空间两点间的距离公式.ppt
合集下载
人教版《必修2》4..空间两点间的距离公式课件63PPT完美课件
![人教版《必修2》4..空间两点间的距离公式课件63PPT完美课件](https://img.taocdn.com/s3/m/4c699fbc6edb6f1afe001f0c.png)
人教版《必修2》4..空间两点间的距 离公式 课件63P PT完美 课件
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
人教版《必修2》4..空间两点间的距 离公式 课件63P PT完美 课件
人教版《必修2》4..空间两点间的距 离公式 课件63P PT完美 课件
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
人教版《必修2》4..空间两点间的距 离公式 课件63P PT完美 课件
人教版《必修2》4..空间两点间的距 离公式 课件63P PT完美 课件
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
人教版《必修2》4..空间两点间的距 离公式 课件63P PT完美 课件
人教版《必修2》4..空间两点间的距 离公式 课件63P PT完美 课件
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
人教版《必修2》4..空间两点间的距 离公式 课件63P PT完美 课件
人教版《必修2》4..空间两点间的距 离公式 课件63P PT完美 课件
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
人教版《必修2》4..空间两点间的距 离公式 课件63P PT完美 课件
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
人教版《必修2》4..空间两点间的距 离公式 课件63P PT完美 课件
人教版《必修2》4..空间两点间的距 离公式 课件63P PT完美 课件
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
人教版《必修2》4..空间两点间的距 离公式 课件63P PT完美 课件
人教版《必修2》4..空间两点间的距 离公式 课件63P PT完美 课件
人教版《必修2》4..空间两点间的距 离公式 课件63P PT完美 课件
两点间的距离公式》课件(北师大版必修
![两点间的距离公式》课件(北师大版必修](https://img.taocdn.com/s3/m/0595442dae1ffc4ffe4733687e21af45b307fea5.png)
y1)^2+(z2z1)^2)
椭圆面上的两点 间的距离公式:
d=sqrt((x2x1)^2+(y2y1)^2+(z2-
z1)^2)
双曲面面上的两 点间的距离公式:
d=sqrt((x2x1)^2+(y2y1)^2+(z2-
z1)^2)
抛物面上的两点 间的距离公式:
d=sqrt((x2x1)^2+(y2y1)^2+(z2-
两点间的距离公 式
,
汇报人:
添加目录标题
两点间的距离 公式
两点间的距离 公式在几何中 的应用
两点间的距离 公式在解析几 何中的应用
两点间的距离 公式的扩展应 用
添加章节标题
两点间的距离公式
公式推导
● 两点间的距离公式:d=sqrt((x2-x1)^2+(y2-y1)^2)
● 推导过程: a. 假设有两个点A(x1,y1)和B(x2,y2) b. 连接AB,并设AB的长度为d c. 根据勾股定理, AB的平方等于x2-x1的平方加上y2-y1的平方 d. 因此,两点间的距离公式为d=sqrt((x2x1)^2+(y2-y1)^2)
应用:在几何中,垂直平分线常用于证明线段相等、三角形全等等
公式:两点间的距离公式为d=sqrt((x2-x1)^2+(y2-y1)^2),其中(x1,y1)和(x2,y2)为两点 的坐标。
两点间线段的斜率
斜率定义:斜率是描述直线或曲线在某一点的倾斜程度的量
斜率公式:斜率等于两点间的纵坐标差除以横坐标差
● a. 假设有两个点A(x1,y1)和B(x2,y2) ● b. 连接AB,并设AB的长度为d ● c. 根据勾股定理,AB的平方等于x2-x1的平方加上y2-y1的平方 ● d. 因此,两点间的距离公式为d=sqrt((x2-x1)^2+(y2-y1)^2)
椭圆面上的两点 间的距离公式:
d=sqrt((x2x1)^2+(y2y1)^2+(z2-
z1)^2)
双曲面面上的两 点间的距离公式:
d=sqrt((x2x1)^2+(y2y1)^2+(z2-
z1)^2)
抛物面上的两点 间的距离公式:
d=sqrt((x2x1)^2+(y2y1)^2+(z2-
两点间的距离公 式
,
汇报人:
添加目录标题
两点间的距离 公式
两点间的距离 公式在几何中 的应用
两点间的距离 公式在解析几 何中的应用
两点间的距离 公式的扩展应 用
添加章节标题
两点间的距离公式
公式推导
● 两点间的距离公式:d=sqrt((x2-x1)^2+(y2-y1)^2)
● 推导过程: a. 假设有两个点A(x1,y1)和B(x2,y2) b. 连接AB,并设AB的长度为d c. 根据勾股定理, AB的平方等于x2-x1的平方加上y2-y1的平方 d. 因此,两点间的距离公式为d=sqrt((x2x1)^2+(y2-y1)^2)
应用:在几何中,垂直平分线常用于证明线段相等、三角形全等等
公式:两点间的距离公式为d=sqrt((x2-x1)^2+(y2-y1)^2),其中(x1,y1)和(x2,y2)为两点 的坐标。
两点间线段的斜率
斜率定义:斜率是描述直线或曲线在某一点的倾斜程度的量
斜率公式:斜率等于两点间的纵坐标差除以横坐标差
● a. 假设有两个点A(x1,y1)和B(x2,y2) ● b. 连接AB,并设AB的长度为d ● c. 根据勾股定理,AB的平方等于x2-x1的平方加上y2-y1的平方 ● d. 因此,两点间的距离公式为d=sqrt((x2-x1)^2+(y2-y1)^2)
空间两点间的距离公式PPT完美课件
![空间两点间的距离公式PPT完美课件](https://img.taocdn.com/s3/m/daee1e9c89eb172dec63b725.png)
课前探究学习
课堂讲练互动
活页限时训练
空间两点 间的距 离公式P PT完美 课件
4.空间两点间的距离公式 空间中两点 P1(x1,y1,z1)、P2(x2,y2,z2)的距离公式 |P1P2|= x1-x22+y1-y22+z1-z22. 特别地,点 P(x,y,z)与原点间的距离公式为 |OP|= x2+y2+z2.
课前探究学习
课堂讲练互动
活页限时训练
自学导引 1.空间直角坐标系 (1)空间直角坐标系及相关概念 ①空间直角坐标系:从空间某一定点引三条两两垂直,且有相 同单位长度的数轴: x轴、y轴、z轴 ,这样就建立了空间直角 坐标系 Oxyz. ②相关概念: 点O 叫做坐标原点, x轴、y轴、z轴 叫做坐标 轴.通过每两个坐标轴 的平面叫做坐标平面,分别称为 xOy 平 面、 yOz 平面、 zOx 平面.
变,竖坐标 z 变为原来的相反数,所以对称点为 P2(-2,1,- 4).
(3)设对称点为 P3(x,y,z),则点 M 为线段 PP3 的中点,由中 点坐标公式,可得 x=2×2-(-2)=6,
y=2×(-1)-1=-3,z=2×(-4)-4=-12.
所以 P3(6,-3,-12).
空间两点 间的距 离公式P PT完美 课件
空间两点 间的距 离公式P PT完美 课件
课前探究学习
课堂讲练互动
活页限时训练
空间两点 间的距 离公式P PT完美 课件
解 以 BC 的中点为原点,BC 所在的直线为 y 轴,以射线 OA 所在的直线为 x 轴,建立空间直角坐标系,如下图.
由题意知,AO= 23×2= 3,从而可知各顶点的坐标分别为 A( 3,0,0),B(0,1,0),C(0,-1,0),A1( 3,0,3),B1(0,1,3), C1(0,-1,3).
人教版数学 空间两点间的距离公式 (共16张PPT)教育课件
![人教版数学 空间两点间的距离公式 (共16张PPT)教育课件](https://img.taocdn.com/s3/m/bb8d322fba0d4a7303763a3f.png)
学习目标
1.了解空间两点间的距离公式的推导过程,初步建 立将空间问题向平面问题转化的意识。 2.掌握空间两点间距离公式及其简单的应用.
新知自学:公式形成与推导:
借助课本P137图4.3-6
探究(一) 空间中的点与坐标原点的距离公式 问题 1:在空间直角坐标系中,坐标轴上的点 A(x,0,0),B(0,y,0), C(0,0,z),与坐标原点 O 的距离分别是什么? 问题 2: 在空间直角坐标系中,坐标平面上的点 A(x,y,0),B(0,y,z), C(x,0,z),与坐标原点 O 的距离分别是什么? 问题 3:在空间直角坐标系中,设点 P(x,y,z)在 xOy 平面上的射影为 B, 则点 B 的坐标是什么?|PB|,|OB|的值分别是什么? 问题 4:基于上述分析,你能得到空间任意点 P(x,y,z)与坐标原点 O 的 距离公式吗?
之前有个网友说自己现在紧张得不得了 ,获得 了一个 大公司 的面试 机会, 很不想 失去这 个机会 ,一天 只吃一 顿饭在 恶补基 础知识 。不禁 要问, 之前做 什么去 了?机 会当真 就那么 少?在 我看来 到处都 是机会 ,关键 看你是 否能抓 住。运 气并非 偶然, 运气都 是留给 那些时 刻准备 着的人 的。只 有不断 的积累 知识, 不断的 进步。 当机会 真的到 来的时 候,一 把抓住 。相信 学习真 的可以 改变一 个人的 运气。 在当今社会,大家都生活得匆匆忙忙, 比房子 、比车 子、比 票子、 比小孩 的教育 、比工 作,往 往被压 得喘不 过气来 。而另 外总有 一些人 会运用 自己的 心智去 分辨哪 些快乐 或者幸 福是必 须建立 在比较 的基础 上的, 而哪些 快乐和 幸福是 无需比 较同样 可以获 得的, 然后把 时间花 在寻找 甚至制 造那些 无需比 较就可 以获得 的幸福 和快乐 ,然后 无怨无 悔地生 活,尽 情欢乐 。一位 清洁阿 姨感觉 到快乐 和幸福 ,因为 她刚刚 通过自 己的双 手还给 路人一 条清洁 的街道 ;一位 幼儿园 老师感 觉到快 乐和幸 福,因 为他刚 给一群 孩子讲 清楚了 吃饭前 要洗手 的道理 ;一位 外科医 生感觉 到幸福 和快乐 ,因为 他刚刚 从死神 手里抢 回了一 条人命 ;一位 母亲感 觉到幸 福和快 乐,因 为他正 坐在孩 子的床 边,孩 子睡梦 中的脸 庞是那 么的安 静美丽 ,那么 令人爱 怜。。 。。。 。
高中数学《空间两点间的距离公式》ppt
![高中数学《空间两点间的距离公式》ppt](https://img.taocdn.com/s3/m/96a43ae17f1922791688e8fd.png)
方法一:射影法 方法二:向量法 z
P1P2 (x2 x1, y2 y1, z2 z1) P1
P2
即: 结论2
y
x
| P1P2z2 2
小结: 1.空间两点的距离的公式:
| P1P2 | x1 x2 2 y1 y2 2 z1 z2 2
2.空间距离问题的处理方法: 1)射影法 2)向量法 3)坐标法
3.思想方法: 1)数形结合思想
2)函数思想
OM x2 y2 z2
z
M (x, y, z)
o
Qy
x
P
结论1:在空间直角坐标系Oxyz中, 任意一点M(x,y,z)与原点的距离
OM x2 y2 z2
思考与探究1:如果|OM|是定长r, z 那么方程x2+y2+z2=r2表示什么图形?
是一个球面 y
x
思考与探究2:如果P1(x1,y1,z1), P2(x2,y2,z3),|P1P2|如何计算?
复习
1.空间直角坐标系中中点公式:
则P1P2中点A坐标,及向量
为:
A(
x1
x2
,
y1
y2
,
z1
z2
)
2
2
2
P1P2 的坐标分别
P1(x1,y1,z1), p2(x2,y2,z3)
P1P2 (x2 x1, y2 y1, z2 z1)
z
2.对称点的求法
A
关于谁对称谁不变,其他的取相反数
3.空间点坐标的求法:
y
①射影法 ②关系点法
x
引入
问题:如图,长方体边长分别 是x,y,z,求对角线OB1的长度.
P1P2 (x2 x1, y2 y1, z2 z1) P1
P2
即: 结论2
y
x
| P1P2z2 2
小结: 1.空间两点的距离的公式:
| P1P2 | x1 x2 2 y1 y2 2 z1 z2 2
2.空间距离问题的处理方法: 1)射影法 2)向量法 3)坐标法
3.思想方法: 1)数形结合思想
2)函数思想
OM x2 y2 z2
z
M (x, y, z)
o
Qy
x
P
结论1:在空间直角坐标系Oxyz中, 任意一点M(x,y,z)与原点的距离
OM x2 y2 z2
思考与探究1:如果|OM|是定长r, z 那么方程x2+y2+z2=r2表示什么图形?
是一个球面 y
x
思考与探究2:如果P1(x1,y1,z1), P2(x2,y2,z3),|P1P2|如何计算?
复习
1.空间直角坐标系中中点公式:
则P1P2中点A坐标,及向量
为:
A(
x1
x2
,
y1
y2
,
z1
z2
)
2
2
2
P1P2 的坐标分别
P1(x1,y1,z1), p2(x2,y2,z3)
P1P2 (x2 x1, y2 y1, z2 z1)
z
2.对称点的求法
A
关于谁对称谁不变,其他的取相反数
3.空间点坐标的求法:
y
①射影法 ②关系点法
x
引入
问题:如图,长方体边长分别 是x,y,z,求对角线OB1的长度.
空间两点间的距离公式.1ppt
![空间两点间的距离公式.1ppt](https://img.taocdn.com/s3/m/536aef32aaea998fcc220ec3.png)
分析:设P(x,0,0),由已知求得x=9或-1 (9,0,0)或(-1,0,0)
小结
空间两点间的距离公式:
P1P2 (x1 x2) (y1 y2) (z2 z2).
2 2 2
作业
P138练习:4
P138习题:A组 1、3. B组 1
Thank you!
op
0 B BP
2
2
x A
x y y
2 2 2
y B
因为 BP z ,所以 OP
这说明,在空间直角坐标系Oxyz 中, 任意一点 p(x, y, z) 与原点间的距离
OP x y y
2 2 2
联想
x2 y 2 r 2 表示什么图形?
y
O r
x
表示以原点为圆心,r为半径的圆。
空间两点间的 距离公式
课题引入
1. 在平面直角坐标系中两点间的距离公式是什么?
| P1P2 |= (x 1 - x 2 )2 + (y1 - y 2 )2
2. 如何计算空间两点之间的距离?(请看如下图片)
思考
类比平面两点间距离公式的推导,你能猜想一下空间两 点间的距离公式吗?
平面内两点P1(x1,y1), P2(x2,y2) 的距离公式
例题
在Z轴上求一点M,使点M到点A(1,0,2)与点 B(1,-3,1)的距离相等.
解: 设点M (0,0, Z )
则根据空间两点间的距 离公式
P1P2 (x1 x2) (y1 y2) (z2 z2).
2 2 2
2 2 2 有 (0 - 1) (0 - 0) (Z 2) 2 2 2 (0 1 ) (0 3) (Z 1 )
小结
空间两点间的距离公式:
P1P2 (x1 x2) (y1 y2) (z2 z2).
2 2 2
作业
P138练习:4
P138习题:A组 1、3. B组 1
Thank you!
op
0 B BP
2
2
x A
x y y
2 2 2
y B
因为 BP z ,所以 OP
这说明,在空间直角坐标系Oxyz 中, 任意一点 p(x, y, z) 与原点间的距离
OP x y y
2 2 2
联想
x2 y 2 r 2 表示什么图形?
y
O r
x
表示以原点为圆心,r为半径的圆。
空间两点间的 距离公式
课题引入
1. 在平面直角坐标系中两点间的距离公式是什么?
| P1P2 |= (x 1 - x 2 )2 + (y1 - y 2 )2
2. 如何计算空间两点之间的距离?(请看如下图片)
思考
类比平面两点间距离公式的推导,你能猜想一下空间两 点间的距离公式吗?
平面内两点P1(x1,y1), P2(x2,y2) 的距离公式
例题
在Z轴上求一点M,使点M到点A(1,0,2)与点 B(1,-3,1)的距离相等.
解: 设点M (0,0, Z )
则根据空间两点间的距 离公式
P1P2 (x1 x2) (y1 y2) (z2 z2).
2 2 2
2 2 2 有 (0 - 1) (0 - 0) (Z 2) 2 2 2 (0 1 ) (0 3) (Z 1 )
空间两点间的距离公式.ppt
![空间两点间的距离公式.ppt](https://img.taocdn.com/s3/m/0054d29ca76e58fafbb0032b.png)
特殊地:若两点分别为 M( x, y, z) , O(0,0,0)
d OM x2 y2 z2 .
例4 给定空间直角坐标系,在x轴上找一点P, 使它与点P0 (4,1,2)的距离为 30。
解 设点P的坐标是(x,0,0),由题意,P0P 30,
即 (x 4)2 12 22 30,
所以x 42 25.
(注意它与平面直角坐标系的区别)
空间两点间距离公式
M1M2 x2 x1 2 y2 y1 2 z2 z1 2
思考题
在空间直角坐标系中,指出下列各 点在哪个卦限?
A(1,2,3), B(2,3,4),
C(2,3,4), D(2,3,1) .
思考题解答 A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ;
M2M3 M3M1 , 原结论成立.
补充 例 2 设P 在x 轴上,它到P1(0, 2,3) 的距离为 到点P2 (0,1,1)的距离的两倍,求点P 的坐标. 解 因为 P 在 x 轴上,设P点坐标为 ( x,0,0),
PP1 x2 2 2 32 x2 11,
PP2 x2 12 12 x2 2,
z (3)关于原点对称的点
M M’(-1,2,-3)
3
o
1
y
2
x
M’
思考P109练习 4
在空间直角坐标系中,给定点M(1,-2,3), 求它分别关于坐标平面、坐标轴和原点的对称 点的坐标。
z
用前面的方法
M
把M点关于其
它坐标平面和 3
坐标轴对称的 点的坐标求出 来。
o
1 2
y
x
五、小结
空间直角坐标系(轴、面、卦限)
解得x 9或x 1.
所以点P的坐标为(9,0,0)或(-1,0,0)。
d OM x2 y2 z2 .
例4 给定空间直角坐标系,在x轴上找一点P, 使它与点P0 (4,1,2)的距离为 30。
解 设点P的坐标是(x,0,0),由题意,P0P 30,
即 (x 4)2 12 22 30,
所以x 42 25.
(注意它与平面直角坐标系的区别)
空间两点间距离公式
M1M2 x2 x1 2 y2 y1 2 z2 z1 2
思考题
在空间直角坐标系中,指出下列各 点在哪个卦限?
A(1,2,3), B(2,3,4),
C(2,3,4), D(2,3,1) .
思考题解答 A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ;
M2M3 M3M1 , 原结论成立.
补充 例 2 设P 在x 轴上,它到P1(0, 2,3) 的距离为 到点P2 (0,1,1)的距离的两倍,求点P 的坐标. 解 因为 P 在 x 轴上,设P点坐标为 ( x,0,0),
PP1 x2 2 2 32 x2 11,
PP2 x2 12 12 x2 2,
z (3)关于原点对称的点
M M’(-1,2,-3)
3
o
1
y
2
x
M’
思考P109练习 4
在空间直角坐标系中,给定点M(1,-2,3), 求它分别关于坐标平面、坐标轴和原点的对称 点的坐标。
z
用前面的方法
M
把M点关于其
它坐标平面和 3
坐标轴对称的 点的坐标求出 来。
o
1 2
y
x
五、小结
空间直角坐标系(轴、面、卦限)
解得x 9或x 1.
所以点P的坐标为(9,0,0)或(-1,0,0)。
432空间两点间的距离公式共26张PPT
![432空间两点间的距离公式共26张PPT](https://img.taocdn.com/s3/m/a2cc7f8f59f5f61fb7360b4c2e3f5727a5e9243e.png)
故 HK=12、CK=18.
∴DK=78.故 H 点坐标为(0,78,12).
栏目 导引
第四章 圆与方程
知能演练轻松闯关
栏目 导引
第四章 圆与方程
本部分内容讲解结束
按ESC键退出全屏播放
栏目 导引
学习目标
学习导航
第四章 圆与方程
重点难点 重点:在空间坐标系中求出点的坐标,利用空间距离解 决问题. 难点:空间直角坐标系的建立,空间两点间距离公式的 推导.
栏目 导引
第四章 圆与方程
新知初探思维启动
1.空间直角坐标系
空间 直角 坐标 系
以空间一点O为原点,建立三条两两垂直的数 轴__x_轴___,__y_轴___,__z_轴___,这时我们说建立 了一个空间直角坐标系Oxyz,其中点O叫做坐 标原点,x轴、y轴、z轴叫做__坐__标__轴__.通过每 两个坐标轴的平面叫做__坐__标__平__面___,分别称为 __x_O_y_平__面___、__y_O_z_平__面___、___z_O_x_平__面____.
栏目 导引
第四章 圆与方程
典题例证技法归纳
【题型探究】 题型一 求空间点的坐标
例1 在正方体ABCD-A1B1C1D1中,E,F分别是BB1, D1B1的中点,棱长为1,建立适当的空间直角坐标系, 求E,F的坐标.
栏目 导引
第四章 圆与方程
【解】 法一:建立如图所示的空间直角坐标系,E 点
在
xDy
2 2 2 22 【名师点评】 几何体中有两两垂直且相交的三条直线 时,就有“天然”空间直角坐标系的特征.
栏目 导引
第四章 圆与方程
跟踪训练
1.如图所示,V-ABCD是正棱锥,O为底面中心,E,F 分别为BC,CD的中点.已知|AB|=2,|VO|=3,建立如 图所示空间直角坐标系,试分别写出各个顶点的坐标. 解:∵底面是边长为2的正方形, ∴|CE|=|CF|=1. ∵O点是坐标原点, ∴C(1,1,0),同样的方法可以确定 B(1,-1,0),A(-1,-1,0),D(-1,1,0). ∵V在z轴上,∴V(0,0,3).
空间两点间的距离公式 课件
![空间两点间的距离公式 课件](https://img.taocdn.com/s3/m/978e36dca1116c175f0e7cd184254b35eefd1af4.png)
取A1C1的中点O,由于M为BD1的中点, 所以 M( a , a , a ),O( a , a ,a).
222 22
因为|A1N|=3|NC1|,所以N为A1C1的四等分点,从而N为OC1的中点,
故 N( a , 3a ,a).
44
根据空间两点间距离公式,
得 MN (a a )2 (a 3a )2 (a a)2 6 a.
O
Q1
R1
x
y
|P1Q1|=|x1-x2|; |Q1R1|=|y1-y2|;|R1P2|=|z1-z2| |P1P2|2=|P1Q1||2+|Q1R1|2+|R1P2|2 | P1P2 | (x1 x2 )2 (y1 y2 )2 (z1 z2 )2
【合作探究】
在空间中,到原点的距离等于定长r的点的轨迹是:
【能力提升】
【例题1】如图,已知正方体ABCD-A1B1C1D1的棱长为a,M为BD1的中点, 点N在A1C1上,且A1N=3NC1,试求MN的长.
【解析】以D为原点,以DA,DC,DD1所在直线分别为x轴,y轴,z轴建立 如图所示的空间直角坐标系.因为正方体棱长为a. 所以B(a,a,0),A1(a,0,a),C1(0,a,a),D1(0,0,a).
o
x
P
2
zБайду номын сангаас E
3m 4m o xA
H G
6m C
F
y B
1.空间点到原点的距离
z
提示:
P(x, y, z)
|BP|=|z|
y |OB|= x2 + y2
o
C
|OP|= x2 + y2 + z2
xA
空间直角坐标系空间两点间的距离公式(共44张PPT)
![空间直角坐标系空间两点间的距离公式(共44张PPT)](https://img.taocdn.com/s3/m/69176feb7d1cfad6195f312b3169a4517623e54c.png)
则中指能指向z轴正方向
A.y轴上
B.xOy平面上
[解析] 据空间点的坐标的确定方法,我们来确定M的横坐标:P、Q、M在xoy坐标平面上的射影为P1,Q1,M1,
(7)(x,-y,z).
那么,在空间直角坐标系内,点P(x,y,z)的几种特殊的对称点坐标:
(3)关于y轴的对称点是P (-x,y),
在空间确定一点的位置需要三个实数,如要确定一架飞机在空中的位置,我们不仅要指出地面上的经度、纬度,还需要指出飞机距地面的高度
[例4] 在平面直角坐标系中,点P(x,y)的几种特殊的 对称点的坐标如下:
(1)关于原点的对称点是P′(-x,-y), (2)关于x轴的对称点是P″(x,-y), (3)关于y轴的对称点是P (-x,y), 那么,在空间直角坐标系内,点P(x,y,z)的几种特 殊的对称点坐标: (1)关于原点的对称点是P1________; (2)关于横轴(x轴)的对称点是P2________; (3)关于纵轴(y轴)的对称点是P3________;
4.3 空间直角坐标系Βιβλιοθήκη 4.3.1 空间直角坐标系
4.3.2 空间两点间的距离公式
1.以点O为坐标原点,建立三条两两互相垂直的数轴
x 轴、 y 轴、 z 轴,这时称建立了一个空间直角坐标
系O-xyz.
教材中所用的坐标系都是 右手直角坐标系 ,其规则
是:让右手拇指指向x轴正方向,食指指向y轴正方向,
.
[解析] 先在x轴上找到表示-2的点,过该点作y轴的平行线,在y轴上找到表示4的点,过该点作x轴的平行线,两直线相交于P点,过P点作z
轴的平行线,与z轴负方向同向的方向上截取3个单位,即得A点.
3.三个坐标平面把空间分为八部分,每一部分称为一个卦限.在坐标平面xOy上方,分别对应该坐标平面上四个象限的卦限,称为第Ⅰ、第
两点间的距离公式》课件5
![两点间的距离公式》课件5](https://img.taocdn.com/s3/m/76c2f082ba4cf7ec4afe04a1b0717fd5370cb269.png)
代数式求值问题
两点间的距离公式: d=sqrt((x2x1)^2+(y2y1)^2)
代数式求值:将两 点的坐标代入公式, 计算距离
应用实例:求两点 (1,2)和(3,4)之间 的距离
扩展应用:求两点 间的距离公式在几 何、物理等领域的 应用
向量模的计算
向量模的定义: 向量的长度或
大小
向量模的计算 公式:|a| = √(a1^2 + a2^2 + ... +
an^2)
向量模的应用: 物理、工程、 计算机科学等
领域
向量模的性质: 非负性、齐次 性、三角不等
式等Βιβλιοθήκη 空间几何中两点间距离的计算
两点间的距离公式:d=sqrt((x2-x1)^2+(y2-y1)^2) 拓展应用:计算空间中任意两点间的距离 应用场景:建筑设计、地图绘制、导航系统等 计算方法:利用两点间的距离公式,结合空间几何知识,计算两点间的距离
圆上两点间距离最短问题
问题描述:在圆上找到两点,使得两点间的距离最短 解决方法:使用两点间的距离公式,找到圆心与两点连线的垂直平分线 应用实例:在圆上找到两点,使得两点间的距离最短,并使用两点间的距离公式进行计算 结论:两点间的距离最短问题可以通过两点间的距离公式在几何中的应用来解决
两点间距离公式的其他应用
测量地图上的距离:通过两点间的 距离公式,可以计算出地图上两点 之间的距离。
计算空间中的距离:通过两点间的 距离公式,可以计算出空间中两点 之间的距离。
添加标题
添加标题
添加标题
添加标题
计算地球表面的距离:通过两点间 的距离公式,可以计算出地球表面 上两点之间的距离。
计算网络中的距离:通过两点间的 距离公式,可以计算出网络中两点 之间的距离。
空间中两点的距离公式PPT教学课件
![空间中两点的距离公式PPT教学课件](https://img.taocdn.com/s3/m/e1a5fa9f0912a21615792967.png)
有些鱼类的唇有味蕾分布。 有些鱼类口边有富有味蕾的须。
10
(一)齿teeth
作用:捕食,不能 咀嚼。
硬骨鱼类的齿:可 分为颌齿、腭齿、 犁齿、咽齿等。 统称为口腔齿。
犁齿和腭齿的有无,
左右下咽齿是否
分离或愈合等常
作为分类标志之
11
咽齿
鲤科鱼类的第五鳃弓 的角鳃骨特别扩大,特称 为咽骨或下咽骨,咽骨上 长的齿,就是咽齿。
胰脏分泌胰蛋白酶、胰脂肪酶及胰淀粉酶, 能消化分解蛋白质、脂肪和醣类,为十分重 要的消化酶类。胰脏产生的消化酶通过胰31管
胃腺(gastric gland)
圆口类及肺鱼类无特殊分化的胃腺,其余鱼类 胃腺一般均存在。少数无胃鱼类如鲤科、隆 头鱼科等无胃腺。
胃腺分泌胃蛋白酶,分解食物中的蛋白质。凶 猛的肉食性鱼类的胃蛋白酶的活性特别高。
Y 型:盲囊部明显突出,贲门部、幽门 部及盲囊部分界明显,如拟沙丁鱼、鳀及鳗 鲡等鱼类的胃。
卜型:盲囊部特别延长而发达,幽门部22较
四、肠(intestine)
软骨鱼类板鳃亚纲的肠可明显分出小肠和大 肠,小肠又可分为十二指肠及回肠。大肠 可分为结肠和直肠。
硬骨鱼类及全头类的肠的末端以肛门开口体 外,板鳃亚纲肠管末端则以肛门开口于泄 殖腔。
X
§4.3.1 空间中两点的距离公式
1
(1) 在空间直角坐标系中,任意一点 P(x,y,z)到原点的距离:
z
| OP | x2 y2 z2
O x
P(x,y,z)
y
P`(x,y,0)
2
(1) 在空间直角坐标系中,任意两点 P1(x1,y1,z1)和P2(x2,y2,z2)间的距离:
| P1P2 | (x1 x2 )2 ( y1 y2 )2 (z1 z2 )2
10
(一)齿teeth
作用:捕食,不能 咀嚼。
硬骨鱼类的齿:可 分为颌齿、腭齿、 犁齿、咽齿等。 统称为口腔齿。
犁齿和腭齿的有无,
左右下咽齿是否
分离或愈合等常
作为分类标志之
11
咽齿
鲤科鱼类的第五鳃弓 的角鳃骨特别扩大,特称 为咽骨或下咽骨,咽骨上 长的齿,就是咽齿。
胰脏分泌胰蛋白酶、胰脂肪酶及胰淀粉酶, 能消化分解蛋白质、脂肪和醣类,为十分重 要的消化酶类。胰脏产生的消化酶通过胰31管
胃腺(gastric gland)
圆口类及肺鱼类无特殊分化的胃腺,其余鱼类 胃腺一般均存在。少数无胃鱼类如鲤科、隆 头鱼科等无胃腺。
胃腺分泌胃蛋白酶,分解食物中的蛋白质。凶 猛的肉食性鱼类的胃蛋白酶的活性特别高。
Y 型:盲囊部明显突出,贲门部、幽门 部及盲囊部分界明显,如拟沙丁鱼、鳀及鳗 鲡等鱼类的胃。
卜型:盲囊部特别延长而发达,幽门部22较
四、肠(intestine)
软骨鱼类板鳃亚纲的肠可明显分出小肠和大 肠,小肠又可分为十二指肠及回肠。大肠 可分为结肠和直肠。
硬骨鱼类及全头类的肠的末端以肛门开口体 外,板鳃亚纲肠管末端则以肛门开口于泄 殖腔。
X
§4.3.1 空间中两点的距离公式
1
(1) 在空间直角坐标系中,任意一点 P(x,y,z)到原点的距离:
z
| OP | x2 y2 z2
O x
P(x,y,z)
y
P`(x,y,0)
2
(1) 在空间直角坐标系中,任意两点 P1(x1,y1,z1)和P2(x2,y2,z2)间的距离:
| P1P2 | (x1 x2 )2 ( y1 y2 )2 (z1 z2 )2
空间两点间的距离公式课件
![空间两点间的距离公式课件](https://img.taocdn.com/s3/m/aa6ec7610622192e453610661ed9ad51f01d54ee.png)
03
通过以上三个方面的扩展,我们详细 介绍了空间两点间的距离公式在二维 空间中的应用,包括平面坐标系、极 坐标系中的公式应用以及与勾股定理 的关系。这些内容有助于学生更好地 理解空间两点间的距离公式,掌握其 在不同坐标系中的应用,并加深对勾 股定理的理解。
03
空间两点间的距离公式在三维空间中的应 用
05
空间两点间的距离公式的实践应用
地球上两点间距离的计算
地球上两点间距离的计算是空间两点 间距离公式的重要实践应用之一。通 过使用地球半径和两点间的经纬度坐 标,可以计算出两点间的最短距离。
地球上两点间距离的计算在地理学、 气象学、交通规划等领域具有广泛的 应用,例如确定两城市间的最短航线 、预测天气系统移动路径等。
该公式将极坐标转换为笛卡尔坐标进行计算,同样基于勾股 定理。
距离公式与勾股定理的关系
01
勾股定理是直角三角形中直角边的关 系,即$c^2 = a^2 + b^2$,其中 $c$是斜边,$a$和$b$是直角边。
02
在二维空间中,两点之间的距离公式 实际上就是勾股定理的应用,通过计 算两点之间直线的距离,得到一个等 效的直角三角形,然后利用勾股定理 计算出距离。
空间两点间的距离公式课件
汇报人:文小库
2024-01-02
CONTENTS
• 空间两点间的距离公式概述 • 空间两点间的距离公式在二维
空间中的应用 • 空间两点间的距离公式在三维
空间中的应用 • 空间两点间的距离公式的扩展
与变形 • 空间两点间的距离公式的实践
01
空间两点间的距离公式概述
定义与公式
三维坐标系中的公式应用
适用范围
适用于三维空间中任意两点$P(x_1, y_1, z_1)$和$Q(x_2, y_2, z_2)$的距 离计算。
两点间的距离公式课件
![两点间的距离公式课件](https://img.taocdn.com/s3/m/e9830c9948649b6648d7c1c708a1284ac850051e.png)
工具。
精度要求
对于需要高精度计算的应用场景,如地理信息系统(GIS),需要使用更 高精度的计算方法。
在某些特定领域,如物理学或工程学,对距离计算的精度有更高的要求 。
在日常应用中,一般使用默认的浮点数精度即可满足需求。
THANKS
感谢观看
实例计算
使用两点间的距离公式:d = sqrt[(x2-x1)^2 + (y2-y1)^2]。
计算过程中需要注意运算顺序和精度 ,确保结果准确。
将点A和点B的坐标值代入公式中进行 计算。
实例结果分析
根据计算结果,分析两点间的距离。 比较不同点对之间的距离,了解距离与坐标值之间的关系。
通过实例分析,加深对两点间距离公式的理解和应用。
公式推导
该公式是通过勾股定理推导出来 的,即直角三角形的斜边平方等
于两直角边平方之和。
在平面直角坐标系中,设两点 A(x1, y1)和B(x2, y2),则线段
AB的中点M的坐标为 ((x1+x2)/2, (y1+y2)/2)。
线段AB的长度即为AM的长度, 根据勾股定理,有d² = [(x2-
x1)² + (y2-y1)²],开方得到d = √[(x2-x1)² + (y2-y1)²]。
公式应用场景
两点间的距离公式在几何学、 物理学、工程学等领域都有广 泛应用。
在计算两点之间的直线距离、 确定物体运动轨迹、解决实际 问题等方面都需要用到该公式 。
在地理信息系统、地图绘制、 导航等领域,该公式也是不可 或缺的工具。
02
公式中的符号解释
符号含义
d:表示两点间的距 离。
√:表示开平方运算 。
06
公式注意事项
《空间两点间的距离》课件
![《空间两点间的距离》课件](https://img.taocdn.com/s3/m/95eb92c4ed3a87c24028915f804d2b160a4e8679.png)
参数方程
由给定曲线的参数方程推导出两点之间的距离 公式。
距离公式
两点之间的距离公式为:√((x2-x1)²+(y2-y1)²)。
三维空间坐标系中的距离计算方法
方法
勾股定理 点到面距离公式 点到线距离公式 切线方程
公式
√((x2-x1)²+(y2-y1)²+(z2-z1)²) |ax1+by1+cz1+d|/√(a²+b²+c²) |ax0+by0+cz0+d|/√(a²+b²+c²) x=x0+at,y=y0+bt,z=z0+ct
总结与展望
1 空间两点间距离的重要性
在地理、数学、工程、物理等领域都有广泛应用,是各种计算和规划的基础。
2 未来研究的方向
研究更多距离度量方式和计算方法,以及与其他学科的结合。
切比雪夫距离
适用于平面坐标系和三维空间坐标系,计算 两点在各个坐标轴上距离差的最大值。
更多距离度量方式
如哈密尔顿距离、马氏距离、相关系数等。
平面坐标系中的距离计算方法
笛卡尔坐标系
平面直角坐标系中,两点之间的距离等于它们 坐标差的平方和的平方根。
极坐标系
平面极坐标系中,两点之间的距离等于它们极 径差的平方和的平方根。
《空间两点间的距离》 PPT课件
在这个课程中,我们将研究空间中两个点之间距离的概念和度量方式,以及 距离的计算方法和实际应用案例。
பைடு நூலகம்离的度量方式
欧氏距离
适用于平面坐标系和三维空间坐标系,计算 两点之间的直线距离。
曼哈顿距离
适用于平面坐标系和三维空间坐标系,计算 两点在各个坐标轴上的距离差的绝对值之和。
两点间的距离公式》课件6
![两点间的距离公式》课件6](https://img.taocdn.com/s3/m/824703a8afaad1f34693daef5ef7ba0d4a736d8b.png)
两点间线段的倾斜角
倾斜角定义:线段与水平线的夹 角
倾斜角应用:计算两点间的距离、 角度等
添加标题
添加标题
添加标题
添加标题
倾斜角计算:使用三角函数sin、 cos、tan等
倾斜角与距离的关系:倾斜角越 大,距离越远
两点间的距离公式在解析几何中的 应用
平面直角坐标系中的距离公式
应用:计算两点间的距离
• 应用:计算两点间的距离,如A(1,2)和B(3,4),d=sqrt((3-1)^2+(42)^2)=sqrt(4+4)=sqrt(8)=2.***
公式应用
计算两点间的直线距离 计算两点间的曲线距离 计算两点间的最短距离 计算两点间的最长距离
公式理解
两点间的距离公式: d=sqrt((x2-x1)^2+(y2-y1)^2)
• 推导过程: a. 假设有两个点A(x1,y1)和B(x2,y2) b. 连接AB,得到线段AB c. 线段AB的长度就是两点间的距离 d. 利用勾股定理,得到AB的长度为 sqrt((x2-x1)^2+(y2-y1)^2)
• a. 假设有两个点A(x1,y1)和B(x2,y2) • b. 连接AB,得到线段AB • c. 线段AB的长度就是两点间的距离 • d. 利用勾股定理,得到AB的长度为sqrt((x2-x1)^2+(y2-y1)^2)
利用解析几何, 证明两点间的距 离公式
利用微积分,证 明两点间的距离 公式
两点间的距离公式的几何意义
两点间的距离公 式是描述两个点 之间距离的公式
公式中的d表示 两点之间的距离, x1,y1表示第一 个点的坐标, x2,y2表示第二 个点的坐标
公式中的平方根 表示两点之间的 距离是两点坐标 差的平方和的平 方根
空间两点间的距离公式课件(人教A版必修
![空间两点间的距离公式课件(人教A版必修](https://img.taocdn.com/s3/m/5cdd905e974bcf84b9d528ea81c758f5f61f2987.png)
空间两点间的距 离公式
,
汇报人:
添加目录标题
两点间的距离 公式
公式中的符号 含义
公式的应用场 景
公式的注意事 项
添加章节标题
两点间的距离公式
公式推导
● 两点间的距离公式:d=√(x2-x1)²+(y2-y1)²
● 推导过程: a. 假设有两个点A(x1,y1)和B(x2,y2) b. 连接AB,得到线段AB c. 线段AB的长度即为两点间的距离 d. 根据勾股定理,AB²=AC²+BC² e. 代入AB的长度,得到d=√(x2-x1)²+(y2-y1)²
公式中的符号含义
符号说明
d:表示两点间的距离 r:表示半径 θ:表示角度 π:表示圆周率,约等于3.14159
符号含义
符号应用
d:表示两点间的 距离
r:表示半径
θ:表示角度
π:表示圆周率
√:表示平方根
2:表示常数2
d:表示两点 间的距离
符号记忆 r:表示半径
θ:表示角度
π:表示圆周 率
2:表示平方
√:表示开方
公式的应用场景
计算两点间的距离
平面几何中的应用
判断两点是否在同一平面上
添加标题
添加标题
判断两点是否在同一直线上
添加标题
添加标题
计算三角形的面积
解析几何中的应用
计算两点间的距离
计算多边形的面积
计算线段的长度 计算三角形的面积
计算曲线的长度 计算曲面的面积
向量中的应用
向量加法:用于表示两个向量的和
● a. 假设有两个点A(x1,y1)和B(x2,y2) ● b. 连接AB,得到线段AB ● c. 线段AB的长度即为两点间的距离 ● d. 根据勾股定理,AB²=AC²+BC² ● e. 代入AB的长度,得到d=√(x2-x1)²+(y2-y1)²
,
汇报人:
添加目录标题
两点间的距离 公式
公式中的符号 含义
公式的应用场 景
公式的注意事 项
添加章节标题
两点间的距离公式
公式推导
● 两点间的距离公式:d=√(x2-x1)²+(y2-y1)²
● 推导过程: a. 假设有两个点A(x1,y1)和B(x2,y2) b. 连接AB,得到线段AB c. 线段AB的长度即为两点间的距离 d. 根据勾股定理,AB²=AC²+BC² e. 代入AB的长度,得到d=√(x2-x1)²+(y2-y1)²
公式中的符号含义
符号说明
d:表示两点间的距离 r:表示半径 θ:表示角度 π:表示圆周率,约等于3.14159
符号含义
符号应用
d:表示两点间的 距离
r:表示半径
θ:表示角度
π:表示圆周率
√:表示平方根
2:表示常数2
d:表示两点 间的距离
符号记忆 r:表示半径
θ:表示角度
π:表示圆周 率
2:表示平方
√:表示开方
公式的应用场景
计算两点间的距离
平面几何中的应用
判断两点是否在同一平面上
添加标题
添加标题
判断两点是否在同一直线上
添加标题
添加标题
计算三角形的面积
解析几何中的应用
计算两点间的距离
计算多边形的面积
计算线段的长度 计算三角形的面积
计算曲线的长度 计算曲面的面积
向量中的应用
向量加法:用于表示两个向量的和
● a. 假设有两个点A(x1,y1)和B(x2,y2) ● b. 连接AB,得到线段AB ● c. 线段AB的长度即为两点间的距离 ● d. 根据勾股定理,AB²=AC²+BC² ● e. 代入AB的长度,得到d=√(x2-x1)²+(y2-y1)²
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试一试:
分别一黑板中指定的长方体中底面的一个顶点为原点 建立适当的空间直角坐标系使得整个长方体都在直角 坐标系的正方向上。
Ⅲ
yoz面
Ⅳ
xoy面
Ⅶ
x
Ⅷ
z zox 面
Ⅱ
o
yⅠ
Ⅵ Ⅴ
空间直角坐标系共有三个坐标面、八个卦限
回顾与复习
平面的点P 11 有序数对(x,y)
y (x,y)
x
空间的点P 11 有序数组( x, y, z)
z
M(x,y,z)
z
O
o
x
y
Cy
x
d OM x2 y2 z2 .
二、空间两点间的距离
设M1 ( x1 , y1 , z1 )、M 2 ( x2 , y2 , z2 )为空间两点
zRห้องสมุดไป่ตู้
M1•
P o
• M2
Q N
y
d M1M2 ?
在直角M1 NM 2 及 直 角 M1 PN
中,使用勾股定 理知
手的四个手指从正向x 轴
以 角度转向正向 y 轴
2
时,大拇指的指向就是
z 轴的正向.
定点 o •
y 纵轴
空间直角坐标系 横轴 x
方法二:
使右手拇指、食指、中指三个手指两两垂直
1.拇指指向x轴 2.食指指向y轴 3.中指指向z轴
z 竖轴(中指)
定点 o •
横轴(拇指)x
y 纵轴(食指) 空间直角坐标系
练习题
一、填空题
1、下列各点所在卦限分别是:
a、 1 , - 2, 3在 _________; b、 2 , 3 , 4在 ________; c、 2, 3 ,4在 ________; d、 2 , 3 , 1在 _______;
x
d 2 M1P 2 PN 2 NM 2 2 ,
M1P x2 x1 , PN y2 y1 , NM 2 z2 z1 ,
zR
M1•
P
o x
d M1P 2 PN 2 NM2 2
• M2
Q N
y
M1M2 x2 x1 2 y2 y1 2 z2 z1 2 .
空间两点间距离公式
特殊点的表示: 原点 O(0,0,0)
x轴上的点 P1 y轴上的点 P2, z轴上的点 P3,
坐标平面xoy上的点A, 坐标平面yoz上的点B, 坐标平面xoz上的点B, 非特殊点P(x,y,z)
z
P3 (0,0, z)
C( x,o, z)
o
x P1(x,0,0)
B(0, y, z)
• P(x, y,z) y P2 (0, y,0)
(注意它与平面直角坐标系的区别)
空间两点间距离公式
M1M2 x2 x1 2 y2 y1 2 z2 z1 2
思考题
在空间直角坐标系中,指出下列各 点在哪个卦限?
A(1,2,3), B(2,3,4),
C(2,3,4), D(2,3,1) .
思考题解答 A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ;
z (3)关于原点对称的点
M M’(-1,2,-3)
3
o
1
y
2
x
M’
思考P109练习 4
在空间直角坐标系中,给定点M(1,-2,3), 求它分别关于坐标平面、坐标轴和原点的对称 点的坐标。
z
用前面的方法
M
把M点关于其
它坐标平面和 3
坐标轴对称的 点的坐标求出 来。
o
1 2
y
x
五、小结
空间直角坐标系(轴、面、卦限)
PP1 2 PP2 , x2 11 2 x2 2
x 1, 所求点为 (1,0,0), (1,0,0).
思考P109练习 4
在空间直角坐标系中,给定点M(1,-2,3),
求它分别关于坐标平面、坐标轴和原点的对称
点的坐标.
z
(1)关于坐标平
面xoz对称的点
M
M’
M’(1,2,3)
3
o
1
一、空间直角坐标系
从空间某一点O引三条互相垂直的射线Ox、Oy、Oz.
并取定长度单位和方向,就建立了空间直角坐标系 .其 中O 点称为坐标原点,数轴Ox, Oy, Oz称为坐标轴,每两
个坐标轴所在的平面Oxy、Oyz、Ozx叫做坐标平面.
三个坐标轴的正方向符合右手系. 方法一:
z 竖轴
即以右手握住z 轴,当右
y
2
x
思考P109练习 4
在空间直角坐标系中,给定点M(1,-2,3),
求它分别关于坐标平面、坐标轴和原点的对称
点的坐标。
z
M’
(2)关于z轴对称的点 M
M’(-1,2,3)
3
o
1
y
2
x
思考P109练习 4
在空间直角坐标系中,给定点M(1,-2,3), 求它分别关于坐标平面、坐标轴和原点的对称 点的坐标。
解得x 9或x 1.
所以点P的坐标为(9,0,0)或(-1,0,0)。
例5 在xoy平面内的直线x+y=1上确定一点M,使M到 点N(6,5,1)的距离最小。
解 由已知,可设M(x,1-x,0),则
MN (x 6)2 (1 x 5)2 (0 1)2
2(x 1)2 51.
所以MN 51. min
特殊地:若两点分别为 M( x, y, z) , O(0,0,0)
d OM x2 y2 z2 .
例4 给定空间直角坐标系,在x轴上找一点P, 使它与点P0 (4,1,2)的距离为 30。
解 设点P的坐标是(x,0,0),由题意,P0P 30,
即 (x 4)2 12 22 30,
所以x 42 25.
A( x, y,0)
试一试:
分别一黑板中给定的长方体长、宽、高并建立好的 空间直角坐标系上指出指定各点的坐标。
回顾与复习
长方体的对角线公式
已知长方体的长、宽、高分别为a,b,c
D1 A1
C1
B1
c
D
A
a
C b B
则长方体的对角线长 l 2 a2 b2 c2
二、空间两点间的距离
特殊地:若两点分别为 M( x, y, z) , O(0,0,0)
M2M3 M3M1 , 原结论成立.
补充 例 2 设P 在x 轴上,它到P1(0, 2,3) 的距离为 到点P2 (0,1,1)的距离的两倍,求点P 的坐标. 解 因为 P 在 x 轴上,设P点坐标为 ( x,0,0),
PP1 x2 2 2 32 x2 11,
PP2 x2 12 12 x2 2,
补充 例 1 求证以M1(4,3,1)、M 2 (7,1,2)、M 3 (5,2,3)
三点为顶点的三角形是一个等腰三角形.
解 M1M2 2 (7 4)2 (1 3)2 (2 1)2 14, M2M3 2 (5 7)2 (2 1)2 (3 2)2 6, M3M1 2 (4 5)2 (3 2)2 (1 3)2 6,