比:比的意义和基本性质
比的意义和基本性质

比的意义和基本性质(1)【知识点详解】1. 比的意义:两个数相除又叫做两个数的比。
(1) 比的前项:在两个数的比中,比号前面的数叫做比的前项。
(2) 比的后项:在两个数的比中,比号后面的数叫做比的前项。
(3)比值:比的前项除以后项所得的商,叫做比值。
2. 连比:三个或三个以上的数也能够用比表示,这样的比叫做连比。
3. 反比:假如一个比的前项和后项是另一个比的后项和前项,这两个比叫做互为反比。
如:a :b 和b :a 互为反比。
4. 互为反比的两个比的比值互为倒数。
5. 前项为0的比没有反比,因为比的后项不能为0。
6. 比的基本性质:比的前项和后项同时乘或除以相同的数(0除外)比值不变,这叫做比的基本性质。
7. 最简单的整数比:比的前项和后项是互质数的比,叫做最简单的整数比。
8. 化简比:把两个数的比化成最简单的整数比,叫做化简比,也叫做比的化简。
9. 把一个数量按照一定的比实行分配,这种方法通常叫做按比例分配。
典 型 例 题 精 讲知识点一:求比值。
(1) 求两个数比的比值,就是用比的前项除以比的后项。
(2) 比值和比都能够用分数形式来表示,(3) 比表示一种除法关系,比值是一个数值。
(4) 比值不能写成比的形式,但是它能够是分数,也能够是小数或整数。
(5) 比与分数、除法的关系为:a :b=a ÷b=ba (b ≠0) 【例1】:求比值。
(1)12:0.7 (2)41:13 (3)0.36:52【例2】:求比值(有单位名称的比:先统一单位名称再求比值)。
(提示:任何一个比的比值都不带有单位名称).(1)3km :4km (2)20分:0.25时 (3)3.75吨:250千克知识点二:化简比。
1.整数比的化简方法:把比的前项和后项同时除以它们的最大公因数。
【例3】(1)15:10 (2)180:1202.分数比的化简方法:(1)比的前项和后项中含有分数的,把比的前项和后项同时乘他们分母的最小公倍数,变成整数比,再实行化简;(2)利用求比值的方法也能够化简分数比,但结果必须写成比的形式。
比的意义和比的基本性质

1.小明、小强、小丽都喜欢制作折纸。
有一天,他们三人在争论谁每分钟折的纸鹤数多?小明说:“我折的纸鹤数与时间(分)的比是6︰8。
”
小强说:“我折的纸鹤数与时间(分)的比是3︰4。
”
小丽说:“我折的纸鹤数与时间(分)的比是12︰16。
”
2.学生讨论、计算。
问题:这三个比有什么相同和不同之处?
3. 这三个比中有什么规律?这与除法中的商不变的性质有什么联系呢?
4.总结得出:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
四、应用知识
1.求比值。
2.辨析求比值的方法。
3.应用比的基本性质化简比。
(1)学生尝试独自解决问题。
(2)讨论交流。
(3)总结化简整数比的方法。
4.课件出示巩固练习。
五、拓展:认识黄金比
【板书设计】
比的意义和比的基本性质
15:10
比的意义:两个数相除又叫做两个数的比。
比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
比和比例知识点总结

比和比例知识点总结在数学中,比和比例是两个非常重要的概念,它们贯穿了整个数学学习的过程。
比和比例不仅在日常生活和实际问题中有着广泛的应用,也是进一步学习数学和其他科学学科的基础。
本文将对比和比例的知识点进行总结。
一、比1、比的定义比是指两个量之间的关系,通常用冒号或斜线表示。
例如,A与B的比是3:2,或者A/B=3/2。
2、比的性质比的性质包括交换律、结合律和分配律。
交换律是指比的前项和后项交换位置,比值不变;结合律是指比的运算可以结合在一起,没有顺序之分;分配律是指比可以分配到其他数学运算中。
3、比的应用比在日常生活和实际问题中有着广泛的应用。
例如,我们在比较两个物体的长度、高度或重量时,都会使用到比的概念。
在化学中,物质的浓度、酸碱度等也使用比来表示。
二、比例1、比例的定义比例是指两个量之间的比例关系,通常用等号表示。
例如,A与B的比例是3:2,或者A:B=3:2。
2、比例的性质比例的性质包括交叉乘积相等、交叉加法相等和交叉减法相等。
交叉乘积相等是指交叉相乘的两个数乘积相等;交叉加法相等是指交叉相加的两个数加起来相等;交叉减法相等是指交叉相减的两个数差相等。
3、比例的应用比例在日常生活和实际问题中也有着广泛的应用。
例如,我们在计算两个数的比例时,可以使用比例的基本性质来进行计算。
在工程、设计和科学实验等领域中,比例的概念也经常被使用。
比和比例是数学中非常重要的概念,它们在日常生活和实际问题中有着广泛的应用。
理解和掌握这两个概念对于提高数学素养和解决实际问题都具有重要的意义。
比和按比例分配知识点在我们的日常生活中,比和按比例分配是一种常见的数学概念。
无论是在购物、分发物品还是规划生产中,比和按比例分配都是非常实用的工具。
下面我们将详细介绍这两个重要的数学概念。
一、比比是数学中的一个基本概念,通常用于描述两个数之间的关系。
比如说,我们可以说一辆汽车每小时行驶50公里,那么它每分钟行驶的距离就是50/60公里,这里的50和60就是两个比。
比的意义和基本性质教学反思

比的意义和基本性质教学反思比的意义和基本性质是我们在教学中经常遇到的重要问题。
理解比的意义和基本性质对于培养学生的思维能力和批判性思维能力、提高他们的分析和解决问题的能力非常重要。
在教学中对比进行深入的反思和探究,有助于我们更好地理解和应用比。
比是一种常见的思维方式,在多个知识领域和学科中都有广泛的应用。
比可以帮助我们将一个事物和另一个事物进行对照比较,进一步理解事物的特点、优缺点、相似之处和不同之处。
通过比较,我们可以更清晰地把握事物的本质和特点,从而更好地理解和应用它们。
比的意义在于:1. 帮助学生理解事物的相似之处和不同之处。
通过对比,学生可以更清晰地认识到事物之间的相似点和差异点,从而深入理解事物的本质或特点。
2. 培养学生的批判性思维能力。
通过比较,学生可以对事物进行分析和评价,培养他们思考问题、解决问题的能力,从而更好地面对复杂的问题和挑战。
3. 建立知识之间的联系。
比可以帮助学生建立不同知识领域之间的联系和横向联想,促进知识的综合应用和迁移。
基于这些意义,我们在教学中应当重视比的教学和学习。
具体来说,可以从以下几个方面进行反思:1. 教学目标的明确性。
在进行比的教学时,我们需要明确教学目标,确定要比较的对象,并指导学生理解和应用比的方法。
因为比有不同的类型和方法,如比较相同类型事物的异同、比较相似领域的不同事物等。
为了达到教学效果,我们需要根据具体情况确定教学目标和方法。
2. 提供合理的比较素材和材料。
在进行比的教学时,我们需要提供丰富的比较素材和材料,让学生进行比较。
这些素材和材料可以是文字、图片、实物等形式,能够展示事物的特点和差异。
3. 引导学生进行全面、客观的比较。
在进行比的教学时,我们需要引导学生进行全面、客观的比较,避免主观性和片面性,鼓励他们考虑多个方面的因素。
比如,可以通过提出问题、引导思考、提供参考答案等方式,帮助学生进行客观、全面的比较。
4. 培养学生的批判性思维能力。
六年级上册第四单元《比》基础知识点汇总、参考重点题型与解题思路总结

第四单元《比》基础知识点与解题思路一、比的意义1、比:两个数相除又叫做两个数的比。
2、比的结构:在两个数的比中,比号前面的数叫比的前项,比号后面的数叫比的后项。
比的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数或整数表示最简比:比的前项和后项只有公因数1,这样的比称为最简整数比。
3、比可以表示两个同类数量之间的倍数关系:比如一个长方形长和宽的比是15:10;也可以表示两个不同类数量之间的相除关系,得到一个新的量:比如路程÷时间=速度。
4、求比值:前项除以后项所得的商叫做比值,所以用比的前项除以后项即可求得比值(单位不统一时需要先统一单位再计算)。
比值是一个具体的数,通常用分数表示,也可以用小数或整数表示。
比值是否带单位:同类数量的比仅表示数量之间的倍数关系,其比值不带单位;不同类数量的比,其比值是一个新的数量,通常带一个复合单位(如速度)。
5、比与比值的关系:二者在写法上可能相同(都可以用分数表示),但比表示两个数量之间的相除关系;比值则是一个具体的数字。
6、比、除法与分数之间的联系:a:b=a÷b=b a(b≠0)区别:(1)意义不同:比表示两个数量之间的相除关系;除法是一种运算;分数是一个数;(2)表示方法不同:除法是一种运算,只能用算式表示;比和分数都可以用分数的形式表示,但是分数并不一定表示两个数量的比。
(3)、结果不同:除法的计算结果是一个商,这个商可以是整数、小数或分数;比只有当要求比值的时候,才需要用除法计算,比值可以用整数、小数或分数表示;而分数就是一个数,不需要计算。
7、为什么比的后项不能为0:在除法中,除数不能为0;在分数中,分母不能为0;而比的后项就相当于除法中的除数、分数中的分母,所以比的后项也不能为0。
8、求比中的未知项:在除法中,被除数÷除数=商,这3个数量只要知道其中任意2个量,就能求出另一个量,除数=被除数÷商;被除数=商×除数。
比的基本性质是什么比除法与分数之间的区别

比的基本性质1.比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2.最简比的前项和后项互质,且比的前项、后项都为整数。
3.比值通常整数表示,也可以用分数或小数表示。
4.比的后项不能为0 。
5.比的后项乘以比值等于比的前项。
6.比的前项除以后项等于比值。
比、除法与分数之间的区别1.意义不同:比表示两个数量之间的相除关系;除法是一种运算;分数是一个数;2.表示方法不同:除法是一种运算,只能用算式表示;比和分数都可以用分数的形式表示,但是分数并不一定表示两个数量的比。
3.结果不同:除法的计算结果是一个商,这个商可以是整数、小数或分数;比只有当要求比值的时候,才需要用除法计算,比值可以用整数、小数或分数表示;而分数就是一个数,不需要计算。
比的基本性质的知识扩展比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
比和比例比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种如:a:b;比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同如:a:b=c:d。
所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的.比和比例的区别:区别区别1:意义、项数、各部分名称不同。
比表示两个数相除;只有两个项:比的前项和后项。
如:a:b 这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
a:b=3:4 这是比例。
区别2:比的基本性质和比例的基本性质意义不同、应用不同。
比的性质:比的前项和后项都乘以或除以一个不为零的数。
比值不变。
比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。
比例的性质用于解比例。
联系:比例是由两个相等的比组成。
表示两个比相等的式子叫做比例,是比的意义比例有4项,前项后项各2个. 在比例里,两个外项的即等於两个内项的积,这叫做比的基本性质.比表示两个数相除;只有两个项:比的前项和后项。
比的意义和比的基本性质

15cm
“神舟”五号进入运行 轨道后,在距地350km 的高空作圆周运动,平 均90分钟绕地球一周, 大约运行42252km。
怎样用算式表示飞船进入轨道 后平均每分钟飞行多少千米?
“神舟”五号进入运行 轨道后,在距地350km 的高空作圆周运动,平 均90分钟绕地球一周, 大约运行42252km。
比表示一种关系; 除法是一种运算; 分数是一种数;
1、小敏买了6本,共花了1.8元。 小亮买了8本,共花了2.4元。
(1) 比小值敏是和(小亮3 )买;的练习本数之比是(6):(8), 4
(2) 比花值的是钱(数之3 )比;是(1.8 ):( 2.4 ), 4
2、3 :( 1 )= 24 (192) : 8 = 24 8
比的前项和后项同时乘或同时除以相 同的数(零除外),比值不变。 这叫做比的基本性质。
被除数和除数同时乘或同时除以相同 的数(零除外),商不变。
这叫做商不变的性质。
分子和分母同时乘或同时除以相同的 数(零除外),分数值不变。 这叫做分数的基本性质。
应用这个性质可以把一个比
? 化成最简单的整数比 前项和后项是互质的整数
速度 = 路程÷时间
42252÷90
路程和时间的比是42252比90。 (不同类量的比表示一种新的量。)
“神舟”五号进入运行 轨道后,在距地350km 的高空作圆周运动,平 均90分钟绕地球一周, 大约运行42252km。
求比值的方法:前项÷后项
求出下面各比的比值。 15 : 10 0.8 : 0.2
(2) —9—的最简比是( A )
0.03 (A)300 ︰ 1 (B)300 (C) 1︰ 300
(3) 0.25 ︰1.25的最简比是(B )
比的意义和基本性质

预习班数学——比的意义和基本性质一、基础知识1、比的意义(1)比的意义:两个数相除又叫做两个数的比。
a叫做比的前项,b叫做比的后项.前项a除以后项b所得的商叫做比值.(2)比的组成部分。
例如:2、比与除法、分数之间的关系。
3、比的基本性质(1)比的基本性质。
比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
(2)比的基本性质的应用。
应用比的基本性质可以把一个比转化成最简单的整数比。
化简的方法和把一个分数化成最简分数的方法类似。
如:18︰27=(18÷9)︰(27÷9)=2︰34、三项连比的性质三项连比的性质是:(1)如果a∶b=m∶n,b∶c=n∶k,那么a∶b∶c=m∶n∶k.(2)如果k≠0,那么a ∶ b ∶c=ak ∶bk ∶ck=5、比的应用(1)按比例分配的意义。
把一个量按照一定的比来进行分配方法叫做按比例分配。
(2)按比例分配应用题的解法。
通常是把比转化为分数,即先求出各部分是整体的几分之几,然后根据分数乘法的意义求各部分的数量。
如:六(1)班学生45人,其中男生与女生人数的比是5︰4,这个班男生、女生各有多少人?①总人数平均分成的份数:5+4=9答:这个班男生有25人,女生有20人。
6、解题技巧指点化简比与求比值的相同点是方法可以通用,计算结果在形式上有时是一致的。
如:8:12,化简比和求比值的结果都可以写成.化简比与求比值的区别是:化简比求得的结果是一个最简整数比,可以写成真分数、假分数的形式,但是不能写成带分数、小数或整数;求比值的结果是“商”,是一个数,可以写成分数、小数或整数。
二、例题1、求同类量的比值例1、甲堆煤有3.5吨,乙堆煤有270千克,求甲堆煤比乙堆煤的比值。
2、求不同类量的比值例2、小华1.4小时步行12千米,求小华所行路程与时间的比值。
3、求连比例3、一杯咖啡有三种成份,其中糖和咖啡粉的比是2︰3,糖和水的比是5︰26,求这杯咖啡的糖︰咖啡粉︰水的连比。
比,比例,比值的概念

比,比例,比值的概念比:两个数相除又叫两个数的比。
比号前面的数叫比的前项,比号后面的数叫比的后项。
比值:比的前项除以后项的商,叫做比值。
比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。
比例:表示两个比相等的式子叫做比例。
a:b=c:d比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。
正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。
反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。
按比例分配:把几个数按一定比例分成几份,叫按比例分配。
【意义】>>>比的意义1.两个数相除又叫做两个数的比。
2.“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
3.同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
4.比值通常用分数表示,也可以用小数表示,有时也可能是整数。
5.比的后项不能是零。
6.根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
比例的意义1.表示两个比相等的式子叫做比例。
2.组成比例的四个数,叫做比例的项。
3.两端的两项叫做外项,中间的两项叫做内项。
性质>>>比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
>>>比例的性质在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
六年级同步第13讲:比的意义与性质

【答案】.
【解析】苹果单价:元,梨的单价:元,苹果与梨的单价之比为
【总结】考查比的基础应用..
B.C.D.
【例9】夏日炎炎,商店需调制一种夏日特饮:青柠雪碧,要求青柠汁与雪碧的质量之为1 : 200,这个比的意义是()
A.每200克饮料中含1克青柠汁
C.青柠汁比雪碧少199克
【难度】★★
【难度】★★
【答案】.
【解析】小智的时间12分,效率为,小方的时间为15分钟,效率为,效率就是速度,所以小智与小方的速度之比为,也可以给学生拓展相等的工作量,速度比是时间的反比.
【总结】考查行程(工程)问题中速度比的求解.
【例25】甲数的等于乙数的,甲乙两数的比为__________.
【难度】★★
【答案】.
【例6】如果甲数是乙数的5倍,那么甲数和乙数的比是______.
【难度】★
【答案】.
【解析】若甲是乙的5倍,则甲:乙=.
【总结】考查两数之比的表示方法.
【例7】比的前项是,比的后项是,则它们的比值是______.
【难度】★★
【答案】.
【解析】由题意,得.
【总结】考查比值的意义.
【例8】王奶奶买了2斤苹果用去10.8元,买了3斤梨用去12元,苹果与梨的单价比的比值是______.
【总结】考查工程问题中效率之比的求法.
【例27】5克盐完全溶解在100克水中.
(1)求盐与水的质量比;
(2)求盐与盐水的质量比;
(3)要配制520千克这样的浓度的盐水,需要盐多少千克?
【难度】★★
【答案】(1);(2);(3)千克.
【解析】(1)盐:水=;(2)盐:盐水=;
(3)盐占盐水的,要配置520千克这样浓度的盐水,需要盐千克.
比的意义和比的基本性质

2.你还能举出生活中这样的例子吗?
(二)探究非同类量的比
1. 赵凡3分钟走了330米,怎样用算式表示赵凡的行走速度?
师:这时候,我们也可以用比来表示路程和时间的关系:路程与时间的比是330 :3。
2.上面的例子如果改为:赵凡每小时行110米,行330米需要几小时?用比又该怎样表示?你是怎样想的?
年 级
六年级
学 科
数学
主 备 人
花
备课时间
2015.9
课 题
比的意义和比的基本性质
教学课时
1
教材分析
比是数学中的一个重要概念,比的概念实质是对两个数量进行比较,表示两个数量间的倍数关系。虽然比与除法、分数有着密切的关系,但对学生来说还是比较陌生,理解比的意义往往比较困难。教材密切联系学生已有的生活经验和学习经验,设计了多个情境,为学生理解比的意义提供了丰富的直观背景和具体案例,引发学生的讨论和思考,并在此基础上抽象出比的概念,使学生感受到需要刻画两个数量之间的关系,体会引入比的必要性以及比在生活中的广泛存在。
师:其实这样的例子还有很多,你能试着举几个吗?
(三)总结比的意义
1.结合前面的例子,谈谈你对比有怎样的理解?
师:两个数相除,又叫做两个数的比。
2.看书质疑
自学比的各部分名称及求比值的方法。
师:你能说说什么叫做比值?怎样求比值吗?72 :96 = 72÷96 = =
前比后 比
项号项 值
师:说出下面各比的前项和后项,再求出比值 。4:5 8:4 0.5:1
教学重点
理解比的意义。
理解并掌握比的基本性质。
教学难点
理解比的意义。
六年级上数学讲义-比的意义及其基本性质人教版

比的意义与根本性质教学目标1、熟练掌握与比有关的知识.2、能用比解决较复杂的分数应用题.3、增加面试技巧与水平.知识点讲解一、比的意义:1、两个数相除又叫做两个数的〔〕.A:B中A叫比的〔〕,B叫比的〔〕.2、除法、分数及比的关系:a^b = - = a.b二、“比〞的考前须知:1、一般情况下,比一定要化为最简整数比.2、比和比值的区别是:比是一个式子,而比值是一个数.3、比的根本性质比的前项和后项同时乘或者除以相同的数〔0除外〕,比值不变.三、化简比的小技巧:我们可以通过将比的前项除以后项所得的结果视为比值,将比值写成前项比后项的形式即为最简比.如:将2:0.45化简并求比值.3 = 8:9比值最简比例题精讲例1:求比值并化简比.(1)J:0.75化简比是〔〕,比值是〔〕o25 4〔2〕二:,化简比是〔〕,比值是〔〕o615〔3〕把,小时:15分钟化成最简整数比是〔〕.〔4〕平角和45.锐角度数的最简整数比是〔〕,比值是〔〕.〔5〕甲数的2等于乙数的」〔甲乙都不等于0〕,那么甲数:乙数=〔〕. 7 3例2:比的根本性质运用⑴〕+36 = 0.25 =厂\ =〔〕:〔〕〔2〕在3:5中,如果比的前项加上6,要使比值不变,后项应加上〔〕.〔3〕如果A:B=4:5, B:C=3:2,那么A:B:C =〔〕:〔〕:〔〕.例3:分数与比的关系〔1〕女生人数是男生人数的工.男生和女生人数的比是〔:〕,男生人数与总人数8 之比是〔:〕,女生人数与总人数之比是〔:〕.〔2〕杨树和柳树棵树的比是2: 5.杨树棵树是柳树的^—;柳树棵树比杨树多〔〕-―-;杨树棵树比柳树少^—-;〔〕〔〕思考:上面的问题你是用怎样的方法解决的?从以上问题的解决中,能说说分率与比的联系吗?仿真练习: 1、化简下面的比.2 . 1 _ 一« ——5 4 ,吨:800千克= 2.445分钟二2、9+( ) = 0,6 = ^—__1 = 15:( )3、在5:6中,如果比的前项加上15,要使比值不变,后项应乘( )o4、如果 A:B=5:6, B:C=4:3,那么 A:B:C =( ):( ):( ).5、甲数的3等于乙数的?(甲乙都不等于0),那么甲数:乙数二( )o 5 3过关检测(一)填空. (1) --=0.75=15 : ( ) = ( ) :48 = 9+( )() (2)在3:4中,如果比的前项加上15,要使比值不变,后项应乘( )o(3)如果 A:B=5:2, B:C=3:1,那么 A:B:C =( ):( ):( ).(4) 1A = 48 = C +,(A 、B 、C 不为 0),那么 A:B:C=( ). 3 2 (5)甲数的4倍是乙数的9,甲数:乙数二( )o11 (6)停车场小车数量是大车的2.4倍,小车与大车数量的最简比是(: 车总数的最简比是(:);小车比大车多—-;大车比小车少4() ();小车与) o)(二)选择题.(1)甲数除以乙数的商是4, 中数与乙数的比是()o A 、4B 、1 :4C 、4 : 1D 、1〔2〕把10克的盐放进100克的水中,盐和盐水质量的比是〔 A 、1 : 10B 、10 : 1C 、1 : 11D. 11 : 1〔3〕 一个三角形与跟它等底等高的平行四边形面积的比是〔〕o B 、2 : 1 C 、1 : 3D 、3 : 1〕两个图形面积的比是2 : 3.B 、2 和 3C 、3 和 5D 、4 和 1二州后w 广>运用数量关系求比 例1:〔1〕商场购回A 、B 两种型号的电脑,它们的台数比是5: 6,价格比是9: 10.它们的总价比是多少?〔2〕甲乙两个平行四边形底的比是2: 3,高的比是4: 1,面积比是多少?〔3〕汽车和火车走同一段路,如果汽车速度是火车的那么汽车与火车所用时间的比是 多少?)oA 、1 : 2 〔4〕下面〔派〔4〕小明与小凡分别从家到科技馆.小明比小凡走的路程少2,而小凡的时间比小明 5 多花L,小明与小凡的速度比是多少?仿真练习1:〔1〕两种笔记本的总价比是5: 2,数量比是3: 1,单价比是〔〕〔2〕甲乙两个平行四边形底的比是2: 3,面积比是4: 1,高的比是〔〕〔3〕甲乙两个三角形的底边比是2: 5,高的比是5: 3,面积比是〔〕〔4〕如下图,空白局部与阴影局部面积的比是〔〕o>转化单位“1〞型分数应用题:例2:兄弟四人去买一台电视机,老大带的钱是另外三人所带钱总数的一半,老二所带钱是另外三人所带钱总数畤老三所带钱是另外三人所带钱总数呜,老四带去加.元.请问这台电视机多少钱?〔小升初真题〕★挑战修一条路,第一天修了全长的2多16米,第二天修了余下的』,还剩41米,这 5 4 条路全长多少米?课后作业(1)一项工程,甲队单独做10天完成,乙队独做15天完成.甲、乙两队完成时间的最 简比是(:);他们工作效率的最简比是(:).(2)男生是女生的1.4倍,男生:女生=():( ). (3) 30克盐放入120克水中,盐与盐水的比是():(). (4)甲:乙二3 : 5,乙:丙=2 : 7,那么甲:乙:丙二( ):():().( ) 4 (5) ---- = 9 + 36 = ---- =():()=()(填小数)20 ( )V 7 V 7(6)五年级参加学校运动会的女生有16人,比参赛的男生人数的」少2人,五年级参加3运动会的同学共有多少人?逻辑思维水平练习1 .甲和乙的比是5: 4,乙与丙的比是6: 7,甲、乙、丙的比是()o2 .生产同样多的零件,小张用4小时,小李用了 6小时,小李和小张的工效最 简比是().A.B. 2 : 3C. 3 : 2D.6 44 65.甲数除以乙数的商是3.2,乙数与甲数的最简整数比是(3 .比的前项扩大到原来的3倍, A.扩大到原来的3倍C.缩小到原来的, 34 . 20千克:0.2吨的比值是( A. 100 B. 0.01后项除以1,比值().3B.扩大到原来的9倍D.不变).C. 0.1A. 16 : 5D. 2 : 3B. 5 : 16C. 3 : 2。
比的意义和基本性质

比的意义和基本性质比的意义和基本性质1.比的意义:两个数的比表示两个数相除。
2.比的各部分名称。
(1)比号:“:”叫做比号,读作:“比”。
(2)比的前项和后项:在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
(3)比值:比的前项除以后项所得的商,叫做比值。
3.比和比值的关系:2既可以表示2:3,又可以表示联系:比和比值都可以用分数形式表示,如32:3的比值。
区别:比表示两个数量的倍数关系;比值是一个具体的数,可以是分数,也可以是小数或整数。
温馨提示:当比的后项为1时,1不能省略不写。
如2:1不能写成2,写成2就是2:1的比值。
4.比与分数、除法的关系。
(1)联系:比的前项相当于分数的分子、除法中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商。
(2)区别:比表示两个数量的倍数关系,分数是一个数,除法是一种运算。
5.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
6.化简比:把两个数的比化成最简单的整数比。
(1)整数比的化简方法:比的前项和后项同时除以它们的最大公因数。
(2)分数比的化简方法:比的前项和后项同时乘它们分母的最小公倍数,先转化成整数比,再进行化简;也可以利用求比值的方法化简。
(3)小数比的化简方法:先用恰当的方法转化成整数比,再进行化简。
【诊断自测】1.填空。
(1)甲是乙的23,甲和乙的比是(),乙和甲的比是()。
(2)5÷8=():()=()()(3)比的后项不能为()。
(4)把43:1.125化成最简单的整数比是(),比值是()。
(5)把25克糖放入100克水中,糖和糖水的质量比为()。
2.求比值。
53:411.2:3.61.5t:240kg 12:1513.求下列各比中的未知数。
113:x=3x:0.6=1099:x=434.化简下面各比。
9:126.5:1.354:1580.3:920.75:2【考点突破】类型一:已知一个数的几分之几等于另一个数的几分之几,求这两个数的比。
六年级上册数学沪教版比的意义与性质

比的意义和比的基本性质是六年级数学上学期第三章第一节的内容,通过本讲的学习,同学们需要理解比和比值的意义、能区分比和比值、熟练地求解比和比值,同时要理清比与除法、分数等概念之间的联系和区别,也必须理解比的基本性质,并能熟练运用这个性质进行最简整数比的化简和连比的求解.1、 比和比值a 、b 是两个数或两个同类的量,为了把b 和a 相比较,将a 与b 相除,叫做a 与b的比.记作a : b ,或写成ab,其中0b ;读作a 比b ,或a 与b 的比.a 叫做比的前项,b 叫做比的后项. 前项a 除以后项b 所得的商叫做比值. 2、 比、分数和除法的关系比:前项:后项 = 比值;分数:分子分母= 分数值;除法:被除数÷除数 = 商. 比的前项相当于分数的分子和除式中的被除数; 比的后项相当于分数的分母和除式中的除数; 比值相当于分数的分数值和除式的商. 3、 比、分数和除法的区别 比是表示两个数关系的式子,分数是一个数,除法是一种运算.比的意义与性质内容分析知识结构模块一:比的意义知识精讲【例1】在5:4 1.25=中,5是比的______,1.25是比的______.【例2】213=____÷3 =____ : 3.【例3】某班有男生23人,女生22人,则男生人数与女生人数的比为______,女生人数与全班人数的比为______.【例4】求下列各个比的比值:(1)24 : 4;(2)15 : 25;(3)13:24;(4)11:0.52.【例5】下列各数中,与3 : 2不相等的是()A.1.5 B.23C.32D.128【例6】如果甲数是乙数的5倍,那么甲数和乙数的比是______.【例7】比的前项是38,比的后项是223,则它们的比值是______.【例8】王奶奶买了2斤苹果用去10.8元,买了3斤梨用去12元,苹果与梨的单价比的比值是______.例题解析【例9】夏日炎炎,商店需调制一种夏日特饮:青柠雪碧,要求青柠汁与雪碧的质量之为1 : 200,这个比的意义是()A.每200克饮料中含1克青柠汁B.每1克青柠汁配200克雪碧C.青柠汁比雪碧少199克D.雪碧比青柠汁多199克【例10】求下列各个比的比值:(1)40分钟: 1.5小时;(2)16小时: 5天;(3)4千克: 500克;(4)20cm : 0.6m.【例11】一个数的小数点向右移动三位,得到的数与原数的比是______.【例12】甲数是乙数的4倍,乙数是丙数的6倍,求甲数与丙数的比值.【例13】公园有一个湖泊,其余为绿地、建筑物和道路.已知公园面积为215平方千米,绿地面积为公园的23,建筑物和道路的占地总面积是公园面积的118,求湖泊面积和绿地面积的比值.【例14】一根绳子长132米,若按3 : 4分成两段,其中长的一段是多少米?1、 比的基本性质比的前项和后项同时乘以或者除以相同的数(0除外),比值不变. 2、 最简整数比比的前项和后项都是整数且互素,这样的比叫做最简整数比. 注:题目中比的结果都必须化成最简整数比. 3、 三连比的性质1、如果::a b m n =,::b c n k =,那么::::a b c m n k =;2、如果0k ≠,那么::::a b c ak bk ck =.【例15】 化简下列各比:(1)6 : 10;(2)22:35;(3)0.7 : 0.9;(4)10.75:4.【例16】 把10克盐完全溶解在90克水中,则盐与盐水的质量之比是( )A .1 : 10B .10 : 1C .1 : 9D .9 : 1模块二:比的基本性质知识精讲例题解析【例17】甲数除以乙数的商是1.5,则甲数与乙数的最简整数比是____________.【例18】两个数的比值是43,则它们的最简整数比是______;如果比的前项与后项同时乘以3,它们的最简整数比是______.【例19】把下列连比化成最简整数比:(1)20 : 25 : 50;(2)258 :: 369.【例20】比的前项扩大2倍,后项缩小2倍,这个比的比值()A.扩大4倍B.缩小4倍C.比值不变D.以上说法都不正确【例21】以下说法中,正确的个数是()(1)比的前项和后项乘以一个相同的数,比值不变;(2)女同学占全班人数的49,则女同学和男同学的人数之比为4 : 5;(3)把20克糖溶解在100克水中,糖与糖水的质量比为1 : 6;(4)25厘米和15米的比值是53;(5)在4 : 8中,如果前项加上8,要使比值不变,后项应加上8.A.1个B.2个C.3个D.4个【例22】化简下列各比:(1)511:196;(2)60.3::35;【例23】根据已知条件求a : b : c.(1)a : b = 2 : 3,b : c = 3 : 4;(2)a : b = 2 : 3,b : c = 6 : 5;【例24】写同样多的作业,小智用12分钟,小方用15分钟,那么小智与小方速度的最简整数比是____________.【例25】甲数的35等于乙数的14,甲乙两数的比为__________.【例26】一项工程,甲队单独做3天完成,乙队单独做5天完成,丙队单独做6天完成,那么甲、乙、丙三队的工作效率之比为_________________.【例27】5克盐完全溶解在100克水中.(1)求盐与水的质量比;(2)求盐与盐水的质量比;(3)要配制520千克这样的浓度的盐水,需要盐多少千克?【例28】如图,阴影部分的面积是正方形面积的27,是圆面积的316,求正方形与圆的面积之比.【例29】a : b : c = 1 : 3 : 4,a + c = 20,求a + b + c的值.【例30】甲、乙、丙三人去书店买书,共带去54元,甲用去了自己钱的35,乙用去了自己钱的34,丙用去了自己钱的23,各买了一本相同的书,三人用去的钱数正好相等,问这本书的价格是多少?【习题1】下列说法中,不正确的是()A.5与3的比值是5 3B.除法中的被除数相当于比的前项、分数中的分子C.若:3:5a b ,则a = 3,b = 5D.前项和后项是互素的,那么它们的比是最简整数比【习题2】六(2)班春游时,有1人请事假,2人请病假,实际45人参加,缺勤人数与全班人数的比是()A.1 : 15 B.3 : 45 C.1 : 16 D.3 : 48【习题3】一段绳子,原长14米,一次用去了2.8米,余下的绳长与原来的绳长的最简整数比是______.【习题4】一个比的前项是15,比值是114,则这个比的后项是______.【习题5】求下列各比的比值:(1)123:125;(2)3小时: 150分.【习题6】化简下列各比:(1)511:163;(2)2平方米: 4320平方厘米;(3)4:0.4:25(4)120分: 1.2小时: 1小时20分钟.随堂检测【习题7】比的前项是2.5,比的后项是5.25,如果比的前项增加1.5,那么比的后项增加______时,比值不变.【习题8】根据已知条件,求下列各比.(1)已知:15:4x y=,:5:12z y=,求::x y z;(2)已知11:1:223a b=,:2:3b c=,求::a b c.【习题9】现有黄沙、水泥、石子各12吨,根据施工要求,将黄沙、水泥、石子按2 : 3 : 5拌成混凝土,当水泥用完时,黄沙用了几吨?石子还缺几吨?【习题10】某中学460名学生分成三组参加植树活动,第一组与第二组人数比是3 : 4,第一组与第三组人数比是2 : 3,第三组比第二组多多少人?64.5甲乙【作业1】 6和9这两个数的最大公因数与它们的最小公倍数的比是( )A .1 : 12B .12 : 1C .1 : 6D .6 : 1【作业2】 一个比的前项是最小的素数,后项是最小的合数,这个比的比值是______.【作业3】 小正方形与大正方形的边长之比为2 : 5,则小正方形与大正方形的面积之比为____________.【作业4】 如图,甲、乙两个三角形的面积之比为____________.【作业5】 求下列各比的比值:(1)1.2 : 1.8;(2)2.4 m : 30 dm .【作业6】 根据已知条件,求下列各比.(1)已知11::23x y =,:2:3z x =,求::x y z ;(2)已知()12::1:2:33x y z ⎛⎫= ⎪⎝⎭,求::x y z .课后作业7k 7k5kPDCBA乙甲【作业7】 一个长方体的长和宽的比是5 : 6,宽与高的比是4 : 7,如果长方体的长是20厘米,求它的体积.【作业8】 如图所示,有三种物体:圆球、圆柱、正方体,每一种物体的大小、质量相同.若两个天平都平衡,三个球体的重量等于几个正方体的重量?【作业9】 如图,ABCD 是梯形,底边为AB 和CD ,P 是AD 的中点,CP 把梯形分成甲、 乙两个部分,它们的面积之比为12 : 7,求:上底AB 与下底CD 长的比.。
比的意义及比的基本性质

第十讲 比的意义及比的基本性质【典型例题1】求下列各式的比值:(1)4.5:217; (2)312:611 (3)36分:0.4时.解析:(1)4.5:217= 4.5÷7.5=0.6;或 4.5:217=29÷215=29×152=53.(2)312:611=37÷67=37×76=2.(3)0.4时=0.4×60=24分; 36分:0.4时=36分÷24分=211点评:此题考查的是比与比值的概念;掌握正确、熟练地求比值的方法. 【知识点】1.比a 、b 是两个数或两个同类的量,为了把b 和a 相比较,将a 与b 相除,叫做a与b 的比.记作a:b ,或写成ba,其中b ≠0;a 叫做比的前项,b 叫做比的后项.2.比值 比的前项除以比的后项所得的商叫做比值。
求比值时注意: (1)得到的结果是一个数(分数或小数,有时是整数). (2)求两个同类量的比值时,如果单位不同,必须把这两个量化成相同的单位. (注意:比是解决同类量之比). 【基本习题限时训练】1. 求54:45的比值,结果正确的是:( ) A 、2516 B 、1625 C 、16﹕25 D 、 25﹕16【解】A2. 求2周: 5天的比,结果正确的是:( )A 、14:5B 、542 C 、5:14 D 、 2.8【解】C3. 某中学预备(2)的学生人数为40人,其中男生17人,则该班男生人数与女生人数的比值是:( )A 、4017B 、1723C 、17﹕23D 、 2317【解】D 【拓展题1】一项工程,甲队用15天完成,乙队用18天完成,求甲队与乙队的工作效率的比值.【解析】(1÷15) ﹕(1÷18)= 151:181=151÷181=151×18=115【点评】把这项工程看成整体“1”,工作效率=工作总量÷工作时间,所以甲队和乙队的工作效率分别是151和181【拓展题2】如图,在ΔABC 中BC=10厘米,BD 是BC 的52,求ΔABD 和ΔABC 的面积之比.【解析】BD=10×52=4厘米;BC=10厘米;BD 上高的长=BC 上高的长;ΔABD 的面积:ΔABC 的面积=(21×BD ×BD 上高):(21×BC ×BC 上高)=(21×4):(21×10)=2:5.【点评】 三角形的面积公式是21×底边长×底边长上的高,而ΔABD 和ΔABC的边长可以取B D 、BC 它们底边上的高是同一条高,由已知条件只要求出B D 长就可以求出这两个三角形的面积比.【典型例题2】已知41:x=213,求x.解析:因为41:x=213;所以41÷x=213;由 x=41÷213;可得x=41×72;所以x=141.点评:要求正确理解分数、除法、比的关系和区别,从而求出所求的未知数。
人教六数上《比的意义和性质整理和复习》

二. 《按比例分配》
在工农业生产和日常生 活中,常常需要把一个数 量按照一定的比来进行分 配。这种分配方法通常叫 做按比例分配。
例2
一种洗衣液买来时是浓缩液。我按1:4的比
配制了一瓶 500ml 的洗衣液的稀释液,其中浓缩 液和水的体积分别是多少? 500ml
4份多少ML? 每份多少ML?
1+4=5
再攀高峰
甲乙两个数的比是2:3,乙数和 丙数的比是4:5 。甲数和丙数 的比是多少? 甲 乙 丙
2 : 3 = 8 : 12 4 : 5 = 12 :15
11
(3)男生人数占(6 )份,女生占( 5 )份,全班 人数是(11 )份,男生比女生多( 1 )份;
女生人数和男生人数的比是( 5:6 );
四年级男生和女生的人数比是6:5。从这 个信息中你知道了什么了?
11 (4)全班人数是男生的( ),全班人数和男 6
生人数的比是( 11:6 );
11 (6)全班人数是女生人数的( ),全班人数 和女生人数的比( 11:5 )。 5
3、男生人数是35份,女生人数是25份;
一共是(35+25)份, 相差(35-25)份;
练习:
幼儿园小班有男生51人,女生49人。 男生与女生的比是( 51:49 ) 男生与全班人数的比是(51:100 )
2.常见的数量怎样用比表示 速度= 路程 : 时间 单价= 总价 : 数量 工效= 工作总量 : 工作时间
500÷5=100(ml) 100×1=100(ml) 100×4=400(ml)
我按 1:4 的比配制了一瓶 500ml 的稀释液, 其中浓缩液和水的体积分别是多少?
用分率方法做 1+4=5
1 500× 5 =100(ml) 4 500× 5 =400(ml)
比的意义和性质

【知识概要】
1、(1)比的意义: 、 是两个数或两个同类的量,为了把 和 相比较,将 与 相除,叫做 与 的比(ratio)。记作 : ,或者写成 ,其中 ;读作 比 ,或者 与 的比。
(2) 叫做比的, 叫做比的。前项 除以后项 所得的商叫做。
(3)比、分数和除法三者之间的关系是:
4、写出比值:3千克:1400克=, 450秒:0.5时=。
5、化简::4=3:124:12=12:
6、 中,阴影部分面积与空白部分面积的比是。
【精解名题】
例1、(1) :x= (2)x: =
例2、小强有3支新铅笔,旧铅笔个数是新铅笔个数的 ;有5支新钢笔,恰是旧钢笔个数的 ;求小强铅笔总个数与钢笔总个数的比。
4、0.2: 化成最简整数比为1.()
二、填空题:
1、比的意义: 、 是两个数或两个同类的量,为了把 和 相比较,将 与 相除,叫做 与 的比。记作,或者写成,其中 叫做比的, 叫做比的。前项 除以后项 所得的商叫做。
2、求比值:250米:450分米
3、( ):28=20:( )= =1.25
4、两个人的身高比是4:3,高个的160厘米,矮个的是米。
3、甲乙两人需修路1千米。已知甲的速度是12米/天,乙的速度是14米/天,问甲单独修完这条路所需时间与乙单独修完这条路所需时间之比的比值。
【自我测试】
一、判断题:
1、如果a:b=11:12,那么a=11,b=12.()
2、23厘米:23米的比值是1:100.()
3、如果a:b=2:3,那么(a+2):(b+2)=4:5()
例3、根据比的性质,求解下列各式的x。
(1)111:x=3:4 (2)x: =3:8
比和比例知识点归纳完整版

比和比例知识点归纳标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]比和比例知识点归纳1、比的意义和性质比的意义:两个数相除又叫做两个数的比。
例如:9 : 6 = 1.5前比后比项号项值比的基本性质:比的前项和后项都乘以或除以相同的数(零除外),比值不变。
应用比的基本性质可以化简比。
习题:一、判断。
1、比的前项和后项同时乘一个相同的数,比值不变。
()2、比的基本性质和商的基本性质是一致的。
()3、10克盐溶解在100克水中,这时盐和盐水的比是1:10. ()4、比的前项乘5,后项除以1/5,比值不变。
()5、男生比女生多2/5,男生人数与女生人数的比是7:5. ()6、“宽是长的几分之几”与“宽与长的比”,意义相同,结果表达不同。
()7、2/5既可以看做分数,也可以看做是比。
()二、应用题。
1.一项工程,甲单独做20天完成,乙单独做30天完成。
(1)写出甲、乙两队完成这项工程所用的时间比,并化简。
(2)写出甲、乙两队工作效率比,并化简。
2.育才小学参加运动会的男生人数和女生人数的比是5∶3,其中女生72人。
那么男生比女生多多少人3.食品店有白糖和红糖共360千克,红糖的质量是白糖的。
红糖和白糖各有多少千克4.甲、乙两个车间的平均人数是162人,两车间的人数比是5∶7。
甲、乙两车间各有多少人?5.有一块长方形地,周长100米,它的长与宽的比是3∶2。
这块地有多少平方米?6.建筑用混凝土是由水泥、沙、石子按5∶4∶3搅拌而成,某公司建住宅楼需混凝土2400吨,需水泥、沙、石子各多少吨?外项2、比例的意义和性质:比例的意义:表示两个比相等的式子叫做比例。
例如:9 :6 = 3 : 2内项比例的基本性质:在比例中两个内项的积等于两个外项的积。
应用比例的基本性质可以解比例。
3、比和分数、除法的关系:习题:一、填空(1)两个数相除又叫做两个数的()。
(2)在5:4中,比的前项是(),后项是(),比值是()(3)8:9读作:(),这个比还可以写成()。
关于比的知识点

关于比的知识点【篇一:关于比的知识点】什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:18 比例的基本性质:在比例里,两外项之积等于两内项之积。
三、比和比的应用(一)、比的意义 1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如 15 : 10 = 15 10= 23(比值通常用分数表示,也可以用小数或整数表示)∶∶∶∶前项比号后项比值 3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
例:路程速度=时间。
4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:比前项比号:后项比值除法被除数除号除数商分数分子分数线分母分数值 7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为 0。
体育比赛中出现两队的分是 2: 0 等,这只是一种记分的形式,不表示两个数相除的关系。
(二)、比的基本性质 1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0 除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0 除外) ,比值不变。
最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4. 化简比:①用比的前项和后项同时除以它们的最大公因数。
(1)②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整比的基本性数比的方法来化简。
③两个小数的比:向右移动小数点的位置,先化成整数比再化简。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科:数学
教学内容:比:比的意义和基本性质
【知识要点精讲】
1.比的意义
两个数相除又叫做两个数的比。
2.比的记法与各部分关系
3比2 记作:3 : 2=121
=
前 比 后 比 项 号 项 值
比的前项除以后项所得的商叫比值。
3
用等式表示为:a:b=a÷b=b a
(b ≠0)
4.比的基本性质
比的前项和后项同时乘或者除以相同的数(0除外),比值不变.这个性质是根据除法和分数的基本性质得出来的。
根据比的基本性质,可以得出另外两个结论:
①比的前项扩大(或缩小)若干倍,后项不变,比值也扩大(或缩小)相同倍数。
②比的后项扩大(或缩小)若干倍,前项不变,则比值反而缩小(或扩大)相同倍数。
【重点难点点拨】
1.本节知识的重点是比的意义,比的意义是表示两个相除的关系,不能理解比就是除法。
比的基本性质也是本节知识的重点,它与分数基本性质和除法的商不变性质之间有相通关系。
2.本节知识的难点是求比值与化简比的区别,二者容易混淆,学习时注意区别开来。
【典型例题示解】
例1 把下面各比先化成最简整数比,然后求比值。
(1)74:51 (2)1938
(3)0.75:0.5
分析:化简比就是根据比例基本性质把比化成最简整数比。
解:(1)74:51=(74×35):(51×35)=20:7 74:51=276
(2)1938=38:19=2:1 1938=2
(3)0.75:0.5=(0.75×4): (0.5×4)=3:2 0.75:0.5=121
例2 求20厘米:0.05千米的比值。
分析:单位不统一时,要先把单位统一再求比值。
解:0.05千米=5000厘米 20:5000=2501
【解题技巧传经】
1.比、除法、分数三者之间有区别。
比是指两个数相除,除法是一种运算,而分数则是一个数,三者是不同的三个概念。
2.求比值与化简比的区别是:比值是一个数,如6:4=1.5,化简比的结果仍是比。
如6:4=23
(或3:2)
【课后作业设计】
成
绩
:
( )
1.填空
(1)158:94
的前项是( ),后项是( ),比值是( )。
(2)长方形的长是宽的57
,长和宽的比是( )。
(3)1.8米和8厘米的比是( ),比值是( )。
(4)甲、乙两数的比是4:5,甲数是乙数的)()( ,乙数是甲数的)()
( 。
(5)7:14=)()(
,0.45:0.5=)()( ,71:4=)()
( 。
2
3.判断((1)15:8的前项缩小2倍,要使比值不变,后项应除以2。
( ) (2)比的前项与后项都可以是0。
( )
(3)甲数与乙数的比为2:3,则乙数是甲数的1.5倍。
( ) (4)在3:5中,前项不变,后项扩大2倍,则比值扩大2倍。
( )
4.应用题
(1)养殖厂养牛80头,养羊120头,求出下列问题?
①牛的头数是羊的几分之几? ②羊的头数是牛的几倍? ③牛与羊的头数比是多少? ④羊与牛的头数比是多少?
(2)用84厘米的铁丝围成一个长方形,使它的长与宽的比是4:3,这个长方形的面积是多少?
(3)小杏看一本书,已看的页数与未看的页数比是5:4,已看了75页,还有多少页没有看?
【思维发散训练】
1.某车间工人与技术人员数在50到60之间,工人与技术人员的比是9:2,求车间工人和技术人员各多少人?
2.已知甲数与乙数的比是4:3,两数和是140,求甲、乙两数。
【数学奥赛乐园】
小明、小刚、小新和小红都喜欢养小金鱼,他们在一起谈到自己养的金鱼数目时,小明
说:“我的金鱼条数是你们三人之和的31
”。
小刚说:“我的金鱼条数与你们三人之和的比是
1:4”。
小新说:“你们三人的金鱼数是我的5倍”。
小红说:“我养了23条金鱼。
”聪明的小朋友,请你想一想,他们四人共养了多少条金鱼?
【参考答案】
【课后作业设计】
1.(1)158,94,151,(2)7:5,(3)45:2,22.5,(4)54,45,(5)21,109
,281
3.√ × √ ×
4.(1)①32
②1.5 ③2:3 ④3:2
(2)长是:24(厘米),宽是18(厘米) 面积:432(平方厘米) (3)60(页) 【思维发散训练】
1.车间人数是55人。
工人:45(人),技术:10(人) 2.甲数:80,乙数:60 【数学奥赛乐园】
提示:小明占总数的41,小刚占总数的51,小新占总数的61
23÷(1-41-51-61
)=60(条)。