一元一次方程第五讲一元一次方程应用之行程问题(上)基础题型篇课件(自制)

合集下载

苏科版(2024新版)七年级数学上册4.3.2 用一元一次方程解决问题——行程问题(同步课件)

苏科版(2024新版)七年级数学上册4.3.2 用一元一次方程解决问题——行程问题(同步课件)


例3、甲从A地到B地需4h,乙从B地到A地需10h。
(1)若两人同时相向而行,几小时可以相遇?
(2)若两人同时同向而行,甲几小时可以追到乙?
【分析】(1)相遇问题:两者的路程之和=两者间的距离
(2)追及问题:两者的路程之差=两者间的距离
未知速度和总路
程该如何列式呢

若是知道总路程,
甲、乙的速度就可
看我追上
你~
让我先走
2个小时
解:兔子出发时与乌龟的距离为:10×120=1200(m),
设x分钟后兔子追上乌龟,
根据题意得:590x-10x=1200,


解得:x= ,答:兔子再经过了 分钟追上乌龟。


590m/min
10m/min
追及
10x
1200m
590x
相遇问题
相遇
590x
10x


600km
根据题意得:90x+480+140x=600,

解得:x= ,


答:相背而行 小时后两车相距600km。

例4、甲、乙两站相距480km,一列慢车从甲站开出,每小时行90km,一列快车从乙
站开出,每小时行140km。
(1)慢车先开出1h,快车再开,两车相向而行,问快车开出多少小时后两车相遇?
跑啊跑~
解:设x分钟后它们在路上相遇,
根据题意得:590x+10x=15000,
解得:x=25,
答:乌龟和兔子经过了25分钟后可以相遇。
590m/min
10m/min
相遇
590x
15000m
10x
Part2:乌龟与兔子追及的故事

人教版七年级数学上册《一元一次方程的应用——行程问题》PPT

人教版七年级数学上册《一元一次方程的应用——行程问题》PPT

(x+3)x 2 + 2x = 60
试一试
例1. 甲、乙两人相距60km,二人 同时出发,相向而行,2小时相遇。 甲的速度比乙的速度每小时快3千米, 甲,乙的平均速度各是多少?
解:一直总的路程s=60km 甲乙都在t=2h后相遇。 设乙的时速为x km ,那么甲的时速为(x+3)km
原式
(x+3)x 2 + 2x = 60
相遇时小刚比小强多行进了24km,相遇后0.5h小刚到达B
地。两人的行进速度分别是多少?
解:设小强的速度为x km每小时,则小强2小时所行路程为 2x km ,
而小刚0.5小时就行完了2x km,故小刚的速度为(2x ÷ 0.5)=4x
Km 根据题意可得:
4x × 2 - 2x =24
原式
4x × 2 - 2x =24
试一试
例1. 甲、乙两人相距60km,二人同 时出发,相向而行,2小时相遇。 甲 的速度比乙的速度每小时快3千米, 甲,乙的平 设乙的时速为x km ,那么甲的时速为(x+3)km
由题意可知他们甲、乙两小时走完了全程并且相遇
可以列出方程
3.4 一元一次方程的应用
问题导入
2002年亚运会上 我国获得150枚金牌, 比1994年亚运会我国 获得的金牌数的2倍少 38枚。
1994年 我国获得几 枚金牌?
(1)能直接列出算式求1994年亚运会我国获得的金牌数吗?
(2)如果用到方程的方法来解,设哪个未知数为 x ? 解:已知2002年我国获得150枚金牌,那么设 1994年获得的金牌为x枚。
合并同类相
4x=24
所以小刚的的速度为4xkm=4 ×
x=6

实际问题与一元一次方程——行程问题PPT

实际问题与一元一次方程——行程问题PPT
相遇问题的常见类型
追及相遇、碰撞相遇等。
匀加速直线运动中的追及问题
追及问题的特点
01
一个物体在后面追赶另一个物体,直到追上或超过。
追及问题的解决方法
02
根据题意列出方程,解方程求出未知数。
追及问题的常见类型
03
速度型追及、时间型追及等。
04 匀减速直线运动问题
匀减速直线运动的定义和公式
01
02
匀速直线运动公式
$s = vt$,其中$s$表示路程, $v$表示速度,$t$表示时间。
匀速直线运动中的相遇问题
相遇问题描述
两个物体在同一条直线上运动,在某 一点相遇。
相遇问题解决方法
根据两物体的速度和相遇时的时间, 计算出两物体各自的路程,再根据两 物体路程之和等于总路程求解。
匀速直线运动中的追及问题
匀加速直线运动的公式
速度公式 $v = v_0 + at$,位移公式 $s = v_0t + frac{1}{2}at^2$,其中 $v_0$ 是初速度,$a$ 是加速度,$t$ 是时间。
匀加速直线运动中的相遇问题
相遇问题的特点
两个物体在同一时刻到达同一位置。
相遇问题的解决方法
根据题意列出方程,解方程求出未知数。
05 行程问题的实际应用
生活中的行程问题
步行或跑步比赛
计算某人从家到学校的步 行或跑步时间,或者计算 在马拉松比赛中的最佳成 绩。
自行车骑行
计算某人骑自行车从一个 地点到另一个地点的所需 时间和距离。
飞机飞行
计算飞机从城市A飞往城 市B的飞行时间和距离,或 者计算油耗。
运动场上的行程问题
赛跑
计算短跑、长跑等比赛项目的最 佳成绩和平均成绩。

湘教版初一上册数学3.4.3一元一次方程行程问题(精品课件)

湘教版初一上册数学3.4.3一元一次方程行程问题(精品课件)
分析:由于小明与小红都从家里出发,相向而行,所以相遇时,他们走的 路程的和等于两家之间的距离.不管两人是同时出发,还是有一人先走, 都有
小明走的路程+小红走的路程=两家之间的距离(20km).
(1)如果两人同时出发,那么他们经过多少小时相遇?
小明走的路程
小红走的路程
解(1)设小明与小红骑车走了x h后相遇,
3.4 一元一次方程的应用
第3课时 行程问题
导入新课
讲授新课
当堂练习
课堂小结
新知讲解 速度、路程、时间之间的关系?
路程= 速度×时间 速度= 路程÷时间 时间= 路程÷速度
新知导入
龟兔赛跑的故事大家一定都知道,课时兔子不服气,于是他们 相约今天再进行一场比赛,那作为观众的我们想不想先来猜一猜这 次比赛的结果呢?
要想猜测比赛的结果,我们先要知 道哪些量?
路程 速度 时间
新知讲解
试一试,相信你能行
1、甲的速度是每小时行4千米,则他x小时行(4X )千米.
2、乙3小时走了x千米,则他的速度(
).
3、甲每小时行4千米,乙每小������������时千米行5千米,则甲、乙 一小时共行
( 9 )千米,y小时共行 (9y)千米.
解:设小明x小时追上小毅,可得:8x=6(x+1)
解得:x=3. 答:小明3小时追上小毅.
课堂练习
1.小明和小刚家距离900 m,两人同时从家出发相向而行,5 min后两人
相遇,小刚每分钟走80 m,小明每分钟走( C )
A.80 m B.90 m C.100 m D.110 m
2.甲、乙二人练习赛跑,甲每秒跑7米,乙每秒跑6.5米.乙先跑5米后,甲
s甲 s乙 s总

一元一次方程的应用-行程问题(公开课)PPT课件

一元一次方程的应用-行程问题(公开课)PPT课件

-
13
解:设两车x小时相遇,由题意得。 60x+40x=600 X=6
答:两车6小时可以相遇,可以救治张叔叔。
-
10
若明明以每小时4千米的速度行驶上学, 哥哥半小时后发现明明忘了作业,,就骑车 以每小时8千米追赶,问哥哥需要多长时间才 可以送到作业?
解:设哥哥要X小时才可以送到作业 由题意得: 8X = 4X + 4×0.5
西安(慢车)
(快车)武汉
慢车路程+快车路程=相距路程
相遇问题:同时出发
-
4
西安站和武汉站相距1500千米,一列 慢车从西安开出,速度为68千米/时,一 列快车从武汉开出,速度为85千米/时, 若两车相向而行,慢车先开0.5小时,快 车行使几小时后两车相遇?
西安(慢车)
(快车)武汉
(慢车先行路程+慢车后行路程)+快车路程=相距路程
追及问题:同地不同时
-
7
敌军从距离我军7千米的驻地开 始逃跑,我军发现后立即追击,速度 是敌军的1.5倍,结果2.5小时后追上, 敌军的速度是多少?
-
8
追及问题的等量关系:
同地不同时出发: 被追者走的路程=追赶者走的路程
被追者先走的路程 被追者后走的路程
追上
追赶者走的路程
同时不同地出发:
被追者的路程+两者互相间隔的路程=追赶者的路程
X = 0.5
答:哥哥要0.5小时才可以- 把作业送到。
11
精讲 例题


例1、 A、B两车分 别停靠在相距240千米 的甲、乙两地,甲车每 小时行50千米,乙车每 小时行30千米。 (1)若两车同时相向 而行,请问B车行了多 长时间后两车相距80千 米?

一元一次方程的应用(行程问题)课件定稿

一元一次方程的应用(行程问题)课件定稿

B

相等关系:A车走的距离 + B车走的距离 =两地距离
变式练习:
A、B两车分别停靠在相距72千米的甲、乙两地,A车每小 时行8千米,B车每小时行4千米,A车出发1.5小时后B车再出 发。
(1)若两A
乙 甲 (2)若两车相向而行,请问B车行了多长时间后 两车相距10千米? B A 甲 A
追及问题
• 张晨阳和吴天赐两人约好到乐亭去买数学 参考书,从古河出发,张骑自行车速度是 10千米每小时,吴骑电动车速度是20千米 每小时,张先出发,一小时以后吴再出发, 问吴何时能追上张?(同地不同时)
路程=速度×时间
古 河
乐亭
10千米
20X米
10X米
追 及 地
解:设吴天赐要X小时才追上张晨阳,依题意得: 20X = 10X + 10×1
再变
路程=速度×时间
例1.小王、叔叔在400米长的环形跑道上练习跑步, 小王每秒跑5米,叔叔每秒跑7.5米。
(1)若两人同时同地同向出发,多长时间两人 首次相遇? 甲行的路程-乙行的路程=400米
(2)若两人同时同地反向出发,多长时间两人首 次相遇?
等量关系
甲行的路程+乙行的路程=400米
等量关系
一元一次方程的应用
行程问题
行程问题
相 遇
追 及
航 行
回顾与思考
列一元一次方程解实际问题的一般步骤 1、审:审题,分析题中已知什么、求什么、明确各 数量之间的关系 2、设:设未知数(直接设法、间接设法) 3、找:找出能够表示题中全部含义的一个等量关系 4、列:根据等量关系列出方程
5、解:解所列出的方程,求出未知数的值
能力提升:
• 汽车以每秒20米的速度笔直的开向寂静的 山谷,驾驶员按一声喇叭,4秒后听到回响, 已知声音的传播速度是340米每秒,听到回 响时汽车离山谷距离多少米?

一元一次方程行程问题课件经典实用

一元一次方程行程问题课件经典实用
50x+30x=240 解得 x=3
答:设B车行了3小时后与A车相遇。
•一元一次方程行程问题(课件)
精讲 例题


例1、 A、B两车分 别停靠在相距240千米
线段图分析:
的甲、乙两地,甲车每 小时行50千米,乙车每 小时行30千米。
A 50x

80千米
30x B

(2)若两车同时相向 而行,请问B车行了多
分析: 小狗走的路程=小狗的速度x小狗走的时间
小狗走的时间=甲乙相遇前走的时间
•一元一次方程行程问题(课件)
问题3: 如果甲、乙、小狗都从同一 点出发,同向而行,速度皆不变, 乙和小狗先出发3小时,甲再出发追 赶乙,当甲追上乙时,小狗跑了多 少米?
分析:
小狗走的路程=小狗的速度x小狗走的时间
小狗走的时间= 3小时+甲追上乙的时间 等量关系
线段图分析:
A 50x
30x B
小时行50千米,乙车每


小时行30千米。 (1)若两车同时相向 而行,请问B车行了多 长时间后与A车相遇?
A车路程+B车路程=相距路程
若设B车行了x小时后与A车相遇, 显然A车相遇时也行了x小时。则A车
路程为 千50米x;B车路程
为 30千x米。根据相等关系可列出方
(1)反向
叔叔 小王
(1)若两人同时同地反 向出发,多长时间两人 首次相遇?
(2)若两人同时同地同
向出发,多长时间两人 首次相遇?
方程行程问题(课件) 叔叔路程 = 400
变式 练习


3、小王、叔叔在400 米长的环形跑道上练习 跑步,小王每秒跑4米, 叔叔每秒跑7.5米。

初一上数学一元一次方程应用题行程问题.ppt

初一上数学一元一次方程应用题行程问题.ppt

解:设小宝打完30分钟后,请小贝合作x分钟后,打完全文,则依题意可得: 1 ×30+( 50 解得:x=7.5 故小宝总共用了:30+7.5=37.5分钟<40分钟。 答:小宝能在要求的时间内打完。 1 + 50 1 )x=1 30
历史ⅱ岳麓版第13课交通与通讯 的变化资料
精品课件欢迎使用
[自读教材· 填要点] 一、铁路,更多的铁路 1.地位
解:设经过x分钟首次相遇,则依题意可得 350x-250x=400 解得:x=4
答:经过4分钟甲、乙相遇。
变式练习
运动场跑道周长400m,小红跑步的速度是 发,5min 后小红第一次追上爷爷。你知道他们的跑 步速度吗?
本题中的等量关系是,小红第一次追上爷爷时, 小红跑的路程-爷爷跑的路程=400m 当小红第一次追上爷爷时,他们所跑的路程可以用 示意图表示:
铁路是
交通运输 建设的重点,便于国计民生,成为国民经济
发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 路建成通车。 1888年,宫廷专用铁路落成。 至胥各庄铁 开平
3.发展
(1)原因:
①甲午战争以后列强激烈争夺在华铁路的 ②修路成为中国人 (2)成果:1909年 权收归国有。 4.制约因素 政潮迭起,军阀混战,社会经济凋敝,铁路建设始终未入 修筑权 。
台湾 架设第一条电报线,成为中国自
出行 (1)新式交通促进了经济发展,改变了人们的通讯手段和 , 方式 转变了人们的思想观念。
(2)交通近代化使中国同世界的联系大大增强,使异地传输更为便 捷。 (3)促进了中国的经济与社会发展,也使人们的生活
3、某船从A码头顺流而下到B码头,然后逆流返回C码头(C码头在AB之间),共行9

一元一次方程的应用(行程问题)ppt课件

一元一次方程的应用(行程问题)ppt课件
21
小组竞赛5分
1、一架飞机飞行两城之间,顺风时需要5小时30分钟,
逆风时需要6小时,已知风速为每小时24公里,
求两城之间的距离?
解:设两城之间距离为x 里/小时,逆风速为
公里,则顺风速为 x 公里/小时
x 5.5

6
依题意得: x 24 x 24
5.5
6
x=3168
答:两城之间的距离为3168公里
5米
棕色马路程= 黄色马路程+相隔距离
9
小明每天早上要在7:50之前赶到距家1000米的学校 。一天 , 小明以80米/分的速度出发 ,5分钟后, 小明的爸爸发现他忘 了带语文书 ,爸爸以180米/分的速度去追小明 ,并且在途中
追上了他 。 (1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
+ A、B两地的路程=甲走的路程 乙走的路程
5
试一试 西安站和武汉站相距1500km,一列慢车
从西安开出,速度为65km/h,一列快车从武 汉开出,速度为85km/h,两车同时相向而行, 几小时相遇?
西安(慢车) 慢车路程
快车路程
(快车)武汉
慢车路程+快车路程=总路程
6
湘潭站和长沙站相距1500km,一列慢车从西安开 出,速度为65km/h,一列快车从武汉开出,速度为 85km/h,若两车相向而行,慢车先开30分钟,快车 行使几小时后两车相遇?
(2)追上小明时,距离学校还有多远?
解:(1)设爸爸追上小明用了x分钟,根据题
意,得
小明
180X=80X+80家×5
100X=400
X=4 因此, 爸爸追上小明用了4分钟爸爸
(2)因为180×4=720(米)

北师大版(2024)数学七年级上册 5.3.3 一元一次方程应用--行程问题 (共23张PPT)

北师大版(2024)数学七年级上册 5.3.3 一元一次方程应用--行程问题  (共23张PPT)

复习引入
小明和小华相距 100 米,他们同时出发,相向而行, 小明每秒走 3 米,小华每秒走 4 米,他们能相遇吗? 几秒钟可以相遇?
等量关系: 小明走的路程 + 小华走的路程 = 相距的路程
所用公式:路程 = 速度×时间
复习引入
这道题是小学做过的一种很常见的应用题:行程问题, 用到的数量关系主要有:
分析:本题等量关系:小明所走路程+爸爸所走路 程=全路程,但要注意小明比爸爸多走了 5 分钟, 所以小明所走的时间为(x+5)分钟,另外也要注意本 题单位的统一,2.9公里=2900米.
解:设小明爸爸出发 x 分钟后接到小明,如 图所示.
由题意,得200x+60(x+5)=2900, 解得 x=10. 答:小明爸爸从家出发 10 分钟后接到小明.
甲先跑 10 秒,乙开始跑,设乙 x 秒后追上甲,依题意列
方程得 ( B )
A. 6x = 4x
B. 6x = 4x + 40
C. 6x = 4x-40
D. 4x + 10 = 6x
课堂练习
2. 甲车在乙车前 500 千米,同时出发,速度分别为每
小时 40 千米和每小时 60 千米,多少小时后,乙车追
例 小明和小华两人在400m的环形跑道上练习长跑,小明每分 钟跑260m,小华每分钟跑300m,两人起跑时站在跑道同一位置。 (2)如果小明起跑后1min小华开始反向跑,那么小华起跑后多 长时间两人首次相遇?
设小华起跑后xmin两人首次相遇, 根据等量关系,可列出方程: 260x+300x=400-260。 解这个方程,得 x=0.25。 因此,小华起跑后0.25min两人首次相遇。
追击问题:快车路程-慢车路程=路程差

一元一次方程的应用——行程问题PPT课件

一元一次方程的应用——行程问题PPT课件
一元一次方程的用 ——行程问题
大家好
2021
龟兔赛跑的故事
路程、时间、速度 他们之间的关系是:
路程=速度×时间 速度=路程÷时间 时间=路程÷速度
2021
• 1、 相遇问题 • 历史问题:
直线跑道
•两“船相两距船4相00千隔米若,干甲距船离每, 小第时航一行艘6船0千需米行,5乙日船,航第 行二40千艘米船(需彼行此7抵日达(对彼方此 的抵位置达)对,方若位两置船)同时。出今 发两,相船向同而时行出,发问(经过相多向 少而小时行两)船,相问遇几?日后相
120 120x x 80 80x x
解:设x分钟后,小莉与小 强第一次相遇
120x+80x=400 200x=400 x=2
答:2分钟后,小莉与小强 第一次相遇。
2021
小结:快的经过的路程+慢的经过的路程=跑 道一圈的总长
2021
环形跑道
2、同向而行,首次相遇
• 小强、小莉分别在 400米环形跑道上练 习跑步,小强每分钟 跑120米,小莉每分 钟跑80米,两人同时 从同一点同向出发, 问几分钟后,小莉与 小强第一次相遇?
时从同一点同向出发,问几分钟后,小莉与小强第 一次相遇?
• 等量关系:相遇时,小莉的时间=小强的时间

小强的路长-小莉的路长=操场的总长(相遇时,
小强比小莉多跑一圈)
120 120x x 80 80x x
解:设x分钟后,小莉与小强第一 次遇见。
120x-80x=400
不善于步行的人。
2021
例2 有一个善于步行的人每小时走100米,一个不善 于步行的人每小时走60米。现在一个不善于步行的人 先走了100米,善于步行的人开始追他。问经过多久 才能追上不善于步行的人。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档