()()()222222212222a b c a b c ⎡⎤+-+++≥-+⎣⎦;即:()292522a b c ⨯≥-+,故:2215a b c -+≤; 所以:152215a b c -≤-+≤.柯西不等式.另:本题亦可采用求极值的方法证明. 构建拉格朗日函数:1222(,,)22(25)L a b c a b c a b c λ=-++++-由在极值点的导数为0得:210L aa λ∂=+=∂,则:2a λ=-,即:2a λ=-; 220L b a λ∂=-+=∂,则:b λ=,即:b λ=; 220L b a λ∂=+=∂,则:c λ=-,即:c λ=-. 代入22225a b c ++=得:103λ=± 极值点为:523a λ=-=,103b λ==±,103c λ=-= 则:2215y a b c m =-+=,即:152215a b c -≤-+≤11、若,,a b c R ∈,且226a b c --=,求222a b c ++的最小值 ; 11、解:设:(2,1,2)m =--,(,,)n x y z =,则:22222(1)(2)9m =+-+-=;2222n a b c =++;22m n a b c ⋅=--; 代入m n m n ≥⋅得:()()222292236a b c a b c ++≥--=;即:2224a b c ++≥,故:最小值为4.向量不等式.向量不等式是柯西不等式的特殊形式,本题当然可用柯西不等式.2222222[2(1)(2)]()(22)a b c a b c +-+-++≥--,即:22222222(22)6()4[2(1)(2)]9a b c a b c --++≥==+-+- 用拉格朗日乘数法也行.构建拉氏函数:222(,,)(226)L a b c a b c a b c λ=+++--- 在极值点的导数为0,即:220La a λ∂=+=∂,即:a λ=-; 20Lb b λ∂=-=∂,即:2b λ=; 220Lc cλ∂=-=∂,即:c λ=. 代入226a b c --=得:43λ=-则:43a =,23b =-,43c =-故:2222224243643339a b c ⎛⎫⎛⎫⎛⎫++≤+-+-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭求极值时,要判断是极大值还是极小值,只需用赋值法代一下.12、若,,a b c R ∈,且222(1)(2)(3)11654a b c -+-++=,求a b c ++的最大值和最小值; 12、解:柯西不等式:()()()2222222134212342a c a b c ⎡⎤--⎛⎫⎛⎫⎡⎤++++≥-+++-⎡⎤⎢⎥ ⎪ ⎪⎣⎦⎢⎥⎣⎦⎝⎭⎝⎭⎢⎥⎣⎦即:()22512a b c ⨯≥++-;故:()525a b c -≤++-≤; 于是:()37a b c -≤++≤. 柯西不等式.另:本题也可以采用换元法求解.有人说:222(1)(2)(3)11654a b c -+-++=是一个椭球面,没错. 它是一个不等轴的椭球. 它的三个半轴长分别为:4A =,B =2C =设:1x a =-,2y b =+,3z c =-,则这个椭球的方程为:2221222x y z A B C++= ① 现在来求a b c ++的最大值和最小值. 采用三角换元法:令:sin cos x A θϕ=,sin sin y B θϕ=,cos z C θ= 代入方程①检验,可知它满足方程. 采用辅助角公式化简:sin cos sin sin cos f x y z A B C θϕθϕθ=++=++4sin cos sin 2cos θϕθϕθ=++)2cos θϕϕθ=++)sin 2cos αϕθθ=++]θθ)θφ+故:f x y z =++的峰值是: 当2sin ()1αϕ+=时,5f m===即:55x y z -≤++≤而1232x y z a b c a b c ++=-+++-=++-, 故:525a b c -≤++-≤,即:37a b c -≤++≤.13、若,,0a b c >,,,0x y z >,且满足22225a b c ++=,22236x y z ++=,30ax by cz ++=,求:a b cx y z++++的值 ;13、解:本题满足:()()()2222222a b c x y z ax by cz ++++=++即柯西不等式中等号成立的条件. 故有:0a b cx y zλ===>,即:a x λ=,b y λ=,c z λ=. 则:2222222()a b c x y z λ++=++;即:22222222536a b c x y z λ++==++,即:56λ=故:56a b c a b c x y z x y z λ++=====++ . 柯西不等式中等号成立. 14、求证:21153nk k =<∑ ; 14、证明:222212222114411111124412121nn n n nk k k k k k k k k k k =====⎛⎫=+=+<+=+- ⎪--+⎝⎭∑∑∑∑∑1115121232133n ⎛⎫=+⨯-<+⨯= ⎪+⎝⎭注意变形为不等式的方法,虽然仍是放缩法.另:本题也可以采用积分法证明. 构建函数:1()2f x x =,则()f x 在x R +∈区间为单调递减函数. 2222313311151511444nn n n k k k dx kk k x ====++=+≤+∑∑∑⎰ 3515111541192054431212123nx n n +⎛⎫=-=--=-<== ⎪⎝⎭ 15、当2n ≥时,求证:12(1)3n n<+< ;15、证明:① 由二项式定理得:1212011111111...12nnk n n n n n n k n k C C C C C n n n n n n =⎛⎫+=⋅=+⋅+⋅++⋅+⋅= ⎪⎝⎭>∑ ② 由二项式定理得:11111!11!1111!()!!()!nn n nkn k k kk k k n n C n n k n k n k n k n ===⎛⎫+=+⋅=+⋅=+ ⎪--⎝⎭∑∑∑ 1121(1)(2)(1)111...111!!!nn nk k k n n n n k k n n n n k k ===---+⎡⎤=+⋅⋅⋅⋅⋅<+=++⎢⎥⎣⎦∑∑∑ 22211111222213!(1)1n n nk k k k k k k k n ===⎛⎫=+<+=+-=+-< ⎪--⎝⎭∑∑∑本题①由二项式中,保留前两项进行放缩得到:1(1)2n n+>;本题②由二项式中,分子由从n 开始的k 个递减数连乘,分母由k 个n 连乘,得到的分数必定小于1. 于是得到:1(1)3n n+<.另:本题也可以利用函数的基本性质证明.构建函数:1()1x f x x ⎛⎫=+ ⎪⎝⎭,则在1x ≥时,函数为单调递增函数.故:在2x ≥时,1()(1)(11)2f x f ≥=+= 利用基本不等式:ln(1)x x +<,即:1x x e +<则:()111()11()3x y yf x y e e y x ⎛⎫=+=+<=< ⎪⎝⎭.本方法需要运用ln(1)x x +<,该不等式成立的条件是:0x >.16、求证:113135135 (21)...224246246 (2)n n ⋅⋅⋅⋅⋅⋅⋅-++++<⋅⋅⋅⋅⋅⋅⋅; 16、证明:()()22221(21)(21)n n n n >-=-+,故:212221n nn n -<+; 令:135(21)...246(2)n n S n -=⋅⋅⋅⋅, 246(2)...357(21)n n T n =⋅⋅⋅⋅+ ;则:n n S T <,即:2135(21)246(2)1......246(2)357(21)21n n n n n S S T n n n -<⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅=++ ;故:n S <①由><<,故:代入①式得:n S <则:原式=1211...1nnn k k k S S S S ==+++=<=<∑∑本题的关键在于把根式或其他式子换成两个相邻的根式差, 然后利用求和来消去中间部分,只剩两头. 17、求证:1)1...1)<+< ; 17、证明:由<2>=;即:1121)nnk k ==>=∑ ① 由:()()()22222281811882n n n n ->--=-得:()281n->==即:281n->,即:2(21)2(21)1 n n n n++-->,即:21>1 ><,多项求和:)111n nk k==<=②由①②,本题得证.本题还是采用级数求和的放缩法.18、已知:0x>,求证:ln(1)1xx xx<+<+;18、证明:(1)构造函数:()ln(1)f x x x=-+,则:(0)0f=.当0x>时,函数的导数为:1'()101f xx=->+,即当0x>时,函数()f x为增函数. 即:()(0)0f x f>=;故:()ln(1)0f x x x=-+>,即:ln(1)x x+<.(2) 构造函数:()ln(1)1xg x xx=+-+,则:(0)0g=.当0x>时,其导数为:()()2211'()01111x xg xx x x x⎡⎤=--=>⎢⎥++++⎢⎥⎣⎦.即当0x>时,函数()g x为增函数. 即:()(0)0g x g>=;故:()ln(1)01xg x xx=+->+,即:ln(1)1xxx<++.由(1)和(2),本题证毕.本题采用构造函数法,利用函数单调性来证题.19、已知:n N+∈,求证:11111...ln(1)1...2312xn n+++<+<++++;19、证明:先构造函数:1()f xx=,在函数图象上分别取三点A,B,C,即:1(,)A kk,1(1,)1B kk--,1(1,)1C kk++,我们来看一下这几个图形的面积关系:S S S S<=<;即:1111()1k kkk dx f k dx xx +-⋅<⋅<⋅⎰⎰ ;即:11ln ()ln k kk k x f k x +-<< ;即:1ln(1)ln ln ln(1)k k k k k +-<<-- ; (1) 1ln(1)ln k k k+-<求和:11111(ln(1)ln )1...2nnk k k k kn ==+-<=+++∑∑;即:11ln(1)1...2n n+<+++;(2) 1ln ln(1)k k k<--求和:;即:121111...ln(1)231n k n kn +==+++<++∑; 由(1)和(2)证毕.本题采用构造函数法,利用函数的面积积分来证题. 20、 已知:当2n ≥时,求证:2(1)n n n >- ;20、 证明:当21r n ≤≤-时,1r n nC C n >=. 由二项式定理得:11112(11)(1)nn n nnkk nnk k k C C n n n --====+=>>=-∑∑∑证毕.本题利用二项式定理进行放缩得证.21、 已知:n N +∈,求证:1111 (23212)n n++++>- ;21、 证明:设:1111 (2321)n n S =++++-,则:111111111111111()()()...(...)234567*********n n n n n n S --=++++++++++++-++-2233331111111111111()()()...(...)222222222222n n n n n >++++++++++++-11111111()()()...()1(1)2222222222n n n n n n =+++++-=+-=+->证毕.将1以后的项数,按2的次方个数划分成n 组,每组都大于12,这样放缩得证.22、设:...S求证:2(1)2(1)n n n S n +<<+ ; 22、证明:由(1)122k k k k ++<<=+得:12k k <<+,求和得:11112nnnk k k k k ===⎛⎫<+ ⎪⎝⎭∑∑即:2(1)(1)(2)(1)22222n n n n n n n n n S ++++<<+=< 即:2(1)2(1)n n n S n +<<+..23、 已知:n N +∈,求证:1111 (21231)n n n <+++<+++ . 23、 证明:设:111 (1231)n S n n n =++++++ ; 采用倒序相加得:111111112...131********n S n n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=++++++++ ⎪ ⎪ ⎪ ⎪++++-++⎝⎭⎝⎭⎝⎭⎝⎭;各括号内通分得:()()()()()()()()424242422...131********n n n n n S n n n n n n n n ++++=++++++++-++;即:()()()()()()()()1111(21)...131********n S n n n n n n n n n ⎡⎤=+++++⎢⎥++++-++⎣⎦ ①;由:()()()()222(1)(31)21212121n n n n n n n n n ++=+-++=+-<+⎡⎤⎡⎤⎣⎦⎣⎦;()()()()()222(2)(3)21(1)21(1)21121n n n n n n n n n +=+--++-=+--<+⎡⎤⎡⎤⎣⎦⎣⎦; ()()()()()222(3)(31)21(2)21(2)21221n n n n n n n n n +-=+--++-=+--<+⎡⎤⎡⎤⎣⎦⎣⎦; ……()()()()()222(31)(1)21(2)21(2)21221n n n n n n n n n n n n ++=+--++-=+--<+⎡⎤⎡⎤⎣⎦⎣⎦ 共有:(31)(1)121n n n +-++=+项. 将上述不等式代入①式得:()()()()2222111(21)(21)...(21)121212121n n S n n n n n n ⎡⎤+>++++=+⋅=⎢⎥++++⎢⎥⎣⎦; 即:1S > ②另:1111112122 (2123111111)n n n S n n n n n n n n ++=+++<+++=<=++++++++; 即: 2n S < ③ 由②和③,本题得证.本题中n S 有(21)n +项,将其放缩为同分母的分式是解题关键.。
4专题四不等式中的方案设计问题
4专题四不等式中的方案设计问题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN专题四 不等式中的方案设计1、(2007山东青岛)某饮料厂开发了A 、B 两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A 、B 两种饮料共100瓶.设生产A 种饮料x 瓶,解答下列问题:(1)有几种符合题意的生产方案写出解答过程;(2)如果A 种饮料每瓶的成本为元,B 种饮料每瓶的成本为元,这两种饮料成本总额为y 元,请写出y 与x 之间的关系式,并说明x 取何值会使成本总额最低解:⑴ 设生产A 种饮料x 瓶,根据题意得: 解这个不等式组,得20≤x ≤40. 因为其中正整数解共有21个,所以符合题意的生产方案有21种.⑵ 根据题意,得 y =+(100-x).整理,得 y =-+280.∵k =-<0,∴y 随x 的增大而减小.∴当x =40时成本总额最低.2、(2007重庆)我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售。
按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装(1)设装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,求y 与x 之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案并求出最大利润的值。
解:(1)根据题意,装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,那么装运C 种脐橙的车辆数为()y x --20,则有:2030(100)28004020(100)2800x x x x +-+-⎧⎨⎩,.≤ ≤()10020456=--++y x y x 整理得:202+-=x y(2)由(1)知,装运A 、B 、C 三种脐橙的车辆数分别为x 、202+-x 、x ,由题意得:⎩⎨⎧≥+-≥42024x x ,解得:4≤x ≤8,因为x 为整数,所以x 的值为4、5、6、7、8,所以安排方案共有5种。
人教版高中数学 教案+学案综合汇编 第3章:不等式 课时7
人教版高中数学 教案+学案 综合汇编第三章 不等式 第七教时教材:不等式证明二(比较法、综合法)目的:加强比商法的训练,以期达到熟练技巧,同时要求学生初步掌握用综合法证明不等式。
过程:一、比较法:a) 复习:比较法,依据、步骤比商法,依据、步骤、适用题型 b) 例一、证明:3422+-=x xy 在),2[+∞是增函数。
证:设2≤x 1<x 2, 则)4)((4434342121121212222*********-+-+--+-+-===x x x x x x x x x x x x y y ∵x 2 - x 1 > 0, x 1 + x 2 - 4 > 0 ∴12021=>y y 又∵y 1 > 0, ∴y 1 > y 2 ∴3422+-=x xy 在),2[+∞是增函数二、综合法:定义:利用某些已经证明过的不等式和不等式的性质,推导出所要证明的不等式,这个证明方法叫综合法。
i.已知a , b , c 是不全相等的正数,求证:a (b 2 + c 2) + b (c 2 + a 2) + c (a 2 + b 2) > 6abc证:∵b 2 + c 2 ≥ 2bc , a > 0 , ∴a (b 2 + c 2) ≥ 2abc 同理:b (c 2 + a 2) ≥ 2abc , c (a 2 + b 2) ≥ 2abc ∴a (b 2 + c 2) + b (c 2 + a 2) + c (a 2 + b 2) ≥ 6abc当且仅当b =c ,c =a ,a =b 时取等号,而a , b , c 是不全相等的正数 ∴a (b 2 + c 2) + b (c 2 + a 2) + c (a 2 + b 2) > 6abc ii.设a , b , c ∈ R , 1︒求证:)(2222b a b a +≥+2︒求证:)(2222222c b a a c c b b a ++≥+++++ 3︒若a + b = 1, 求证:22121≤+++b a 证:1︒∵0)2(2222≥+≥+b a b a ∴2|2|222ba b a b a +≥+≥+ ∴)(2222b a b a +≥+ 2︒同理:)(2222c b c b +≥+, )(2222a c a c +≥+ 三式相加:)(2222222c b a a c c b b a ++≥+++++ 3︒由幂平均不等式:1222)1(2)21()21()2121(21==++=+++≤+++b a b a b a ∴22121≤+++b a iii.a ,b ,c ∈R , 求证:1︒9)111)((≥++++c b a c b a2︒29)111)((≥+++++++a c c b b a c b a 3︒23≥+++++b a c a c b c b a 证:1︒法一:33abc c b a ≥++,313111abcc b a ≥++, 两式相乘即得。
不等式综合练习(含答案)
一、选择题(每小题6分,共42分) 1.不等式ax 2+5x+c>0的解集为(21,31),那么a,c 为( ) A.a=6,c=1 B.a=-6,c=-1 C.a=1,c=6 D.a=-1,c=-6 答案:B解析:由题意得21,31为方程ax 2+5x+c=0的两根是a<0. 故2131+=-ac a =⨯2131,5, ∴a=-6,c=-1.2.不等式|x-1|+|x-2|≤3的最小整数解是( )A.0B.-1C.1D.2 答案:A解析:将x=-1代入不等式知不成立,将x=0代入不等式成立,故选A. 3.不等式|x+1|(2x-1)≥0的解集为( )A.[21,+∞) B.(-∞,-1]∪[21,+∞) C.{-1}∪[21,+∞) D.[-1,21]答案:C解析:当|x+1|=0即x=-1时不等式成立, 当|x+1|≠0时不等式等价于2x-1≥0,即x ≥21. 4.设a>0,不等式|ax+b|<c 的解集是{x|-2<x<1},则a ∶b ∶c 等于( ) A.1∶2∶3 B.2∶1∶3 C.3∶1∶2 D.3∶2∶1 答案:B解析:|ax+b|<c a c b --⇔<x<a b c -,故a c b --=-2,abc -=1即a ∶b ∶c=2∶1∶3.5.设U=R ,A={x|mx 2+8mx+21>0},A=∅,则m 的取值范围是( )A.0≤m<1621 B.m>1621或m=0 C.m ≤0 D.m ≤0或m>1621答案:A 解析:∵A=∅,∴A=R,即mx 2+8mx+21>0恒成立. 当m=0时,不等式恒成立. 当m ≠0时, 则⇒⎩⎨⎧<⨯-=∆>0214)8(,02m m m 0<m<1621.∴m 的取值范围为[0,1621). 6.已知a>0,集合A={x||x+2|<a},B={x|a x>1},若A ∩B ≠∅,则实数a 的取值范围是( ) A.(2,+∞) B.(0,1)C.(0,1)∪(2,+∞)D.(0,1)∪(1,+∞) 答案:C解析:A={x|-a-2<x<a-2}当0<a<1时,B={x|x<0}又a-2<0故此时A ⊆B ,则A ∩B ≠∅. 当a>1时,B={x|x>0},∵A ∩B ≠∅,∴a-2>0,即a>2.∴a 的取值范围为(0,1)∪(2,+∞). 7.(2010辽宁沈阳模拟,1)若不等式xxa ++12-3≥0的解集是{x|-7≤x<-1},则实数a 等于( ) A.0 B.-4 C.-6 D.-8 答案:B 解析:∵不等式xxa ++12≥0, 即为1)3(+--x a x ≤0的解集为{x|-7≤x<-1},∴a-3=-7. ∴a=-4.选B.二、填空题(每小题5分,共15分) 8.不等式2||||3+-x x ≥21的解集是__________________.答案:[-34,34] 解析:∵|x|+2>0故原不等式为6-2|x|≥|x|+2即|x|≤34,-34≤x ≤34. 9.若关于x 的不等式a 2-4+4x-x 2>0成立时,不等式|x 2-4|<1成立,则正数a 的取值范围是_______. 答案:(0,5-2]解析:a 2-4+4x-x 2>0⇒2-a<x<2+a.|x 2-4|<1⇒-5<x<5,由已知得⎪⎩⎪⎨⎧≤+-≥-.52,52a a 即0<a ≤5-2.10.(2010江苏南通一模,14)若不等式|x-4|+|3-x|<a 的解集是空集,则实数a 的取值范围是_____________________. 答案:(-∞,1]解析:由|x-4|+|3-x|≥|x-4+3-x|=1,故原不等式解集为空集,a 的取值范围是(-∞,1]. 三、解答题(11—13题每小题10分,14题13分,共43分)11.(2010福建厦门一中模拟,17)解不等式:|x 2-3x-4|<x+1.解析:不等式等价于⎩⎨⎧>--<--⇔⎪⎩⎪⎨⎧--<+-+<--)2(.032)1(,054,43)1(,1432222x x x x x x x x x x 解①得-1<x<5,解②得x<-1或x>3,故原不等式的解集为{x|3<x<5}. 12.已知|x-1|≤2且|x-a|≤2,求: (1)当a<0时,求x 的范围;(2)若x 的范围构成的集合是空集,求a 的取值范围. 解析:|x-1|≤2⇒-1≤x ≤3. |x-a|≤2⇒-2+a ≤x ≤a+2. (1)当a<0时,a+2<3,-2+a<-1.①当a+2≥-1,即a ≥-3时,x 的取值范围为[a+2,3]; ②当a+2<-1,即a<-3时,x . (2)由题意得 a+2<-1或-2+a>3. 故所求a 的取值范围为a<-3或a>5.13.已知全集U=R ,A={x|x 2-2x-8<0},B={x||x+3|>2},C={x|x 2-4ax+3a 2<0}. (1)C ⊆(A ∩B),求a 的取值范围; (2)C ⊆(A )∩(B ),求a 的取值范围.解析:A={x|-2<x<4},B={x|x>-1或x<-5}. ∴A ∩B={x|-1<x<4}.当a>0时,C={x|a<x<3a}; 当a=0时,C=∅;当a<0时,C={x|3a<x<a}. (1)若C ⊆A ∩B,则a=0或⎪⎩⎪⎨⎧≤-≥>⎪⎩⎪⎨⎧≤-≥<.43,1,04,13,0a a a a a a 或∴a ∈[-34,31]. (2)(A )∩(B )={x|-5≤x ≤-2}.若C ⊇(A)∩(B),则⎪⎩⎪⎨⎧->-<<.2,53,0a a a∴-2<a<-35,即a ∈(-2,-35). 14.已知a>1,设P :a(x-2)+1>0,Q:(x-1)2>a(x-2)+1,试寻求使得P 、Q 都成立的x 集合.解析:由题意得:⎪⎩⎪⎨⎧>--->⇒⎪⎩⎪⎨⎧>++-->⇒⎩⎨⎧+->->+-.0)2)((,12,02)2(,12,1)2()1(,01)2(22x a x a x a x a x a x x a x x a 若1<a<2,则有⎪⎩⎪⎨⎧<>->.2,12a x x ax 或而a-(2-a 1)=a+a 1-2>0,所以a>2-a1, 故x ∈{x|x>2或2-a 1<x<a};若a=2,则有x ∈{x|x>23,且x ≠2};若a>2,则有⎪⎩⎪⎨⎧<>->.2,12x a x ax 或 若x ∈{x|x>a 或2-a1<x<2}. 高三数学单元练习题:不等式(Ⅳ)一、选择题:本大题共12小题,每小题5分,共60分。
不等式练习题及答案
不等式练习题及答案不等式练习题及答案不等式是数学中常见的概念,它描述了数值之间的大小关系。
在解决实际问题时,不等式也经常被用来建立数学模型。
本文将为大家提供一些不等式练习题及其答案,帮助读者提升对不等式的理解和应用能力。
1. 练习题一:解不等式求解不等式2x - 5 < 3x + 2。
解答:首先,我们可以将不等式转化为等式,即2x - 5 = 3x + 2。
然后,将x项移到一边,常数项移到另一边,得到2x - 3x = 2 + 5。
化简得到-x = 7,再乘以-1,得到x = -7。
所以,不等式2x - 5 < 3x + 2的解集为x < -7。
2. 练习题二:求不等式的解集求解不等式x^2 - 4x > 3。
解答:首先,我们可以将不等式转化为等式,即x^2 - 4x = 3。
然后,将所有项移到一边,得到x^2 - 4x - 3 > 0。
接下来,我们可以使用因式分解或配方法来求解这个二次不等式。
通过因式分解,我们可以得到(x - 3)(x + 1) > 0。
根据零点的性质,我们可以得到x - 3 > 0或x + 1 > 0。
解得x > 3或x > -1。
所以,不等式x^2 - 4x > 3的解集为x > 3。
3. 练习题三:证明不等式证明对于任意正实数a、b和c,有(a + b + c)^2 ≥ 3(ab + bc + ca)。
解答:我们可以使用数学归纳法来证明这个不等式。
首先,当n = 2时,不等式成立,即(a + b)^2 ≥ 3ab。
假设当n = k时,不等式成立,即(a1 + a2 + ... + ak)^2 ≥ 3(a1a2 + a2a3 + ... + ak-1ak)。
我们需要证明当n = k + 1时,不等式也成立。
考虑(a1 + a2 + ... + ak + ak+1)^2,展开后可以得到:(a1 + a2 + ... + ak)^2 + 2(a1 + a2 + ... + ak)(ak+1) + ak+1^2。
2022年高考数学真题《不等式》专项汇编(含答案)
2022年高考数学真题《不等式》专项汇编(含答案)1.【2022年 全国甲卷(文),23】已知a ,b ,c 均为正数,且22243a b c ++=,证明: (1)23a b c ++≤; (2)若2b c =,则113a c+≥. 2.【2022年 全国乙卷(理),23】已知a ,b ,c 都是正数,且3223231a b c ++=,证明: (1)19abc ≤;(2)a b c b c a c a b ++≤+++3.【2022年 陕西省模拟,23】设x 、y 、z 为正实数,且4x y z ++=. (1)≤(2)证明:()()()22241233x y z -+-+-≥4.【2022年 贵州贵阳模拟,23】已知实数a ,b ,c 满足0a b c ++=.(2)若0a <,0b <,1abc =,求c 的最小值.5.【2022年 安徽马鞍山模拟,23】已知函数()22f x ax x a =++-(a ∈R ) (1)当1a =时,求不等式()6f x <的解集. (2)当13a -≤≤时,求()1f a -的最大值与最小值.6.【2022年 内蒙古呼伦贝尔模拟,23】设函数()231f x x x =+--. (1)求不等式()0f x >的解集;(2)若()f x 的最小值是m ,且232a b c m ++=,求222a b c ++的最小值. 7.【2022年 吉林长春模拟,23】设函数()1f x x =+,()21g x x =-. (1)解关于x 的不等式()()1f x g x ->;(2)若()()22f x g x ax +>+对一切实数恒成立,求实数a 的取值范围. 8.【2022年 四川宜宾模拟,23】 [选修4-5:不等式选讲]: 已知函数()22f x x x =-++. (1)求不等式()24f x x ≥+的解集;(2)若()f x 的最小值为k ,且实数,,a b c ,满足()a b c k +=,求证:22228a b c ++≥9.【2022年 甘肃嘉陵关模拟,23】已知函数()|21||1|f x x x =-++. (1)解不等式()6f x ;(2)记函数()()|1|g x f x x =++的最小值为m ,若,,a b c ∈R ,且230a b c m ++-=,求222a b c ++的最小值.10.【2022年 重庆市模拟,23】已知函数()|2+=(0)f x ax bx a b ->>|||. (1)若22a b == ,解不等式()2|f x x ≥|; (2)求证:()2b f x a≥.答案以及解析1.答案:(1)证明见解析 (2)证明见解析解析:(1)解法一(平方转化基本不等式证明)因为22243a b c ++=, 所以2222(2)42(22)a b c a b c ab bc ac ++=+++++()2222223(2)(2)a b b c a c ⎡⎤⎡⎤≤++++++⎣⎦⎣⎦,当且仅当21a b c ===时取等号,所以2222(2)32(2)9a b c a b c ⎡⎤++≤+++=⎣⎦.又a ,b ,c 均为正数,所以23a b c ++≤.解法二(柯西不等式证明)因为22243a b c ++=,所以根据柯西不等式有()()2222222334111(2)a b c a b c ⨯=++++≥++, 当且仅当21a b c ===时取等号. 又a ,b ,c 均为正数,所以23a b c ++≤.解法三(权方和不等式证明)根据权方和不等式可得22221(2)43(111)111a b c a b c ++≤++=++(当且仅当21a b c ===时取等号),所以2(2)9a b c ++≤.又a ,b ,c 均为正数,所以23a b c ++≤. (2)因为2b c =,所以根据(1)有43a c +≤.1113314414114533333a c a c c a a c a c a c a c ⎛++⎛⎫⎛⎫⎛⎫+=+≥+=+++≥+= ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝, 当且仅当21a b c ===时取得等号. 2.答案:(1)证明见解析 (2)证明见解析解析:(1)因为a ,b ,c 都是正数,3332221a b c =++≥ 所以19abc ≤,当且仅当2313a b c ⎛⎫=== ⎪⎝⎭时等号成立.(2)由基本不等式得b c +≥a b c ≤+, 同理得b ac ≤+c a b ≤+利用不等式的性质得a b cb c a c a b+++++≤333222bc=333222b c ==,当且仅当2313a b c ⎛⎫=== ⎪⎝⎭时等号成立.3.答案:(1)见解析(1) 见解析 解析:(1)因为x,y,z 为正实数,由基本不等式可得422x x y z ⎛⎫⎛⎫=+++≥ ⎪ ⎪⎝⎭⎝⎭,当且仅当12x y z ===≤(2)由柯西不等式可得()()()()()()()2222222123123111x y z x y z ⎡⎤-+-+-≤-+-+-⋅++⎡⎤⎣⎦⎣⎦, 所以,()()()()22226412333x y z x y z ++--+-+-≥=, 当且仅当123x y z -=-=-时,即当13x =,43y =,73z =时,等号成立,故()()()22241233x y z -+-+-≥.4、(1)答案:证明见解析解析:证明:由0a b <<,且0a b c ++=,得0c >,0a b ->->,5.答案:(1)75,33⎛⎫- ⎪⎝⎭(2)最大值为9,最小值为3解析:(1)当1a =时,不等式()6f x <可化为2216x x ++-<,2316x x <-⎧⎨--<⎩,解得723x -<<-;或12236x x ⎧-≤≤⎪⎨⎪-+<⎩,解得122x -≤≤;或12316x x ⎧>⎪⎨⎪+<⎩,解得1523x << 综上可知,不等式的解集为75,33⎛⎫- ⎪⎝⎭.(2)()2212222f a a a a a a a -=-++-=-++-当12a -≤<时,()[]2222224133,7a a a a a a -+-+=-+=-+∈, 当23a ≤≤时,[]22224,9a a a a -++-=∈, 故所求最大值为9,最小值为3. 6.答案:(1) {|4x x <-或23x >-}(2)2514解析:(1)当32x -时,2310x x --+->,解得4x <-; 当312x -<<时,2310x x ++->,解得213x -<<;当1x 时,2310x x +-+>,解得1x ,综上,不等式()0f x >的解集为{|4x x <-或23x >-};(2)()34,2332,124,1x x f x x x x x ⎧---⎪⎪⎪=+-<<⎨⎪+⎪⎪⎩可知,当32x =-时,()min 52f x =-,即52m =-,则235a b c ++=,因为()()()222222223123a b c a b c ++++++,所以()2222514a b c ++,即2222514a b c ++a 2+b 2+c 2⩾2514, (当且仅当123a b c==时等号成立), 故222a b c ++的最小值为25147.答案:(1)1(,1)3;(2)12a -<<.解析:(1)因函数()1f x x =+,()21g x x =-,则()()1|1||21|1f x g x x x ->⇔+-->, 当1x <-时,1211x x --+->,解得3x >,无解, 当112x -≤<时,1211x x ++->,解得13x >,则有1132x <<, 当12x ≥时,1211x x +-+>,解得1x <,则有112x ≤<,综上得:113x <<,所以不等式()()1f x g x ->的解集是1(,1)3.(2)依题意,R x ∀∈,()()22|22||21|2f x g x ax x x ax +>+⇔++->+,当1x ≤-时,3222124x x ax a x ---+>+⇔>--,而34x --在(,1]-∞-上单调递增,当1x =-时,max 3(4)1x--=-,于是得1a >-,当112x -<<时,2221210x x ax ax +-+>+⇔-<,则有110210a a ⎧-≤⎪⎨⎪--≤⎩,解得12a -≤≤,当12x ≥时,1222124x x ax a x ++->+⇔<-+,而14x -+在1[,)2+∞上单调递增,当12x =时,min 1(4)2x -+=,于是得2a <,于是得2a <,综上得12a -<<,所以实数a 的取值范围12a -<<. 8.答案:(1)(,0]-∞(2)见解析解析: (1)①当2x <-时,不等式即为224x x -≥+,解得1,2x x ≤-∴<-; ②当22x -≤≤时,不等式即为424x ≥+,020x x ≤∴-≤≤; ③当2x >时,不等式即为224x x ≥+,x ∈∅. 综上,不等式()24f x x ≥+的解集为(,0]-∞.(2)由绝对值不等式的性质可得:|2||2||(2)(2)|4x x x x -++≥--+=∴当22x -≤≤时,()f x 取最小值4,即4,()4k a b c =∴+=,即4ab ac +=()()22222222228a b c a b a c ab ac ∴++=+++≥+=当且仅当a b c ===. 9.答案:(1) {22}xx -∣(2) 914解析:(1)1,()61216x f x x x -⎧⇔⎨---⎩或11,21216x x x ⎧-<<⎪⎨⎪-++⎩或1,22116,x x x ⎧⎪⎨⎪-++⎩ 解得21x --或112x -<<或122x , 所以22x -,即不等式()6f x 的解集为{22}xx -∣. (2)()()|1||21||1||1||21|2g x f x x x x x x x =++=-++++=-++∣2||21223x x ---=∣,当且仅当(21)(22)0x x -+时取等号,所以min () 3.g x m == 故233a b c ++=.由柯西不等式()()2222222123(23)9a b c a b c ++++++=,整理得222914a b c++, 当且仅当123a b c ==,即369,,141414a b c ===时等号成立. 所以222a b c ++的最小值为914. 10.答案:(1) 2{|3x x ≤或2}x ≥(2)见解析解析:(1)由题意,22a b ==时,()2|f x x ≥|即|22|||x x -≥, 则22|22|||x x -≥,即2384|0x x -+≥ ,解得23x ≤ 或2x ≥ ,故不等式解集为2{|3x x ≤ 或2}x ≥ ;(2)证明:()2|2+=||+||,(0)f x ax bx a x b x a b a-->>=|||, 当0x < 时,()2-()22f x ax bx a b x -=-++>=, 当20x a ≤≤时,()2-()2f x ax bx b a x +=-+=,由于0b a -< ,故()22()(0)2b f f x f a a=≤≤=,当2x a > 时,()22-2()2()b f x ax bx a b x f a a +=+->==,综合以上,()2b f x a≥.。
不等式专项练习题200
30.
5 1 x2 x4 2 2
31.
x2 x5 2 3
32.
1 x 2x 1 2 3
33.
3x 1 2x 0 2
34.
1 x 1 2x 3 7
35.
2 x x 1 5 10
36.
x4 x 1 2 3
不等式专项练习 200 题(朱韬老师分享) 37.
3 x x 1 92. 5 4 x 3 x
2 x 3 x 1 93. 1 x 1 4
2 x 4 x 1 94. x 1 2 x 2
x 2 0 95. x 1 1 x 2
3 x 2 x 8 103. x x 1 3 2
x 3 2x 5 104. 1 3 1 x 2 2
不等式专项练习 200 题(朱韬老师分享)
3 x 2 x 4 105. x 1 x 0 2 3
11. 1 x 2 x 3
12. 2 x 1 4 x 12
13. 2 x 2 3 x 4
14. 3老师分享) 15. 3 x 2 4 2 x 16. 3 x 4 6 2 x 2
5 3 x 4 2 2 x 3 1
3 x 2 2 x 1 85. 4 x 3 3 x 2
2 x 4 0 86. 1 x 8 2 0 2
87.
2 x 1 2 3 x 3 x x 1
不等式专项练习 200 题(朱韬老师分享) 一、解不等式 1. 3x+2>﹣1 2. 3 x 12
不等式方案设计题(精品)
1、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。
(1)试求该商品的进价和第一次的售价;(2)为了确保这批商品总的利润不低于25%,剩余商品的售价应不低于多少元?2、(2001安徽)某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?3、某公司到果品基地购买某种优质水果慰问医务工作者,果品基地对购买量在3000kg以上(含3000kg)的顾客采用两种销售方案。
甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回。
已知该公司租车从基地到公司的运输费用为5000元。
(1)分别写出该公司两种购买方案付款金额y(元)与所购买的水果量x(kg)之间的函数关系式,并写出自变量x的取值范围。
(2)当购买量在哪一范围时,选择哪种购买方案付款最少?并说明理由4、(佳木斯)某公司经营甲、乙两种商品,每件甲种商品进价12万元,•售价14.5万元.每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.•现准备购进甲、乙两种商品共20件,所用资金不低于190万元不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)利用(2)中所求得的最大利润再次进货,•请直接写出获得最大利润的进货方案.5、(苏州)苏州地处太湖之滨,有丰富的水产养殖资源,•水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为500元,水面需按整数亩出租;②每亩水面可在年初混合投入4kg蟹苗和20kg虾苗;③每千克蟹苗的价格为75元,其饲养费用为525元,当年可获1 400元收益;④每千克虾苗的价格为15元,其饲养费用为85元,当年可获160元收益.(1)若租用水面n亩,则年租金共需_________元;(2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益-成本);(3)李大爷现有资金25 000元,他准备再向银行贷不超过25 000元的款,•用于蟹虾混合养殖,已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,•并向银行贷款多少元,可使年利润超过35 000元?6、(哈尔滨)双蓉服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1 810元;若购进A种型号服装12件,B种型号服装8件,需要1 880元.(1)求A、B两种型号的服装每件分别为多少元?(2)若销售1件A型服装可获得18元,销售1件B型服装可获得30元.根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元.问有几种进货方案?如何进货?7、(河南)某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、•乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?8、某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)。
(完整版)不等式专项训练
DSM 金牌数学专题系列 不等式专项训练一、填空题:1、若x <y ,则x -2 y -2.(填“<、>或=”号)2、若93a a -<-,则b 3a .(填“<、>或=”号) 3、不等式7-x >1的正整数解为: .4、当y _______时,代数式423y -的值至少为1. 5、不等式6-12x <0的解集是_________.7、若方程m x x -=+33 的解是正整数,则m 的取值范围是:_________.8、x 的53与12的差不小于6,用不等式表示为__________________. 9、从小明家到学校的路程是2400米,如果小明早上7点离家,要在7点30分到40分之间到达学校,设步行速度为x 米/分,则可列不等式组为__________________,小明步行的速度范围是_________. 10、若关于x 的方程组⎩⎨⎧-=++=+134123p y x p y x 的解满足x >y ,则P 的取值范围是_________. 二、选择题:1、若a >b ,则下列不等式中正确的是:( )A 、a -b <0B 、b a 55-<-C 、a +8< b -8D 、44b a < 2、在数轴上表示不等式x ≥-2的解集,正确的是( )A B C D3、已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A 、x ≥-1B 、x >1C 、-3<x ≤-1D 、x >-34、如果不等式组731x x x n+<-⎧⎨>⎩的解集是4>x ,则n 的取值范围是( )A 、4≥nB 、4≤nC 、4=nD 、4<n5、下列不等式求解的结果,正确的是( )A 、不等式组353-≤⎩⎨⎧-≤-≤x x x 的解集是 B 、不等式组554x x x >-⎧>-⎨≥-⎩的解集是 C 、不等式组无解⎩⎨⎧-<>75x x D 、不等式组103103x x x ≤⎧-≤≥⎨≥-⎩的解集是6、不等式2x +1<8的最大整数解是( )A 、4B 、3C 、2D 、17、若⎪⎩⎪⎨⎧<<><<cx b x ax x c b a 的不等式组则关于,的解集是( )A 、a <x <bB 、a <x <cC 、b <x <cD 、无解8、使代数式129+-x 的值不小于代数式131-+x 的值,则x 应为( )A 、x >17B 、x ≥17C 、x <17D 、x ≥279、已知032)2(2=--+-m y x x 中,y 为正数,则m 的取值范围是( )A 、m <2B 、m <3C 、m <4D 、m <5三、解下列不等式(组),并把解集在数轴上表示出来:(每小题6分,共24分)1、4352+>-x x2、)1(2)3(410-≤--x x3、 ⎩⎨⎧+≥--≥+x x x x 22365234、⎪⎩⎪⎨⎧->+≥--13214)2(3x xx x5、x 为何值时,代数式5123--+x x 的值是非负数?6、已知:关于x 的方程m x m x =--+2123的解的非正数,求m 的取值范围.7、登山前,登山者要将矿泉水分装在旅行包内带上山。
不等式组练习题(5篇)
不等式组练习题(5篇)不等式组练习题(5篇)不等式组练习题范文第1篇【教学过程与评析】一、基本练习老师课前在黑板上先写好以下的口算、估算、笔算题组。
并在上课开头向同学提出本课的学习目标:通过这节课的练习,要求同学们能进一步娴熟地计算两位数乘两位数,并能解决一些简洁的实际问题。
先请大家在练习纸上以最快的速度按要求计算下面各题。
1.口算题组一:82×4= 题组二:40×30=82×20= 40×40=82×24= 40×50=2.估算39×30≈ 39×41≈ 38×52≈3.笔算82×24= 39×41= 38×52=同时提出练习与合作要求:(1)先独立完成以上各题,再想一想以上算式中哪些题是有联系的?(2)小组长负责,先组内同学相互批改,再说一说这些算式有什么联系。
老师在同学独立计算和小组争论时,有意识地关注同学的计算和争论状况。
(留意同学错误的反馈)通过同学的独立计算、分小组进行沟通争论后,老师让一位同学把每题的得数和竖式写在黑板上,同时也把有错的得数写在旁边。
接着组织以下反馈评讲。
师:请大家认真观看黑板上各道题的得数和笔算过程,你有什么想说的吗?(同学观看片刻后作出回答)同学先对错误的得数作了订正,再提出:生:我看出口算的题组二中,下面一题的得数要比上一题的得数大“400”。
师:为什么呢?生:每一题相差10个40,所以相差400。
生:我发觉题组一最终一个算式的结果,刚好是把上面两个算式结果加起来。
生:将每一道估算的算式都看成整十数乘整十数,刚好是上面口算的题组二。
师:是吗。
(老师依据同学说出的估算方法,线连到对应的口算题上)生:我还发觉笔算的第一题与口算题的题组一有关。
师:是吗?(老师让这位同学把关系说清晰)生:每道估算题与每道笔算题也有联系。
师:那估算对笔算有什么作用呢?生:可以用估算的方法检查笔算的得数是不是正确。
不等式组 方案设计【不等式组型方案设计题例析】(共7页)
不等式组方案设计【不等式组型方案设计题例析】[模版仅供参考,切勿通篇使用]方案设计题大多是联系实际生活的开放题,往往以立意活泼、设计新颖、富有创新意识的实际生活应用题为载体,通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用掌握的技能和方法,进行设计和操作,寻求恰当的解决.这就要求从多角度、多层次进行探索,展示思维的灵活性、发散性、创新性.它分为:1.设计图形题;2.设计测量方案题;3.设计最佳方案题.本文就举例对第3种:设计最佳方案题进行分析,此类题目往往要求回答出现的运费最少、利润最少、成本最低、效率最高等,解题时常常与函数、方程、一元一次不等式及不等式组等联系在一起,最主要是与不等式组联系在一起,是现在中考题的热点、难点.解决方案设计这类问题时,首先要弄清题意,根据题意准确地写出表达各种量的代数式,建构恰当的不等式组模型,求出未知数的取值范围,利用未知数的整数解,结合实际问题确定方案设计的种数,从而得出方案.此类题目常常需要用到数形结合和分类讨论等数学思想方法.例 1:20xx年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.某校九年级班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.若搭配一个种造型的成本是800元,搭配一个种造型的成本是960元,试说明中哪种方案成本最低?最低成本是多少元?解:设搭配A种造型x个,则B种造型为个,依题意,得:80x+50≤349040x+90≤2950,解这个不等式组,得:x≤33x≥31,∴31≤x≤33.∵x是整数,∴x可取31,32,33.∴可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个.②A种园艺造型32个,B种园艺造型18个.③A种园艺造型33个,B种园艺造型17个.方法一:由于B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:33×800+17×960=42720.方法二:方案①需成本:31×800+19×960=43040方案②需成本: 32×800+18×960=42880方案③需成本:33×800+17×960=42720∴应选择方案③,成本最低,最低成本为42720元.评析:这是一道关于园艺造型搭配方案的设计问题,由甲、乙两种花卉的盆数一定,A、B两种造型需要的甲、乙两种花卉搭配的盆数一定,利用不等式知识,构建一元一次不等式组模型,进而根据不等式组的解集和造型的个数为正整数,确定具体的A、B两种造型方案种数.例 2:一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:用含x,y的式子表示购进C型手机的部数;求出y与x之间的函数关系式;假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P与x的函数关系式;②求出预估利润的最大值,并写出此时购进三款手机各多少部.解:c=60-x-y.由题意,得:900x+1200y+1100= 61000。
专题练 第2练 不等式
2.(2013·重庆)关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x1,x2),且x2 -x1=15,则a等于
√A.52
7 B.2
15 C. 4
15 D. 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
由x2-2ax-8a2<0, 得(x+2a)(x-4a)<0, 因为a>0,所以不等式的解集为(-2a,4a), 即x2=4a,x1=-2a,由x2-x1=15, 得 4a-(-2a)=15,解得 a=52.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
当x≤1时,由x2-2ax+2a≥0恒成立,二次函数的对称轴为x=a, 当a≥1时,f(x)在(-∞,1]上单调递减, 则f(x)min=f(1)=1>0恒成立, 当a<1时,f(x)min=f(a)=a(2-a)≥0, 所以0≤a<1, 综上,当a≥0时,x2-2ax+2a≥0在(-∞,1]上恒成立; 当x>1时,ex-ax≥0恒成立, 即 a≤exx在(1,+∞)上恒成立,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
由x2+y2-xy=1可变形为 (x2+y2)-1=xy≤x2+2 y2, 解得x2+y2≤2,当且仅当x=y=±1时取等号,所以C正确;
因为x2+y2-xy=1可变形为
x-2y2+34y2=1,
设 x-2y=cos θ, 23y=sin θ,
=llgg190-llgg
98=lg
10·lg 8-lg lg 9·lg 8
92
lg
<
10+lg 2
不等式练习题带解析
不等式练习题带解析一、一元一次不等式1. 解下列不等式:(1) 3x 7 > 2(2) 5 2x ≤ 3x + 1(3) 4(x 3) > 2x + 62. 已知不等式2x 5 > 7,求解x的取值范围。
二、一元二次不等式1. 解下列不等式:(1) x^2 5x + 6 > 0(2) 2x^2 3x 2 < 0(3) x^2 4x + 4 ≤ 02. 已知不等式x^2 6x + 9 > 0,求解x的取值范围。
三、分式不等式1. 解下列不等式:(1) 1/x > 2(2) x/(x 1) ≤ 3(3) (x + 2)/(x 3) > 02. 已知不等式(x 1)/(x + 2) < 0,求解x的取值范围。
四、绝对值不等式1. 解下列不等式:(1) |x 3| > 2(2) |2x + 1| ≤ 3(3) |x + 4| < 52. 已知不等式|3x 5| ≥ 7,求解x的取值范围。
五、综合运用1. 已知不等式组:2x 3y > 6x + 4y ≤ 8求解该不等式组的解集。
2. 设x为实数,求解下列不等式组:x^2 5x + 6 > 03x 2 < 2x + 13. 已知不等式|2x 1| |x + 3| > 0,求解x的取值范围。
六、含参不等式1. 解下列不等式,其中a为常数:(1) ax 4 > 2x + a(2) (a + 1)x 2(a 3) < 3x + a(3) |x a| ≤ a2. 当a为何值时,不等式组有解?(1) ax 5 > 2x + 1(2) 3x a ≤ 4 x七、实际应用题1. 某商品的成本为x元,售价为150%的成本价,若要使利润超过成本的一半,求x的取值范围。
2. 一辆汽车以v km/h的速度行驶,其油耗为v^2/100升/公里。
若要使油耗不超过5升/100公里,求v的取值范围。
高中不等式练习题及答案汇编
不等式1、解不等式:1211922+-+-x x x x ≥7. 2、解不等式:x 4-2x 3-3x 2<0.3、解不等式:65592+--x x x ≥-2. 4、解不等式:2269x x x -+->3.5、解不等式:232+-x x >x +5.6、若x 2+y 2=1,求(1+xy)(1-xy)的最大、最小值。
7、若x,y >0,求y x yx ++的最大值。
8、已知关于x 的方程x 2+(m 2-1)x +m -2=0的一个根比-1小,另一个根比1大, 求参数m 的取值范围。
9、解不等式:log a (x +1-a)>1.10解不等式38->-x x .11.解log (2x – 3)(x 2-3)>012.不等式049)1(220822<+++++-m x m mx x x 的解集为R,求实数m 的取值范围。
13.求y x z +=2的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y14在函数x y 1=的图象上,求使y x 11+取最小值的点的坐标。
15函数4522++=x x y 的最小值为多少?16.若a -1≤x 21log ≤a 的解集是[41,21],则求a 的值为多少?17.设,10<<a 解不等式:()02log 2<--x x a a a18.已知函数y =13422+++x n x mx 的最大值为7,最小值为-1,求此函数式。
19.已知2>a ,求证:()()1log log 1+>-a a a a20.已知集合A=⎭⎬⎫⎩⎨⎧-<-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛<---)26(log )9(log |,212|31231)1(3322x x x B x x x x , 又A ∩B={x|x 2+ax+b <0},求a+b 等于多少?21画出下列不等式组表示的平面区域,⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤+≤+.110,100,3623,242y x y x y x1、[-21,1]∪(1,34) 2、(-1,0)∪(0,3) 3、(-∞,2)∪(3,+∞) 4、(0,3) 5、(-∞,-1323) 6、1, 43 7、2 8、-2<m <09、解:(I)当a>1时,原不等式等价于不等式组:⎩⎨⎧>-+>-+.101a a x a x ,解得x>2a-1.(II)当0<a<1时,原不等式等价于不等式组:⎩⎨⎧<->-+.101a a x a x +, 解得:a-1<x<2a-1.综上,当a>1时,不等式的解集为{x|x>2a-1};当0<a<1时,不等式的解集为{x|a-1<x<2a-1}.10、原不等价于不等式组(1)⎪⎩⎪⎨⎧->-≥-≥-2)3(80308x x x x 或(2)⎩⎨⎧<-≥-0308x x 由(1)得22153+<≤x , 由(2)得x <3, 故原不等式的解集为⎭⎬⎫⎩⎨⎧+<2215|x x。
不等式的典型练习题
不等式的典型练习题第一篇:不等式的典型练习题一、比较大小1、2a与a2、1+3a与1+2a3、a-4a+3与-4a+1二、性质3的应用b,求a ab2、关于x的不等式ax-3x〉b的解集是x〈,求a a-31、关于x的不等式ax〉b的解集为x〈3、关于x的不等式(m-1)x〈m-1的解集是x〉1,求m三、关于解集的问题1、关于x的不等式3x》a的解集为x》2,求a2、关于x的不等式2x-a〈1的解集是x〈1,求a四、关于最大整数解的问题1、4x-a《0的正整数解只有1、2、3,求a2、2x-a《0只有4个正整数解,求a3、3x-a《0的正整数解只有1、2,求a五、求数组的问题1、三个连续正偶数的和小于19,求符合题意的数组2、三个连续自然数的和小于15,求符合题意的数组六、不等式与方程的联系1、关于x的方程3x+a=x-7的解为负数,求a2、关于x的方程3x+a=x-7的根为不是负数,求a3、x≥3=3-6x,求x4、关于x的方程3(x-4)=a+x-14的解不小于3,且a为正整数,求a5、关于x的方程-x+m)=6、3m(x+1)+1=吗(3-x2、x-3≥2x-≤七、绝对值不等式的解法1、x≤3x≥3x≥6x≤6 233x+25+1的解为负数,求m 32)-5x的解为正数,求m第二篇:均值不等式练习题均值不等式求最值及不等式证明2013/11/23题型一、均值不等式求最值例题:1、凑系数:当0<x<4时,求y=x(8-2x)的最大值。
2、凑项:已知x<51,求函数f(x)=4x-2+的最大值。
44x-5x2+7x+10(x≠-1)的值域。
3、分离:求y=x+14、整体代换:已知a>0,b>0,a+2b=1,求t=11+的最小值。
ab5、换元:求函数y=x+2的最大值。
2x+5152x-1+5-2x(<x<)的最大值。
226、取平方:求函数y=练习:1、若0<x<2,则y=2、函数y=x(6-3x)的最大值是1+x(x>3)的最小值是x-3x2+8(x>1)的最小值是3、函数y=x-1x4+4x2+54、函数y=的最小值是2x+25、f(x)=3+lgx+4(0<x<1)有最值等于lgx116x+2的最小值是xx+16、若x>0,则x+7、已知x为锐角,则sinx+cosx的最大值是8、函数sinxcosx的最大值是9、函数y=4249+的最小值是__________ 22cosxsinx11+=9,则x+y的最小值是 xyb10、已知x>0,y>0,且11、a,b∈R,且a+b=3则2+2的最小值是12、已知x,y为正实数,3x+2y=10,则函数W3x 2y 的最值是1 a13、已知a>0,b>0且a+b=1,则(211-1-1)的最小值是)(a2b2y 214、已知x,y为正实数,且x+=1,则x1+y的最大值215、已知a>b>0,则a+1的最小值是(a-b)⋅b16、若正数a,b满足ab=a+b+3,则ab的取值范围是___________17、若a、b∈R,ab-(a+b)=1,则+a+b的最小值是________18、设实数x,y,m,n满足条件m+n=1,x2+y2=9,则mx+ny的最大值是19、若x,y>0,则(x+22121)+(y+)2的最小值是 2y2x11)(b+)的最小值是 ab220、若a,b>0,a+b=1,则(a+题型二、利用均值定理证明不等式例题:1、求证:(1)已知a,b,c为两两不相等的实数,求证:a+b2+c2>ab+bc+ca(2)正数a,b,c满足a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc(3)已知a、b、c∈R,且a+b+c=1,求证:4442222222、已知x,y,z>0,x+y+z≥xy+yz+zx≥xyz(x+y+z)+⎛1⎫⎛1⎫⎛1⎫-1⎪-1⎪-1⎪≥8 ⎝a⎭⎝b⎭⎝c⎭3、若a+b+c=<5第三篇:基本不等式练习题3.4基本不等式重难点:了解基本不等式的证明过程;会用基本不等式解决简单的最大(小)值问题.考纲要求:①了解基本不等式的证明过程.②会用基本不等式解决简单的最大(小)值问题.经典例题:若a,b,c都是小于1的正数,求证:,不可能同时大于.当堂练习: 1.若,下列不等式恒成立的是()A.2.若B.且C.D.,则下列四个数中最大的是()A.B.C.2abD.a 的最大值为()C.的最小值是()C.D.D.-13.设x>0,则A.3B.4.设A.10B.5.若x, y是正数,且,则xy有()A.最大值16B.最小值C.最小值16D.最大值 6.若a, b, c∈R,且ab+bc+ca=1, 则下列不等式成立的是()A.B.C.D.7.若x>0, y>0,且x+y4,则下列不等式中恒成立的是()A.B.C.D. 8.a,b是正数,则A.三个数的大小顺序是()B.C.D.9.某产品的产量第一年的增长率为p,第二年的增长率为q,设这两年平均增长率为x,则有()A.B.C.D.10.下列函数中,最小值为4的是()A.C.11.函数B.D.的最大值为.12.建造一个容积为18m3, 深为2m的长方形无盖水池,如果池底和池壁每m2 的造价为200元和150元,那么池的最低造价为元.13.若直角三角形斜边长是1,则其内切圆半径的最大值是.14.若x, y为非零实数,代数式15.已知:的值恒为正,对吗?答., 求mx+ny的最大值.16.已知.若、, 试比较与的大小,并加以证明.17.已知正数a, b满足a+b=1(1)求ab的取值范围;(2)求的最小值.18.设正整数n都成立..证明不等式对所有的参考答案:经典例题:【解析】证法一假设,同时大于,∵ 1-a>0,b>0,∴ 同理,≥,.三个不等式相加得.,不可能,∴(1-a)b,(1-b)c,(1-c)a不可能同时大于证法二假设,同时成立,∵ 1-a>0,1-b>0,1-c>0,a>0,b>0,c>0,∴,即.(*)又∵ ≤,同理∴≤,≤≤,与(*)式矛盾,故当堂练习:不可能同时大于.1.A;2.B;3.C;4.D;5.C;6.A;7.B;8.C;9.C;10.C;11.;12.3600;13.15.;14.对;16.【解析】.∵、,∴ .当且仅当=时,取“=”号.当时,有.∴ ..即.当时,有.即17.(1)(2)18.【解析】证明由于不等式对所有的正整数k成立,把它对k从1到n(n≥1)求和,得到又因因此不等式以及对所有的正整数n都成立.第四篇:不等式性质练习题﹤不等式性质一、选择题1、已知a<b<0,下列不等式恒成立的是()A.a2<b2B.ab<1C.1111a<bD.a<b2、已知a<0,b<-1,下列不等式恒成立的是()A.a>ab>abB.aaaaaab2>b>aC.b>b2>aD.b>a>b3、若a,b,c,d四个数满足条件:(1)d>c;(2)a+b=c+d;(3)a+d<b+c,则()Ab.>c>d>aB.a>d>c> bC.d>b>a> cD.b>d>c> a4、如果a,b,c满足c<b<a,且ac<0,则以下选项中不一定成立的是()A.ab>acB.c(b-a)>0C.cb2<ab2D.ac(a-c)<05、下列命题中正确的是()Aa.>b,k∈N*⇒ak>bkB.a<b,c>1⇒c-1c-1b<aC.a>b,c>d⇒(a-b)>(c-d)2D.a>b>0,c>d>0⇒abd>c6、如果a,b是满足ab<0的实数,则()A.a+b>a-bB.a-<a bC.a-<a bD.a+b<a+b7、若a>0,b>0,则不等式-b<1x<a的解为()A.-1b<x<0或0<x<1aB.-111111a<x<bC.x<-a或x>bD.x<-b或x>a二、填空题8、若m<0,n>0,m+n<0,则m,n,-m,-n的大小关系为9、若-1<a<b<1,-2<c<3,则(a-b)c的取值范围是10、若0<a<1,给出下列四个不等式,其中正确的是1○1log⎛1⎫⎛1⎫1+a1+1+1+a(1+a)<loga ⎝1+a⎪⎭○2loga(1+a)>loga a a⎝1+a⎪⎭○3a<a○4a<aa11、已知三个不等式:(1)ab>0(2)-ca<-db(3)bc>ad,以其中两个作为条件,余下一个作为结论,可以组成个正确的命题。
不等式经典题型专题练习(含答案)-
26.解:(1)原不等式组的解集是x<2;(2)a=1.
27.(1)答案见解析;(2) 型住房 套, 型住房 套获得利润最大;(3)答案见解析.
19.6
20.(1)参赛学生人数在155≤x<200范围内;
(2)参赛学生人数是180人.
21.(1)40,50(2)当m=15时,总费用最低
22.(1)共有8种购买方案,
方案1:购买康乃馨1支,购买兰花6支;
方案2:购买康乃馨1支,购买兰花7支;
方案3:购买康乃馨1支,购买兰花8支;
方案4:购买康乃馨2支,购买兰花5支;
(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?
25.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次 .已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长度为acm,求a的取值范围.
16.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?
17.3个小组计划在10天内生产500件产品(计划生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产一件产品,就能提前完成任务。每个小组原先每天生产多少件产品?
方案5:购买康乃馨2支,购买兰花6支;
方案6:购买康乃馨3支,购买兰花4支;
不等式方案设计题
6.随着私家车拥有量的增加,停车问题已经给人们的生活带来了很多 不便.为了缓解停车矛盾,某小区开发商欲投资16万元,建造若干个停 车位,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍, 但不超过室内车位的3倍.据测算,建造费用及年租金如下表:
类别
室内车位 露天车位
建造费用(元/个)5 000 1 000
少工人用于开发其它新产品? 12.为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全 部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所 B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金 205万元. (1)改造一所A类学校和一所B类学校所需的资金分别是多少万元? (2)若该县的A类学校不超过5所,则B类学校至少有多少所? (3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由 国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过 400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入 到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计 算求出有几种改造方案?
14.为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品, 若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念 品4件,B种纪念品3件,需要550元, (1)求购进A,B两种纪念品每件需多少元? (2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场 需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超 过B种纪念品数量的8倍,那么该商店共有几种进货方案? (3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30 元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润 是多少元?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式方案设计专题练习汇编
一、租赁方案设计
例、5.12四川地震后,武汉市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1)设租用甲种汽车x辆,请你设计所有可能的租车方案;(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.
练习1、某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨. 现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨.
(1) 将这些货物一次性运到目的地,有几种租用货车的方案?
(2) 若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最
少,应选择哪种方案?
2、“一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运
食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据右表提供的信息,解答下列问题:(1)设装运食品的车辆数为x,装运药品的车辆数为y.求y与x的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.
3、“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共
320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部
..运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.
(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?
4、惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的
救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.
(1) 3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区?
(2)要使救灾物资一次性地运往灾区,共有哪几种运货方案?
5、某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售。
按计划20辆车
都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题
(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.
(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案。
(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值。
二、购买方案设计
例、为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A B ,两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买3台B 型设备少6万元.(1)求a b ,的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案. (3)在(2)问的条件下,若每月要求处理洋澜湖的污水量不低于2040吨,为了节约资金,请你为治污公司设
计一种最省钱的购买方案.
练习1、某商场用36万元购进A 、B 两种商品,销售完后共获利6万元,其进价和售价如下表:
(1)该商场购进A 、B 两种商品各多少件?(2)商场第二次以原进价购进A 、B 两种商品,购进B 种商品的件数不变,而购进A 种商品的件数是第一次的2倍,A 种商品按原售价出售,而B 种商品打折销售. 若两种商品全部销售完毕,要使第二次经营活动获利不少于81 600元,B 种商品最低售价应为每件多少元?(注:获利=售价-进价)
2、某公司为了扩大经营,决定购进6台机器用于生产某种活塞。
现有甲、乙两种机器供选择,其中每种机器的价格和每台机器的日生产活塞的数量如下表所示,经过预算,本次购买机器所用的资金不能超过34万元。
(1)按该公司要求可以有哪几种具体的购买方案?(2)若要求购进的6台机器的日生产能力不低于380个,那么为了节约资金应选择
哪种方案?
3、甲、乙两名大学生准备到汉正街购入一些商品进行销售,从中获取利润赚取学费.A、B两种商品的批发价分别是:A为2元/件,B为5元/件,由于A、B两种商品必须购买500件及以上才算批发,甲、乙两人决定一起购买商品,共购入A种商品500件,并且两人购入的商品总数相同.经核算:甲需支付2600元,乙需支付2900元.(1)甲分别购入A、B两种商品各多少件?(2)若甲购回后将A以每件4元、B以每件8元的价格售出;乙也将A以每件4元的价格售出,那么他要将B以每件多少元的价格售出,才能使他的利润高于甲?若乙也将B商品以每件8元的价格售出,那么他的利润比甲高多少元?
4、已知某服装厂现从纺织厂购进A种、B种两种布料共122米,用去4180元.已知A种布料每米30元,B种布料每米40元.(1)求A、B两种布料各购进多少米?(2)现计划用这两种布料生产甲、乙两种型号的时装共80套.已知做一套甲种型号的时装或一套乙种型号的时装所需A、B两种布料如下表:
①设生产甲种型号的时装为x套,求x的取值范围;②若一套甲种型号的时装的销售价为100元,一套乙种型号的时装的销售价为90元.该服装厂在生产和销售这批时装中,当生产两种型号的时装各多少套时,获得的总利润最大?最大利润Array是多少元?
5、下表是某店两天销售两种商品的帐目记录, 由于字迹潦草, 无法准确辨认第二天的总金额的
个位数字, 只知道是0或者6, 并且已知两种商品的单价均为整数.
(1)请求出A、B两种商品的销售价;
(2)若一件A产品的进价为7元, 一件B产品的进价为6元, 某天共卖出两种产品40件, 且两者
总利润不低于100元, 则至多
...多少件?
..销售乙商品。