苏州大学2001年数学分析试题解答

合集下载

2001年数学分析专题研究试题

2001年数学分析专题研究试题

2001年数学分析专题研究试题一、填空题1.集合X 中的关系R 同时为反身的、对称的、( ),则称关系R 为等价关系。

2.一个集合若不能与其一个真子集建立一个( ),则称该集合为有限集。

3.函数)(x f 在点a 的邻域内有定义,若( ),则称函数)(x f 在点a 处连续。

4.设)(x ϕ是从),0(+∞到R 上的连续函数,满足: 1)( );,2)对于,1,0≠>a a 有1)(=a ϕ,则)(x ϕ是以a 为底的对数。

5.若函数)(),(t c t s 是定义在R 上的连续函数,且满足: 1)( );2)0>∃λ,当),0(λ∈t 时,0)(,0)(>>t s t c ;3)1)()0(==λs c ,则分别称)(),(t c t s 是正弦函数与余弦函数。

6.设F 为从集合X 到集合Y 中的关系,若X x ∈∀,有唯一的Y y ∈,使( ),则称F 为(从X 到Y 中的)映射。

二、单项选择题1..)(A B B A -⋃ A .= B . ≠ C .⊂ D .⊃2.实数集R 是( )A .有限集B .可列集C .不可列集D .空集3.f 是从X 到Y 的映射,且X A ⊂,X B ⊂,则)()())((B f A f B A f ⋂⋂A .=B . ≠C .⊃D .⊂4.函数⎪⎩⎪⎨⎧=≠=0,00,1si n )(x x xx x f 在点0=x 处( )A .间断B .连续C . 可导D .取得极小值5.函数)(x f 与)(x ϕ在],[b a 上有界,且0)(≠x ϕ,则)()(x x f ϕ在],[b a 上( )。

A .有界 B .无界 C .有下界而无上界 D .结论不定 6.下面结论( )是正确的。

A .若)(x f 是单调函数,)(t x ϕ=也是单调函数,则))((t f ϕ 是单调函数。

B .若)(x f 在数集A 上可导,且)(x f '有界,则)(x f 在A 上有界C .若)(x f 是周期函数,)(t x ϕ=,则))((t f ϕ 是周期函数D .若)(x f 在数集A 上有界且可导,则)(x f '在A 上有界 三、计算题1.求过抛物线342+=x y 上的点)19,2(M 的切线方程。

2001年考研数学二试题答案与解析

2001年考研数学二试题答案与解析

考生还有更方便的解法,事实上,等式的左端等于 ( y arcsin x)' , 关系式变成
( y arcsin x)' =1,两边积分得
y arcsin x = x + C,
再以
y
⎛⎜⎜⎜⎝ 12 ⎞⎠⎟⎟⎟
=
0代入得C
=

1 2
.
(5)设方程 ⎛⎜⎜⎜⎜⎜⎜⎜⎝11a
1 a 1
11a⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎛⎝⎜⎜⎜⎜⎜⎜⎜
x t−sin
x
,
记此极限为
f
(x) ,求函数
f
(x) 的间断点并指出其类型。
( ) 解 因 f x = e , lim t→x
sin
x t−sin
x
ln
sin sin
t x
cos t
而由洛必达法则得, lim t→x
x sin t −sin
x
ln
sin t sin x
= lim t→x
x⋅
sin t cos t
π
∫ ( ) (3)
2 −π
x3 + sin2 x cos2 xdx =
2
答 应填 π 8
分析 这是对称区间上的定积分,一般都可利用积分性质而化简计算,所以
π
π
∫ ( ) ∫ 2 −π
x3 + sin2 x cos2 xdx = 2
2 sin2 x cos2 xdx
0
2
π
= 2∫ (2 sin2 x −sin4 x)dx
e2
x− y
⎛⎜⎜⎜⎝2
+
dy dx
⎞⎠⎟⎟⎟
+

苏州大学数学分析考研部分试题答案

苏州大学数学分析考研部分试题答案

1、设)(x f 是以T 为周期的周期函数且⎰=TC x f T 0)(1,证明⎰+∞∞→=n n C dx x x f n 2)(lim 。

证明:由⎰=T C x f T 0)(1,得到⎰=-Tdx C x f T 00])([1,从而有⎰=-T dx C x f 00])([ (*)本题即证明⎰+∞∞→=-n n dx x C x f n 0)(lim 2(此因⎰+∞=n n dx x112) 注意到21x 是递减的正函数,应用积分第二中值定理,对ξ∃>∀,n A 介于n 与A 之间,使⎰⎰-=-A n n dx C x f n dx xC x f n ξ])([1)(2 k ∃为非负整数使T kT n <--<ξ0,于是由(*),dx C x f dx C x f dx C x f dx C x f kTn kTn kTn nn⎰⎰⎰⎰+++-=-+-=-ξξξ])([])([])([])([于是有dxC x f n dx C x f n dx C x f n dx x C x f nTkT n kT n An⎰⎰⎰⎰-≤-≤-=-++02)(1)(1])([1)(ξξ令∞→A 有dx C x f n dx xC x f nTn⎰⎰-≤-∞+02)(1)( 故⎰+∞∞→=-nn dx x C x f n0)(lim 2,即⎰+∞∞→=n n C dx x x f n 2)(lim 。

2、设函数f(x)在整个实数轴有连续的三阶导数,证明存在实数a 使0)()()()(''''''≥a f a f a f a f 。

证明:由于f 的三阶导数连续,故若'''''',,,f f f f 有一个变号的话,利用根的存在性原理便知,使a ∃0)()()()(''''''=a f a f a f a f ,结论得证。

(整理)2001—年江苏专转本高等数学真题(附答案) (2).

(整理)2001—年江苏专转本高等数学真题(附答案) (2).

江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。

(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。

(3)了解反函数:反函数的定义,反函数的图象。

(4)把握函数的四则运算与复合运算。

(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。

(6)了解初等函数的概念。

重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。

(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。

(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。

(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。

(6)熟练把握用两个重要极限求极限的方法。

重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。

(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。

(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。

(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。

重点:理解函数(左、右连续)性的概念,会判别函数的中断点。

2001年考研数学一试题答案与解析

2001年考研数学一试题答案与解析

(C)曲线
⎧⎪⎪⎨⎪⎪⎩z
= y
f (x,
=0
y)
在点
(0,
0,
f
(0,
0))
的切向量为
{1,
0,
3}

NBF 考研辅导,全程包过,不4过退款! QQ 客服:296312040
NBF 辅导,真正为考研人着想的辅导!

D


线
⎧⎪⎪⎨⎪⎪⎩z
= y
f (x,
=0
y)


(0, 0,
可判定正确选项。详解 由 y = f (x) 的图形可知,当 x < 0 时, f (x) 单调增加,
从而 f ' (x)> 0 ,所以选项(A)、(C)可以排除,此外由 y = f (x) 的图形可知,在
x > 0 部分 f ' (x)有两个零点,在较小的零点左侧, y = f (x) 单调增加,因此
令 ε = 2, DX = 2 ,则 P{ X − E ( X ) ≥ 2} ≤ D( X )/ 22 = 1 。
2 由于多年以来一直未靠过切比雪夫不等式或极限定理中有关的内容,可能有 不少考生在复习时未予重视,从而对此看来十分简单的填空,一片茫然。束手无 策。 本题难度值为0.60,区分度为0.44,属于第Ⅴ类试题。
二、选择题(本题共 5 小题,每小题 3 分,满分 15 分)
(1)设函数 f (x) 在定义域内可导, y = f (x) 的图形如下图所示,则导函数
y = f ' (x)的图形为
NBF 考研辅导,全程包过,不3过退款! QQ 客服:296312040
NBF 辅导,真正为考研人着想的辅导!

精编版-2001年江苏高考理科数学真题及答案

精编版-2001年江苏高考理科数学真题及答案

2001年江苏高考理科数学真题及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页。

第II 卷3至9页。

共150分。

考试时间120分钟。

第I 卷(选择题 60分) 注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写 在答题卡上。

2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需 改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos()()[]βαβαβα-++=cos cos 21cos cos()()[]βαβαβα--+-=cos cos 21sin sin正棱台、圆台的侧面积公式()l c c S +'=21台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式()h S S S S V +'+'=31台体 其中S '、S 分别表示上、下底面积,h 表示高 一、 选择题:本大题共12小题;第每小题5分,共60分。

在每小题给出的 四个选项中,只有一项是符合题目要求的。

(1) 若0cos sin >θθ,则θ在(A )第一、二象限 (B )第一、三象限 (C )第一、四象限 (D )第二、四象限 (2)过点()()1,11,1--B A 、且圆心在直线02=-+y x 上的圆的方程是 (A )()()41322=++-y x (B )()()41322=-++y x(C )()()41122=-+-y x (D )()()41122=+++y x(3)设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 (A )1 (B )2 (C )4 (D )6(4)若定义在区间()01,-内的函数()()1log 2+=x x f a 满足0)(>x f ,则a 的取值范围是 (A )(0,21) (B )(0,21] (C )(21,+∞) (D )(0,+∞) (5)极坐标方程)4sin(2πθρ+=的图形是(A ) (B ) (C ) (D ) (6)函数)0(1cos ≤≤-+=x x y π的反函数是(A ))20)(1arccos(≤≤--=x x y (B ))20)(1arccos(≤≤--=x x y π (C ))20)(1arccos(≤≤-=x x y (D ))20)(1arccos(≤≤-+=x x y π (7)若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则其离心率为 (A )43 (B )32 (C )21 (D )41 (8)若40πβα<<<,a =+ααcos sin ,b =+ββcos sin ,则(A )b a < (B )b a > (C )1<ab (D )2>ab(9)在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成的角的大小为(A )60° (B )90° (C )105° (D )75° (10)设)()(x g x f 、都是单调函数,有如下四个命题:○1若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增; ○2若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增; ○3若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减; ○4若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减; 其中,正确的命题是(A )○1○3 (B )○1○4 (C ) ○2○3 (D )○2○4(11)一间民房的屋顶有如图三种不同的盖法:○1单向倾斜;○2双向倾斜;○3四向倾斜.记三种盖法屋顶面积分别为321P P P 、、.①② ③若屋顶斜面与水平面所成的角都是α,则(A )123P P P >>(B )123P P P =>(C )123P P P >=(D )123P P P ==(12)如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联。

2001年考研数学一试题答案与解析

2001年考研数学一试题答案与解析

2001年考‎研数学一试题‎答案与解析一、(1)【分析】 由通解的形式‎可知特征方程‎的两个根是12,1r r i =±,从而得知特征‎方程为22121212()()()220r r r r r r r r rr r r --=-++=-+=.由此,所求微分方程‎为'''220y y y -+=.(2)【分析】 grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭.再求 divgra‎d r=()()()x y z x r y r z r ∂∂∂++∂∂∂ =222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是 divgra ‎d r|(1,2,2)-=(1,2,2)22|3r -=. (3)【分析】 这个二次积分‎不是二重积分‎的累次积分,因为10y -≤≤时12y -≤.由此看出二次‎积分是二重积‎0211(,)ydy f x y dx --⎰⎰分的一个累次‎积分,它与原式只差‎一个符号.先把此累次积‎分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的‎内外层积分限‎可确定积分区‎域D :10,12y y x -≤≤-≤≤.见图.现可交换积分‎次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵的元素没‎A 有给出,因此用伴随矩‎阵、用初等行变换‎求逆的路均堵‎塞.应当考虑用定‎义法.因为 2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即2()2A E A E E +-⋅=.按定义知11()(2)2A E A E --=+. (5)【分析】 根据切比雪夫‎不等式2(){()}D x P X E X εε-≥≤, 于是2()1{()2}22D x P XE X -≥≤=. 二、(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x>时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对.应选(D ).(2)关于(A ),涉及可微与可‎偏导的关系.由(,)f x y 在(0,0)存在两个偏导‎数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面在‎(,)z f x y =(0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数‎方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点处的切‎(0,0,(0,0))f 向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===.因此,(C )成立. (3)【分析】 当(0)0f =时,'0()(0)lim x f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知201lim (1cos )h f h h →-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f + ∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃.关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0l i m ((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但在处不连续‎()f x 0x =,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时). 注意,易求得20sin lim 0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t →(即 '(0)f ∃).因为只要有界‎()f t t ,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由43||40E A λλλ-=-=,知矩阵的特征‎A 值是4,0,0,0.又因是实对称‎A 矩阵,A 必能相似对角‎化,所以与对角矩‎A 阵B 相似.作为实对称矩‎阵,当A B 时,知与有相同的‎A B 特征值,从而二次型与‎T x Ax T x Bx 有相同的正负‎惯性指数,因此A 与B 合同.所以本题应当‎选(A ).注意,实对称矩阵合‎同时,它们不一定相‎似,但相似时一定‎合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦,它们的特征值‎不同,故A 与B 不相似,但它们的正惯‎性指数均为2‎,负惯性指数均‎为0.所以A 与B 合同.(5)【分析】 解本题的关键‎是明确和的关‎XY系:X Y n +=,即Y n X =-,在此基础上利‎用性质:相关系数的绝‎XY ρ对值等于1的‎充要条件是随‎机变量与之间‎XY存在线性关系‎,即Y aX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系‎数的定义式有‎(,)1XY Cov X Y DXDX DY DX DYρ-===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xx xde e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x x x xde de e e e e---++⎰⎰=21(arctan arctan )2x x x xe e e e C ---+++. 四、【解】先求(1)(1,(1,1))(1,1)1f f f ϕ===.求32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求‎导法'''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意 '1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y∂==∂.因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=. 五、【分析与求解】关键是将展成‎arctan x 幂级数,然后约去因子‎x ,再乘上并化简‎21x +即可. 直接将展开办‎arctan x不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n n n x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分‎在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在‎收敛区间端点‎1x =±成立.现将②式两边同乘以‎21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n n n n x x n n -∞∞==--++-∑∑ =21111(1)()2121nnn x n n ∞=+--+-∑221(1)2114n nn x n∞=-=+-∑,[1,1]x ∈-,0x ≠上式右端当时‎0x=取值为1,于是221(1)2()1,[1,1]14n nn f x x x n ∞=-=+∈--∑.上式中令1x =21(1)111[(1)1](21422442n n f nππ∞=-⇒=-=⨯-=--∑.六、【解】用斯托克斯公‎式来计算.记为平面上所‎S2x y z ++=L为围部分.由L的定向,按右手法则取‎S 上侧,S 的单位法向量‎1(cos ,cos ,cos )(1,1,1)3n αβγ== .于是由斯托克‎斯公式得222222cos cos cos 23SI dSx y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=111[(24)(26)(22)]333Sy z z x x y dS --+--+--⎰⎰ =22(423)(2)(6)33S Sx y z dS x y z x y dS -++++=-+-⎰⎰⎰⎰利用.于是'2'211113x y Z Z ++=++=.按第一类曲面‎积分化为二重‎积分得2(6)32(6)3D DI x y dxdy x y dxdy =-+-=-+-⎰⎰⎰⎰,其中围在平面‎D S xy 上的投影区域‎||||1x y +≤(图).由关于轴的对‎D ,x y 称性及被积函‎数的奇偶性得‎()0Dx y dxdy -=⎰⎰⇒ 21212(2)24DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中‎值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一. (2)对使用的定义‎'()f x θ''(0)f .由题(1)中的式子先解‎出'()f x θ,则有'()(0)()f x ff x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x x θθθ---⋅=, 解出θ,令x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===. 八、【解】(1)设时刻雪堆的‎t 体积为()V t ,侧面积为()S t .t 时刻雪堆形状‎如图所示,先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤.⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒ 22222()16()()1()()()xyxyD D z z h t x y S t dxdy dxdy x y h t ∂∂++=++=∂∂⎰⎰⎰⎰.作极坐标变换‎:cos ,sin x r y r θθ==,则1:02,0()2xy D r h t θπ≤≤≤≤. ⇒12()2220013()222221()()16()2113[()16]|().()4812h t h t S t d h t r rdr h t h t r h t h t πθππ=+=⋅+=⎰⎰用先二后一的‎积分顺序求三‎重积分()0()()h t D x V t dz dxdy=⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-.⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微‎分方程与初始‎条件. (3)体积减少的速‎度是dVdt-,它与侧面积成‎正比(比例系数0.9),即将与的表达‎0.9dV S dt =-()V t ()S t 式代入得22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-. ①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130‎厘米的雪堆全‎部融化所需时‎间为100小‎时. 九、【解】由于是线性组‎(1,2)i i s β= 12,,s ααα 合,又12,,s ααα 是0Ax =的解,所以根据齐次‎线性方程组解‎的性质知均为‎(1,2)i i s β= 0Ax =的解.从是的基础解‎12,,s ααα 0Ax =系,知()s n r A =-.下面来分析线‎12,,s βββ 性无关的条件‎.设11220s s k k k βββ++= ,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++= .由于线性无关‎12,,s ααα ,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩(*) 因为系数行列‎式1221121122100000000(1)000s s st t t t t t t t t t +=+-,所以当112(1)0s s st t ++-≠时,方程组(*)只有零解120s k k k ==== .从而线性无关‎12,,s βββ .十、【解】(1)由于AP PB =,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知A B ,那么A E B E ++ ,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,m mn m n P Y m X n C p p m n n -===-≤≤= .(2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二、【解】 易见随机变量‎11()n X X ++,22()n X X ++,2,()n n X X + 相互独立都服‎从正态分布2(2,2)N μσ.因此可以将它‎们看作是取自‎总体的一个容‎2(2,2)N μσ量为的简单随‎n 机样本.其样本均值为‎21111()2n ni n i i i i X X X X n n +==+==∑∑,样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是‎总体方差的无‎偏估计,故21()21E Y n σ=-,即.2()2(1)E Y n σ=-。

苏州大学数学分析试题集锦(2000-2012年)

苏州大学数学分析试题集锦(2000-2012年)

苏州大学2012年攻读硕士学位研究生入学考试数学分析试题一、下列命题中正确的给予证明,错误的举反例或说明理由。

共4题,计30分。

1. 设()f x 在[],a b 上连续,且()0ba f x dx =⎰,则[],x ab ∀∈,()0f x =。

2. 在有界闭区间[],a b 上可导的函数()f x 是一致连续的。

3. 设()f x 的导函数()f x '在有限区间I 上有界,则()f x 也在I 上有界。

4. 条件收敛的级数1n n a∞=∑任意交换求和次序得到的新级数也是收敛的。

二、下列4题每题15分,计60分。

1. 计算下列极限:(1) 111lim 12nn n →∞⎛⎫+++ ⎪⎝⎭; (2) sin 0lim sin x xx e e x x→--。

2. 求积分2D I x y dxdy =-⎰⎰,其中(){},:01,11D x y x y =≤≤-≤≤。

3. 设L 为单位圆周221x y +=,方向为逆时针,求积分()()⎰+++-=L y x dy y x dx y x I 224。

4. 计算曲面积分 ()42sin z S xdydz e dzdx z dxdy ++⎰⎰, 其中S 为半球面2221x y z ++=,0z ≥,定向为上侧。

三、下列3题,计36分。

1. 设()f x 在[],a b 上可微,证明:存在(),a b ξ∈,使成立 ()()()()()222f b f a b a f ξξ'-=-。

2. 设()2sin x f x e x =,求()()20120f 。

3. 设()f x 在闭区间[],a b 上二阶可导且()0f x ''<,证明不等式()()2ba ab f x dx f b a +⎛⎫≤- ⎪⎝⎭⎰。

四、下列3题选做2题,计24分。

1.(1) 设{}n a 是正数列,且lim 0n n a →∞=。

数学二解析2001

数学二解析2001

2001年数学(二)真题解析一、填空题(1)【答案】72T【解】方法一i . 丿3 —工—%/ ] + g lim X-*l x 2 x 一 21. %/3 — x — V 1 ~F lim —----——--------x->i (jc + 2) (jc 一1)lim --------------- ]------ ----Li (x + 2)(丿3 — 工 + 丿1 + 工)2(1 ―工)x 一 1方法二lim = lim -4-7工~* 1 x + 工一2工一1 + 111x 2 x 一 2 a /3 — x 2 丿]+ 匚(2)【答案】夕=*工+1.【解】e 2x+y — cos xy = e — 1两边对x 求导得严•+ sin xy •夕+熄) = 0,将X =0,y = 1代入得字I = — 2 ,ckr 丨 z=o则法线方程为夕一1 = *(久一0),即夕=*広+ 1-(3)【答案】 v-O【解】方法一sin 2 x cos 2 x dx — 2 sin 2 x cos 2 x dr4 J 。

,三=2 I 2 sin 2 j; • (1 一 sin 2 jc )dz = 2(12 — I 4 )2” (z 3 + sin 2 jc )cosx dx =方法二(x 3 + sin 2 )cos 2jc dj?=2 sin 2 x cos 2 jc dj? J 0丄72 sin 2 d(2工)=*sin 2x djro2 J 0 o(4)【答案】j/arcsin x = x【解】方法一丄由 j/arcsin x H — …一 =19得(jyarcsin x Y = 19解得 j/arcsin x = x + C 9J \ — 2因为曲线经过点(j,0),所以C=-y,故所求曲线为jarcsin x =x ----.方法二jy'arcsin x ~\-------------= 1 化为 y' ~\—,… ------------y =-----\-----,71-x 2 Jl —/arcsin z arcsln 工f d~r _ f 1 丄解得夕=([——?——e +C )e =(工 +c )・ ———\J arcsin x / arcsin x 因为曲线经过点(y,o ),所以C=-y,1x 2故所求曲线为—丄arcsin x因为r (A ) y^r (A ),所以方程组无解;(5)【答案】—2.a11【解】由题意得1a 1=(a + 2) (a 一 1 )2=0,解得 a = — 2 ,或 a = 1,11a /I 111 \I 1111 \当a =1时,才=b11100—3 ,\i11—2丿'o0 '当 a = — 2 时,A =_2111 \1-2111-2—2)因为r (A )=r (A )=2 V 3,所以a = —2时方程组有无数个解.二、选择题(6)【答案】(E ).【解】y[y (z )] = ]'9丨心)丨€1,丨心)丨>1,而 I /(J7 ) | ^ 1 (一°°<工 <+ °°),故 /[/(J : )] = 1 ,从而 f)]} =1,应选(E ).(7)【答案】(E ).1 2【解】(1 — cos x )ln ( 1 + z 2)〜—x 4 , x sin 工”〜x n+i , e" — 1 ~ j ?2 , 由题意得2 < n+l<4,解得n =2,应选(E ).(8)【答案】(C ).【解】<‘ = C ; • 2(工一3)2+© • 2(工一1) • 2(工一 3) +C ; • 2(工一I )?,令夕"=4 (3工 $ — 12_z + 11) = 0,得工 16+V336 — 4^3工2当工<C X 1时当久1 •< X X 2时j/'<0,当鼻 > 工2时j/‘>0,故曲线有两个拐 点,应选(C ).(9) 【答案】(A ).【解】 由拉格朗日中值定理得/(工)一/(1)= /'(£)(工一1),其中e 介于1与工之间,当工 6 (1-^,1)时 HVWV 1,再由 f'(x )单调递减得 > /(I ) =1,于是 y z ($)(— 1)<工一1,即 y (x )•— 1<久一1,或 f (兀)<工;当工e (1,1十厂 时1 vw <工,再由单调递减得1 =y'(i )>/"(£),于是 — 1) <工一1,即/•(#) — 1 V# — 1,或/(工)<工,应选(A ).(10) 【答案】(D ).【解】 从题设图形可见,在夕轴的左侧,曲线夕=/■&)是严格单调增加的,因此当工<0时,一定有于'(工)〉0,对应夕=于'(工)的图形必在工轴的上方,由此可排除(A ),(C ); 又的图形在y 轴右侧有三个零点,因此由罗尔中值定理可知,其导函数y=f\x )的图形在y 轴右侧一定有两个零点,进一步可排除(E ).应选(D ).三、解答题(11)【解】djr(2jc 12 + 1)丿兴 + ]1(]___\ 2 3_(1 + j//2 ) 2 ' 4工丿 (4jc + 1) 2Z )= 肿一 I = ~~2'sec 21(2tan 2i + 1 )sec tdtr cos tJ 2sinS + cosL弓豐將=arctan(sin/)+C=arctan .- + C.Jx 2 + 1(12) 【解】f(x ) =Sin "B ,nr = lim [(1 + $1叮一 sm ”)t-~x 'sin x / L 、 sin x /fCx)的间断点为工=kit (k e z),由lim/(j?) = e 得工=0为/(j :)的可去间断点;•z —*0由f (n — Q) — + °°,/(7r + 0) = 0得工=7T 为第二类间断点,同理工=kn(k 6 Z 且怡H0)为第二类间断点.(13) 【解】“=士,『=—— ,2 V j c 4工』工4«zdp _ dp / dj? ds ds / dr131••4( 4 工 +1)2--------------- ---------=6 J~x , 丿4无+ ]2 J~x6d 2 p d ( 6 \/~t ) /dj?2 \[x 6& $ ds/dx g + 1+ 12则^兽-伴)(4h +l)72一;… 一 — 36 无=9.J 4 无 + ](14)【解】gCt)dt x 2e 两边求导,得g[_f (j? )]/,(jc ) = (jc 2 +2工)『9 即) = (e + 2)e° 9积分得 /(^) = (h +1)『+ C9由 /(O) = 0 得 C = — 1,故/'(z ) = («z + 1)『一1.(15)【解】 由 g"Q ) = 2e J 一厂(2 )得 g 〃(H ) + g(z ) = 2e J ,解得 g (工)=C] cos x + C 2 sin x + e r ・ 由 g (0)=2 得 Ci = 1 ;由 g'(0) = 2 — /(0) = 2 得 C 2 = 19从而 g (jc ) = cos x + sin jr + e * 9 于是 fCx)= sin jc — cos 无 + e° ,rg(H )1 + zg (工)/(j ?)_1+乂 (1 + )2dj : +/(j : )d土)J 0g&) 1, fCx )i+7d " +TT7lo _Jg (#)1 +Ax_/(7T )_e n + 1= i + tt = 7t + r(16)r 解】(i )丨 op |=好 +$2,切线方程为Y —y =j/(X —乂),令X = 0,则切线在y 轴上的截距为Y = y — xy',由题意得y — xy' = Jx 2 + j^2,整理得字=2 — /1 + (―),dr jc \ \戈丿令u =—,则"+ z 学 =u — \/1 + z/2,变量分离得 d ----=——工 山 丿1 + / 工______ ______ 「积分得 ln(“ + \/m 2 + 1 ) = In C — In x ,即"+ a /m 2 + 1 = 一,x 再由 -“ + vV +1 =咅得“=*岸-咅),或$=*9 -青),因为曲线经过点(*,0),所以C=y,故所求曲线为夕=土一工2.(H)曲线汁* —在第一象限与两坐标轴所围成的面积为设切点为P1X 22) 9切线为y —=一 2a (jc 一 a ) 9令夕=0得z =二 + #;令工=0得,=++/oa z 4切线与L 及两个坐标轴围成的位于第一象限的面积为4a112 5Sa • 4a令s'++斜4a 2T + fl24a 24)=°得「古所求的切线方程为丿—(土―召),整理得(17)[解】 设/时刻雪堆的半径为r(Z ),r(0) =r 0,v 2 3 Q 9 2 dV 2 "V = —nr , o = Z7tr 9 -7— = Z7ir • —3 dt dtdV" d 厂由题意得不=TS,整理得不=T,解得")=f+c°,由厂(0)=厂 ° 得 C =r Q= —kt +r 09再由 r (3) = #•得怡=¥•,故 r ⑺=----t + r 0 ,Z令r (?) =0得t =6,故雪堆全部融化需要6小时.(18) ( I )【解】/(^)的带拉格朗日余项的一阶麦克劳林公式为/(J?) = /(0) + /''(0)工 + I ;£)乂2= /,(0)jf + [『力2,其中£介于0与工之间.(II )【证明】/(j : ) =/,(0)j' +食,)工2两边在[—a ,a ]上积分得[/(jc)dj- = _1_[ /7,($)2d:r ,J —au J —a因为f'\x )在[—a ,a ]上连续,所以f'\x )在[—a ,a ]上取到最小值m 和最大值M,由W */"(£)広2 C yMjr 2 得扌a 3 C yj 厂(£)工'dr < y-a 3 ,m ra m 3 f a即百^3 W /(工)clr W —a 3 9或 Tzz — /(j : )djc M ,3 J —a 3 a J —a由介值定理,存在少E [—a,a],使得/'"(可)=弓[/'(工)山,a J —a故 a "/■"(”)=3〕/ ( jc ) d j ?.(19)【解】 由 AXA +BXB =AXB + BXA + E 得(A -B)XCA -B) =E,解得 X = [(A -B)2]"1 ,/I — 1 — 1而A - B = 0 1 一 1'o 0 1/!-1一1\J 1(AB)2=01-11 0'001丿'0I 1_ 2-110°\I 1由01-2010 -* 0'0100J'0-1-1I 1-2一1\1-1=01-201/'o 01 100125\10012|得0100/]25\X =-012 •、00J(20)【解】0] ,p 2,“3,04为AX =0的基础解系的充分必要条件是01 ,庆,/h ,力线性无关,1t0100t '而(01 902 9 03,04)=(。

2001年考研数学试题详解及评分参考

2001年考研数学试题详解及评分参考

数(不一定连续!),则曲线
ìz
í î
y
= =
f (x, y0
y)
在点 (x0 ,
y0 ,
f
(x0 ,
y0 ))
的切线向量为
(1, 0, fx¢(x0 , y0 )) ,可知(C)为正确选项,且(D)选项不正确.
(3) 设 f (0) = 0 ,则 f (x) 在点 x = 0 可导的充要条件为
(A)
(D)不对;而由1- eh ~ (-h) 易见(B)正确.
æ1 1 1 1ö æ 4 0 0 0ö
(4)

A
=
çç1 ç1
1 1
1 1
1÷÷ 1÷
,
B
=
ç ç ç
0 0
0 0
0 0
0 0
÷ ÷ ÷
,则
A

B
çè1 1 1 1÷ø
ç è
0
0
0
0 ÷ø
(A) 合同且相似 (B) 合同但不相似 (C) 不合同但相似 (D) 不合同且不相似
【解】 抓住 y = f (x) 的图形中的曲线上升 ( f ¢(x) ³ 0) ,下降 ( f ¢(x) £ 0) 区间,驻点
( f ¢(x0 ) = 0) 的个数,就知应选 (D).
(2)
设函数
f (x, y) 在点 (0, 0) 附近有定义,且
f
¢
x
(0,
0)
=
3,
f
¢
y
(0,
0)
=
1
,则
(A) dz |(0,0) = 3dx + dy
lim
h®0
1 h2

苏州大学研究生入学考试试题-数学分析历年真题.doc

苏州大学研究生入学考试试题-数学分析历年真题.doc

08071. 06求下列极限:(1).(1)lim n n n αα→∞⎡⎤+-⎣⎦,其中01α;(2)224cos arcsin 0limx x ex x --→2.设函数f(x)= 1sin ,00,0m x x x x ⎧≠⎨=⎩。

讨论m=1,2,3时f(x)在x=0处的连续性,可微性及导函数的连续性。

3.设u=f(x,y+z)二次可微。

给定球变换cos sin x ρθϕ=,sin sin y ρθϕ=,cos z ρϕ=.计算22,u u ϕθ∂∂∂∂。

4.设f(x)二次可导,'()f a ='()f b =0。

证明(,)a b ξ∃∈,使2''4()()()()b a f f a f b ξ-≥-。

5.设函数项级数1()n n u x ∞=∑在区间I 上一致收敛于s(x),如果每个()n u x 都在I 上一致连续。

证明s(x)在I上一致连续。

6.设f(x,y)是2上的连续函数,试交换累次积分2111(,)x x xdx f x y dy +-+⎰⎰的积分次序。

7.设函数f(x)在[0,1]上处处可导,导函数'()()()f x F x G x =-,其中()F x ,()G x 均是单调函数,并且'()f x >0,[0,1]x ∀∈。

证明 0c ∃>,使'()f x c ≥,[0,1]x ∀∈。

8.设三角形三边长的和为定值P 。

三角形绕其中的一边旋转,问三边长如何分配时旋转体的体积最大?051.(20')1)11(2)lim(),()0,()()()()()()()0,()n n n n x aa b bbf a f a f x f a x a f a x a f a f a →<≤≤=='''-≠'---''''''≠求下列极限()而因此其中存在解:由于存在,从而f(x)=f(a)+f (a)(x-a)+f (a)222222(())211()()(()())lim()lim()()()()()(()())()()()()()((()))2lim(()()()((()))2limx a x a x a x o x a x a f a f x f a f x f a x a f a f x f a x a f a x a x a f a o x a x a x a f a o x a →→→+-'----=''-----''''--+-=-''''-+-=f (a)(x-a)+f (a)f (a)(x-a)+f (a)22222()(())2()()()((()))21()()2lim ()2[()]()(()(())2a x a x a o x a x a x a f a o x a f a f a x a f a f a f a o x a →→-''+--''''-+-''-''==--'''''++--f (a)f (a)(x-a)+f (a)f (a)000002.(18')()[01]()()0()0.()[0,1]()[0,1]}[0,1],()0,1,2}{},()()0()0()limx x f x f x f x x f x f x f n x k f f x f x →='≠⊂==→→∞=='=k k k n n n n n n 设在,上可微,且的每一个零点都是简单零点,即若则f 证明:在上只有有限个零点。

2001考研数学真题+答案

2001考研数学真题+答案

1 2
.
(2) 设函数 f ( x, y ) 在点 (0, 0) 附近有定义,且 f x (0,0) 3, f y (0,0) 1 ,则 (A) dz |(0,0) 3dx dy (B) 曲面 z f ( x, y ) 在点 (0, 0, f (0, 0)) 的法向量为 {3,1,1} (C) 曲线
1
1 ( A 2E) 2
(5) 设随机变量 X 的方差为 2, 则根据切比雪夫不等式有估计 P{ X E( X ) 2} 二、选择题:(本题共 5 小题,每小题 3 分,满分 15 分) (1) 设函数 f ( x) 在定义域内可导, y f ( x ) 的图形如右图所示, 则导函数 y f ( x ) 的图形为 (D)
x 0
1 . 2
……1 分
证法一:(1) 任给非零 x ( 1,1) ,由拉格朗日中值定理得
f ( x) f (0) xf ( ( x) x) (0 ( x) 1) . 因为 f ( x ) 在 ( 1,1) 内连续且 f ( x) 0 ,所以 f ( x ) 在 ( 1,1) 内不变号.
x
……2 分 ……4 分 ……6 分
1 2 x e arctan e x e x arctan e x C . 2
注:答案中缺任意常数 C 扣 1 分. 四、(本题满分 6 分) 设函数 z f ( x, y ) 在点 (1,1) 处可微, 且 求
f x
2,
(C)
z f x, y 在点(0,0, f (0,0))的切向量为 {1, 0,3} y 0
(D) 曲线
z f x, y 在点(0,0, f (0,0))的切向量为 {3, 0,1} y 0

2001考研数学一真题及答案

2001考研数学一真题及答案

2001考研数学一真题及答案2001考研数学一真题及答案2001年的考研数学一真题是考生们备考的重点之一。

本文将为大家详细解析该年的数学一真题,并提供相应的答案。

希望通过这篇文章的阅读,考生们能够更好地理解和掌握数学一的考试内容。

第一部分:选择题选择题是考研数学一中的常见题型,也是考生们需要熟练掌握的部分。

以下是2001年数学一的选择题部分。

1. 设函数 f(x) = x^3 - 3x + 2,下列结论中正确的是:A. f(x) 在 (-∞, +∞) 上恒大于 0B. f(x) 在 (-∞, +∞) 上恒小于 0C. f(x) 在 (-∞, +∞) 上有且仅有一个零点D. f(x) 在 (-∞, +∞) 上有两个零点答案:C解析:我们可以通过求导数来判断函数的单调性和极值点。

对 f(x) 求导,得到f'(x) = 3x^2 - 3。

令 f'(x) = 0,解得x = ±1。

将 x = -1 和 x = 1 代入 f(x) 的表达式,可以发现 f(x) 在 x = -1 和 x = 1 处取零值。

由于 f(x) 是一个三次函数,所以在整个实数范围内,f(x) 有且仅有一个零点。

2. 设 A 是一个 n 阶方阵,且满足 A^3 = A,则 A 的特征值可能是:A. 0B. 1C. -1D. 以上都有可能答案:D解析:根据矩阵的特征值定义,特征值满足 |A - λI| = 0,其中λ 是特征值,I 是单位矩阵。

由于 A^3 = A,我们可以得到 A^3 - A = 0,即 A(A^2 - I) = 0。

所以 A 的特征值可能是方程 A^2 - I = 0 的根,即 1 和 -1。

同时,由于 A 是一个n 阶方阵,所以 A 的特征值可能还包括 0。

第二部分:填空题填空题是考研数学一中的另一种常见题型,考生们需要根据给定的条件填写相应的数值。

以下是2001年数学一的填空题部分。

1. 设函数 f(x) = ax^2 + bx + c,其中a ≠ 0,若对任意的 x,都有f(x) ≥ 0,则实数 a, b, c 满足的条件是 ______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州大学2001年数学分析试题解答
[)[)[)1.(15)(),1lim ()(),2(),lim ()lim ()lim ()(,()2
,,,()()x x x x f x a f x f x a f x a f x f x f x A A M x M f x A x x M x x f x f x ε
δ→+∞
→+∞
→+∞
→+∞
+∞+∞+∞=>-<
'''''''''∀>-<-设在上连续
()若存在且有极限,证明:在上一致连续
()若在上一致连续,存在吗?回答并说明理由。

证明:(1)由于存在且有极限,设有限)
所以存在当时,有且则[)[][)[)()()2
2
(),()(),,lim ()lim x x f x A f x A f x M f x f x a a f x x ε
ε
ε→+∞
→∞
'''≤-+-<+
=+∞+∞+∞=从而在上一致连续,由在a,M 上一致连续所以在上一致连续(2)不一定。

例如:f(x)=x,显然f(x)在上一致连续但不存在
[][][][][][][][][]000
0000
2.(10),(,),,,(),(,),,(),()()()0,()()0
,,)0()f a b f a b a b x a b f x x a b f a b a b f a b f a a f b b
F a f a a F b f b b x a b x f x x ⊃∈=⊃<>=-<=->∈==设是上的连续函数,且证明:存在使得证明:令F(x)=f(x)-x,F(x)在上连续由于且在上连续则因此从而由连续函数的介值定理知,存在使得F(即
111
11111
3.(15)()11,1111,11
111ln )()x
n x a a x
n n x
n x x x
n n n S x n
a b a n n n n n
n
n n n

=∞∞
==∞
=∞
∞∞
====+∞∀><+∞∀∈<>+∞'''==-∀∈∑
∑∑∑
∑∑∑证明函数在(,)内无穷可微证明:且a<b,x [a,b]因为而时,在[a,b]上收敛,从而在[a,b]上一致收敛由a,b 的任意性知,在(,)上一致收敛所以S(x)连续且可导
S (x)=(x 1212
1121ln ln (1)
ln ln 1(0),lim lim 0
1ln ()()1ln ()(1)ln ln x a n n a n k k x
n k x n n
a n n
n n
a n n
n n n n
S x S x n x n
n n αααααα++→∞→∞∞∞
+=∞
=≤>=+>==∈''+∞∀=-∀∈≤∑∑∑n=1(k)
[a,b],有令而收敛x [a,b], 因此 收敛从而在[a,b]上一致收敛,由a,b 的任意性知,在(,)内连续可微
k>0,S x [a,b],有
1
(1)ln ()(1)11k
a k k
x n n
a n
n x n ∞
=>=-+∞+∞∑(k)用上所证,S 在(,)上一致收敛
从而S(x)在(,)内无穷可微
2222224.(10),02{,2222,0S
V
S I x dydz y dzdx z dxdy S z h h z h
S x dydz y dzdx z dxdy x y zdxdydz x y zdxdydz r h
θ--Ω
+=++=+≤≤+===Ω=+++=++=++≤≤⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰1
22211S 求曲面积分其中为锥面z x y 在
部分的下侧。

22x y 解:令S 且方向向上,取向上为正则令S 他方向向外并且封闭,由高斯公式得
x=rc 令{y=rsin 2224
222242222224
4
4
,0222sin cos 2
2
2
h
r
S x y zdxdydz d dr r r zrdz h x dydz y dzdx z dxdy h dxdy h I x dydz y dzdx z dxdy x dydz y dzdx z dxdy h h h
π
θθππ
θθθππ
π
π-+Ω
≤≤++=++=
++===++-++=-
=
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰1
1
1
1
S S S S os
211
012
02
12
12
211
5.(15)01()223
42cos ()14
()cos 3()0,(0)1141cos 3()16n n n n n n
f x dx a n xdx n f x n x n x f n x n n
πππππππ∞
=∞=∞=∞
===
===
+===+⇒=

⎰⎰∑∑∑ 2
202在(,)上把f(x)=(x-1)展成余弦级数并且求解:把进行周期延拓(偶延拓)a (x-1)(x-1) 从而令则
2
11
2
11
1
6.(10)(,)(,)
11
{
211
12
{
1
(,)
x
x
y
f x y R dx f x y dy
x
x y x
y
y x
f x y dx
+
-+
-
-≤≤
+≤≤+
≤≤
-≤≤
⎰⎰
⎰21
设是上的连续函数,试交换累次积分的积分次序解:
从而
从而交换后的累次积分为dy
37.(15)(),(1)()(2)(1)()()())00
()0
21()2(0),,(3f x x bx c b c f x f x f x b
f x b b f x b f x
f c f c f
=++'+
'=+=⇒=
-≤≤==
00222
0设和为参数求出
有极值的充要条件
根据与的草图,求出有三个相异零点的充要条件解:(1)f
(x)=3x 要有极值,则f (x
3x 3x 即有极值的充要条件为()由()知道有极值,且极值点为
4,
3()6,0,(0,()0(0
240033420
33c f x x f f f x f f c c c b =''''''=><<><><-≤从而当有三个相异零点时,且即且即-
2
11
222
000
2
8.(10)()[01]
max(),[01]
()
()4
()1
1
()
()
()4
f x
M f x
dx m M
f x mM
dx dx
dx
f x
dx m M
f x mM
=∈
+
≤≤
≥=

+

⎰⎰
⎰⎰⎰
⎰⎰
⎰⎰
11
00
11
00
11
00
设是,上的连续函数,f(x)>0,m=minf(x),
x,,证明:
1f(x)dx
证明:由希瓦兹不等式知
即f(x)dx
下证f(x)dx

11
00
11
00
11
00
()00()
(())(())
(),()0
()
,
()
()
()
1
4
()
()
f x m f x M
f x m M f x
F x F x
f x
mM
f x
mM
dx
f x
mM
dx dx
f x
mM dx dx
f x
dx
f x
>⇒<≤≤
--
=>
>
+≥

⎰⎰
⎰⎰
⎰⎰
2

构造
展开有(M+m)>f(x)+两边积分
(M+m)dx f(x)+
即有(M+m)>f(x)
从而(M+m)f(x)
即有f(x)dx
2
()
4
m M
mM
+

⎰⎰
11
00。

相关文档
最新文档