1-2光的受激辐射

合集下载

光的三种辐射过程

光的三种辐射过程

光的三种辐射过程在探讨光的本质和特性时,我们不能忽视其与辐射的紧密联系。

光,作为电磁波的一种,具有特定的辐射过程。

这些过程主要可以分为三种:自发辐射、受激辐射和受激吸收。

为了深入理解这些过程,我们需要先了解一些基础知识。

首先,辐射是由原子内部电子状态的改变所产生的。

在原子中,电子围绕原子核运动,处于不同的能级。

当电子从高能级跃迁到低能级时,它会释放出能量,这种能量以电磁波的形式向外传播,这就是我们所说的辐射。

1. 自发辐射:这是最基础的一种辐射过程。

在高能级的原子,由于能量涨落,会自发地跳到低能级,并在跳下的过程中释放出一个光子。

这个过程是随机的,不依赖于外界的刺激。

所有的发光现象,如萤火虫发光、白炽灯发光等,都是自发辐射的结果。

2. 受激辐射:当一个光子与一个处于高能级的原子相遇时,这个光子有可能被原子吸收,使原子跳到更高的能级。

然而,这个高能级的原子并不稳定,它会很快地自发地跳回低能级,并在跳下的过程中释放出一个与原先被吸收的光子能量相同的光子。

这个过程就是受激辐射。

受激辐射产生的是相干光,因为从同一激发态跳回的两个光子有相同的频率和相位。

激光的原理就是基于受激辐射。

3. 受激吸收:与受激辐射相反,当一个光子与一个处于低能级的原子相遇时,这个原子有可能吸收这个光子的能量,跳到更高的能级。

这个过程就是受激吸收。

受激吸收是产生激光的一个重要步骤,因为在激光器中,首先需要通过受激吸收将电子激发到高能级,然后通过受激辐射产生激光。

以上就是光的三种辐射过程:自发辐射、受激辐射和受激吸收。

这三种过程是光与物质相互作用的重要方式,不仅决定了光的产生和传播方式,也影响了我们对光的理解和应用。

受激辐射 受激吸收与自发辐射

受激辐射 受激吸收与自发辐射
(自发辐射)
h E1 E2
§1.2.1 受激辐射、受激吸收与自发辐射
爱因斯坦发现,若只有自发辐射和吸收跃迁,黑体和辐射场之 间不可能达到热平衡,要达到热平衡,还必须存在受激辐射。
1. 自发辐射
h E2 E1
E2Leabharlann hE1发光前
发光后
单位时间从上能级跃迁到 下能级的原子数目为:
dn21 dt sp
或不能发生,则受激辐射也可以或不能发生。
受激辐射的相干性 自发辐射:相互独立、互不相关。 不相干
受激辐射:受激辐射产生的光子与引起受激辐射的 外来光子具有相同的特征(频率、相 位、振动方向及传播方向均相同)。
受激辐射光子与入射光子属同一光子态。 相干光
总结
掌握:
自发辐射、受激吸收、受激辐射 含义、特点、相互区别、相互关系 爱因斯坦三系数的相互关系及所得结论 受激辐射的相干性
热平衡状态:
辐射率 吸收率 (辐射场总光子数保持不变)
n2 A21 n2B21 n1B12
n1、n2、n3 ——各能级上的原子数密度(集居数密度)
玻尔兹曼统计分布:
n f e 2
2
( E2 E1 ) KT
n1 f1
f1、f2 ——能级 E1 和 E2的简并度,
或称统计权重


A21

8 h
c3
3
B21
结果讨论
1. 其他条件相同时,受激辐射和受激吸收具有相同几率。
2. 热平衡状态下,高能级上原子数少于低能级上原子数,故 正常情况下,吸收比发射更频繁,其差额由自发辐射补偿。
3. 自发辐射的出现随 3而增大,故波长越短,
自发辐射几率越大。 4. 自发辐射和受激辐射具有相同的选择定则,自发辐射可以

光的受激辐射-资料

光的受激辐射-资料

此公式在短波区域明显与实验不符,而理论上却找不出错 误——“紫外灾难” ,像乌云遮住了物理学睛朗的天空。
(v,T)1 ( 0 9W/2(H m )z) 普朗克公式——普朗克注意到
在过去的理论中,把黑体中的
瑞利 - 金斯公式
原子和分子都看成可以吸收 或
6
5
实验曲线
辐射电磁波的谐振子,且电磁 波与谐振子交换能量时可以以
(a)特点:各粒子自发、独立地发射的光子。各光子的方向、
偏振、初相等状态是无规的, 独立的,粒子体系为非相干
光20源20/。4/12(普通光源)
(b) 自发发射系数A21 : 设E2上粒子数(密度)为n2 , 时间dt内、单 位体积内经自发发射从E2跃迁到E1的粒子数为 - dn2
则因dn2∝n2 且dn2 ∝dt
*(因为不同粒子发射的光子与入射光子的频率、位相、 偏振等状态相同, 而且使相干光子数目不断增加, 所以受激 发射使激光具备了高亮度、方向性、单色性、相干性的特 点)
2020/4/12
E2

N2
h
E1

N1
(b)受激辐射系数B21: 设外来光场单色能量密度ρv (入射光 子满足hv =E2 - E1),处于能级E2上的原子数密度为n2,在从t 到t + dt 的时间间隔内,有- d n2 个原子由于受辐射作用, 而由E2跃迁到E1,则有
跃迁到高能级E2
E2 h ●
N2
E1

N1
(a)受激吸收系数B12: 设E1的粒子数(密度)为n1,单色辐射能量密 度ρv的光入射(入射光子满足hv=E2-E1)时,在单位体积、时间 间隔dt内吸收光子而由E1跃迁到E2的粒子数为
dn2=B12ρvn1dt (1-32) 其中B12称为受激吸收系数

光的受激辐射 激光原理及应用 [电子教案]电子

光的受激辐射  激光原理及应用 [电子教案]电子

光的受激辐射激光原理及应用第一章:激光概述1.1 激光的定义激光的中文全称:Light Amplification Stimulated Emission of Radiation 激光的特点:相干性好、平行度好、亮度高、单色性好1.2 激光的产生原理受激辐射:外来的光子与一个束缚电子发生能量交换,使电子从较低能级跃迁到较高能级,成为激发态电子。

激发态电子回到较低能级时,会释放出一个与外来光子频率、相位、偏振方向相同的光子,这就是受激辐射。

激光的放大过程:受激辐射产生的光子与入射光子具有相同的频率和相位,导致更多的束缚电子发生受激辐射,从而实现光的放大。

1.3 激光的应用领域科研领域:光谱分析、激光干涉、激光雷达等。

工业领域:激光切割、激光焊接、激光打标等。

医疗领域:激光手术、激光治疗、激光美容等。

生活领域:激光打印、激光投影、激光视盘等。

第二章:激光器的基本原理2.1 激光器的组成激光介质:产生激光的物质,如半导体、气体、固体等。

泵浦源:提供能量,使激光介质中的电子发生跃迁。

光学谐振腔:限制激光的传播方向,增强激光的放大效果。

输出耦合器:将激光输出到外部。

2.2 激光的产生过程泵浦源激发激光介质,使电子从基态跃迁到激发态。

激发态电子回到基态时,发生受激辐射,产生激光。

激光在光学谐振腔内多次反射,实现光的放大。

输出耦合器将激光输出到外部。

2.3 激光器的类型及特点气体激光器:采用气体作为激光介质,如二氧化碳激光器、氦氖激光器等。

固体激光器:采用固体材料作为激光介质,如钕激光器、钇铝石榴石激光器等。

半导体激光器:采用半导体材料作为激光介质,如激光二极管等。

光纤激光器:采用光纤作为激光介质,具有高亮度、低阈值等优点。

第三章:激光的性质与应用3.1 激光的相干性3.2 激光的平行度3.3 激光的亮度亮度高的特点:可用于激光投影、激光显示等。

3.4 激光的单色性3.5 激光的应用实例激光切割:用于金属和非金属材料的切割加工。

第21讲 光的吸收、受激辐射与自发辐射

第21讲 光的吸收、受激辐射与自发辐射

(0.1
~
1nm)内,| k
r|
1,可将k
r略去。所以
E Hˆ
E0ecrosEt,它D对 电 E0子co的s作t,用D量
为 er
电偶极矩
5返
二、将电H) 子 跃Dv迁 Er的0 c微os扰t 论 W描ˆ c述os(1)t,W)
vr D E0
看作对原子系统的微扰,它将导致电子发生能级
跃迁。此时系统的哈密顿为
1、半经典理论
E2
如果对光的吸收、受激辐射 和自发辐射的理论处理采用这样 E1
电磁波
的办法:将光波看作电磁波(而
不是看作光子群), 用电动力学(而不是量子力 学)来描述,对原子系统采用量子力学来描述,
这样的理论习惯上被称为半经典理论。
半经典 光波用电动力学来描述; 半量子 原子用量子力学来描述。
d cos2
1
2
d
s in
cos2 d
1
4
4 0 0
3
wk k
62
| Dkk
|2
E02 (kk
)
(6)
14
三、吸收的跃迁速率(6) t 时,跃迁速率为
Ek
E E0 cost
wk k
62
| Dkk
|2
Ek
E02 (kk )
(6)
此式就是当入射光为平面单色光,即
E E0 cost时,原子吸收光波能量从低能级
Ek
h
Ek 光的自发辐射
24
六、自发辐射系数(2)
nk nk , 或nk nk
吸收和受激辐射的跃迁速率为
wkk Bkk (kk )和wkk Bkk (kk )

《光的受激辐射》课件

《光的受激辐射》课件

PART 02
光的受激辐射原理
光的粒子性
光的粒子性描述
光的粒子性与能量
光是由粒子组成的,这些粒子被称为 光子。
每个光子携带一定的能量,与其波长 成反比。
光的粒子性实验证明
通过光电效应实验,爱因斯坦解释了 光的粒子性,并因此获得了诺贝尔物 理学奖。
原子能级结构
原子能级的概念
原子中的电子在不同的能级上运动,这些能级由 不同的能量值表示。
原子能级的稳定性
在不受外界影响的情况下,原子能级是稳定的。
能级的跃迁
当原子受到外界能量的影响时,电子可以从一个 能级跃迁到另一个能级。
受激辐射的过程
受激辐射的描述
当高能级上的原子受到某种外界光子的影响时,它会释放出一个 与外界光子完全相同的光子。
受激辐射的实验证明
通过实验,人们观察到了受激辐射现象,并进一步发展出了激光技 术。
03
响。
受激辐射的重要性
激光技术应用
受激辐射产生的相干光为激光提 供了源源不断的能量,广泛应用 于工业、医疗、通信等领域。
通信技术革新
光纤通信利用激光的单色性好、 方向性强等特点,实现了高速、 大容量的信息传输。
医学领域突破
激光在医学领域的应用如激光治 疗、激光手术等,为疾病的诊断 和治疗提供了新的手段。
受激辐射的特点
释放的光子与原光子频率相同,方向 相同,相位相同,传播方向相反。
ห้องสมุดไป่ตู้
受激辐射的发现
01
1917年,爱因斯坦提出受激辐射理论,解释了为什么某些物质 在特定条件下能够自发地产生光。
02
1960年,梅曼发明了第一台红宝石激光器,实现了受激辐射产
生的光放大,标志着激光技术的诞生。

光纤通信_第二版_刘增基_参考答案

光纤通信_第二版_刘增基_参考答案

1-1光纤通信的优缺点各是什么?答 与传统的金属电缆通信、磁波无线电通信相比,光纤通信具有如下有点:(1)通信容量大。

首先,光载波的中心频率很高,约为2×1014Hz ,最大可用带宽一般取载波频率的10%,则容许的最大信号带宽为20000 GHz (20 THz );如果微波的载波频率选择为20 GHz ,相应的最大可用带宽为2GHz 。

两者相差10000倍。

其次,单模光纤的色散几乎为零,其带宽距离(乘)积可达几十GHz*km ;采用波分复用(多载波传输)技术还可使传输容量增加几十倍至上百倍。

目前,单波长的典型传输速率是10 Gb /s ,一个采用128个波长的波分复用系统的传输速率就是1.28 Tb /s 。

(2)中继距离长。

中继距离受光纤损耗限制和色散限制,单模光纤的传输损耗可小于0.2 dB /km ,色散接近于零。

(3)抗电磁干扰。

光纤由电绝缘的石英材料制成,因而光纤通信线路不受普通电磁场的干扰,包括闪电、火花、电力线、无线电波的干扰。

同时光纤也不会对工作于无线电波波段的通信、雷达等设备产生干扰。

这使光纤通信系统具有良好的电磁兼容性。

(4)传输误码率极低。

光信号在光纤中传输的损耗和波形的畸变均很小,而且稳定,噪声主要来源于量子噪声及光检测器后面的电阻热噪声和前置放大器的噪声。

只要设计适当,在中继距离内传输的误码率可达10-9甚至更低。

此外,光纤通信系统还具有适应能力强、保密性好以及使用寿命长等特点。

当然光纤通信系统也存在一些不足:(1) 有些光器件(如激光器、光纤放大器)比较昂贵。

(2) 光纤的机械强度差。

为了提高强度,实际使用时要构成包含多条光纤的光缆,在光缆中要有加强件和保护套。

(3) 不能传送电力。

有时需要为远处的接口或再生的设备提供电能,光纤显然不能胜任。

为了传送电能,在光缆系统中还必须额外使用金属导线。

(4) 光纤断裂后的维修比较困难,需要专用工具。

1-2 光纤通信系统由哪几部分组成?简述各部分作用。

1.3光的受激辐射

1.3光的受激辐射

停止外部光源照射后, 从示波器上可观察到: ① 荧光强度曲线遵从指数律,即证实了自发发射光功率按指数 律衰减 A21 t
q (t ) q 0 e
② 测出荧光寿命, 则可(按 =1/A21)求出。
(i) Anm——从En 跃迁到Em的自发辐射几率
E3 E2 E1
E 2 E1 h
E2 E1

N2 h N1

(b) 受激辐射系数B21: 设外来光场单色能量密度ρv (入射光子满 足hv =E2 - E1),处于能级E2上的原子数密度为n2,在从t 到t+dt的 时间间隔内,有 -dn2个原子由于受辐射作用,而由E2跃迁到E1, 则有 -dn2=B21ρv n2dt (1-30)
E2 E1
受激发射是产生激光的最重要机理
外来光子
受激辐射光子
③受激发射的粒子系统是相干光源(相同→相干):
受激辐射是在外界辐射场的控制下的发光过程,因而各原 子的受激发射的相位不再是无规则分布的,而应有和外界辐射 场相同的相位。量子电动力学可证明:受激辐射光子与入射光 子属于同一光子态。
受激辐射与自发辐射的重要区别——相干性
6、瑞利-金斯公式——1900年瑞利--金斯利用经典电动力学和统 计力学(将固体当作谐振子且能量按自由度均分原则及电磁辐射 理论)得到一个公式,此公式在短波区域明显与实验不符,而理 论上却找不出错误——“紫外灾难” ,像乌云遮住了物理学睛朗的 天空。
( v , T )( 10
6 5 4 3 2 1 0 1 2 3
,即
t = 0 时 n2 = n20
t= t 时刻, E2上粒子数为n2(t)即 t = t 时 n2=n2(t) ∵ E2上粒子数减少的唯一去向是E1 ∴ dn2(t) = -dn2= -A21n2(t)dt (粒子只有两个能级)

光的受激辐射 激光原理及应用 [电子教案]电子

光的受激辐射  激光原理及应用 [电子教案]电子

光的受激辐射——激光原理及应用第一章:激光概述1.1 激光的定义1.2 激光的特点1.3 激光的发展历程第二章:光的受激辐射2.1 受激辐射的概念2.2 激光的产生原理2.3 激光的放大原理第三章:激光器的工作原理3.1 激光器的类型3.2 气体激光器3.3 固体激光器3.4 半导体激光器第四章:激光的应用领域4.1 激光在工业中的应用4.2 激光在医疗领域的应用4.3 激光在科研领域的应用4.4 激光在信息技术领域的应用第五章:激光技术的发展趋势5.1 激光技术的创新点5.2 我国激光技术的发展现状5.3 激光技术的发展前景第六章:激光在通信技术中的应用6.1 激光通信的基本原理6.2 激光通信的优势与挑战6.3 光纤通信技术的发展6.4 卫星激光通信的应用前景第七章:激光在材料加工中的应用7.1 激光切割与焊接7.2 激光打标与雕刻7.3 激光烧蚀与表面处理7.4 激光加工技术的创新与发展第八章:激光在生物医学领域的应用8.1 激光手术与治疗8.2 激光诊断与成像8.3 激光生物传感器与检测技术8.4 激光在基因工程与药物研发中的应用第九章:激光在科研与探索中的应用9.1 激光光谱分析与计量9.2 激光加速与粒子物理研究9.3 激光在天文观测中的应用9.4 激光在地球与环境科学研究中的作用第十章:未来激光技术的发展趋势与挑战10.1 激光技术在新能源领域的应用前景10.2 激光技术在智能制造中的应用与挑战10.3 激光技术在国防科技中的应用与发展10.4 激光技术在太空探索与星际通信中的潜在价值重点和难点解析1. 激光的定义与特点:理解激光的特定波长、相干性、平行性、亮度等特点,以及激光与普通光线的区别。

2. 激光的产生原理:掌握激光产生的基本过程,包括受激辐射、增益介质、光学谐振腔的作用。

3. 激光器的工作原理:了解不同类型激光器(气体、固体、半导体)的结构和工作机制,特别是半导体激光器的广泛应用。

激光原理_第1章_激光的基本理论

激光原理_第1章_激光的基本理论
2.简并度f——同一能级所对应的不同电子运动状态 的数目(单个状态内的平均光子数)。
3.简并态—— 同一能级的各状态称简并态 例:计算1s和2p态的简并度
原子状态 n l
ml ms 简并度
1s
1
00
f1=2
1
2p
21
0
f2=6
-1
18
第一章 激光的基本原理
二、玻耳兹曼分布及粒子数反转
1. 玻耳兹曼分布(热平衡分布)
(19.77eV) 10-6 S
23
四、黑体辐射及其公式 1、描述黑体辐射的典型物理量
①单色能量密度 ,T:单位体积内,频率处于 附近
单位频率间隔内的电磁辐射能量,它是频率和温度的函 数。
注:寻求 的,T 函数形式进而确定单色辐出度的形式是当
时黑体辐射研究者们的一大目标!
②单光位波频模率密间度隔内n的:光腔波内模单式位数体。积中频率处于 附 近
n f e 2
2 (E2 E1 ) / kbT
讨论(设f i= f j) :
n1 f1
(1)如果E2 - E1很小,且满足 △E = E2 - E1<<kbT,则
n2 e (E2 E1 ) / kbT 1
n1
19
第一章 激光的基本原理
n f e 2
2 ( E2 E1 ) / kbT
第一章 激光的基本原理
前言
光具有波粒二象性,在描述光的性质是,可 以从其粒子性和光的波动性两个方面来描述光的 性质,进而引入了光波模式和光子模式来描述;
在激光产生的过程中,受激辐射和自发辐射 是其产生的基本原理,同时分析要实现光的受激 辐射放大需要满足集居数反转(粒子数反转)。
1
第一章 激光的基本原理

(激光原理与应用)1.3光的受激辐射

(激光原理与应用)1.3光的受激辐射

上式可改写为:
A21
dn2 n2dt
A21的物理意义为:单位时间内,发生自发辐射的粒子数密
度占处于E2能级总粒子数密度的百分比。即每一个处于E2
能级的粒子在单位时间内发生的自发跃迁几率。
上方程的解为: n2(t)n20eA2t1 , 式中n20为t=0时处
于能级E2的原子数密度
自发辐射的平均寿命:原子数密度由 起始值降至它的1/e的时间
式中k为波尔兹曼常数。➢总辐射能量密度 : 0 νdν
光与物质的相互作用有三种不同的基本 过程:自发辐射、受激辐射、受激跃迁
1. 自发辐射
➢自发辐射: 高能级的原子自发地从高能级E2向
低能级E1跃迁,同时放出能量为 hE2E1
的光子。
➢自发辐射的特点:各个原子所发的光向空间各个方向 传播,是非相干光。
对于大量原子统计平均来说,从E2经自发辐射跃迁到E1具 有一定的跃迁速率
d2nA2n 12dt
式中“-”表示E2能级的粒子数密度减少;n2 为某时刻高能级E2上的原子数密度(即单位体 积中的原子数); dn2表示在dt时间间隔内由E2自发跃迁到E1的原 子数。 A21称为爱因斯坦自发辐射系数,简称自发辐射 系数。
在此假设外来光的光场单色能量密度为 ,且低能级E1
的粒子数密度为n1,则有:
d2nB12n1dt
式中B12称为爱因斯坦受激吸收系数
(3)令 W12B12,
则有: W12B12nd1dn2t
则W12(即受激吸收几率)的物理意义为:单位时间内,在 外来单色能量密度 的光照下,由E1能级跃迁到E2能级 的粒子数密度占E1能级上总粒子数密度的百分比。
1.3 光的受激辐射
辐射能量密度公式
➢单色辐射能量密度 ν :辐射场中单位体积内,频率在 ν

yz第一章_激光的基本原理

yz第一章_激光的基本原理

二.光波模式和光子状态(相格)
光波模式:在一个有边界条件限制的空间V内,存在的 一系列具有特定波矢 k 的平面驻波。
1.1
19
相 干 性 的 光 子 描 述
1.从波动性描述光波模式 求体积为V的空腔内模式数目。 设空腔为V=Δ xΔ yΔ z的立方体,则沿三个坐标轴方 向传播的波分别应满足的驻波条件为:
4
1917年以后近四十年内: 量子理论的发展; 粒子数反转的有效实现;电 子学与微波技术的发展
1954:美国汤斯(C.H.Townes)
前苏联巴索夫(N.G.Basov) 与
普洛霍洛夫 (A.M.Prokhorov)
第一次实现氨分子微波量子振荡器(MASER)
由于在量子电子学方面的卓越成就和激光器发展上的 突出贡献,普罗霍罗夫,巴索夫和美国物理学家汤斯一
单位体积内处于两能级的原子数分别用n2和n1表示,如 P10图 (1.2.2)所示。
1.自发辐射
处于高能级E2的一个原子自发地向E1跃迁,并发射 一个能量为 hv 的光子。这种过程称为自发跃迁。由原 子自发跃迁发出的光波称为自发辐射。
光 的 受 激 辐 射 基 本 概 念
1.2
33
自发跃迁过程用自发跃迁几率A21描述。A21定义为: 单位时间内n2个高能态原子中发生自发跃迁的原子数与 n2的比值:
zhangyuscaueducn电子科学与技术教研室光电子学是汇集光子学电子学光子技术与电子技术的一门学科电子学研究电子作为信息和能量载体的科学光子学研究光子作为信息和能量载体的科学光子技术相干光的产生激光原理激光原理48学时相干光的控制调制偏转光频率波长变换相干光的检测及应用光电子技术电子技术光与电是兄弟光是波长更短的电磁波lightamplificationstimulatedemission科学技术发展规律基础理论研究新技术产品开发产业激光是一批科学家集体智慧的发明激光受激辐射光放大改变世界的光二十世纪对世界文明最有影响的发明之一1917

光的受激辐射

光的受激辐射

E2 and E1 表示两个激发态
一个光子的能量 hn E2 E1
辐射频率n E2 E1
h
• 自发辐射 (Spontaneous Emission)。
主要特征:无需外来光,随机发光,发出的光子不相关,
即相位、偏振态、传输方向是随机的;发出的光子能量分
布在许许多多个模式上。
E2 hn E1 E1 E2
Dn(z)
I0
0
z
g z Dnz
g z B21hnDnz
g z dI z 1 dz I z
g z z
Dn z 0 Dn z 0 Dn z 0
g z 0 g z 0 g z 0
g z z
结论: 黑体辐射在红外和可见光波段为非相干的
模密度 nn
8n 2 hn n c3 hn KT e 1
n hn n B21n W21 n 2 3 A21 A21 8n 8hn
c3 c3
物理意义?
W21 总光子数 (1) n A21 模式数
(1)自激荡概念
Active medium
amplifier
8n 2 n c3
hn hn KT e 1
E
hn e
hn kT
1
l= 60m
E 1 n hn kT hn e 1
n =103 n= 1; coherent
Example: T=300K l= 30cm
l= 0.6m n=10-35 incoherent
n 1 w21 n
(2) 避免产生许多模式,特定模式的n增加,使相干的 STE光子集中在一个或少数几个模内。

光的自发辐射 受激辐射、光放大

光的自发辐射   受激辐射、光放大

非相干光。
二、受激辐射和受激吸收
1)受激吸收 (共振吸收, 光的吸收)
处在低能级E1的原子受到
E2 能量等于h=E2-E1的光子
h
的照射时,吸收这一光子
E1 跃迁到高能级E2的过程。
n1 —— t时刻处于能级E1上的原子密度为
dn12 dt
——单位时间内由于吸收光子从低能级E1 吸 跃迁到高能级E2的原子数密度
大功率激光器 I 109 1017Wcm2sr 1
可使一切金属熔化
可使一切非金属化为一缕青烟
二、激光的应用
粒子数反转分布
激光是受激幅射的光,但还存在自发幅射和吸收, 要使受激辐射超过吸收和自发辐射才能实现光放大
根据玻尔兹曼 能量分布律
N e 2
( E2 E1 ) kT
N1
热动平衡下, N2N1,即处于高能级的原子数
大大少于低能级的原子数——粒子数的正常分布
受激辐射占支配地位粒子数反转
高能级上的粒 子数超过低能 级上的粒子数
激光
14-5 光的自发辐射 受激辐射、光放大
光与原子体系相互作用,同时存在吸收、自发辐射 和受激辐射三种过程。
一、原子的自发辐射
在没有任何外界作用下,激发态原子自发地从
高能级E2向低能级E1跃迁,同时辐射出一光子。
满足条件:h=E2-E1
E2

E2
h
E1
E1 •
随机过程,用概率描述。
n2—— t时刻处于能级E2上的原子数密度
我国第一台红宝石激光发射器
激光发射器---氦氖红光
氩离子激光器
14-7 激光的特性与应用
一、激光的特性
一)高度单色性
激光所包含的波长或频率范围极小

光的受激辐射放大与形成激光的条件

光的受激辐射放大与形成激光的条件

光的受激辐射放大与形成激光的条件下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!光的受激辐射放大与形成激光的条件1. 引言光的受激辐射放大是指通过受激辐射过程使光子数目增加,并最终形成激光的过程。

受激辐射的名词解释

受激辐射的名词解释

受激辐射的名词解释受激辐射(Stimulated Emission)是物理学中一个重要的概念,它在量子力学和激光技术等领域中发挥着重要作用。

本文将对受激辐射进行详细解释,并探讨其在现代科学和技术中的应用。

1. 受激辐射的基本原理受激辐射是指当一个物质中的原子或分子处于激发态时,受到外界光子或其他激发源的刺激,从而引发大量处于相同激发态的原子或分子跃迁到较低能级,释放出与刺激光子具有相同能量、相同频率和相同相位的新光子。

这个过程可以看作是光子的放大和复制过程,新产生的光子与刺激光子具有高度的相干性。

2. 受激辐射的应用受激辐射的应用非常广泛,其中最为突出的是激光技术。

激光是受激辐射的结果,它是一种具有高度单色性、相干性和定向性的光。

激光在科学研究、医疗诊断、通信技术、材料加工等众多领域具有重要的应用价值。

在科学研究方面,激光可以作为高度单色性的光源,用于显示和分析物质的光谱特性。

同时,激光具有很高的能量密度,可以用于产生高温高压的条件,研究物质的行为和性质。

在医疗诊断方面,激光可用于进行高分辨率成像,如激光共聚焦显微镜可以获得细胞和组织的高清影像;激光在眼科手术中也有广泛的应用,如激光角膜磨镶术(LASIK)可以矫正近视和散光。

在通信技术方面,激光通过光纤传输信号具有较低损耗和大带宽的优势,广泛用于远程通信和宽带互联网。

在材料加工方面,激光具有高能量密度,可以对物质进行精确控制的热处理或切割。

激光切割、激光焊接等技术在工业生产中有广泛应用,提高了生产效率和产品质量。

除了激光技术,受激辐射还有其他一些应用。

例如,受激辐射在核磁共振成像(MRI)中的应用,可以产生与激发源扫描频率相同的辐射,从而实现对人体组织的成像。

受激辐射还被应用于光谱学、粒子加速器等领域,为科研提供了更为精确的实验手段。

3. 受激辐射的意义与挑战受激辐射的发现和应用对科学技术发展具有巨大的意义。

它不仅为我们提供了一个全新的光源,而且推动了相关学科的研究进展。

光的吸收与受激辐射2

光的吸收与受激辐射2
w k 'k 4π 2 e 2 2 = rk ′k ρ(ωk ′k ). 2 3h
下面研究自发辐射理论
11.5.2 自发辐射的Einstein理论
前面提过,在非相对论量子力学理论框架内是无法解 释原子的自发辐射现象的。 因为按量子力学一般原理,如无外界作用,原子的 Hamilton 量是守恒量。 如初始时原子处于某一定态,则原子将保持在该定态, 不会跃迁到较低能级去。 Eintein曾提出一个很巧妙的半唯象理论来说明原子 的自发辐射现象。 他借助于物体与辐射场达到平衡时的热力学关系, 指出自发辐射现象必然存在,并建立起自发辐射与 吸收和受激辐射之间的关系。
4.微扰 微扰Hamilton量: 微扰 量
r r r r H ′ = −eφ = −e(− E ⋅ r ) = −e(− E0 ⋅ r cos ωt ) r r = − D ⋅ E0 cos ω t = W cos ωt r r r r W = − D ⋅ E0 , D = −er (电偶极矩) . 其中
吸收粒子数
nk Bk ′k ρ(ωk ′k ) ≠ nk ′ Bkk ′ρ(ωk ′k ),
辐射粒子数
因此,如只有受激辐射,就无法与吸收过程 达到平衡。 出自平衡的要求,必须引进自发辐射。由于 nk ′ < nk,必须在上式右边再加上一项,使体 系能达到平衡
nk Bk ′k ρ(ωk ′k ) = nk ′ [Bkk ′ρ(ωk ′k ) + Akk ′ ],
hνk'k
hνk'k Ek
无光照下,原子也可以自发 的从高能级跃迁到低能级, 并放出光子。
hνk'k Ek
4. 谱线频率(或波数) 谱线频率(或波数) 按照频率条件,与初末 态能量差△E相对应的 频率v= △E//h 5. 谱线相对强度 是一个与跃迁速率成比例的量,实际上与参 与跃迁的粒子数成正比。

激光原理(第1章)

激光原理(第1章)

tc = Dt = 1/Dv
上式说明,光源单色性越好,则相干时间越长。
物理光学中曾经证明:在图1.1.4中,由线度为Dx的光源A照明的
S1和S2两点的光波场具有明显空间相干性的条件为 DxLx/R ≤ (1.1.18) (1.1.19) (1.1.20)
式中 为光源波长。距离光源R处的相干面积 Ac 可表示为
上 述 基 本 关 系 式 (1.1.1) 和 (1.1.3) 后 来 为 康 普 顿 (Arthur Compton)散射实验所证实(1923年),并在现代量子电动力学中 得到理论解释。量子电动力学从理论上把光的电磁(波动)理论 和光子(微粒)理论在电磁场的量子化描述的基础上统一起来, 从而在理论上阐明了光的波粒二象性。在这种描述中,任意电 磁场可看作是一系列单色平面电磁波(它们以波矢k为标志)的线 性叠加,或一系列电磁波的本征模式(或本征状态)的叠加。但 每个本征模式所具有的能量是量子化的,即可表为基元能量hv 的整数倍。本征模式的动量也可表为基元动量 hkl 的整数倍。 这种具有基元能量hvl和基元动量hkl的物质单元就称为属于第 l 个本征模式(或状态)的光子。具有相同能量和动量的光子彼此 间不可区分,因而处于同一模式(或状态)。每个模式内的光子 数目是没有限制的。
空间称为相空间,相空间内的一点表示质点的一个运动状态。
当宏观质点沿某一方向(例如:x轴)运动时,它的状态变化对应 于二维相空间(x, Px)的一条连续曲线,如图1.1.2 所示。但是,
光子的运动状态和经典宏观质点有着本质的区别,它受量子力
学测不准关系的制约。
测不准关系表明:微观粒子的坐标和动量不能同时准确测定,
hv
式中 h=6.626×10-34Js,称为普朗克常数。

第二节 受激辐射

第二节 受激辐射

第二节受激辐射、受激吸收与自发辐射黑体辐射场,可以理解为组成黑体的原子和光场(或电磁波)相互作用的结果。

光波的产生和传播过程都不可避免涉及光和原子之间的相互作用。

在电磁场理论中,证明了电磁辐射来源于具有加速度的带电物体。

这个结论我们可以从很多方面得到验证。

医院的X光机利用高能电子快速减速辐射X射线;高能电子加速器所产生的电磁辐射就来源于具有加速度的电子;电真空微波器件输出的微波也来源于具有加速度的电子辐射。

光在物质中传播时,原子中的正电荷和负电荷受光场中电场作用,向相反方向运动,形成电偶极子,电偶极子向空间辐射光,和入射光场叠加在一起,形成物质中的总光波。

电磁场理论这些结论在用于宏观物质时,没有出现问题。

但用于解释原子发光过程时,却出项了难以调和的矛盾。

二十世纪初,通过实验已经知道电子是物质的基本组成部分,电子带负电,但物质都是电中性的,所以物质中一定还有带正电的部分。

通过测量电子的荷质比(),知道电子质量比原子质量小得多。

很重的带正电的部份称为原子核。

在这个基础上,物理学家开始猜想原子模型。

最早的原子模型是汤姆孙(J.J.Thomson)提出的,他设想原子就是带正电荷的那一部分均匀分布为一个胶状的球体,带负电的电子镶嵌在这个胶体上,原子就像一个面上有芝麻的面包。

原子发光的频率(光谱)就是这样一个球体的振动频率。

这个模型被后来的电子散射和粒子的散射实验证明是不对的。

卢瑟福(E.Rutherford)1909年粒子散射实验说明,原子大部分是空的,不是一个实心球。

所谓α粒子,就是由两粒带正电荷的质子和两粒中性的中子组成,相当于一个氦原子核。

在自然界内大部分的重元素(例如铀和镭,原子序数为82或以上)在衰变时辐射α粒子。

卢瑟福用α粒子去轰击铂薄片,按照汤姆孙模型,带正电的α粒子受到带正电的铂原子核的散射,α粒子应该偏离入射方向。

但实验发现,只有少量的α粒子发生大角度的偏转,大量原子直接穿过铂薄片,说明大量α粒子没有受到铂原子的作用,原子中的绝大部分空间空无一物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
只与原子本身性质有关
华中科技大学武昌分校2系光信教研室
3. 受激辐射
E2
h
h h
E1
发光前
发光后
h E2 E1
当外来光子的频率满足 h E时2 ,E使1 原子中处于高能级 的电子在外来光子的激发下向低能级跃迁而发光。
受激辐射跃迁几率: W21 B21
与原子本身性质和辐射场能量密度有关
B21 :受激辐射跃迁爱因斯坦系数
§1.2 光的受激辐射基本概念 一、光的受激辐射概念的产生
普朗克——1900年,辐射量子化假设; 波尔——1913年,原子中电子运动状态的量子化假设;
爱因斯坦——1917年,提出受激辐射概念。 1. 黑体辐射的Planck公式:
任何物质在一定温度下都要辐射和吸收电磁辐射。
黑体:能够完全吸收任何波长 的电磁辐射的物体。
3. 自发辐射的出现随 3而增大,故波长越短,
自发辐射几率越大。
四、受激辐射的相干性 自发辐射:相互独立、互不相关。 不相干
受激辐射:受激辐射产生的光子与引起受激辐射的 外来光子具有相同的特征(频率、相 位、振动方向及传播方向均相同)。
受激辐射光子与入射光子属同一光子态。 相干光
华中科技大学武昌分校2系光信教研室
华中科技大学武昌分校2系光信教研室
空腔辐射体
热平衡状态:
黑体吸收的辐射能量 黑体发出的辐射能量
单色能量密度

dE
dVd
Planck辐射能量量子化假说:
热平衡状态下,黑体辐射分配 到腔内每个模式上的平均能量
h
E h e KT 1
腔内单位体积中频率处于 附近
单位频率间隔内的光波模式数
n
P
Vd
8 3
爱因斯坦发现,若只有自发辐射和吸收跃迁, 黑体和辐射场之间不可能达到热平衡,要达 到热平衡,还必须存在受激辐射。
二、自发辐射、受激吸收和受激辐射
1. 自发辐射
E2
h
E1
发光前
发光后
h E2 E1
华中科技大学武昌分校2系光信教研室
普通光源(白炽灯、日光灯、高压水银灯)的发光过程 为自发辐射。各原子自发辐射发出的光彼此独立,频率、 振动方向、相位不一定相同——为非相干光。
8 h 3
c3
n h
B12 f1 B21 f2
f1 f2
B12 B21 W12 W21
A21
8 h
c3
3
B21
华中科技大学武昌分校2系光信教研室
结论:
1. 其他条件相同时,受激辐射和受激吸收具有相同几率。 2. 热平衡状态下,高能级上原子数少于低能级上原子数,故
正常情况下,吸收比发射更频繁,其差额由自发辐射补偿。
玻尔兹曼统计分布:
n f e 2
2
( E2 E1 ) KT
n1 f1
f1、f2 ——能级 E1 和 E2的简并度,
或称统计权重
华中科技大学武昌分校2系光信教研室
( ,T )
A21 / B21
B12
f1
h 1
e KT
B21 f2
ቤተ መጻሕፍቲ ባይዱ与Planck公式比较
8 h 3
c3
1
h
e KT 1
A21 B21
A 自发跃迁几率(自发跃迁爱因斯坦系数): 21
1
A21 S
原子在能级 E2 的平均寿命 只与原子本身性质有关,与辐射场无关
华中科技大学武昌分校2系光信教研室
2. 受激吸收
E2
h
E1
吸收前
吸收后
h E2 E1
受激吸收跃迁几率: W12 B12
与原子本身性质和辐射场能量密度有关
B12 :受激吸收跃迁爱因斯坦系数
只与原子本身性质有关
当光与原子相互作用时,总是同时存在这三种过程
华中科技大学武昌分校2系光信教研室
三、爱因斯坦三系数 A21、B21、B12的相互关系
热平衡状态:
辐射率 吸收率 (辐射场总光子数保持不变)
n2 A21 n2B21 n1B12
n1、n2、n3 ——各能级上的原子数密度(集居数密度)
c3
黑体辐射Planck公式:
n
E
8 h 3
c3
1
h
e KT 1
华中科技大学武昌分校2系光信教研室
2. 跃迁:
跃迁:原子从某一能级吸收或释放能量,变成另一能级。
吸收跃迁: 低 吸收能量 高 辐射跃迁: 高 辐射能量 低
(自发辐射)
h E1 E2
华中科技大学武昌分校2系光信教研室
3. 受激辐射:
掌握:
总结
自发辐射、受激吸收、受激辐射 含义、特点、相互区别、相互关系
爱因斯坦三系数的相互关系及所得结论
受激辐射的相干性
华中科技大学武昌分校2系光信教研室
理解:
黑体辐射的Planck公式 玻尔兹曼统计分布 爱因斯坦三系数的相互关系的推导过程
了解:
激光的应用 受激辐射概念的产生
华中科技大学武昌分校2系光信教研室
相关文档
最新文档