知识梳理_平面向量的数量积及应用_提高

合集下载

平面向量的数量积与平面向量应用举例_图文_图文

平面向量的数量积与平面向量应用举例_图文_图文

三、向量数量积的性质
1.如果e是单位向量,则a·e=e·a. 2.a⊥b⇔ a·b=0 .
|a|2
4.cos θ=
.(θ为a与b的夹角)
5.|a·b| ≤ |a||b|.
四、数量积的运算律
1.交换律:a·b= b·a . 2.分配律:(a+b)·c= a·c+b·c . 3.对λ∈R,λ(a·b)= (λa)·b= a·(λb.) 五、数量积的坐标运算
∴a与c的夹角为90°. (2)∵a与b是不共线的单位向量,∴|a|=|b|=1. 又ka-b与a+b垂直,∴(a+b)·(ka-b)=0, 即ka2+ka·b-a·b-b2=0. ∴k-1+ka·b-a·b=0. 即k-1+kcos θ-cos θ=0(θ为a与b的夹角). ∴(k-1)(1+cos θ)=0.又a与b不共线, ∴cos θ≠-1.∴k=1. [答案] (1)B (2)1
解析:(1) a=(x-1,1),a-b=(x-1,1)-(-x+1,3)= (2x-2,-2),故a⊥(a-b)⇔2(x-1)2-2=0⇔x=0或2 ,故x=2是a⊥(a-b)的一个充分不必要条件.
答案: (1)B (2)D
平面向量的模 [答案] B
[答案] D
[典例总结]
利用数量积求长度问题是数量积的重要应用,要掌 握此类问题的处理方法:
[巩固练习]
2.(1)设向量a=(x-1,1),b=(-x+1,3),则a⊥(a-b)
的一个充分不必要条件是
()
A.x=0或2
B.x=2
C.x=1
D.x=±2
(2)已知向量a=(1,0),b=(0,1),c=a+λb(λ∈R),
向量d如图所示,则
()
A.存在λ>0,使得向量c与向量d垂直 B.存在λ>0,使得向量c与向量d夹角为60° C.存在λ<0,使得向量c与向量d夹角为30° D.存在λ>0,使得向量c与向量d共线

第三节 平面向量的数量积及平面向量应用举例-高考状元之路

第三节 平面向量的数量积及平面向量应用举例-高考状元之路

第三节 平面向量的数量积及平面向量应用举例预习设计 基础备考知识梳理1.平面向量的数量积 若两个 向量a 与b ,它们的夹角为θ,则数量 叫做a 与b 的数量积(或内积),记作规定:零向量与任一向量的数量积为两个非零向量a 与b 垂直的充要条件是 ,两个非零向量a 与b 平行的充要条件是2.平面向量数量积的几何意义数量积a ·b 等于a 的长度∣a ∣与b 在a 方向上的投影 的乘积.3.平面向量数量积的重要性质=⋅=⋅e a a e )1((2)非零向量⇔⊥b a b a ,,(3)当a 与b 同向时,=⋅b a当a 与b 反向时,=⋅b a =⋅a a , =||a=θcos )4(||)5(b a ⋅.|||b a4.平面向量数量积满足的运算律=⋅b a )1( (交换律);=⋅=⋅)())(2(b a b a λλ (A 为实数);=+c b a ).)(3(5.平面向量数量积有关性质的坐标表示设向量),,(),,(2211y x b y x a ==则=⋅b a 由此得到:(1)若),,(y x a =则=2||a ,或=||a(2)设),,(),,(2211y x B y x A 则A ,B 两点间的距离=||AB =||(3)设),,(),,(2211y x b y x a ==则⇔⊥b a典题热身1.下列四个命题中真命题的个数为 ( )①若,0=⋅b a 则;b a ⊥②若,c b b a ⋅=⋅且,0=/b 则⋅=c a);().(C b a c b a ⋅⋅=⋅③.)(222b a b a ⋅=⋅④4.A 2.B 0.c 3.D答案:C2.在△ABC 中,,10,2,3===BC AC AB 则=⋅. ( )23.-A 32.-B 32.c 23.D 答案:D3.已知平面向量b a b a +-=-=λ),2,4(),3,1(与a 垂直,则=λ( )1.-A 1.B2.-c 2.D答案:A4.已知),7,4(),3,2(-==b a 则a 在b 上的投影为( )13.A 513.B 565.c 65.D答案:C5.已知,2)(,6||,1||=-⋅==a b a b a 则向量a 与b 的夹角是( )6π⋅A 4π⋅B 3π⋅c 2π⋅D 答案:C课堂设计 方法备考题型一 平面向量的数量积运算和向量的模【例1】已知向量),2sin ,2(cos ),23sin ,23(cos x x b x x a -==且⋅-∈]4,3[ππx (1)求b a ⋅及|;|b a +(2)若|,|)(b a b a x f +-⋅=求)(x f 的最大值和最小值,题型二 利用向量的数量积求其夹角【例2】已知,21)()(,21,1||=+⋅-=⋅=b a b a b a a 求 (l)a 与b 的夹角;(2)a-b 与a+b 的夹角的余弦值.题型三 利用向量的数量积解决平行与垂直问题【例3】设向量,(cos ),cos 4,(sin ),sin ,cos 4(βββαα===c b a ).sin 4β-(1)若a 与b-2c 垂直,求)tan(βα+的值;(2)求||c b +的最大值;(3)若,16tan tan =βα求证:.//b a题型四 平面向量数量积的应用【例4】已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量),,(b a m =),sin ,(sin A B n = ).2,2(--=a b p(1)若,//n m 求证:△ABC 为等腰三角形;(2)若,p m ⊥边长,2=c 角,3π⋅=C 求△ABC 的面积.技法巧点1.向量数量积性质的应用 向量数量积的性质⇔=⋅⋅=⋅=0,||||cos ,||b a b a b a a a a θ,b a ⊥因此,用平面向量数量积可以解决有关长度、角度、垂直的问题.2.证明直线平行、直线、线段相等等问题的基本方法(1)要证,CD AB =可转化证明22CD =或.||||=(2)要证两线段,//CD AB 只要证存在一实数,0=/λ使等式λ=成立即可.(3)要证两线段,CD AB ⊥只需证.0..= 失误防范1.数量积a ·b 中间的符号“.”不能省略,也不能用“×”来替代.0.2=⋅b a 不能推出0=a ,或.0=b 因为0=⋅b a 时,有可能.b a ⊥)0(.3=/⋅=⋅a c a b a 不能推出.c b =4.一般地,,).()(a c b c b a =/⋅即乘法的结合律不成立.因b a ⋅是一个数量,所以c b a )(⋅表示一个与c 共线的向量,同理右边a c b )(⋅表示一个与a 共线的向量,而a 与c 不一定共线,故一般情况下.)()(a C b c b a ⋅=/⋅5.向量夹角的概念要领会,比如正三角形ABC 中,><,应为,120 而不是.60随堂反馈1.(2011.清远调研)在△ABC 中,已知a ,b ,c 成等比数列,且,43cos ,3==+B c a 则⋅等于 ( ) 23.A 23.-B 3.c 3.-D答案:B2.(2011,台州一模)已知向量a ,b 的夹角为,1||,120=a ,5||=b 则|3|b a -等于( )7.A 6.B 5.C 4.D答案:A3.(2011.湖北高考)若向量),1,1(),2,1(-==b a 则b a +2与b a -的夹角等于( )4.π-A 6π⋅B 4π⋅c 43.πD 答案:C4.(2011.全国卷)设向量a ,b 满足=⋅==b a b a ,1||||,21-则=+|2|b a ( ) 2.A 3.B 5.c 7.D答案:B5.(2011.江苏高考)已知21,e e 是夹角为32π的两个单位向量,⋅+=-=2121,2e ke b e e a 若,0=⋅b a 则实数k 的值为 答案:45 高效作业 技能备考一、选择题1.(2010.安徽高考)若向量),21,21(),0,1(==b a 则下列结论中正确的是( ) ||||.b a A = 22.=⋅b a B b a c -.与b 垂直 b a D //. 答案:C2.(2010.重庆高考)若向量a ,b 满足===⋅||,1||,0b a b a ,2则=-|2|b a ( )0.A 22.B 4.C 8.D答案:B3.(2010.四川高考)设点M 是线段BC 的中点,点A 在直线BC 外,如果BC -=+=162那么||等于 ( ) 8.A 4.B 2.C 1.D答案:C4.(2010.辽宁高考)平面上O ,A ,B 三点不共线,若,a =,b =则△OAB 的面积等于( )222)(|.|.b a b a A ⋅- |222)(|.b a b a B ⋅+⋅222)(||||21.b a b a c ⋅-⋅ 222)(21.b a b a D ⋅+⋅ 答案:C5.(2010.杭州质检)向量.2),1,(),2,1(b a c x b a +===,2b a d -=若,//d c 则实数x 的值等于( )21.A 21.-B 61.c 61.-D 答案:A6.(2011.汕头模拟)如图所示,在△ABC 中,=∠==ABC BC AB ,4,30 AD 是边BC 上的高,则. 的值等于( )0.A 4.B 8.c 4.-D答案:B二、填空题7.(2011.天津高考)已知直线梯形ABCD 中,,//BC AD ,90 =∠ADC ,2=AD P BC ,1=是腰DC 上的动点,则|3|+的最小值为答案:58.(2010.浙江高考)若平面向量),0(,b a a b a =/=/满足=||b ,1且a 与b-a 的夹角为,120则||a 的取值范围是答案:)332,0(9.(2011.浙江高考)若平面向量βα、满足,1||,1||≤=βα且以向量βα、为邻边的平行四边形的面积为,21则βα和的夹角θ的取值范围是 答案:]65,6[ππ三、解答题10.(2010.江苏高考)在平面直角坐标系xOy 中,已知点).1,2(),3,2()2,1(----C rB A(1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足,0)(=⋅-t 求t 的值.11.(2011.湖南高考)已知向量).2,1(),sin 2cos ,(sin =-=b a θθθ(1)若a∥b,求θtan 的值;(2)若,00|,|||π<<=b a 求θ的值.12.(2011.江苏高考)已知向量]).0,[)(sin ,(cos πααα-∈=OA 向量),5,0(),1,2(-==n m 且).(n OA m -⊥(1)求向量;(2)若,0,102)cos(πβπβ<<=-求).2cos(βα-。

平面向量的数量积及应用

平面向量的数量积及应用

平面向量的数量积及应用复习一、知识要点: 1.向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角,当θ=0时,a ,b 同向,当θ=π时,a ,b 反向,当θ=2π时,a ,b 垂直。

2.平面向量的数量积:定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ 叫作a 与b的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,规定零向量与任一向量的数量积为0,即0·a =0. 3.向量的数量积的性质:①设两个非零向量a ,b ,其夹角为θ,则: 0a b a b ⊥⇔•=; ②当a ,b 同向时,a •b =a b ,特别地,222,a a a a a a =•==; 当a 与b 反向时,a •b =-a b ;当θ为锐角时,a •b >0,且 a b 、不同向,0a b ⋅>是θ为锐角的必要非充分条件;当θ为钝角时,a •b <0,且 a b 、不反向,0a b ⋅<是θ为钝角的必要非充分条件;③非零向量a ,b 夹角θ的计算公式:cos a b a bθ•=;④||||||a b a b •≤。

⑤e ·a =a ·e =︱a ︱cos θ (e 为单位向量); 4.平面向量数量积的坐标表示:设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角.(1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2. (2)模:|a |=2a =x 21+y 21.(3)夹角:cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.(4)两非零向量a ⊥b 的充要条件:a ·b =0⇔x 1x 2+y 1y 2=0. (5)| a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤ x 21+y 21·x 22+y 22.5.平面向量数量积的运算律:(1) a ·b =b ·a (交换律). (2)λa ·b =λ(a b b )=a ·(λb )(结合律). (3)( a +b )·c =a ·c +b ·c (分配律). 6.重要结论:①向量垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别地()()AB AC AB AC ABACABAC+⊥-。

平面向量的数量积

平面向量的数量积

∴ (a – b)·(a + 3 b)=0 即 a · a + 3 a· b – b · a – 3 b · b = 0 即 a · a + 2 a· b– 3 b · b = 0 ∴ (a + b)2 = 4 b2 即 | a + b |2 = 4 | b |2
∴|a+b| =2|b|
例2、已知a、b都是非零向量,且a + 3 b 与7 a – 5 b 垂直,a – 4 b 与7 a – 2 b垂 直,求a与b的夹角。 cosθ=
|
• • 特别地:a · a=| a |
2
或 |a|=
• (4)cosθ=
(5)| a· b|≤|a||b
|
3、平面向量的数量积满足的运算率 (1) (交换律) a ·b = b ·a (2)(实数与向量结合律)
(λ a )· b =λ(a · b )=a · (λb )
(3)(分配律)(a + b )· c =a· c+b· c
2 已知 |a| =12,|b| =9,a ·b =-54√2,求a和b 的夹角 3、已知△ABC中,a =5,b =8,C=600,求BC · CA
A
B C
4、已知 | a | =8,e是单位向量,当它们之间的夹 角为
三、典型例题
• 例1、 已知(a – b)⊥(a + 3 b),求 证: ab + b( |= 23 |b b | 解:∵ (| a– )⊥ a+ )
四、巩固练习
1、已知△ABC中,AB=a,AC=b,当a· b<0, a· b=0时, △ABC各是什么样的图形? 2、已知| a |=3,| b |=4,且a与b的夹角θ=1500,求a · b, ( a + b )2,| a + b | 3、设a是非零向量,且b ≠ c,求证:a · b=a· c的充要 条件是a⊥(b - c) 4、若b =(1,1)且a · b =0,(a – b)2=3,求向量a的模 5、证明: (λ a )· b =λ(a · b )=a · (λb )

平面向量的数量积及其应用

平面向量的数量积及其应用

突破点(一) 平面向量的数量积1.向量的夹角;21.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可.2.根据定义计算数量积的两种思路(1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解.[典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( )A .-72B .-12(2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且u u u r BE =23u u u r BC ,u u u r DF =16u u u r DC ,则u u u r AE ·u u u r AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =⎝ ⎛⎭⎪⎫-12,1,所以a ·b =-1×⎝ ⎛⎭⎪⎫-12+2×1=52. (2)取u u u r BA ,u u u r BC 为一组基底,则u u u r AE =u u u r BE -u u u r BA =23u u u r BC -u u u r BA ,u u u r AF =u u u r AB +u u u r BC +u u u r CF =-u u u r BA +u u u r BC +512u u u r BA =-712u u u r BA +u u u r BC ,∴u u u r AE ·u u u r AF =⎝ ⎛⎭⎪⎫23 u u u r BC -u u u r BA ·⎝ ⎛⎭⎪⎫-712 u u u r BA +u u u r BC =712|u u u r BA |2-2518u u u r BA ·u u u r BC +23|u u u r BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918[易错提醒](1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”.突破点(二) 平面向量数量积的应用 的关系1.第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足u u u r AB =2a ,u u u r AC =2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥u u u r BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92B .0C .3 [解析] (1)在△ABC 中,由u u u r BC =u u u r AC -u u u r AB =2a +b -2a =b ,得|b |=2,A 错误.又u u u r AB =2a 且|u u u r AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·u u u r BC =(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥u u u r BC ,D 正确,故选D.(2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,-6).∴(2k -3,-6)·(2,1)=0,即(2k -3)×2-6=0.∴k =3.[答案] (1)D (2)C[易错提醒]x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.平面向量模的相关问题利用数量积求解长度问题是数量积的重要应用,要掌握此类问题的处理方法:(1)a 2=a ·a =|a |2; (2)|a ±b |=a ±b 2=a 2±2a ·b +b 2.[例2] (1)(2017·衡水模拟)已知|a |=1,|b |=2,a 与b 的夹角为π3,那么|4a -b |=( ) A .2 B .6 C .2 3 D .12(2)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________. [解析] (1)|4a -b |2=16a 2+b 2-8a ·b =16×1+4-8×1×2×cos π3=12.∴|4a -b |=2 3. (2)∵e 1·e 2=12,∴|e 1||e 2|cos e 1,e 2=12,∴e 1,e 2=60°.又∵b ·e 1=b ·e 2=1>0,∴b ,e 1=b ,e 2=30°.由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.[答案] (1)C (2)233 [方法技巧] 求向量模的常用方法(1)若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.(2)若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.平面向量的夹角问题第一步 由坐标运算或定义计算出这两个向量的数量积第二步 分别求出这两个向量的模第三步 根据公式cos 〈a ,b 〉=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22求解出这两个向量夹角的余弦值 第四步 根据两个向量夹角的范围是[0,π]及其夹角的余弦值,求出这两个向量的夹角[例3] (1)若非零向量a ,b 满足|a |=22|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) D .π(2)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.[解析] (1)由(a -b )⊥(3a +2b ),得(a -b )·(3a +2b )=0,即3a 2-a ·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ,即3|a |2-|a ||b |cos θ-2|b |2=0, ∴83|b |2-223|b |2·cos θ-2|b |2=0.∴cos θ=22.又∵0≤θ≤π,∴θ=π4. (2)∵a 2=(3e 1-2e 2)2=9+4-2×3×2×13=9,b 2=(3e 1-e 2)2=9+1-2×3×1×13=8, a ·b =(3e 1-2e 2)·(3e 1-e 2)=9+2-9×1×1×13=8,∴cos β=a ·b |a ||b |=83×22=223.[易错提醒](1)向量a ,b 的夹角为锐角⇔a ·b >0且向量a ,b 不共线.(2)向量a ,b 的夹角为钝角⇔a ·b <0且向量a ,b 不共线.突破点(三) 平面向量与其他知识的综合问题平面向量集数与形于一体,是沟通代数、几何与三角函数的一种非常重要的工具.在高考中,常将它与三角函数问题、解三角形问题、几何问题等结合起来考查.[例1] 已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R.(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.[解] (1)f (x )=a ·b =2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝⎛⎭⎪⎫2x +π3, 令2k π≤2x +π3≤2k π+π(k ∈Z),解得k π-π6≤x ≤k π+π3(k ∈Z), 所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z). (2)∵f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,∴cos ⎝⎛⎭⎪⎫2A +π3=-1. 又0<A <π,故π3<2A +π3<7π3,∴2A +π3=π,即A =π3. ∵a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①∵向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sin C .由正弦定理得2b =3c ,②由①②,可得b =3,c =2. [方法技巧]平面向量与三角函数综合问题的类型及求解思路(1)向量平行(共线)、垂直与三角函数的综合:此类题型的解答一般是利用向量平行(共线)、垂直关系得到三角函数式,再利用三角恒等变换对三角函数式进行化简,结合三角函数的图象与性质进行求解.(2)向量的模与三角函数综合:此类题型主要是利用向量模的性质|a |2=a 2,如果涉及向量的坐标,解答时可利用两种方法:一是先进行向量的运算,再代入向量的坐标进行求解;二是先将向量的坐标代入,再利用向量的坐标运算求解.此类题型主要表现为两种形式:①利用三角函数与向量的数量积直接联系;②利用三角函数与向量的夹角交汇,达到与数量积的综合.[例2] (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若u u u r AC ·u u u r BE =1, 则AB的长为________.(2)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若u u u r AE ·u u u r AF =1,则 λ的值为________. [解析] (1)设|u u u r AB |=x ,x >0,则u u u r AB ·u u u r AD =12x .又u u u r AC ·u u u r BE =(u u u r AD +u u u r AB )·(u u u r AD -12u u u r AB )=1-12x 2+14x =1,解得x =12,即AB 的长为12. (2)由题意可得u u u r AB ·u u u r AD =|u u u r AB |·|u u u r AD |cos 120°=2×2×⎝ ⎛⎭⎪⎫-12=-2, 在菱形ABCD 中,易知u u u r AB =u u u r DC ,u u u r AD =u u u r BC , 所以u u u r AE =u u u r AB +u u u r BE =u u u r AB +13u u u r AD ,u u u r AF =u u u r AD +u u u r DF =1λu u u r AB +u u u r AD , u u u r AE ·u u u r AF =⎝ ⎛⎭⎪⎫u u u r AB +13 u u u r AD ·⎝ ⎛⎭⎪⎫1λ u u u r AB +u u u r AD =4λ+43-2⎝ ⎛⎭⎪⎫1+13λ=1,解得λ=2.[答案](1)12 (2)2 [方法技巧]平面向量与几何综合问题的求解方法(1)坐标法:把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法:适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程来进行求解.[检验高考能力]一、选择题1.已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( )A .-3B .-2C .1D .-1解析:选A 因为a +2b 与c 垂直,所以(a +2b )·c =0,即a ·c +2b ·c =0,所以3k +3+23=0,解得k =-3. 2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,u u u r AB =(1,-2),u u u r AD =(2,1),则u u u r AD ·u u u r AC =( )A .5B .4C .3D .2 解析:选A 由四边形ABCD 是平行四边形,知u u u r AC =u u u r AB +u u u r AD =(1,-2)+(2,1)=(3,-1),故u u u r AD ·u u u r AC =(2,1)·(3,-1)=2×3+1×(-1)=5.3.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( )A .(3,-6)B .(-3,6)C .(6,-3)D .(-6,3)解析:选A 由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则-λ2+2λ2=35,所以λ=-3,b =(3,-6),故选A.4.(2016·山东高考)已知非零向量m ,n 满足4|m|=3|n|,cos 〈m ,n 〉=13,若n⊥(t m +n ),则实数t 的值为( )A .4B .-4 C.94 D .-94 解析:选B ∵n⊥(t m +n ),∴n·(t m +n )=0,即t m·n +|n |2=0,∴t|m||n|cos 〈m ,n 〉+|n |2=0.又4|m |=3|n |,∴t ×34|n|2×13+|n |2=0,解得t =-4.故选B. 5.(2016·天津高考)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则u u u r AF ·u u u r BC 的值为( )A .-58 解析:选B 如图所示,u u u r AF =u u u r AD +u u u r DF .又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以u u u r AD =12u u u r AB ,u u u r DF =12u u u r AC +14u u u r AC =34u u u r AC ,所以u u u r AF =12u u u r AB +34u u u r AC .又u u u r BC =u u u r AC -u u u r AB ,则u u u r AF ·u u u r BC =12u u u r AB +34u u u r AC ·(u u u r AC -u u u r AB )=12u u u r AB ·u u u r AC -12u u u r AB 2+34u u u r AC 2-34u u u r AC ·u u u r AB =34u u u r AC 2-12u u u r AB 2-14u u u r AC ·u u u r AB .又|u u u r AB |=|u u u r AC |=1,∠BAC =60°,故u u u r AF ·u u u r BC =34-12-14×1×1×12=18.故选B. 6.已知△ABC 为等边三角形,AB =2,设点P ,Q 满足u u u r AP =λu u u r AB ,uuu r AQ =(1-λ)u u u r AC ,λ∈R ,若uuu r BQ ·uuu r CP =-32,则λ=( )解析:选 A ∵uuu r BQ =uuu r AQ -u u u r AB =(1-λ)u u u r AC -u u u r AB ,uuu r CP =u u u r AP -u u u r AC =λu u u r AB -u u u r AC ,又uuu r BQ ·uuu r CP =-32,|u u u r AB |=|u u u r AC |=2,A =60°,u u u r AB ·u u u r AC =|u u u r AB |·|u u u r AC |cos 60°=2,∴[(1-λ)u u u r AC -u u u r AB ]·(λu u u r AB -u u u r AC )=-32,即λ|u u u r AB |2+(λ2-λ-1)u u u r AB ·u u u r AC +(1-λ)|u u u r AC |2=32,所以4λ+2(λ2-λ-1)+4(1-λ)=32,解得λ=12. 二、填空题7.已知平面向量a =(2,4),b =(1,-2),若c =a -(a ·b )·b ,则|c |=________.解析:由题意可得a ·b =2×1+4×(-2)=-6,∴c =a -(a ·b )·b =a +6b =(2,4)+6(1,-2)=(8,-8),∴|c |=82+-82=8 2.答案:828.已知向量a ,b 满足(2a -b )·(a +b )=6,且|a |=2,|b |=1,则a 与b 的夹角为________.解析:∵(2a -b )·(a +b )=6,∴2a 2+a ·b -b 2=6,又|a |=2,|b |=1,∴a ·b =-1,∴cos 〈a ,b 〉=a ·b |a ||b |=-12,又〈a ,b 〉∈[0,π],∴a 与b 的夹角为2π3.答案:2π39.已知a =(λ,2λ),b =(3λ,2),如果a 与b 的夹角为锐角,则λ的取值范围是________.解析:a 与b 的夹角为锐角,则a ·b >0且a 与b 不共线,则⎩⎪⎨⎪⎧3λ2+4λ>0,2λ-6λ2≠0,解得λ<-43或0<λ<13或λ>13,所以λ的取值范围是⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞.答案:⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞ 10.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则u u u u r AM ·u u u u r AN 的最大值为________. 解析:设u u u u r AN =λu u u r AB +μu u u r AD ,因为N 在菱形ABCD 内,所以0≤λ≤1,0≤μ≤1.u u u u r AM =u u u r AD +12u u u r DC =12u u u r AB +u u u r AD .所以u u u u r AM ·u u u u r AN =⎝ ⎛⎭⎪⎫12 u u u r AB +u u u r AD ·(λu u u r AB +μu u u r AD )=λ2u u u r AB 2+⎝ ⎛⎭⎪⎫λ+μ2u u u r AB ·u u u r AD +μu u u r AD 2=λ2×4+⎝ ⎛⎭⎪⎫λ+μ2×2×2×12+4μ=4λ+5μ.所以0≤u u u u r AM ·u u u u r AN ≤9,所以当λ=μ=1时,u u u u r AM ·u u u u r AN 有最大值9,此时,N 位于C 点.答案:9三、解答题11.在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 解:(1)若m ⊥n ,则m ·n =0.由向量数量积的坐标公式得22sin x -22cos x =0,∴tan x =1. (2)∵m 与n 的夹角为π3,∴m ·n =|m ||n |cos π3=1×1×12=12,即22sin x -22cos x =12, ∴sin ⎝ ⎛⎭⎪⎫x -π4=12.又∵x ∈⎝⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,∴x -π4=π6,即x =5π12. 12.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m ·n =sin 2C .(1)求角C 的大小; (2)若sin A ,sin C ,sin B 成等差数列,且u u u r CA ·(u u u r AB -u u u r AC )=18,求边c 的长.解:(1)m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ),对于△ABC ,A +B =π-C,0<C <π,∴sin(A +B )=sin C ,∴m ·n =sin C ,又m ·n =sin 2C ,∴sin 2C =sin C ,cos C =12,C =π3. (2)由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b . ∵u u u r CA ·(u u u r AB -u u u r AC )=18,∴u u u r CA ·uuu r CB =18,即ab cos C =18,ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab ,∴c 2=4c 2-3×36,c 2=36,∴c =6.。

初中数学点知识归纳平面向量的数量积和向量积计算

初中数学点知识归纳平面向量的数量积和向量积计算

初中数学点知识归纳平面向量的数量积和向量积计算初中数学点知识归纳:平面向量的数量积和向量积计算在初中数学中,平面向量是一个重要的概念,它能够描述物体在平面内的位移和方向。

平面向量具有多种运算,其中包括数量积和向量积的计算。

本文将对初中数学中平面向量的数量积和向量积进行归纳介绍。

一、平面向量的数量积(又称点积或内积)数量积是平面向量中常用的一种运算。

设有两个平面向量a和b,它们的数量积记作a·b。

数量积的计算公式为:a·b = |a| × |b| × cosθ其中,|a|表示向量a的模(长度),|b|表示向量b的模,θ表示向量a和b之间的夹角。

从公式可以看出,数量积的结果是一个实数。

数量积具有以下几个性质:1. 交换律:a·b = b·a2. 结合律:(ka)·b = k(a·b) = a·(kb),其中k为实数3. 对于零向量0,有0·a = 0利用数量积,我们可以计算两个向量的夹角。

根据公式a·b = |a| ×|b| × cosθ,我们可以求解出夹角θ的大小。

二、平面向量的向量积(又称叉积或外积)向量积是另一种平面向量的运算。

设有两个平面向量a和b,它们的向量积记作a×b(注意,向量积的结果是一个向量)。

向量积的计算公式为:a×b = |a| × |b| × sinθ × n其中,|a|表示向量a的模,|b|表示向量b的模,θ表示向量a和b之间的夹角,n为一个垂直于平面的单位向量,其方向由“右手定则”确定。

向量积具有以下几个性质:1. 反交换律:a×b = -b×a2. 结合律:a×(b+c) = a×b + a×c3. 分配律:a×(kb) = (ka)×b = k(a×b),其中k为实数4. 对于平行或共线的向量a和b,它们的向量积为零向量,即a×b = 0向量积的计算可以用几何法或坐标法。

平面向量积的运算及应用

平面向量积的运算及应用

平面向量积的运算及应用平面向量的积是指两个向量的乘积,包括数量积(点积)和向量积(叉积)。

这两种运算在数学和物理中都有广泛的应用。

1. 数量积(点积):数量积是两个向量的标量积,表示为a·b 或者a•b,其中a 和b 分别表示两个向量。

a·b = a b cosθ其中 a 和 b 表示两个向量的模,θ表示两个向量之间的夹角。

数量积的运算结果是一个实数,其符号表示两个向量的夹角和两个向量的方向之间的关系。

当θ为锐角时,数量积为正;当θ为钝角时,数量积为负;当θ为直角时,数量积为零。

数量积的应用有:(1)计算两个向量之间的夹角。

根据数量积的定义,我们可以通过计算向量a·b 和向量的模 a 、b ,来求解两个向量之间的夹角θ。

θ= arccos(a·b / ( a b ))。

(2)判断两个向量之间的关系。

根据数量积的符号,我们可以判断两个向量是平行的(夹角为0 或π)、垂直的(夹角为π/2)还是成锐角或钝角。

2. 向量积(叉积):向量积是两个向量的矢量积,表示为a×b,其中a 和b 分别表示两个向量。

c = a×b向量积的运算结果是一个向量c,其方向垂直于a 和b 所确定的平面,符合右手定则。

向量c 的模与向量a 和b 之间的夹角sinθ成正比,即c 的模等于 a b sinθ。

向量积的应用有:(1)计算平行四边形的面积。

设a 和b 是平行四边形的两条边,那么平行四边形的面积等于向量积的模 c 。

S = a×b 。

(2)计算三角形的面积。

设a 和b 是三角形的两条边,那么三角形的面积等于向量积的模的一半。

S = 1/2 a×b 。

(3)判断三个向量的共面性。

如果三个向量a、b、c 共面,那么它们的向量积a×b·c 等于零;如果a×b·c 不等于零,则说明a、b、c 不共面。

(4)计算力的矩阵。

平面向量的数量积及平面向量的应用举例

平面向量的数量积及平面向量的应用举例

3.求向量模的常用方法:利用公式 |a|2=a2,将模的运算转化为向量数量 积的运算.
失误防范
1.零向量:(1)0 与实数 0 的区别,不可 写错:0a=0≠0,a+(-a)=0≠0,a·= 0 0≠0;(2)0 的方向是任意的,并非没有方 向,0 与任何向量平行,我们只定义了非 零向量的垂直关系.
课前热身
1.若向量a,b,c满足a∥b 且a⊥c,则c· (a+2b)=( )
A.4
C.2
B.3
D.0
答案:D
2.已知向量 a,b 满足 a· b=0,|a|=1, |b|=2,则|2a-b|=( A.0 C.4 ) B.2 2 D.8
答案:B
3. (2011· 高考大纲全国卷)已知抛物线 C: y2=4x 的焦点为 F,直线 y=2x-4 与 C 交于 A,B 两点,则 cos∠AFB=( 4 3 A. B. 5 5 3 4 C.- D.- 5 5 )
a· b 2 则 cosθ= = = , |a||b| 2 2 1× 2 π 又 θ∈[0,π],∴θ= . 4 π 即 a 与 b 的夹角为 . 4
1 2
(2)∵(a-b)2=a2-2a· 2 b+b 1 1 1 =1-2× + = , 2 2 2 2 ∴|a-b|= , 2 ∵(a+b)2=a2+2a· 2 b+b 1 1 5 =1+2× + = , 2 2 2
量积等于0说明两向量的夹角为直角,
数量积小于0且两向量不共线时两向量
的夹角是钝角.
考点3 两向量的平行与垂直关系
向量的平行、垂直都是两向量关系中 的特殊情况,判断两向量垂直可以借 助数量积公式.如果已知两向量平行 或垂直可以根据公式列方程(组)求解
例3
已知|a|=4,|b|=8,a与b的夹角

平面向量知识点总结(精华)

平面向量知识点总结(精华)

平面向量知识点总结(精华)一、向量的基本概念1. 向量的定义向量是既有大小又有方向的量。

例如,物理学中的力、位移等都是向量。

我们可以用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

向量的表示:几何表示:用有向线段AB表示,其中\(A为起点,\(B为终点。

字母表示:用小写字母a、b、c等表示。

2. 向量的模向量AB或a的大小称为向量的模,记作AB或a。

模是一个非负实数,例如,若a=(x,y),则a=x^2+y^2。

3. 零向量长度为\(0的向量称为零向量,记作0。

零向量的方向是任意的。

4. 单位向量模等于\(1的向量称为单位向量。

对于非零向量a,与它同方向的单位向量记作e=aa。

例如,向量a=(3,4),则a= 5,同方向的单位向量e=(35,45)。

5. 平行向量(共线向量)方向相同或相反的非零向量称为平行向量。

规定:零向量与任意向量平行。

若向量a与b平行,记作a。

例如,a=(1,2),b=(2,4),因为b = 2a,所以a。

6. 相等向量长度相等且方向相同的向量称为相等向量。

若AB=CD,则\(A与\(C重合,\(B与\(D重合,且AB=CD,方向相同。

二、向量的运算1. 向量的加法三角形法则:已知向量a、b,在平面内任取一点\(A,作AB=a,BC=b,则AC=a+b。

平行四边形法则:已知向量a、b,以同一点\(O为起点作OA=a,OB=b,以\(OA、\(OB为邻边作平行四边形\(OACB,则OC=a+b。

向量加法的运算律:交换律:a+b=b+a。

结合律:\((a+b)+c=a+(b+c)。

2. 向量的减法相反向量:与向量a长度相等,方向相反的向量称为a 的相反向量,记作a。

向量减法的定义:ab=a+(b)。

其几何意义是:已知向量a、b,在平面内任取一点\(O,作OA=a,OB=b,则BA=ab。

3. 向量的数乘定义:实数\(与向量a的乘积是一个向量,记作a。

平面向量的数量积知识点整理

平面向量的数量积知识点整理

平面向量的数量积知识点整理1.定义与性质:-向量的数量积定义为:设有两个向量A=(A₁,A₂)和A=(A₁,A₂),则它们的数量积定义为A·A=A₁A₁+A₂A₂。

-数量积的结果是一个实数。

2.计算方法:-垂直坐标法:直接计算坐标相乘再相加。

-几何解释法:通过几何图形来计算,利用向量的长度和夹角的三角函数关系。

-运算律:满足交换律、分配律和结合律。

3.辅助定理:-平行四边形法则(平行四边形法则):设有向量A、A和A,则有A·A+A·A=A·(A+A)。

-向量延长线法则:设有向量A和向量A,则有A·A=A·A。

4.性质:-零向量性质:零向量与任何向量的数量积都等于0,即A·A=A。

-等量向量性质:等量向量的数量积等于它们的模长的乘积,即A·A=∣A∣∣A∣。

-单位向量性质:单位向量与任意向量的数量积等于原向量的模长乘以单位向量的模长,即A·A=∣A∣,其中A为单位向量。

-归一型:对于任何非零向量A,总是可以找到一个单位向量A,使得A=∣A∣A。

5.夹角与正交性:- 夹角余弦定理:设有向量A和向量A,则有A·A =∣A∣∣A∣cosθ,其中θ为A与A之间的夹角。

-夹角性质:若A·A=0,则A与A垂直,称为正交向量或垂直向量。

-垂直定理:当且仅当A·A=0时,A与A垂直。

6.平面向量能否为0?-若A·A=0,则向量A与向量A相互垂直。

-反之,若向量A与向量A相互垂直,则A·A=0。

7.一些常用公式的推导:- 向量投影:设有向量A和向量A,A为向量A在向量A上的投影,则有A = (∣A∣cosθ)A,其中θ为两向量之间的夹角,A为单位向量。

- 向量投影的计算公式:向量A在向量A上的投影A的大小为∣A∣cosθ,其中A为两向量之间的夹角。

8.应用:-判断两向量是否垂直。

平面向量的数量积知识点整理

平面向量的数量积知识点整理

平面向量的数量积知识点整理平面向量的数量积是向量分析中比较重要的概念之一、它的定义形式上类似于常见的点乘,可以用来刻画向量的夹角、垂直关系以及向量在另一个向量上的投影等。

在此处,我将整理出平面向量的数量积的相关知识点,并进行详细解释。

一、平面向量的数量积的定义在二维平面内,对于任意两个向量A、B,其数量积(又称为点积或内积)定义为:A·B = ,A,,B,cosθ其中,A,是向量A的模(长度),B,是向量B的模,θ是A和B 之间的夹角。

二、数量积的性质1.交换律:A·B=B·A2.分配律:(A+B)·C=A·C+B·C3.数量积的倍乘:-(kA)·B=k(A·B)-A·(kB)=k(A·B)4.数量积的平方:A·A=,A,^2三、向量夹角的判断对于任意两个非零向量A、B,如果它们的数量积满足A·B=0,则称A和B是垂直的;如果数量积满足A·B>0,则称A和B是锐角的;如果数量积满足A·B<0,则称A和B是钝角的。

四、向量在另一个向量上的投影对于一个非零向量A和任意一个向量B,A在B上的投影定义为:投影向量P=(A·B/,B,^2)B五、数量积的几何意义1.两个向量的夹角等于它们之间的数量积和它们的模的乘积的余弦值的反余弦:θ = arccos(A·B / [,A,,B,])2.向量A在向量B上的投影的模等于A与B的数量积除以B的模的平方:P,=,A·B,/,B,^2六、数量积的应用1.判断两个向量是否垂直:-若A·B=0,则A和B垂直;-若A⊥B,则A和B垂直。

2.判断两个向量的夹角的大小:-若A·B>0,则0°<θ<90°;-若A·B<0,则90°<θ<180°。

第四章 第三节 平面向量的数量积及平面向量应用举例

第四章  第三节  平面向量的数量积及平面向量应用举例
平面向量的数量积及平面向量应用举例
1. 理解平面向量数量积的含义及其物理意义. 理解平面向量数量积的含义及其物理意义. 2.了解平面向量的数量积与向量投影的关系. .了解平面向量的数量积与向量投影的关系. 3.掌握数量积的坐标表达式,会进行平面向量数量 .掌握数量积的坐标表达式, 积的运算. 积的运算. 4.能运用数量积表示两个向量的夹角,会用数量积 .能运用数量积表示两个向量的夹角, 判断两个平面向量的垂直关系. 判断两个平面向量的垂直关系. 5.会用向量方法解决某些简单的平面几何问题. .会用向量方法解决某些简单的平面几何问题. 6.会用向量方法解决简单的力学问题与其他一些实 . 际问题. 际问题.
(2)法一:a-2b=(3,- -2(2,1)=(-1,- , 法一: - = ,- ,-4)- ,-6), 法一 = - ,- 2a+3b=2(3,- +3(2,1)=(12,- , + = ,- ,-4)+ ,-5), = ,- (a-2b)·(2a+3b)=(-1)×12+(-6)×(-5)=18. - + =- × +- ×- = 法二: - 法二:(a-2b)·(2a+3b)=2a2-a·b-6b2 + = - =2[32+(-4)2]-[3×2+(-4)×1]-6(22+12)=18. - - +- - =
三、向量数量积的性质 〈 , 〉 1.如果e是单位向量,则a·e=e·a= |a|cos〈a,e〉. .如果 是单位向量 是单位向量, = = = 2.a⊥b⇒ a·b=0 且a·b=0⇒ a⊥b. . ⊥ ⇒ = ⇒ ⊥ 3.a·a= |a| ,|a|= a·a . . = = 4.cos〈a,b〉= . 〈 , 〉 5.|a·b| ≤ |a||b|. .
[题组自测 题组自测] 题组自测 1.已知下列结论:①|a|2=a2;②(a·b)2=a2·b2;③(a- .已知下列结论: - b)2=a2-2a·b+b2;④若a2=a·b,则a=b,其中正确 + , = , 的个数有 A.1 . C.3 . 答案: 答案:B B.2 . D.4 . ( )

高中数学必修二第六章 平面向量及其应用(知识梳理)

高中数学必修二第六章 平面向量及其应用(知识梳理)

1.数量与向量(1)概念:在数学中,既有大小又有方向的量叫做向量,而只有大小没有方向的量称为数量 2.向量的两个要素向量由大小与方向两个要素组成,大小是代数的特征,方向是几何特征 3.有向线段 (1)有向线段具有方向的线段叫做有向线段,它包含三个要素:起点、方向、长度,如图所示. (3)向量的表示以A 为起点、B 为终点的有向线段记作AB →,线段AB 的长度叫做有向线段AB →的长度记作|AB →|. 4.向量的表示(1)几何表示:向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.(2)字母表示:向量可以用字母a ,b ,c ,…表示(印刷用黑体a ,b ,c ,书写时用a →, b →, c →). 3.模、零向量、单位向量向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.长度为0的向量叫做零向量,记作0;长度等于1个单位长度的向量,叫做单位向量.1.平行向量:方向相同或相反的非零向量叫做平行向量(平行向量也可叫做共线向量) 用有向线段表示向量的a 与b 是两个平行向量,如若平行。

则记作a ∥b .2.相等向量:长度相等且方向相同的向量叫做相等向量 用有向线段表示向量的a 与b 是相等,记作a =b .注意向量相关概念的注意点(1)表示有向线段时,起点一定要写在终点的前面. (2)要注意0与0的区别及联系,0是一个实数,0是一 向量,且有|0|=0.一、向量的加法运算1.定义:求两个向量和的运算,叫做向量的加法2.向量加法的运算法则:(1)向量加法的三角法则+,已知非零向量a,b在平面内任取一点A,做AB=a,BC=b,则向量AC叫做a与b的和,记作a b +=+=,这种求向量和的方法,称为向量加法的三角形法则即a b AB BC AC三角形法则的使用条件:一个向量的终点为另一个向量的起点(2)平行四边形法则以同一O为起点的两个已知向量a,b,以OA,OB为邻边做OACB,则以O为起点的向量OC,(OC 是OACB的对角线)就是向量a与b的和,我们把这种作两个向量和的方法叫做向量加法的平行四边形法则规定:对于零向量与任意向量a,我们规定a+0=0+a=a3.向量加法的运算律(1),交换律:a+b=b+a(2):结合律:(a+b)+c=a+(b+c)平行四边形法则的适用条件:两个向量起点相同二、向量的减法运算1.相反向量:与向量a,长度相等,方向相反的向量,叫做a的相反向量,记作﹣a规定:零向量的相反向量仍是零向量2. 向量的减法向量a 加上b 的相反向量,叫做a 与b 的差,则a -b=a+(-b).求两个向量差的运算则是向量的减法3.向量减法的几何意义已知向量a ,b ,在平面内任取一点O ,作OA a =,OB b =,则BA a b =- 即a b -可以表示为从b 的终点指向向量a 的终点的向量 三、向量的数乘运算 1.向量数乘的定义实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa , 它的长度与方向规定如下;a a λλ=当λ>0时,λa 的方向与a 的方向相同;当γ<0时,λa 的方向与a 的方向相反. 2.向量数乘的几何意义向量数乘的几何意义是把向量沿着它的方向或反方向放大或缩小.特别地,一个向量的相反向量可以看成-1与这个向-a)=lt 量的乘积,即-a=(-1 )a. 3.向量数乘的运算律 设λ,μ是实数,a,b 是向量 (1)结合律:λ(μa )=(λμ)+a (2)第一分配律:(λμ)a=λa+μa (3)第二分配律:λ(a+b )=λa+λb 四.向量的数量积 两向量的夹角与垂直1.夹角:已知两个非零向量a 和b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角(如图所示).当θ=0时,a 与b 同向;当θ=π时,a 与b 反向. 3. 垂直:如果a 与b 的夹角是π2,则称a 与b 垂直,记作a向量数量积的定义非零向量a ,b 的夹角为θ,数量|a ||b |cos θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,规定:零向量与任一向量的数量积等于0. 平面向量数量积的运算律 1.a ·b =b ·a (交换律).2.(λa )·b =λ(a ·b )=a ·(λb )(数乘结合律).3.(a +b )·c =a ·c +b ·c (分配律).平面向量的坐标表示1.在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.对于平面内的任意一个向量a ,由平面向量基本定理可知,有且只有一对实数x ,y ,使得a =x i +y j .平面内的任一向量a 都可由x ,y 唯一确定,我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ).2.在直角坐标平面中,i =(1,0),j =(0,1),0=(0,0). 平面向量加、减运算的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),已知点A (x 1,y 1),B (x 2,y 2),那么向量AB →=(x 2-x 1,y 2-y 1),即任意一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标. 平面向量数乘运算的坐标表示已知a =(x ,y ),则λa =(λx ,λy ),即:实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标. 平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b 共线的充要条件是存在实数λ,使a =λb .如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),当且仅当x 1y 2-x 2y 1=0时,向量a ,b (b ≠0)共线.注意:向量共线的坐标形式极易写错,如写成x 1y 1-x 2y 2=0或x 1x 2-y 1y 2=0都是不对的,因此要理解并熟记这一公式,可简记为:纵横交错积相减.平面向量数量积的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ. 则a ·b =x 1x 2+y 1y 2. (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.若表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1),(x 2,y 2),则a =(x 2-x 1,y 2-y 1),|a |=x 2-x 12+y 2-y 12.(2)a ∥b ∥x 1x 2+y 1y 2=0.(3)cos θ=a·b|a||b|=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.用向量方法讨论物理学中的相关问题,一般来说分为四个步骤: (1)问题转化,即把物理问题转化为数学问题. (2)建立模型,即建立以向量为载体的数学模型. (3)求解参数,即求向量的模、夹角、数量积等. (4)回答问题,即把所得的数学结论回归到物理问题.余弦定理三角形中任何一方的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍,即;,cos 2222A bc c b a -+=B ca a c b cos 2222-+=,C ab b a c cos 2222-+=余弦定理得推论;cosA=bc a c b 2222-+,cosB=ca b a c 2222-+,cosC=ab c b a 2222-+正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即;.sin sin sin Cc B b A a == 正弦定理的变形公式:1.a =2R sin A ,b =2R sin B ,c =2R sin C .2.sin A =a 2R ,sin B =b 2R ,sin C =c2R(其中R 是∥ABC 外接圆的半径).。

第3节 平面向量的数量积及平面向量的应用

第3节 平面向量的数量积及平面向量的应用

第3节 平面向量的数量积及平面向量的应用知识梳理1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则a 与b 的数量积(或内积)a ·b =|a ||b |cos__θ.规定:零向量与任一向量的数量积为0,即0·a =0. (3)数量积的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos__θ的乘积.2.平面向量数量积的性质及其坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角. (1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2.(2)模:|a |=a ·a =x 21+y 21.(3)夹角:cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)两非零向量a ⊥b 的充要条件:a ·b =0⇔x 1x 2+y 1y 2=0.(5)|a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22.3.平面向量数量积的运算律 (1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律). (3)(a +b )·c =a ·c +b ·c (分配律). 4.平面几何中的向量方法三步曲:(1)用向量表示问题中的几何元素,将几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系; (3)把运算结果“翻译”成几何关系.1.两个向量a ,b 的夹角为锐角⇔a ·b >0且a ,b 不共线;两个向量a ,b 的夹角为钝角⇔a ·b <0且a ,b 不共线. 2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a +b )2=a 2+2a ·b +b 2. (3)(a -b )2=a 2-2a ·b +b 2.3.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0),不能得出b =c ,两边不能约去同一个向量.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(2)向量在另一个向量方向上的投影为数量,而不是向量.( )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )(4)若a ·b =a ·c (a ≠0),则b =c .( ) 答案 (1)× (2)√ (3)√ (4)× 解析 (1)两个向量夹角的范围是[0,π].(4)由a ·b =a ·c (a ≠0)得|a ||b |·cos 〈a ,b 〉=|a ||c |·cos 〈a ,c 〉,所以向量b 和c 不一定相等.2.已知向量a =(1,1),b =(2,4),则(a -b )·a =( ) A.-14 B.-4C.4D.14答案 B解析 由题意得a -b =(-1,-3),则(a -b )·a =-1-3=-4. 3.设a ,b 是非零向量,则“a ·b =|a ||b |”是“a ∥b ”的( ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析 设a 与b 的夹角为θ.因为a ·b =|a |·|b |cos θ=|a |·|b |,所以cos θ=1,即a 与b 的夹角为0°,故a ∥b .当a ∥b 时,a 与b 的夹角为0°或180°, 所以a ·b =|a |·|b |cos θ=±|a |·|b |,所以“a ·b =|a |·|b |”是“a ∥b ”的充分而不必要条件.4.(2020·湘潭模拟)已知平面向量a ,b ,满足|a |=|b |=1,若(2a -b )·b =0,则向量a ,b 的夹角为( ) A.π6 B.π4C.π3D.2π3答案 C解析 由(2a -b )·b =0,可得a ·b =12b 2=12,设向量a 、b 的夹角为θ, 则cos θ=a ·b |a ||b |=12,又θ∈[0,π],所以向量a 、b 的夹角为π3.5.(多选题)(2021·青岛统检)已知向量a +b =(1,1),a -b =(-3,1),c =(1,1),设a ,b 的夹角为θ,则( ) A.|a |=|b | B.a ⊥c C.b ∥cD.θ=135°答案 BD解析 由a +b =(1,1),a -b =(-3,1),得a =(-1,1),b =(2,0),则|a |=2,|b |=2,故A 不正确;a ·c =-1×1+1×1=0,故B 正确; 不存在λ∈R ,使b =λc 成立,故C 不正确;cos θ=a ·b |a |·|b |=-22×2=-22,所以θ=135°,故D 正确.综上知选BD.6.(2020·全国Ⅱ卷)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________. 答案 22解析 由题意知(k a -b )·a =0,即k a 2-b ·a =0. 因为a ,b 为单位向量,且夹角为45°,所以k ×12-1×1×22=0,解得k =22.考点一 平面向量的数量积运算1.已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A.4 B.3C.2D.0答案 B解析 a ·(2a -b )=2|a |2-a ·b =2×12-(-1)=3.2.(2020·北京卷)已知正方形ABCD 的边长为2,点P 满足AP →=12()AB →+AC →,则|PD→|=__________;PB →·PD →=__________. 答案5 -1解析 法一 ∵AP→=12(AB →+AC →),∴P 为BC 的中点.以A 为原点,建立如图所示的平面直角坐标系,由题意知A (0,0),B (2,0),C (2,2),D (0,2),P (2,1),∴|PD →|=(2-0)2+(1-2)2= 5. 易得PB→=(0,-1),PD →=(-2,1). ∴PB→·PD →=(0,-1)·(-2,1)=-1.法二 如图,在正方形ABCD 中,由AP→=12(AB →+AC →)得点P 为BC的中点,∴|PD→|=12+22= 5. PB→·PD →=PB →·(PC →+CD →)=PB →·PC →+PB →·CD → =-PB→2+0=-1. 3.在四边形ABCD 中,AD ∥BC ,AB =23,AD =5,∠A =30°,点E 在线段CB的延长线上,且AE =BE ,则BD →·AE →=________. 答案 -1解析 如图,在等腰△ABE 中, 易得∠BAE =∠ABE =30°,故BE =2. 则BD→·AE →=(AD →-AB →)·(AB →+BE →) =AD→·AB →+AD →·BE →-AB →2-AB →·BE → =5×23×cos 30°+5×2×cos 180°-12-23×2×cos 150° =15-10-12+6=-1.4.(2020·新高考山东卷)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP→·AB →的取值范围是( ) A.(-2,6) B.(-6,2)C.(-2,4)D.(-4,6)答案 A解析 法一 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (2,0),C (3,3),F (-1,3).设P (x ,y ),则AP→=(x ,y ),AB →=(2,0),且-1<x <3.所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6). 故选A.法二 AP→·AB →=|AP →|·|AB →|·cos ∠P AB =2|AP →|·cos ∠P AB ,又|AP→|cos ∠P AB 表示AP →在AB →方向上的投影. 结合几何图形,当点P 与F 重合时投影最小,当P 与点C 重合时,投影最大, 又AC→·AB →=23×2×cos 30°=6,AF →·AB →=2×2cos 120°=-2, 故当点P 在正六边形ABCDEF 内时,-2<AP →·AB →<6.感悟升华 1.计算平面向量的数量积主要方法: (1)利用定义:a ·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. (3)活用平面向量数量积的几何意义.2.解决涉及几何图形的向量的数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简后再运算.但一定要注意向量的夹角与已知平面几何图形中的角的关系是相等还是互补.考点二向量数量积的性质及应用角度1夹角与垂直【例1】(1)(2020·全国Ⅱ卷)已知单位向量a,b的夹角为60°,则在下列向量中,与b垂直的是()A.a+2bB.2a+bC.a-2bD.2a-b(2)(2021·新高考8省联考)已知单位向量a,b满足a·b=0,若向量c=7a+2b,则sin〈a,c〉等于()A.73 B.23 C.79 D.29答案(1)D(2) B解析(1)易知a·b=|a||b|cos 60°=1 2,则b·(a+2b)=52≠0,b·(2a+b)=2≠0,b·(a-2b)=a·b-2b2=-32≠0,b·(2a-b)=0.因此b⊥(2a-b).(2)法一设a=(1,0),b=(0,1),则c=(7,2),∴sin〈a,c〉=2 3.法二a·c=a·(7a+2b)=7a2+2a·b=7,|c|=(7a+2b)2=7a2+2b2+214a·b=7+2=3,∴cos〈a,c〉=a·c|a||c|=71×3=73,∴sin〈a,c〉=2 3.角度2平面向量的模【例2】(1)(2020·南昌模拟)设x,y∈R,a=(x,1),b=(2,y),c=(-2,2),且a⊥c,b∥c,则|2a+3b-c|=()A.234B.26C.12D.210(2)已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的最大值是________.答案 (1)A (2)2+1解析 (1)因为a ⊥c ,所以a ·c =-2x +2=0,解得x =1,则a =(1,1), 因为b ∥c ,所以4+2y =0,解得y =-2,则b =(2,-2). 所以2a +3b -c =(10,-6),则|2a +3b -c |=234. (2)法一 由a ·b =0,得a ⊥b .如图所示,分别作OA→=a ,OB →=b ,作OC →=a +b ,则四边形OACB 是边长为1的正方形,所以|OC →|= 2.作OP→=c ,则|c -a -b |=|OP →-OC →|=|CP →|=1. 所以点P 在以C 为圆心,1为半径的圆上.由图可知,当点O ,C ,P 三点共线且点P 在点P 1处时,|OP →|取得最大值2+1.故|c |的最大值是2+1. 法二 由a ·b =0,得a ⊥b .建立如图所示的平面直角坐标系,则OA →=a =(1,0),OB →=b=(0,1).设c =OC →=(x ,y ), 由|c -a -b |=1, 得(x -1)2+(y -1)2=1,所以点C 在以(1,1)为圆心,1为半径的圆上. 所以|c |max =2+1.法三 易知|a +b |=2,|c -a -b |=|c -(a +b )| ≥||c |-|a +b ||=||c |-2|, 由已知得||c |-2|≤1,所以|c |≤1+2,故|c |max =2+1.感悟升华 1.两个向量垂直的充要条件是两向量的数量积为0,若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.2.若题目给出向量的坐标,可直接运用公式cos θ=x1x2+y1y2x21+y21·x22+y22求解.没有坐标时可用公式cos θ=a·b|a||b|.研究向量夹角应注意“共起点”,注意取值范围是[0,π].3.向量模的计算主要利用a2=|a|2,把向量模的运算转化为数量积运算,有时借助几何图形的直观性,数形结合,提高解题效率.【训练1】(1)(多选题)(2021·湖南三校联考)已知a,b是单位向量,且a+b=(1,-1),则()A.|a+b|=2B.a与b垂直C.a与a-b的夹角为π4 D.|a-b|=1(2)已知单位向量a,b的夹角为θ,且tan θ=12,若向量m=5a-3b,则|m|=()A.2B.3C.26D.2或26答案(1)BC(2)A解析(1)|a+b|=12+(-1)2=2,故A错误;因为a,b是单位向量,所以|a|2+|b|2+2a·b=1+1+2a·b=2,得a·b=0,a与b 垂直,故B正确;|a-b|2=a2+b2-2a·b=2,|a-b|=2,故D错误;cos〈a,a-b〉=a·(a-b)|a||a-b|=a2-a·b1×2=22,所以a与a-b的夹角为π4,故C正确.故选BC.(2)依题意|a|=|b|=1,又θ为a,b的夹角,且tan θ=1 2,∴θ为锐角,且cos θ=2sin θ,又sin2θ+cos2θ=1,从而cos θ=25 5.由m=5a-3b,∴m2=(5a-3b)2=5a2+9b2-65a·b=2,因此|m|= 2.考点三 平面向量的综合应用【例3】 (1)(2020·天津卷)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD→=λBC →,AD →·AB →=-32,则实数λ的值为__________;若M ,N 是线段BC 上的动点,且|MN→|=1,则DM →·DN →的最小值为__________.答案 16 132解析 因为AD→=λBC →,所以AD ∥BC ,则∠BAD =120°,所以AD→·AB →=|AD →|·|AB →|·cos 120°=-32, 解得|AD→|=1. 因为AD→,BC →同向,且BC =6, 所以AD→=16BC →,即λ=16. 在四边形ABCD 中,作AO ⊥BC 于点O ,则BO =AB ·cos 60°=32,AO =AB ·sin 60°=332.以O 为坐标原点,以BC 和AO 所在直线分别为x ,y 轴建立平面直角坐标系. 如图,设M (a ,0),不妨设点N 在点M 右侧, 则N (a +1,0),且-32≤a ≤72.又D ⎝ ⎛⎭⎪⎫1,332,所以DM →=⎝ ⎛⎭⎪⎫a -1,-332, DN→=⎝⎛⎭⎪⎫a ,-332, 所以DM→·DN →=a 2-a +274=⎝ ⎛⎭⎪⎫a -122+132. 所以当a =12时,DM→·DN →取得最小值132.(2)已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m ·n =sin 2C . ①求角C 的大小;②若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c .解 ①m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π, 所以sin(A +B )=sin C ,所以m ·n =sin C ,又m ·n =sin 2C , 所以sin 2C =sin C ,cos C =12. 又因为C ∈(0,π),故C =π3.②由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b .因为CA→·(AB →-AC →)=18,所以CA →·CB →=18, 即ab cos C =18,ab =36. 由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36,所以c =6.感悟升华 1.以平面几何为载体的向量问题有两种基本解法:(1)基向量法:恰当选择基底,结合共线定理、平面向量的基本定理进行向量运算.(2)坐标法:如果图形比较规则,可建立平面坐标系,把有关点与向量用坐标表示,从而使问题得到解决.2.解决平面向量与三角函数的交汇问题,关键是准确利用向量的坐标运算化简已知条件,将其转化为三角函数中的有关问题.【训练2】 (1)(2020·全国Ⅲ卷)在平面内,A ,B 是两个定点,C 是动点.若AC →·BC →=1,则点C 的轨迹为( ) A.圆B.椭圆C.抛物线D.直线(2)如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若AB →·AC →=6AO →·EC →,则AB AC 的值是________. 答案 (1)A (2)3解析 (1)以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,设点A ,B 分别为(-a ,0),(a ,0)(a >0),点C 为(x ,y ),则AC→=(x +a ,y ),BC→=(x -a ,y ),所以AC →·BC →=(x -a )(x +a )+y ·y =x 2+y 2-a 2=1,整理得x 2+y 2=a 2+1.因此点C 的轨迹为圆.故选A.(2)法一 如图,过点D 作DF ∥CE 交AB 于点F ,由D 是BC 的中点,可知F 为BE 的中点.又BE =2EA ,则知EF =EA ,从而可得AO =OD ,则有AO→=12AD →=14(AB →+AC →),EC →=AC →-AE →=AC →-13AB →,所以6AO →·EC →=32(AB →+AC →)·⎝ ⎛⎭⎪⎫AC →-13AB →=32AC →2-12AB →2+AB →·AC →=AB→·AC →,整理可得AB →2=3AC →2,所以AB AC= 3.法二 以点A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,如图所示.设E (1,0),C (a ,b ),则B (3,0),D ⎝ ⎛⎭⎪⎫a +32,b 2.⎭⎪⎬⎪⎫l AD :y =ba +3x ,l CE :y =ba -1(x -1)⇒O ⎝ ⎛⎭⎪⎫a +34,b 4. ∵AB→·AC →=6AO →·EC →, ∴(3,0)·(a ,b )=6⎝ ⎛⎭⎪⎫a +34,b 4·(a -1,b ),即3a =6⎣⎢⎡⎦⎥⎤(a +3)(a -1)4+b 24,∴a 2+b 2=3,∴AC = 3.∴AB AC =33= 3.平面向量与三角形的“四心”向量具有数形二重性,借助几何直观研究向量,优化解题过程,进而提高解题效率.设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA→|=|OB →|=|OC →|=a 2sin A .(2)O 为△ABC 的重心⇔OA→+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA→·OB →=OB →·OC →=OC →·OA →.(4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0.一、平面向量与三角形的“重心”【例1】已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过( ) A.△ABC 的内心B.△ABC 的垂心C.△ABC 的重心D.AB 边的中点答案 C解析 取AB 的中点D ,则2OD→=OA →+OB →,∵OP→=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], ∴OP→=13[2(1-λ)OD →+(1+2λ)OC →] =2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,∴P ,C ,D 三点共线,∴点P 的轨迹一定经过△ABC 的重心. 二、平面向量与三角形的“内心”问题【例2】在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP→=xOB →+yOC →,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063 B.1463 C.43D.62答案 B解析 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则 12bc sin A =12(a +b +c )r ,解得r =263, 所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 三、平面向量与三角形的“外心”问题【例3】(2020·安庆质检)在△ABC 中,O 为其外心,OA →·OC →=3,且3OA →+7OB →+OC →=0,则边AC 的长是________. 答案3-1解析 设△ABC 外接圆的半径为R , ∵O 为△ABC 的外心, ∴|OA→|=|OB →|=|OC →|=R , 又3OA→+7OB →+OC →=0, 则3OA→+OC →=-7OB →, ∴3OA→2+OC →2+23OA →·OC →=7OB →2, 从而OA→·OC →=32R 2, 又OA→·OC →=3,所以R 2=2, 又OA→·OC →=|OA →||OC →|cos ∠AOC =R 2cos ∠AOC =3, ∴cos ∠AOC =32,∴∠AOC =π6, 在△AOC 中,由余弦定理得 AC 2=OA 2+OC 2-2OA ·OC ·cos ∠AOC =R 2+R 2-2R 2×32=(2-3)R 2=4-2 3. 所以AC =3-1.四、平面向量与三角形的“垂心”问题【例4】已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A.重心 B.垂心C.外心D.内心答案 B解析 因为OP→=OA →+λ(AB →|AB →|cos B +AC→|AC →|cos C),所以AP →=OP →-OA →=λ(AB →|AB →|cos B +AC →|AC →|cos C ),所以BC→·AP →=BC →·λ(AB →|AB →|cos B +AC→|AC →|cos C)=λ(-|BC→|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.A 级 基础巩固一、选择题1.已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A.-92 B.0C.3D.152答案 C解析 因为2a -3b =(2k -3,-6),(2a -3b )⊥c ,所以(2a -3b )·c =2(2k -3)-6=0,解得k =3,选C.2.(2020·新乡质检)已知向量a =(0,2),b =(23,x ),且a 与b 的夹角为π3,则x =( ) A.-2B.2C.1D.-1答案 B解析 由题意得a ·b |a ||b |=2x 2·12+x 2=12, 则2x =12+x 2,解之得x =2,x =-2(舍去).3.(2021·长沙调研)如图所示,直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8.若CE→=-7DE →,3BF →=FC →,则AF →·BE →=( )A.11B.10C.-10D.-11答案 D解析 以A 为坐标原点,建立直角坐标系如图.则A (0,0),B (4,0),E (1,4),F (5,1),所以AF →=(5,1),BE→=(-3,4),则AF →·BE →=-15+4=-11. 4.若两个非零向量a ,b 满足|a +b |=|a -b |=2|b |,则向量a +b 与a 的夹角为( ) A.π3 B.2π3C.5π6D.π6答案 D解析 设|b |=1,则|a +b |=|a -b |=2. 由|a +b |=|a -b |,得a ·b =0,故以a 、b 为邻边的平行四边形是矩形,且|a |=3, 设向量a +b 与a 的夹角为θ,则cos θ=a ·(a +b )|a |·|a +b |=a 2+a ·b |a |·|a +b |=|a ||a +b |=32,又0≤θ≤π,所以θ=π6.5.(多选题)(2021·武汉调研)如图,点A ,B 在圆C 上,则AB →·AC →的值( )A.与圆C 的半径有关B.与圆C 的半径无关C.与弦AB 的长度有关D.与点A ,B 的位置有关 答案 BC解析 如图,连接AB ,过C 作CD ⊥AB 交AB 于D ,则D 是AB 的中点,故AB →·AC →=|AB →|·|AC →|·cos ∠CAD =|AB →|·|AC →|·12|AB →||AC →|=12|AB →|2,故AB→·AC →的值与圆C 的半径无关,只与弦AB 的长度有关,故选BC. 6.(多选题)(2020·青岛调研)在Rt △ABC 中,CD 是斜边AB 上的高,如图,则下列等式成立的是( ) A.|AC→|2=AC →·AB → B.|BC→|2=BA →·BC → C.|AB→|2=AC →·CD → D.|CD →|2=(AC →·AB →)×(BA →·BC →)|AB →|2答案 ABD解析 因为AC→·AB →=|AC →||AB →|cos A =|AC →||AC →|=|AC →|2,选项A 正确;因为BA→·BC →=|BA →||BC →|cos B =|BC →||BC →|=|BC →|2,选项B 正确; 由AC→·CD →=|AC →||CD →|·cos(π-∠ACD )<0,|AB →|2>0,知选项C 错误; 由题图可知Rt △ACD ∽Rt △ABC ,所以|AC→||BC →|=|AB →||CD →|,结合选项A ,B 可得|CD →|2=(AC →·AB →)×(BA →·BC →)|AB →|2,选项D 正确.故选ABD.二、填空题7.已知a ,b 为单位向量,且a ·b =0,若c =2a -5b ,则cos 〈a ,c 〉=________. 答案 23解析 由题意,得cos 〈a ,c 〉=a ·(2a -5b )|a |·|2a -5b |=2a 2-5a ·b|a |·|2a -5b |2=21×4+5=23.8.(2020·全国Ⅰ卷)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 如图,设OA →=a ,OB →=b ,利用平行四边形法则得OC →=a +b ,∵|a |=|b |=|a +b |=1,∴△OAC 为正三角形,∴|BA →|=|a -b |=2×32×|a |= 3.9.已知四边形ABCD 中,AD ∥BC ,∠BAD =90°,AD =1,BC =2,M 是AB 边上的动点,则|MC →+MD →|的最小值为________.答案 3解析 以BC 所在直线为x 轴,BA 所在直线为y 轴建立如图所示的平面直角坐标系,设A (0,a ),M (0,b ),且0≤b ≤a ,由于BC =2,AD =1. ∴C (2,0),D (1,a ).则MC →=(2,-b ),MD →=(1,a -b ), ∴MC→+MD →=(3,a -2b ). 因此|MC→+MD →|=9+(a -2b )2, ∴当且仅当a =2b 时,|MC →+MD →|取得最小值3.三、解答题10.已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解 (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾, 故cos x ≠0,于是tan x =-33.又x ∈[0,π],所以x =5π6.(2)f (x )=a ·b =(cos x ,sin x )·(3,-3) =3cos x -3sin x =23cos ⎝ ⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝ ⎛⎭⎪⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.B 级 能力提升11.(2021·石家庄调研)已知向量a ,b 满足|a |=1,(a -b )⊥(3a -b ),则a 与b 的夹角的最大值为( ) A.π6 B.π3C.2π3D.5π6答案 A解析 设a 与b 的夹角为θ,θ∈[0,π]. 因为(a -b )⊥(3a -b ),所以(a -b )·(3a -b )=0. 整理可得3a 2-4a ·b +b 2=0, 即3|a |2-4a ·b +|b |2=0.将|a |=1代入3|a |2-4a ·b +|b |2=0, 可得3-4|b |cos θ+|b |2=0, 整理可得cos θ=34|b |+|b |4≥234|b |×|b |4=32,当且仅当34|b |=|b |4,即|b |=3时取等号, 故cos θ≥32,结合θ∈[0,π], 可知θ的最大值为π6.12.(2021·重庆联考)已知点O 为坐标原点,向量OA →=(1,2),OB →=(x ,y ),且OA→·OB →=10,则|OB →|的最小值为________. 答案 25解析 由题意知|OB→|=x 2+y 2,x +2y =10,∴点B 在直线x +2y -10=0上,∴|OB→|的最小值为点O 到直线x +2y -10=0的距离. 则|OB →|min=|0+0-10|12+22=105=2 5. 13.(2020·浙江卷)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤ 2.设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是__________. 答案 2829解析 因为单位向量e 1,e 2满足|2e 1-e 2|≤2, 所以|2e 1-e 2|2=5-4e 1·e 2≤2,即e 1·e 2≥34. 因为a =e 1+e 2,b =3e 1+e 2,a ,b 的夹角为θ,所以cos 2θ=(a ·b )2|a |2|b |2=[(e 1+e 2)·(3e 1+e 2)]2|e 1+e 2|2·|3e 1+e 2|2=(4+4e 1·e 2)2(2+2e 1·e 2)(10+6e 1·e 2)=4+4e 1·e 25+3e 1·e 2. 不妨设t =e 1·e 2,则t ≥34,cos 2θ=4+4t 5+3t ,又y =4+4t 5+3t 在⎣⎢⎡⎭⎪⎫34,+∞上单调递增,所以cos 2θ≥4+35+94=2829, 所以cos 2θ的最小值为2829.14.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ), sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35, 所以cos A =-35.因为0<A <π, 所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得a sin A =bsin B ,则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4.由余弦定理得(42)2=52+c 2-2·5c ·⎝ ⎛⎭⎪⎫-35,解得c =1,c =-7(舍去),故向量BA→在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.。

平面向量的数量积与向量积详细解析与归纳

平面向量的数量积与向量积详细解析与归纳

平面向量的数量积与向量积详细解析与归纳平面向量是数学中重要的概念之一,而其中的数量积(也叫点积或内积)与向量积(也叫叉积或外积)是平面向量运算中常用的两种运算方法。

本文将详细解析这两种运算,并对其进行归纳总结。

一、平面向量的数量积数量积,记作A·B,是两个向量A和B的数量上的乘积。

具体计算公式如下:A·B = |A| * |B| * cosθ其中|A|和|B|分别表示向量A和B的模(即长度),θ表示A和B 之间的夹角。

数量积有以下几个重要的性质:1. 交换律:A·B = B·A2. 分配律:(A + B)·C = A·C + B·C3. 数乘结合律:(kA)·B = k(A·B)这些性质使得数量积在计算中更加方便。

数量积的几何意义是,它等于一个向量在另一个向量方向上的投影长度与另一个向量的模的乘积。

通过数量积,我们可以计算向量的夹角、判断两个向量是否垂直以及计算向量的模等。

二、平面向量的向量积向量积,记作A×B,是两个向量A和B的向量上的乘积。

具体计算公式如下:A×B = |A| * |B| * sinθ * n其中|A|和|B|分别表示向量A和B的模,θ表示A和B之间的夹角,n为垂直于A和B所在平面的单位法向量,并满足右手法则。

向量积有以下几个重要的性质:1. 反交换律:A×B = -B×A2. 分配律:A×(B + C) = A×B + A×C3. 数乘结合律:(kA)×B = k(A×B)这些性质使得向量积在计算中更加灵活。

向量积的几何意义是,它等于一个向量在另一个向量所在平面上的投影的长度乘以一个单位法向量。

通过向量积,我们可以计算平行四边形的面积、判断两个向量是否平行以及计算平行四边形的对角线等。

三、数量积与向量积的关系数量积和向量积之间存在一定的关系:A×B = |A| * |B| * sinθ * n由此可得到以下等式:|A×B| = |A| * |B| * sinθ此等式表明,向量积的模等于数量积的模乘上夹角的正弦值。

平面向量的数量积与向量积的应用

平面向量的数量积与向量积的应用

平面向量的数量积与向量积的应用一、引言平面向量是解决几何问题中常用的工具之一,其中数量积和向量积是平面向量的两种重要运算。

本文将重点探讨平面向量的数量积和向量积的应用。

二、数量积的应用数量积又称为点积或内积,其运算结果是一个数值。

下面将介绍数量积在平面向量的几个应用方面。

1. 计算两向量夹角数量积可以通过余弦函数的定义,计算两个向量的夹角。

设有两向量A、B,它们的数量积为AB。

根据数量积的定义,有AB =|A||B|cosθ,其中θ为A与B的夹角。

通过这个关系式,可以计算出任意两个向量的夹角,而不需要通过求解三角函数。

2. 判断两向量的垂直与平行关系若两个非零向量A、B的数量积为0,即AB = 0,则A与B垂直。

这是因为根据数量积的定义,若θ为0°或180°,则cosθ为0,从而使得AB = 0。

同样,若AB ≠ 0,则可以判断A与B不垂直。

3. 计算向量在某一方向上的投影长度向量的投影长度是向量在某一方向上的长度,可以通过数量积来计算。

设向量A在向量B方向上的投影长度为h,则h = |A|cosθ,其中θ为A与B的夹角。

通过这个公式可以计算出向量在某一方向上的投影长度,进而进行相关的几何问题求解。

三、向量积的应用向量积又称为叉积或外积,它的运算结果是一个向量。

下面将介绍向量积在平面向量的几个应用方面。

1. 求解平行四边形面积若平行四边形的两条边分别为向量A、B,那么平行四边形的面积可以通过向量积的模长来求解。

设向量积A×B的模长为S,则S即为平行四边形的面积。

这是因为向量积的模长表示向量所张成的面积。

2. 判断向量的方向向量积可以根据右手定则来判断新向量的方向。

设有两个向量A、B,它们的向量积为C(C = A×B),则以右手四指从A旋转到B的方向,拇指所指的方向即为C的方向。

3. 计算平面向量的面积若平面上三个非零向量A、B、C的起点相同,可以通过向量积来计算三角形ABC所在平面的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量的数量积及应用 编稿:李霞 审稿:孙永钊【考纲要求】1.理解平面向量数量积的含义及其物理意义,了解平面向量的数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.2.会用向量方法解决某些简单的平面几何问题,会用向量方法解决简单的力学问题与其他一些实际问题. 【知识网络】【考点梳理】 考点一、向量的数量积 1. 定义:已知两个非零向量a 和b ,它们的夹角为θ,我们把数量||||cos θa b 叫做a 和b 的数量积(或内积),记作⋅a b ,即||||cos ⋅=θa b a b .规定:零向量与任一向量的数量积为0. 要点诠释:(1)两向量的数量积,其结果是个数量,而不是向量,它的值为两向量的模与余弦值决定 . (2)在运用数量积公式解题时,一定注意两向量夹角范围0︒≤θ≤180︒.此外,由于向量具有方向性,一定要找准 θ是哪个角.2. 平面向量的数量积的几何意义我们规定||cos θb 叫做向量b 在a 方向上的投影,当θ为锐角时,||cos θb 为正值;当θ为钝角时,平面向量数量积及应用平面向量的数量积平面向量的应用平面向量的坐标运算||cos θb 为负值;当θ=0︒时,||cos ||θ=b b ;当θ=90︒时,||cos 0θ=b ;当θ=180︒时,||cos ||θ=-b b .⋅a b 的几何意义:数量积⋅a b 等于a 的长度||a 与 b 在a 方向上的投影||cos θb 的乘积.要点诠释:b 在a 方向上的投影是一个数量,它可正、可负,也可以等于0.3. 性质:(1) 0⊥⇔⋅=a b a b(2) 当a 与b 同向时,||||⋅=a b a b ;当a 与b 反向时,||||⋅=-a b a b . 特别地22||||⋅==,即a a a a a(3) cos ||||⋅θ=a ba b(4) ||||⋅≤a b a b 4. 运算律设已知向量a 、b 、c 和实数λ,则向量的数量积满足下列运算律: (1) ⋅=⋅a b b a (交换律) (2) ()()()λ⋅=λ⋅=⋅λa b a b a b (3) ()+⋅=⋅+⋅a b c a c b c 要点诠释:①当0≠a 时,由0⋅=a b 不一定能推出0=b ,这是因为对任何一个与a 垂直的向量b ,都有0⋅=a b ;当0≠a 时,⋅=⋅a b a c 也不一定能推出=b c ,因为由⋅=⋅a b a c ,得()0⋅-=a b c ,即a 与()-b c 垂直.也就是向量的数量积运算不满足消去律.②对于实数,,a b c ,有()()a b c a b c ⋅=⋅,但对于向量来说,()()⋅⋅=⋅⋅a b c a b c 不一定相等,这是因为()⋅⋅a b c 表示一个与c 共线的向量,而()⋅⋅a b c 表示一个与a 共线的向量,而a 与c 不一定共线,所以()⋅⋅a b c 与()⋅⋅a b c 不一定相等.5. 向量的数量积的坐标运算①已知两个非零向量11(x ,y )=a ,22(x ,y )=b ,那么1212x x y y ⋅=+a b ;②若(,)x y =a ,则2222,x y x y ⋅==+=+a a a a③若1122(,),(,)x y x y ==A B ,则(AB x ==AB 离公式;④若1122(,),(,)x y x y ==a b ,则12120x x y y 0⊥⇔⋅=⇔+=a b a b 6. 重要不等式若1122(,),(,)x y x y ==a b ,则||||||||-≤⋅≤a b a b a b1212x x y y ⇔≤+≤ 考点二、向量的应用(1)向量在几何中的应用①证明线段平行,包括相似问题,常用向量平行(共线)的充要条件;1221//x y x y 0⇔=λ⇔-=a b a b (0→≠b )②证明垂直问题,常用垂直的充要条件;12120x x y y 0⊥⇔⋅=⇔+=a b a b③求夹角问题;利用夹角公式:121cos cos ,||||x θ⋅=<>==⋅+a ba b a b 平面向量,a b 的夹角[0]θπ∈,④求线段的长度,可以用向量的线性运算,向量的模2x =⋅=+a a a 或(AB x ==AB (2)向量在物理中的应用①向量的加法与减法在力的分解与合成中的应用; ②向量在速度的分解与合成中的应用. 【典型例题】类型一、数量积的概念【高清课堂:平面向量的数量积及应用401196 例4】 例1.已知向量5(1,2),(2,4),||5,(),2a b c a b c a c =--=+⋅=若则与的夹角为( ) A .30° B .60°C .120°D .150°【解析】∵2=-b a ,∴,a b 是共线向量,(1,2)+=--a b∴5()||||cos ,55cos ,2+⋅=+<+>=⨯⨯<+>=a b c a b c a b c a b c ,∴1cos ,2<+>=a b c , ∴向量+a b 和c 所成角为060,又a 与+a b 共线且方向相反, ∴向量a 和c 所成角为0120,从而选项C 正确.【总结升华】+a b 仍旧是一个向量,本题的关键之处就是注意到a ,b ,+a b 是共线向量,从而将a 和c 的夹角问题进行有效的转化.举一反三:【变式1】已知向量a 与b 的夹角为120°,1,3==a b ,则5-=a b ________ 【答案】7【解析】 22222215(5)25102511013()3492-=-=-⋅+=⨯-⨯⨯⨯-+=a b a b a a b b , ∴57-=a b .【变式2】已知||2=a , ||1=b , 与a b 夹角为060,则向量2=+m a b 与向量4=-n a b 的夹角的余弦值为________.【答案】147-【解析】由向量的数量积的定义,得0||||cos 21cos 601⋅=⋅θ=⨯⨯=a b a b∵2=+m a b ,4=-n a b , ∴222||(2)4421=+=+⋅+=m a b a a b b222||(4)81623=-=-⋅+=n a b a a b b设m 与n 的夹角为θ,则22(2)(4)2743⋅=+-=-⋅-=-m n a b a b a a b b∴cos 14|||21⋅θ===-⋅m n m n | 即向量m 与n 的夹角的余弦值为147-. 【变式3】两个非零向量a 、b 互相垂直,给出下列各式:①0⋅=a b ;②+=-a b a b ;③+=-a b a b ;④222()+=-a b a b ;⑤()()0+⋅-=a b a b . 其中正确的式子有( )A .2个B .3个C .4个D .5个 【答案】B【解析】①显然正确;由向量运算的三角形法则知+a b 与-a b 长度相等,但方向不同,所以②错误;③正确;由向量数量积的运算律可知④正确;只有在=a b 时,+a b 与-a b 才互相垂直,⑤错误,故①③④正确,故选B.例 2.(2016 浙江高考)已知平面向量a →,b →,|a →|=1,|b →|=2,a →·b →=1.若e →为平面单位向量,则|a →·e →|+|b →·e →|的最大值是______. 【答案】7【解析】由|a →|=1,|b →|=2,a →·b →=1得,<a →,b →>=60°,不妨取a →=(1,0),b →=(1,3),设e →=(cos θ,sin θ),则|a →·e →|+|b →·e →|=| cos θ|+| cos θ+3 sin θ|≤| cos θ|+| cos θ|+3| sin θ| =2| cos θ|+3| sin θ|,取等号时cos θ与sin θ同号, 所以2| cos θ|+3| sin θ|=|2 cos θ+3sin θ|=7|7cos θ+37sin θ|=7|sin (θ+β)|, (其中sin β=7,cos β=37,取β为锐角),显然7|sin (θ+β)|≤7,故所求最大值为7。

【总结升华】考查平面向量数量积和模的问题,注意结合向量坐标转换成代数运算求最值问题.举一反三:【变式1】若a 、b 、c 均为单位向量,且0⋅=a b ,()()+⋅+a b b c 的最大值为________ 【答案】12+【解析】因为a 、b 、c 均为单位向量,且0⋅=a b , 设a =(1,0),b =(0,1),(cos ,sin )=θθc ,()()(1,1)(cos ,1sin )cos 1sin 2sin()14π∴+⋅+=⋅θ+θ=θ++θ=θ++a b b c ,故()()+⋅+a b b c 的最大值为12+.【变式2】设向量a ,b ,c 满足1==a b ,12⋅=-a b ,,60<-->=a c b c 则c 的最大值等于( ) A .2 B .3 C .2 D .1 【答案】A 【解析】由12⋅=-a b 得,120<>=a b ,设OA =a ,OB =b ,OC =c ,则∠AOB=120°, CA =-a c ,CB =-b c ,∵,60<-->=a c b c ,∴∠ACB=60°,∴O 、A 、C 、B 四点共圆。

c 的最大值应为圆的直径2R ,在△AOB 中,OA=OB=1,∠AOB=120°,所以3AB =,由正弦定理得22sin ABR AOB==∠. 故选A.【变式3】已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为________;DE DC ⋅的最大值为________.【答案】1;1【解析】根据平面向量的点乘公式||||cos DE CB DE DA DE DA θ⋅=⋅=⋅,可知||cos ||DE DA θ=,因此2||1DE CB DA ⋅==;||||cos ||cos DE DC DE DC DE αα⋅=⋅=⋅,而||cos DE α就是向量DE 在DC 边上的射影,要想让DE DC ⋅最大,即让射影最大,此时E 点与B 点重合,射影为||DC ,所以长度为1 .例3.(2015 长沙校级二模)在△ABC 和△AEF 中,B 是EF 的中点,AB=EF=1,BC=6,,若,则与的夹角的余弦值等于 .【答案】【解析】由题意可得==+﹣2•=33+1﹣2•=36,∴•=﹣1.由可得+=+++=1﹣+(﹣1)+=•()=•=2, 故有 =4. 再由=1×6×cos <>,可得 6×cos <>=4,∴cos <>=,【总结升华】考查平面向量数量积角度和模的问题,特别注意夹角的方向. 画出示意图,有助于分析解决问题.举一反三:【变式1】.(2015 上海模拟)已知向量,的夹角为,||=1,且对任意实数x ,不等式|x +2|≥|+|恒成立,则||的取值范围是( ) A .[,+∞) B .(,+∞)C .[1,+∞)D .(1,+∞)【答案】C【解析】由题意可得x 2•+4x •+4≥+2+恒成立,化简可得x 2+2||x +(|3﹣||﹣1)≥0恒成立,∴△=4﹣4(|3﹣||﹣1)≤0.化简可得(2||+1)(||﹣1)≥0,求得||≥1,故选:C .【高清课堂:平面向量的数量积及应用401196 例1】【变式2】已知a 、b 都是非零向量,且a +3b 与7a -5b 垂直,a - 4b 与7a -2b 垂直,求a 与b的夹角θ。

相关文档
最新文档