耐硫变换催化剂及其使用技术

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

耐硫变换催化剂及其使用技术

1.钴-钼系耐硫变换催化剂及其使用工艺

1.1加压气化工艺及其耐硫变换催化剂

众所周知,在合成氨厂中,合成氨原料气中一氧化碳的变换通常是在铁-铬变换催化剂的存在下进行:CO+H2O<----------->C02+H2+Q

以铁为主的催化剂,由于其中(300~450℃)活性高,价格低廉,几十年来一直被广泛用于一氧化碳和水蒸气的变换反应。这种催化剂的缺点是水蒸气消耗高,在高硫气氛中,其变换活性低。因此,几十年来合成氨的净化流程历来是先脱硫后变换再脱碳。高温的粗煤气经经降温脱硫,在升温补入水蒸气变换,这样就带来流程长,能耗高的缺点。

五十年代,重油部分氧化工艺用于制合成氨原料气,之后,又开发了水煤浆德士古气化制合成氨原料气。针对直接回收热能的冷凝流程,为了充分利用气化反应热及气体中的水蒸气,国外首先开发了一种钴-钼系耐硫变换催化剂串联于气化之后,实现了先变换然后再脱硫脱碳的工艺,从而缩短了流程,降低了能耗。

由于重油(或渣油)部分氧化工艺以及水煤浆德士古气化工艺都是在较高的压力(一般在3.5~8.OMpa)下进行,而且气体中的一氧化碳浓度较高(46~48%),水蒸气浓度高(汽/气比高达1.5),反应热较高,(第一段出口温度可达450~460℃),因此要求用于该流程的耐硫变换催化剂能耐热、耐水汽和耐高压,催化剂有较高的强度和稳定的结构,使之具有足够的使用寿命。这种催化剂一般在载体中添加了镁及其它一些添加剂,或采用一些特殊的制法以稳定载体和催化剂的结构。我们把这种催化剂归为耐高压的中温型钴-钼耐硫变换催化剂。近十多年来,我国已引进了一批油气化和水煤浆加压气化的大、中型化肥(化工厂),形成了应用这类型钴-钼耐硫变换和节能工艺的一个系列。

1.2中串低流程及其变换催化剂

国内煤固定床气化制合成氨原料气的工艺,几十年来一直采用铁-铬型催化剂用于一氧化碳的变换反应,净化工艺一直采用先变换后脱硫脱碳的工艺。催化剂寿命短,水蒸气耗量高、能耗高。自上世纪八十年代以来,我国的合成氨工艺在节能降耗方面取得了重大突破,一些性能优良的节能型催化剂的开发和应用,为各种低能耗节能制氨工艺的开发奠定了技术基础。其中钴-钼型一氧化碳耐硫变换催化剂的开发和应用就是重要的技术进步之一。

这种含有碱金属的钴-钼型耐硫变换催化剂具有很高的低温活性,强度好,寿命长。它首先用于原铁铬型中变催化剂工艺中的第三段,即第三段的铁-铬催化剂改为钴-钼系列耐硫低温变换催化剂,或在原有三段铁-铬型变换的基础上加装一个小型的装有钴-钼型耐硫低变催化剂的低变炉。这就是国内最早开发的中串低的工艺。

中串低工艺的应用,降低了变换气中的汽/气比和第三段催化剂的温度,从而产生明显的经济效益,可归纳为以下三点:

(1)节约水蒸气

全部使用铁-铬催化剂时,吨氨水蒸气消耗为800~1000kg。应用中串低工艺后,吨氨水蒸气消耗为400~500kg,减少了约50%。

(2)增产合成氨

应用中串低工艺后,出口变换气中的一氧化碳浓度与原来全铁-铬催化剂流程相比,从约3%下降到1%以下,从而达到增产氢气和合成氨。据估算,一个相当于1.5万吨/年的合成氨厂,每日可增产2.6吨氨。

(3)减少铜洗负荷

1.3中串低、中低低及全低变流程比较

1.3.1 操作温区

随着耐硫变换催化剂在国内中、小化肥厂的应用,其应用技术又有新的发展,出现了中低低工艺和全低变工艺。

所谓中低低工艺,直观而言就是除了第一段保留使用铁-钴催化剂之外,其余两段使用钴-钼型耐硫低变催化剂,且这两段催化剂使用温度作适当下调。

全低变工艺的应用发展到在变换炉段的各段全部使用钴-钼型耐硫变换催化剂。

由于应用工艺的不同,各段催化剂的操作温度也有区别,如表1所示:

表l 不同工艺的操作温区

1.3.2 水蒸气消耗

采用不同工艺的水蒸气消耗情况见表2:

表2 不同工艺的水蒸气消耗

1.3.3 操作的稳定性

与上述的几种工艺相比,全低变工艺有以下优点:

<1> 水蒸气消耗最低;

<2> 所需催化剂用量最低,从而阻力较小;

<3> 各段反应温度较低,从而减少了变换系统的热损失,并减少了变换系统的换热面积;

<4> 避免了铁-铬催化剂强度不好,会粉碎而对整个变换系统催化剂正常使用的影响。

但全低变工艺及催化剂也碰到一系列问题,这主要表现在:

<1> 半水煤气中的氧对耐硫变换催化剂活性的影响;

<2> 半水煤气中H2S含量太低会引起钴-钼催化剂反硫化而影响催化剂活性;

<3> 在加压变换中,半水煤气在加压时气体带入油污;

<4> 管道和换热设备的腐蚀;

<5> 加入变换炉中的蒸汽或饱和水汽可能引起催化剂结垢而影响活性。

因此,从操作的稳定来看,全低变的操作稳定性要差一些。只有解决好上述问全低变工艺才能安全稳定运行。

在上述所列的问题中,有些通过生产厂的努力可以得到解决,有些则靠催化剂研制开发人员的努力加以解决。

上述用于国内中、小化肥中的中串低、中低低或全低变工艺的钴-钼型耐硫变换催化剂可以归纳为另一类的耐硫变换催化剂。

2.钴-钼型耐硫变换催化剂的组成和特点

2.1 耐硫变换催化剂的组成

所有工艺中使用的耐硫变换催化剂都有一共同特点,就是以钴-钼作为催化剂的活性组分。然后根据催化剂的使用工艺的不同,在活性组分和载体中加入不同的添加剂和组分。例如在操作压力较低的煤固定床气化的中小化肥厂中使用的耐硫变换催化剂,都在钴-钼组分中添加了碱金属促进剂,并且绝大部分以作γ-Al2O3载体,以浸渍法制得。近年来一些单位开发以TiO2-Al2O3复合氧化物为载体的耐硫变换催化剂,这种催化剂可以耐氧,易硫化,在低硫气氛中不易反硫化,低温活性好,很适合全低变工艺中使用。

在以重油部分氧化等加压气化的变换工艺中,钴-钼耐硫变换催化剂的载体大都加入氧化镁及其它的一些添加剂,以增强裁体和催化剂在高压、高温和高汽/气比条件使用下的稳定性。国内外几种主要的钴-钼型耐硫变换催化剂的组成和物性见表3、表4:

表3 国内外几种主要的钴-钼系耐硫变换催化剂物化性能

表4 国外几种主要的中串低耐硫变换催化剂

2.2耐硫变换催化剂的特性

钴钼型耐硫变换催化剂具有以下共同特性:

相关文档
最新文档