河南师范大学2015高数四试卷

合集下载

2015高考数学(文)一轮复习题有答案解析阶段示范性金考卷四

2015高考数学(文)一轮复习题有答案解析阶段示范性金考卷四

阶段示范性金考卷四一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设直线m 、n 和平面α、β,下列四个命题中,正确的是( ) A .若m ∥α,n ∥α,则m ∥nB .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α解析:选项A 中,两条直线同时平行于同一个平面,则两直线的位置关系有三种;选项B 中,只有m 、n 相交时成立;选项C 中,只有m 垂直于交线时成立.选D.答案:D2.如图所示,正四棱锥P -ABCD 的底面积为3,体积为22,E 为侧棱PC 的中点,则P A 与BE 所成的角为( )A.π6B.π4C.π3D.π2解析:连接AC 、BD 交于点O ,连接OE ,OP ,易得OE ∥P A ,∴所求角为∠BEO .∵PO ⊥OB ,OB ⊥OA ,∴OB ⊥平面P AC ,OB ⊥OE .由所给条件易得OB =62,OE =12P A =22,在△OBE 中,tan ∠OEB =3,∴∠OEB =π3,选C.答案:C3.如图,三棱锥A -BCD 的底面为正三角形,侧面ABC 与底面垂直且AB =AC ,若该四棱锥的正(主)视图的面积为2,则侧(左)视图的面积为( )A.33B. 3C.23D.13解析:由题意可知,该四棱锥的正(主)视图为△ABC ,设底面边长为2a ,BC 中点为O ,则AO ⊥BC ,则AO ⊥平面BCD ,设AO =h ,则△ABC 的面积为12·2a ·h =ah =2,侧(左)视图为△AOD ,则面积为12OD ·AO =12·3a ·h =32ah = 3.答案:B4.如图,在正三棱锥A-BCD中,E、F分别是AB、BC的中点,EF⊥DE,且BC=1,则正三棱锥A-BCD的体积是()A.212 B.224C.312 D.324解析:∵EF⊥DE,EF∥AC,∴AC⊥DE,易知AC⊥BD,∴AC⊥平面ABD.由AB=AC=AD=22,可得所求体积为13×12×22×22×22=224.答案:B5.如图,半径为R的球O中有一内接圆柱,当圆柱的侧面积最大时,球的体积与该圆柱的体积之比是()A .2π B.423 C. 2D.23解析:设圆柱的底面半径为r ,故其侧面积S 侧=2πr ·2R 2-r 2=4πr 2(R 2-r 2),当S 侧最大时,r 2=R 2-r 2,r 2=R 22,所以r =22R ,此时圆柱的高h =2R ,V 球V 圆柱=43πR 3π×(22R )2×2R=423,选B.答案:B6.[2012·长春一模]设a ,b 是两条不同的直线,α,β是两个不同的平面,有下列四个命题:①若a ⊥b ,a ⊥α,b ⊄α,则b ∥α;②若a ∥α,α⊥β,则a ⊥β; ③若α⊥β,a ⊥β,则a ∥α或a ⊂α;④若a ⊥b ,a⊥α,b ⊥β, 则α⊥β.其中正确命题的个数为( ) A. 1 B. 2 C. 3 D. 4解析:在如图所示的长方体中,A 1A ⊥A 1B 1,A 1A ⊥平面ABCD , A 1B 1⊄平面ABCD ,则A 1B 1∥平面ABCD ,①正确;设A 1B 1为a ,平面AC 为α,平面A 1B 为β,显然有a ∥α,α⊥β,但得不到a ⊥β,②不正确;可设A 1A 为a ,平面AC 为β,平面A 1D 或平面B 1C 为α,满足③的条件且得a ∥α或a ⊂α,③正确;设A 1B 1为a ,平面A 1D 为α,A 1A 为b ,平面AC 为β,满足④的条件且得到α⊥β,④正确.答案:C7.一个空间几何体的三视图如图,则该几何体的体积为( )A .2 3B .2 5 C.433D.533解析:该几何体是三棱柱中截去一个棱锥,三棱柱的底面边长为2,高是2,截去的三棱锥底面边长是2,高是1,所以该几何体的体积是V =12×2×3×2-13×12×2×3×1=533.答案:D8.如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角解析:AB与SC所成的角是∠SCD,DC与SA所成的角是∠SAB,而这两个角显然不相等,故D不正确.答案:D9.在矩形ABCD中,若AB=3,BC=4,P A⊥平面AC,且P A =1,则点P到对角线BD的距离为()A. 292 B.135C. 175 D.1195解析:过A作AE⊥BD于E.连接PE.因为P A⊥平面AC,BD⊂平面AC,所以P A⊥BD,所以BD⊥平面P AE,所以BD⊥PE,即PE就是点P到BD的距离,因为AE=AB·ADBD=3×432+42=125,P A=1,所以PE=13 5.答案:D10.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2D .5πa 2解析:由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a .如图,设O 1、O 分别为上、下底面的中心,且球心O 2为O 1O 的中点,则AD =32a ,AO =33a ,OO 2=a2,设球O 2的半径为R ,则R2=AO 22=13a 2+14a 2=712a 2.∴该球的表面积S 球=4πR 2=4π×712a 2=73πa 2.答案:B11.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,CC 1=22,E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A. 2B. 3C. 2D. 1解析:连接AC ,与BD 交于点O ,连接OE ,因为O ,E 分别是AC ,CC 1的中点,所以OE ∥AC 1,且OE =12AC 1,所以AC 1∥平面BED ,直线AC 1与平面BED 的距离等于点C 到平面BED 的距离.过C 作CF ⊥OE 于F ,则CF 即为所求距离.因为正四棱柱ABCD -A 1B 1C 1D 1的底面边长为2,高为22,所以AC =22,OC =2,CE =2,OE =2,利用等面积法得CF =OC ·CEOE =1,选D.答案:D12.如图,边长为a 的等边△ABC 的中线AF 与中位线DE 交于点G ,已知△A ′DE (A ′∉平面ABC )是△ADE 绕DE 旋转过程中的一个图形,对于下列叙述错误的是( )A .平面A ′FG ⊥平面ABCB .BC ∥平面A ′DEC .三棱锥A ′-DEF 的体积最大值为164a 3D .直线DF 与直线A ′E 可能共面解析:A 项中,由已知可得四边形ADFE 是菱形,则DE ⊥GA ′,DE ⊥GF ,所以DE ⊥平面A ′FG ,所以平面A ′FG ⊥平面ABC ,A 项正确;又BC ∥DE ,∴BC ∥平面A ′DE ,B 项正确;当平面A ′DE ⊥平面ABC 时,三棱锥A ′-DEF 的体积达到最大,最大值为13×14×34a 2×34a =164a 3,C 项正确;在旋转过程中DF 与直线A ′E 始终异面,D 项不正确.答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.一个几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图知,该几何体是一个圆柱和三棱锥的组合体.圆柱的底面半径为1,高为1,所以圆柱的体积为π×12×1=π;三棱锥的底面是等腰直角三角形,两直角边为2,三棱锥的高为3,所以三棱锥的体积为13×12×2×2×3=33,所以该几何体的体积为π+33.答案:π+3314.在三棱锥P -ABC 中,P A ⊥底面ABC ,P A =2,底面△ABC是边长为2的正三角形,则此三棱锥外接球的半径为________.解析:底面△ABC 是边长为2的正三角形,P A ⊥底面ABC ,可得此三棱锥的外接球即为以△ABC 为底面、以P A 为高的正三棱柱的外接球.∵△ABC 是边长为2的正三角形,∴△ABC 的外接圆半径r =233,球心到△ABC 的外接圆圆心的距离d =1,故球的半径R =r 2+d 2=73=213.答案:21315.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,点E 为AA 1的中点,在对角面BB 1D 1D 上取一点M ,使AM +ME 最小,其最小值为________.解析:取CC 1的中点F ,连接EF ,MF ,EF 交平面BB 1D 1D 于点N ,则EN =FN ,所以F 点是E 点关于平面BB 1D 1D 的对称点,则AM +ME =AM +MF ,所以当A ,M ,F 三点共线时,AM +MF 最小,即AM +ME 最小,此时AM +MF =AF =3a 2.答案:3a 216.正方体ABCD -A 1B 1C 1D 1的棱长为a ,M ,N ,P ,Q 分别在棱A 1D 1,A 1B 1,B 1C 1,BC 上移动,则四面体MNPQ 的最大体积是________.解析:由图可知,四面体MNPQ 的体积就是三棱锥Q -MNP 的体积,而三棱锥的高是a ,当底面△MNP 的面积最大时体积最大,S △MNP 最大=12a 2,所以四面体MNPQ 的最大体积是13×12a 2×a =16a 3.答案:16a 3.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC.(1)求证:BE∥平面PDA;(2)求证:平面PBD⊥平面PBE.证明:(1)∵EC∥PD,PD⊂平面PDA,EC⊄平面PDA,∴EC∥平面PDA,同理可得BC∥平面PDA,又EC∩BC=C,故平面BEC∥平面PDA.又∵BE⊂平面EBC,因此BE∥平面PDA.(2)连接AC交BD于点O,取PB的中点F,连接OF.由于FO∥PD,又∵EC∥PD,∴FO∥EC,且FO=EC,因此OCEF 为平行四边形,于是OC ∥EF .又∵OC ⊥平面PBD ,∴EF ⊥平面PBD ,又∵EF ⊂平面PBE ,故平面PBD ⊥平面PBE .18.(本小题满分12分)如图(1),在四棱锥P -ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,E 为侧棱PD 上一点,F 为AB 上一点.该四棱锥的正视图和侧视图如图(2)所示.(1)求四面体PBFC 的体积;(2)证明:AE ∥平面PFC ;(3)证明:平面PFC ⊥平面PCD .解:(1)由侧视图可得F 为AB 的中点,BF =1,所以△BFC 的面积S =12 ×1×2=1.因为P A ⊥平面ABCD ,所以四面体PBFC 的体积V P -BFC =13S △BFC ×P A =13×1×2=23.(2)取PC的中点Q,连接EQ,FQ. 由正视图可得E为PD的中点,所以EQ∥CD,EQ=12CD.又因为AF∥CD,AF=12CD,所以AF∥EQ,AF=EQ.所以四边形AFQE为平行四边形,所以AE∥FQ. 因为AE⊄平面PFC,FQ⊂平面PFC,所以AE∥平面PFC.(3)因为P A⊥平面ABCD,所以P A⊥CD.因为底面ABCD为正方形,所以AD⊥CD.所以CD⊥平面P AD.因为AE⊂平面P AD,所以CD⊥AE.因为P A=AD,E为PD的中点,所以AE⊥PD. 所以AE⊥平面PCD.由(2)知AE∥FQ,所以FQ⊥平面PCD.因为FQ⊂平面PFC,所以平面PFC⊥平面PCD.19.(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD 是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC的中点.(1)求证:P A∥平面BMD;(2)求证:AD⊥PB.证明:(1)连接AC,AC与BD相交于点O,连接MO,∵ABCD是平行四边形,∴O是AC的中点.∵M为PC的中点,∴MO∥AP.∵P A⊄平面BMD,MO⊂平面BMD,∴P A∥平面BMD.(2)∵PD⊥平面ABCD,AD⊂平面ABCD,∴PD⊥AD.∵∠BAD=∠BCD=60°,AB=2AD,∴BD2=AB2+AD2-2AB·AD·cos60°=AB2+AD2-2AD2=AB2-AD2.∴AB2=AD2+BD2.∴AD⊥BD.∵PD∩BD=D,PD⊂平面PBD,BD⊂平面PBD,∴AD⊥平面PBD.∵PB⊂平面PBD,∴AD⊥PB.20.(本小题满分12分)如图,已知三棱锥A-BCD中,AB⊥BD,AD⊥CD,E,F分别为AC,BC的中点,且△BEC为正三角形.(1)求证:CD⊥平面ABD;(2)若CD=3,AC=10,求点C到平面DEF的距离.解:(1)∵△BEC为正三角形,F为BC的中点,∴EF⊥BC.∵EF∥AB,∴AB⊥BC.又∵AB⊥BC,∴AB⊥平面BCD,∴AB⊥CD,又∵AD⊥CD,AB∩AD=A,∴CD⊥平面ABD.(2)设点C 到平面DEF 的距离为h ,∵AC =10,∴BE =BC =5,∴AB =2EF =53,在Rt △BDC 中,∵F 为BC 的中点,∴DF =12BC =52,∴S △EFD =12DF ·EF =2538,∴V C -EFD =13S △EFD ·h =25324h .在Rt △BCD 中,∵CD =3,BC =5,∴BD =4,∴S △DFC =12S △DBC=3,∴V E -DFC =13S △DFC ·EF =532,∵V C -EFD =V E -DFC ,∴h =125,∴点C 到平面DEF 的距离为125.21.(本小题满分12分)如图(1),△BCD 是等边三角形,AB =AD ,∠BAD =90°,M ,N ,G 分别是BD ,BC ,AB 的中点,将△BCD 沿BD 折叠到△BC ′D 的位置,使得AD ⊥C ′B ,如图(2).(1)求证:平面GNM∥平面ADC′;(2)求证:C′A⊥平面ABD.解:(1)因为M,N分别是BD,BC′的中点,所以MN∥DC′.因为MN⊄平面ADC′,DC′⊂平面ADC′,所以MN∥平面ADC′.同理,NG∥平面ADC′.又因为MN∩NG=N,所以平面GNM∥平面ADC′.(2)因为∠BAD=90°,所以AD⊥AB.又因为AD⊥C′B,且AB∩C′B=B,所以AD⊥平面C′AB.因为C′A⊂平面C′AB,所以AD⊥C′A.△BC′D是等边三角形,AB=AD,不妨设AB=1,则BC′=C′D=BD=2,可得C′A=1.由勾股定理的逆定理,可得AB⊥C′A.因为AB∩AD=A,所以C′A⊥平面ABD.22.(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面P AD⊥底面ABCD,且P A=PD=22AD,E、F分别为PC、BD的中点.(1)求证:EF∥平面P AD;(2)求证:平面P AB⊥平面PDC;(3)求三棱锥C-PBD的体积.解:(1)连接AC,易知AC交BD于点F,∵四边形ABCD为正方形,F为AC的中点,E为PC的中点,∴EF∥P A.又P A⊂平面P AD,EF⊄平面P AD,∴EF∥平面P AD.(2)∵平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,四边形ABCD为正方形,CD⊥AD,CD⊂平面ABCD,∴CD⊥平面P AD.∴CD⊥P A.又P A=PD=22AD,∴P AD是等腰直角三角形,且∠APD=π2,即P A⊥PD.∵CD∩PD=D,且CD、PD⊂平面PDC,∴P A⊥平面PDC.又P A⊂平面P AB,∴平面P AB⊥平面PDC.(3)取AD的中点O,连接OP,OF.∵P A=PD,∴PO⊥AD.∵侧面P AD⊥底面ABCD,平面P AD∩平面ABCD=AD,∴PO⊥平面ABCD,∵O、F分别为AD、BD的中点,∴OF∥AB,又四边形ABCD 是正方形,∴OF⊥AD.∵P A=PD=22AD,∴P A⊥PD,OP=OA=1.故三棱锥C -PBD 的体积V C -PBD =V P -BCD =13×12×2×2×1=23.。

2015年河南专升本高数真题+答案解析

2015年河南专升本高数真题+答案解析

河南省2015年普通高等学校 专科毕业生进入本科阶段学习考试高等数学一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑。

1.已知函数()f x x =,则1f f x ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( )A .xB .2xC .1xD .21x 【答案】C【解析】因为()f x x =,则11f x x⎛⎫= ⎪⎝⎭,所以111f f f x x x ⎡⎤⎛⎫⎛⎫== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.2.已知函数84()f x x x =-,则()f x 是( )A .奇函数B .偶函数C .非奇非偶函数D .无法判断【答案】B【解析】()()8484()()f x x x x x f x -=---=-=,即()f x 为偶函数.3.已知函数12()f x x =,则()f x 的定义域是( )A .(0,)+∞B .[0,)+∞C .(,0)-∞D .(,0]-∞【答案】B【解析】由12()f x x ==()f x 的定义域是[0,)+∞.4.已知极限0sin()lim 2x mx x→=,则可确定m 的值是( )A .1B .2C .12D .0【答案】B【解析】00sin()lim lim 2x x mx mxm xx →→===.5.当0x →时,若212cos ~2a x x -,则可确定a 的值一定是( )A .0B .1C .12 D .12-【答案】C【解析】由()212cos ~02a x x x -→,可知()2001lim 2cos lim 2x x a x x →→-=,即2cos00a -=,故12a =.6.下列极限存在的是( )A .21limx x x →∞+B .01lim21x x →-C .01lim x x→D.x 【答案】A【解析】22111lim lim 01x x x x x x →∞→∞++==,极限存在;01lim 21xx →=∞-,极限不存在;01lim x x→=∞,极限不存在;x x =∞,极限不存在.7.已知函数sin ,0()1,0a xx f x x x ⎧≠⎪=⎨⎪=⎩,在0x =处,下列结论正确的是( )A .1a =时,()f x 必然连续B .0a =时,()f x 必然连续C .1a =时,()f x 不连续D .1a =-时,()f x 必然连续【答案】A【解析】00sin lim ()limx x a xf x a x→→==,又知(0)1f =,故1a =时,()f x 必连续.8.极限30sin lim sin x x xx →-的值是( )A .16B .13C .0D .∞【答案】A【解析】2332200001sin sin 1cos 12lim lim lim lim sin 336x x x x xx x x x x x x x x →→→→---====.9.已知函数()()()f x x a g x =-,其中()g x 在点x a =处可导,则()f a '=( )A .0B .'()g aC .()g aD .()f a【答案】C 【解析】00()()()0()limlim ()x x f a x f a xg a x f a g a x x→→+-+-'===.10.已知曲线2()f x x =与3()g x x =,当它们的切线相互垂直时,自变量x 的值应为( )A .1-B. C .16-D【答案】B【解析】()2f x x '=,2()3g x x '=,两曲线的切线相互垂直,即()()1f x g x ''⋅=-,即2231x x ⋅=-,即x =11.已知函数()f x x =,则该函数()f x 在点0x =处( ) A .连续且可导 B .不连续C .连续但不可导D .左右导数均不存在【答案】C【解析】00lim ()lim 0(0)x x f x x f →→===,故()f x 在0x =处连续; 00()(0)(0)lim lim 1x x f x f x f x x ---→→--'===-,00()(0)(0)lim lim 1x x f x f xf xx +++→→-'===,故()f x 在0x =处不可导.12.已知函数()cos f x x =在闭区间[]0,2π上满足罗尔定理,那么在开区间(0,2)π内使得等式'()0f ξ=成立的ξ值是( )A .2πB .πC .0D .2π【答案】B【解析】()cos f x x =,()sin f x x '=-,令()sin 0f x x '=-=,02x π<<,可得x π=,即ξπ=.13.已知函数()f x 在邻域(,)δδ-内连续,当(,0)x δ∈-时,'()0f x <,当(0,)x δ∈时,'()0f x >,则在邻域(,)δδ-内( )A .(0)f 是极小值B .(0)f 是极大值C .(0)f 不是极值D .(0)f 是最大值【答案】A【解析】由题可知()f x 在(,0)δ-上单调减少,在(0,)δ上单调增加,又由()f x 在(,)δδ-内连续,可知()f x 在0x =处取得极小值.14.已知函数()f x 在开区间(,)a b 内有:'()0f x <且"()0f x >,则在开区间(,)a b 内,()f x 是( ) A .单调递减且形状为凸 B .单调递增且形状为凸C .单调递减且形状为凹D .单调递增且形状为凹【答案】C【解析】'()0f x <,说明()f x 在(,)a b 内单调递减,"()0f x >,说明()f x 在(,)a b 内为凹函数.15.已知曲线52y x =+,则该曲线的拐点(,)x y =( )A .(0,2)B .(1,3)C .(0,0)D .(1,1)-【答案】A【解析】45y x '=,320y x ''=,令0y ''=,得0x =,且0x <时0y ''<,0x >时0y ''>,故(0,2)为曲线的拐点.16.已知函数()F x 是()f x 的一个原函数,则不定积分(2)f x dx =⎰( )A .1()2F x C +B .1(2)2F x C +C .()F x C +D .(2)F x C +【答案】B【解析】11(2)(2)(2)(2)22f x dx f x d x F x C ==+⎰⎰.17.已知函数0()sin xf x t tdt =⎰,则'()f x =( )A .sin xB .cos x xC .cos x x -D .sin x x【答案】D 【解析】()'()sin sin xf x t tdt x x '==⎰.18.已知函数()f x 在闭区间[,]a a -上连续,则定积分4sin aa x xdx -=⎰( ).A .-1B .0C .1D .不确定【答案】B【解析】由于被积函数4sin x x 为奇函数,故4sin 0aa x xdx -=⎰.19.已知定积分1210I x dx =⎰,1320I x dx =⎰,则有( )A .12I I >B .12I I =C .12I I <D .不确定【答案】A【解析】当01x ≤≤时,23x x >,且等号只在端点处成立,故112300x dx x dx >⎰⎰,即12I I >.20.已知函数()y f x =在闭区间[,]a a -上连续,且()0f x ≥,则由曲线()y f x =与直线x a =,x b =,0y =所围成的平面图形的面积是( )A .()baf x dx ⎰B .()abf x dx ⎰C .()()()f b f a b a --D .不确定【答案】A【解析】由定积分的几何意义可知A 正确.21.已知下列微分方程,则可进行分离变量的是( ) A .'3sin xy y x -= B .2(cos )()0x y x dy y x dx -++=C .'sin cos y x y =D .'420yy y x -==【答案】C 【解析】C 中sin cos dyx y dx=,分离变量,得sin cos dy xdx y =.22.已知微分方程''5'0y y ay -+=的一个解为2x e ,则常数a =( )A .4B .3C .5D .6【答案】D【解析】22()2x x e e '=,22()4x x e e ''=,代入微分方程,得2224520x x x e e ae -⨯+=,6a =.23.下列各组角中,可以作为向量的一组方向角的是( )A .,,446πππB .,,432πππC .,,434πππD .,,433πππ【答案】D【解析】由于方向角α,β,γ必须满足222cos cos cos 1αβγ++=,可以验证只有D 正确.24.已知函数2223z x xy y =+-,则2zx y∂∂∂=( )A .2-B .2C .6D .3【答案】D【解析】43zx y x∂=+∂,23z z x y y x ∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭.25.某公司要用铁板做成一个容积为327m 的有盖长方体水箱,为使用料最省,则该水箱的最小表面积应为( )A .354mB .327mC .39mD .36m【答案】A【解析】设长方形的长宽分别为a 、b ,则高为27ab,于是,表面积2727545422S ab ab b a b a ⎛⎫=++=++ ⎪⎝⎭,令2254205420S b a a S a bb ∂⎧=-=⎪⎪∂⎨∂⎪=-=⎪∂⎩,得33a b =⎧⎨=⎩,且驻点唯一,由于实际问题最值一定存在,可知最小表面积354S m =.26.已知平面闭区域22:116D x y ≤+≤,则二重积分3Ddxdy =⎰⎰( )A .45πB .45C .48πD .48【答案】A【解析】22333(41)45D Ddxdy S πππ==⋅-⋅=⎰⎰.27.已知100(,)(,)Df x y d dx f x y dy σ=⎰⎰⎰,将积分次序改变,则(,)D f x y d σ=⎰⎰( )A .2110(,)y dy f x y dx ⎰⎰ B .2101(,)y dy f x y dx ⎰⎰C .2110(,)y dy f x y dx ⎰⎰D .2011(,)y dy f x y dx ⎰⎰【答案】A【解析】2110(,)(,)D y f x y d dy f x y dx σ=⎰⎰⎰⎰.28.已知L 为连接(1,0)及(0,1)两点的直线段,则曲线积分()L x y ds +=⎰( )A .2BC .1D .0【答案】B【解析】由于直线段L 的方程为1x y +=,故()Lx y ds +==⎰⎰29.下列级数绝对收敛的是( )A .1(1)nn ∞=-∑B .111(1)3n n n n ∞--=-∑ C .1(1)sinnn nπ∞=-∑D .2112(1)!xn n n ∞+=-∑ 【答案】B【解析】对于B 项,121(1)3n n nu --=-,111113lim lim lim 1333n n n n n nn n u n n u n +→∞→∞→∞-++===<,故1n n u ∞=∑收敛,原级数绝对收敛.30.已知级数1n n μ∞=∑,则下列结论正确的是( )A .若lim 0n x μ→∞=,则1n n μ∞=∑收敛 B .若1n n μ∞=∑的部分和数列{}n S 有界,则1n n μ∞=∑收敛C .若1n n μ∞=∑收敛,则1n n μ∞=∑绝对收敛D .若1n n μ∞=∑发散,则1n n μ∞=∑也发散【答案】C【解析】A 项中若1n nμ=,结论不成立;B 项中若(1)n n μ=-,结论不成立;D 项中若1(1)nn nμ=-,结论不成立;由绝对收敛的定义知,C 正确.二、填空题(每小题2分,共20分)31.已知函数()1f x x =-,则()f x 的反函数y =________. 【答案】1y x =+【解析】由1y x =-,得1x y =+,交换x ,y 的位置,得反函数为1y x =+,x R ∈.32.极限21lim 31n n n →∞+=+________. 【答案】0【解析】222111lim lim 01313n n n n n n n →∞→∞++=++33.已知函数1,1()1,1x x f x x +≠⎧=⎨=⎩,则点1x =是()f x 的________间断点. 【答案】可去【解析】()11lim ()lim 12x x f x x →→=+=,而(1)1f =,故1x =是()f x 的可去间断点.34.已知函数()ln f x x =为可导函数,则()f x 在点 1.01x =处的近似值为________. 【答案】0.01【解析】由000()()()f x x f x f x x '+∆≈+∆,故(10.01)(1)(1)0.010.01f f f '+≈+⋅=.35.不定积分cos(32)x dx +=⎰________. 【答案】1sin(32)3x C ++【解析】11cos(32)cos(32)(32)sin(32)33x dx x d x x C +=++=++⎰⎰.36.定积分0sin 2xdx π=⎰________.【答案】2 【解析】000sin 2sin 2cos22222x x x x dx d πππ==-=⎰⎰.37.已知函数22ln()z x y =+,则全微分(1,1)dz =________.【答案】dx dy +【解析】222z x x x y ∂=∂+,222z y y x y ∂=∂+,则(1,1)(1,1)(1,1)222222xy dz dx dy dx dy x y x y =+=+++.38.与向量{}3,4,1-平行的单位向量是________.【答案】± 【解析】=±=±e .39.微分方程'x y y e -=的通解是________. 【答案】ln()x y e C =+【解析】xy dy e dx e=,分离变量,得y x e dy e dx =,两边积分,得y x e e C =+,即通解为ln()x y e C =+.40.幂级数1(21)nn n x ∞=+∑的收敛半径R =________.【答案】1 【解析】121lim lim 123n n n na n R a n +→∞→∞+===+.三、计算题(每小题5分,共50分) 41.求极限1lim(1sin )xx x →∞+.【答案】e【解析】原式111sin lim sin sin lim(1sin )x x x x xxx x ee →∞⋅⋅⋅→∞=+==.42.已知函数()f x 为可导函数,且()0f x ≠,求函数y =【解析】[]121()()2y f x f x -''=⋅.43.计算不定积分21xdxx +⎰. 【答案】21ln(1)2x C ++【解析】原式()222111ln(1)212d x x C x +==+++⎰.44.计算定积分⎰【答案】1【解析】11111t t tt te dt tde te e dt ===-=⎰⎰⎰⎰.45.求过点(1,2,1)A ,且与直线240:320x y z l x y z -+=⎧⎨--=⎩平行的直线方程. 【答案】1219710x y z ---== 【解析】所求直线的方向向量为()2419,7,10312=-=--i j ks ,又直线过点(1,2,1)A ,故所求直线方程为1219710x y z ---==. 46.已知函数(,)z f x y =由方程22240x y z z ++-=所确定,求全微分dz . 【答案】2xdx ydy z+- 【解析】方程两边微分,得22240xdx ydy zdz dz ++-=,整理得2xdx ydy dz z +=-.47.计算二重积分22x y D e dxdy +⎰⎰,其中D 是环形域2214x y ≤+≤.【答案】()4e e π- 【解析】()222222224011122x y r r D edxdy d e rdr e dr e e πθππ+=⋅=⋅=-⎰⎰⎰⎰⎰.48.求微分方程'xy e y x x+=的通解. 【答案】()1x y e C x=+ 【解析】()()11ln ln 11x xdx dx x x x x x x e e y e e dx C e e dx C e dx C e C x x x x --⎛⎫⎛⎫⎰⎰=+=+=+=+ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰.49.求幂级数11(1)(1)n n n x n∞-=--∑的收敛区间. 【答案】(0,2) 【解析】11(1)lim lim 11(1)n n n n n nu x n x u n x ++→∞→∞-=⋅=-+-,令11x -<,得111x -<-<,即02x <<,故收敛区间为(0,2).50.求级数11n n nx∞-=∑的和函数.【答案】()()211S x x =-,()1,1x ∈-【解析】易求得此级数的收敛域为()1,1-,设()11n n S x nx ∞-==∑,()1,1x ∈-,则11000111()1xxx n n n n n n x S t dt nt dt nt dt x x ∞∞∞--===⎛⎫==== ⎪-⎝⎭∑∑∑⎰⎰⎰,()1,1x ∈-,两边求导,得()()2111x S x x x '⎛⎫== ⎪-⎝⎭-,故原级数的和函数为()()211S x x =-,()1,1x ∈-.四、应用题(每小题7分,共14分)51.计算由曲线0x =,x y e =,y e =所围成的平面图形的面积.【答案】1【解析】所求平面图形的面积()101x S e e dx =-=⎰.52.某公司主营业务是生产自行车,而且产销平衡,公司的成本函数3()400002000.002C x x x =+-,收入函数3()3500.004R x x x =-,则生产多少辆自行车时,公司的利润最大?【答案】37500【解析】公司的利润22()()()3500.004400002000.002L x R x C x x x x x =-=---+21500.00240000x x =--,1500.004L x '=-,令0L '=,得唯一驻点37500x =,且0L ''<,由实际问题知最大值一定存在,故37500x =时,L 取得最大值,即生产37500辆自行车时,公司利润最大.五、证明题(6分)53.已知方程11730x x x x --+=有一正根1x =,证明方程1062117310x x x --+=必有一个小于1的正根.【证明】令1173()f x x x x x =--+,则根据题意可知(1)0f =,因为()f x 在[]0,1上连续,在()0,1内可导,且(0)(1)0f f ==,故由罗尔定理可知:()0,1ξ∃∈,使得()0f ξ'=,即1062117310ξξξ--+=,故方程1062117310x x x --+=必有一个小于1的正根.。

2015届高三第二次四校联考数学文试题-Word版含答案

2015届高三第二次四校联考数学文试题-Word版含答案

2015届高三年级第二次四校联考数学〔文〕试题2015.1命题:康杰中学 临汾一中 忻州一中 长治二中【总分值150分,考试时间为120分钟】一、选择题(5×12=60分,在每题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号) 1. 已知集合}{1log 4<=x x A ,集合{}82<=x x B ,则A B 等于A .()4,∞-B .()4,0C . ()3,0D .()3,∞-2. 已知复数iiz -=1(i 为虚数单位),则复数z 在复平面内对应的点在 A . 第一象限 B .第二象限 C .第三象限D .第四象限3. 已知数列{}n a 满足12=a ,031=++n n a a )(*∈N n ,则数列{}n a 的前10项和10S 为A .)13(4910- B .)13(4910+ C .)13(4910+- D .)13(4910-- 4. 已知函数x x x f 2)(2+=,假设)2(2)()(f a f a f ≤+-,则实数a 的取值范围是A .[]2,2-B .(]2,2-C .[]2,4-D .[]4,4-5.已知命题p :()0,∞-∃x ,x x 32<,命题q :()1.0∈∀x ,0log 2<x 则以下命题为真命题的是A. q p ∧ B .)(q p ⌝∨ C .q p ∧⌝)( D .)(q p ⌝∧ 6.执行如下图的程序框图,输出的S 值为A. 144 B .36C .49D .1697.已知向量b a ,满足1=a ,2=b ,3-=•b a ,则a 与b 的夹角为A .32π B .3π C .6π D . 65π 8.已知M 是ABC ∆内的一点,且AB AC 23⋅=BAC 30∠=,假设MBC ∆,MCA ∆,S S i=+0,1S i ==结束开始是否输出Si<13?2i i =+MAB ∆的面积分别为x y1,,2,则x y 14+的最小值为〔 〕 A.20B.18C.16D.99.已知函数x x f x+=3)(,x x x g 3log )(+=,33log )(x x x h -=的零点分别为1x ,2x ,3x ,则1x ,2x ,3x 的大小关系是A .1x >2x >3xB .2x >1x >3xC .1x >3x >2xD .3x >2x >1x10. 已知α是第二象限角,54)3sin(=-απ,函数)2cos(cos cos sin )(x x x f -+=παα 的图像关于直线0x x =对称,则=0tan xA .53-B. 34- C. 43- D. 54-11.A.510+ B. 210+ C.6226++ D. 626++12. 已知函数⎩⎨⎧>≤-=-0,lg 0,22)(x x x x f x,则方程)0()2(2>=+a a x x f 的根的个数不可能为A .3B .4C .5D .6 二、填空题(本大题共4小题,每题5分,共20分,把答案填在答题纸的相应位置上) 13.以下四个命题:①函数()()y f a x x R =+∈与()()y f a x x R =-∈的图像关于直线x a =对称;②函数2()lg(2)f x ax x a =-+的值域为R ,则实数a 的取值范围为[0,1]; ③在ABC ∆中,“30>A ”是“21sin >A ”的充分不必要条件;④数列{}n a 的通项公式为22()n a n λn n N +=++ ∈,假设{}n a 是单调递增数列,则实数λ的取值范围为(3,)-+∞。

河南师范大学801高等代数

河南师范大学801高等代数

第1页,共2页........................ 优质文档..........................2018年攻读硕士学位研究生入学考试试题科目代码与名称:801高等代数 适用专业或方向:数学、统计学 表考试时间:3小时 满分:150分试题编号:A 仓(必须在答题纸上答题,在试卷上答题无效,答题纸可向监考老师索要) 一、(15分)求整系数多项式X 5 + X 4-6X 3-14X 2-11X -3的有理根,并写出它 的标准分解式。

'1二、(15分)求矩阵』=~一1 "1三、(15分)设印.,O,S1,2,3,・・・,〃,计算下面行列式的值:四、 (15分)设力、"分别为sxn, nxm 矩阵,证明关于矩阵秩的不等式:五、 (15分)证明:方阵刀为正定矩阵的充分必要条件是存在〃个线性无关的向量名,%,…,%,使得A = a'i a i +a'2a 2 + ■•■ + a'n a n ,其中a ;为%的转置。

六、(15 分)在 R'中求向量a =(0,0,0,1)在基扃=(1,1,0,1),勻=(2,1,3,1),勻= (1,1,0,0), /=(0,l ,T ,T )下的坐标。

1+。

11 …1 12 2 +2 … 2 23 33 + Q3 ,,,3377 —1 77-1 ■•- (〃-1) + % n — \nn n ••- n〃 + % D n-1 -1 -r 1 -1 -1 -1 1 -1-1 -1 1 ,中所有元素的代数余子式之和t 鸟=七、(20分)设叫,吧是数域尸上〃维线性空间■的两个子空间,且dim%+dimW2=〃,求证:存在/的线性变换A,使得A '(0)= %, XV = W,O八、(20分)求下列矩阵的最小多项式及若当标准形。

(1)〃阶方阵刀,其所有元素均为1;(2)〃阶方阵力邱丁,其中a早为非零〃维实列向量,并且0玲=0。

14-15年第2学期高等数学试题(含答案)

14-15年第2学期高等数学试题(含答案)
2
z dV ,其中 是由旋转抛物面 x

y 2 2 z 与平面 z 2 所围成的区域;
6、设 为上半球面 z 4 x2 y2 ( z 0) ,则求曲面积分 7、证明曲线积分
( x

2
y 2 z 2 )ds 。

( 2,1) (1, 0)
(2xy y 4 3)dx ( x 2 4xy3 )dy 与路径无关,并计算积分值.
z 2 所截部分的外侧。
四、证明题(每题 5 分,共 2 题,共 10 分) 1、 已知 f n ( x) 满足 f n ( x) f n ( x) x
n 1 x
e ( n 为正整数) , f n (1)
e ,求函数项级数 n
2
f
n 1

n
( x) 的和。
2 、 设 曲 线 L 是 正 向 圆 周 ( x a) 2 ( y a) 2 1 , ( x ) 是 连 续 的 正 函 数 , 证 明 :
8、求下列曲面积分: (1)I
( x 1)dydz ydzdx dxdy ,其中 : 平面 x y z 1 在第一卦限部分,

法向量指向原点; ( 2) I
( x y)dydz ( x y)dzdx z

2
dxdy , : 锥面 z x 2 y 2 被 z 1 ,
z x
( e ,1)

(C)
(
)
(B) 1
1 e
(D) e
3、设 D 是 xoy 平面上以 (0,0) , (1,1) , (1,1) 为顶点的三角形区域,D 1 为 D 在第一象限 的部分,则 (A) 4 (C)2

二本2014-2015(1)高数试卷A及答案(1)

二本2014-2015(1)高数试卷A及答案(1)

郑州轻工业学院2014-2015学年第一学期 高等数学A1、B1 试卷A试卷号:A20150114-1一、单项选择题(每题3分,共15分)1.1x =为函数2sin(1)()1x f x x -=-的( ) (A ) 可去间断点; (B )无穷间断点; (C )跳跃间断点; (D )震荡间断点.2.设()(1)(2)(3)(4)f x x x x x x =----,则'()0f x =的实根的个数为( )(A )2; (B )3; (C )4; (D )5.3.极限x x x 121(lim )+→的值是( ) (A )e ; (B )e1; (C )2-e ; (D )2e . 4.设1,0(),0x f x x a x -≠⎪=⎨⎪=⎩,且3)(lim 0=→x f x ,则有( ) (A )3,3==a b ; (B ),6=b a 可取任意实数;(C ),3=b a 可取任意实数; (D )3=a ,b 取任意实数.5.设22()x f x dx x e C =+⎰,则)(x f =( ) (A) 22x xe ; (B) 222x x e ; (C) 22(1)x xe x +; (D) 2(2)x xe x +.二、填空题(每题3分,共15分)1.曲线243y x x =-+在其顶点处的曲率为__________. 2.若点(1,3)为曲线23bx ax y +=的拐点,则______,_______a b ==.3. 曲线22132x y x x -=-+水平渐近线为_________,铅直渐近线为_________. 4.设52x y x e =+,则(2015)(0)y =______________.5.3cos x dx =⎰________________. 三、计算题 (每题6分,共36分)1.求极限:20sin 1lim x x e x x →--. 2.求函数32()26187f x x x x =--+的单调区间及极值.3.若函数()y y x =由方程sin y e xy x e ++=所确定,求0|x dy =.4.求曲线sin cos 2x t y t=⎧⎨=⎩在4t π=处的切线方程. 5.求不定积分:cos x e x dx ⎰. 6.求不定积分:4(1)x x dx -⎰.四、解答题(本题7分)设arctan ,0()0x x f x x <⎧⎪=≥,求'()f x . 五、证明题(每题7分,共14分)1.证明:当1x >时,2(1)ln 1x x x ->+. 2.设函数()f x 在[1,]e 上连续,且0()1f x <<,在(1,)e 内可导,且'()1x f x <.证明在(1,)e 内有且仅有一点ξ,使得()ln f ξξ=.六、应用题(本题8分)将周长为2p 的矩形绕它的一边旋转一周构成一个圆柱体,当矩形的边长各为多少时,圆柱体的体积最大?七、综合分析题(本题满分5分)设函数)(x f 在),(∞+-∞内有定义,且恒有)()()(y f x f y x f =+,)(1)(x xg x f +=,其中1)(lim 0=→x g x ,试求)('x f .2014-2015学年第一学期 高等数学A1、B1 试卷A 参考答案试卷号:A20150114-1一、单项选择题(每题3分,共15分)1.1x =为函数2sin(1)()1x f x x -=-的( A ) (A ) 可去间断点; (B )无穷间断点; (C )跳跃间断点; (D )震荡间断点.2.设()(1)(2)(3)(4)f x x x x x x =----,则'()0f x =的实根的个数为( C)(A )2; (B )3; (C )4; (D )5.3.极限x x x 1021(lim )+→的值是( D )(A )e ; (B )e 1; (C )2-e ; (D )2e .4.设1,0(),0x f x x a x -≠⎪=⎨⎪=⎩,且3)(lim 0=→x f x ,则有(B )(A )3,3==a b ; (B ),6=b a 可取任意实数;(C ),3=b a 可取任意实数; (D ),3=a b 可取任意实数.5.设22()x f x dx x e C =+⎰,则)(x f =( C )(A) 22x xe ; (B) 222x x e ; (C) 22(1)x xe x + ; (D) 2(2)x xe x +.二、填空题(每题3分,共15分)1.曲线243y x x =-+在其顶点处的曲率为___2_____.2.若点(1,3)为曲线23bx ax y +=的拐点,则a =32-,b = 92.3. 曲线22132x y x x -=-+水平渐近线为1y =,铅直渐近线为2x =.4.设52x y x e =+,则(2015)(0)y = 20152.5.3cos x dx =⎰ 31sin sin 3x x C -+.三、计算题 (每题6分,共36分)1.求极限:20sin 1lim x x e x x →--. 解:原式0cos lim 2x x e xx →-= ……3分0sin 1lim 22x x e x→+== …..6分2.求函数32()26187f x x x x =--+的单调区间及极值.解:函数的定义域为(,)D =-∞+∞2'()612186(3)(1)f x x x x x =--=-+ ……2分令'()0f x =,得驻点1,3x x =-=. ……3分单增区间为(,1],[3,)-∞-+∞,单减区间为[1,3]-,极大值(1)17f -=,极小值(3)47f =-.3.若函数()y y x =由方程sin y e xy x e ++=所确定,求0|x dy =.解:方程两边关于自变量x 求导,()y y x =,则有''cos 0y e y y xy x +++=,所以cos 'y y xy e x +=-+. …….3分当0x =时,代入方程得1y =,所以2'(0)y e=-, ……..5分 故02|x dy dx e==-. ……6分 4.求曲线sin cos 2x t y t=⎧⎨=⎩在4t π=处的切线方程. 解:2sin 24sin cos dydy t dt t dx dx tdt-===-,……3分 在4t π=处,0,2dy x y dx===-,…….5分 所以切线方程为)2y x =--. ……6分 四、解答题(本题7分)5.求不定积分:e cos x x dx ⎰. 解:cos cos cos cos x x x x e x dx x d e e x e d x ==-⎰⎰⎰……2分 cos sin cos sin x x x x e x e x dx e x x d e =+=+⎰⎰cos sin sin (cos sin )cos x x x x x e x e x e d x e x x e xd x =+-=+-⎰⎰…….5分 移项得 1e cos (cos sin )2x x x dx e x x C =++⎰.……6分 6.求不定积分:4(1)x x dx -⎰.解法1:451(1)(1)5x x dx xd x ⎛⎫-=- ⎪⎝⎭⎰⎰ ……2分 5511(1)(1)55x x x dx =---⎰ ……4分 5611(1)(1)530x x x C =---+ ……6分解法2:4454(1)(11)(1)(1)(1)x x dx x x dx x dx x dx -=-+-=-+-⎰⎰⎰⎰…..4分6511(1)(1)65x x C =-+-+ ……6分 解法3:令1x t -=,则1,x t dx dt =+=,……2分原式454=(1)t t dt t dt t dt +=+⎰⎰⎰ …..4分65651111(1)(1)6565t t C x x C =++=-+-+ ……6分 解法4:4432(1)(4641)x x dx x x x x x dx -=-+-+⎰⎰ …..4分54326543214341(464)65232x x x x x dx x x x x x C =-+-+=-+-++⎰……6分设arctan ,0()0x x f x x <⎧⎪=≥,求'()f x .解:0x >时,()arctan f x x =,所以21'()1f x x =+;……2分0x <时()f x ='()f x = ……4分0x =时,(0)0f =,且00()(0)arctan '(0)lim lim 1x x f x f x f x x---→→-===,00()(0)'(0)lim lim x x f x f f x x +++→→-===+∞.所以()f x 在0x =处不可导. ……6分故21,01()0x x f x x ⎧<⎪+⎪=⎨>. ……7分五、证明题(每题7分,共14分)1.证明:当1x >时,2(1)ln 1x x x ->+.证法1:令()(1)ln 2(1)f x x x x =+--,1x ≥,则(1)0f =.……2分 11'()ln 2ln 1x f x x x x x +=+-=+-,且'(1)0f =.211''()0,1f x x x x =->>. ……5分所以1x >时,'()'(1)0f x f >=;1x >时,()(1)0f x f >=,整理即得2(1)ln 1x x x ->+. ……7分证法2:2(1)()ln ,11x f x x x x -=-≥+,且(1)0f =.……2分222211(1)14(1)'()2(1)(1)(1)x x x f x x x x x x x +---=-=-=+++. ……5分 当1x >时,'()0f x >,所以()(1)0f x f >=,即2(1)ln 1x x x ->+.……7分 2、设函数()f x 在[1,]e 上连续,且0()1f x <<,在(1,)e 内可导,且'()1x f x <.证明在(1,)e 内有且仅有一点ξ,使得()ln f ξξ=.证明:(1)存在性令()()ln ,1F x f x x x e =-≤≤,显然()F x 在[1,]e 上连续,且(1)(1)0,()()10F f F e f e =>=-<,即(1)()0F F e <,故()F x 在[1,]e 上满足零点定理,所以至少存在一点(1,)e ξ∈,使得()0F ξ=,即()ln f ξξ=. ……5分(2)唯一性 因为1'()1'()'()0xf x F x f x x x-=-=<,所以()F x 在[1,]e 上单减,故()F x 在(1,)e 内至多有一个零点. 综上所述,()F x 在(1,)e 内仅有一个零点,即在(1,)e 内有且仅有一点ξ,使得()ln f ξξ=. ……7分六、应用题(本题8分)将周长为2p 的矩形绕它的一边旋转一周构成一个圆柱体,当矩形的边长各为多少时,圆柱体的体积最大?解:设矩形一边长x ,则另一边长p x -.将其绕p x -边旋转,则旋转体的体积为223()(),0V x p x px x x p ππ=-=-<<, ……3分2'(23)V px x π=-,令'0V =,得驻点23x p =. 2''(26),''()203p V p x V p ππ=-=-<. ……7分 所以,当23x p =时,V 取极大值. 2133x p p x p =⇒-=. 由问题的实际意义知,当长和宽分别取2,33p p 时,体积最大. ……8分七、综合分析题(本题满分5分)设函数)(x f 在),(∞+-∞内有定义,且恒有)()()(y f x f y x f =+, )(1)(x xg x f +=,其中1)(lim 0=→x g x ,试证明()f x 在R 上处处可导,且)()('x f x f =.解:因为)(1)(x xg x f +=, 所以00()1()1(),lim lim ()1x x f x f x xg x g x x→→--===.……1分 0()()'()lim h f x h f x f x h→+-= ……3分 00()()()()1lim ()lim ()h h f x f h f x f h f x f x h h→→--===.……5分 所以,()f x 在R 上处处可导,且'()()f x f x =.。

河南15年高考数学试卷 (理科) 高清word 文字版

河南15年高考数学试卷 (理科)  高清word 文字版

2015年普通高等学校招生全国统一试卷理科数学注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

2.答题前,考生务必将自己的姓名,准考证号填写在本试卷相应的位置。

3.全部答案在答题卡上完成,答在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷一、选择题,本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。

(1)设复数z 满足i zz =-+11,则=z ( )(A )1 (B )2 (C )3 (D )2 (2)=-000010sin 160cos 10cos 20sin ( ) (A )23-(B ) 23(C )21- (D )21(3)设命题P :,2,2n n N n >∈∃则P -为 ( ) (A )n n N n 2,2>∈∀ (B ) n n N n 2,2≤∈∃ (C )n n N n 2,2≤∈∀ (D )n n N n 2,2=∈∃(4)投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概率为0.6,且每次投篮是否投中相互独立,则该同学通过测试的概率 ( )(A )0.648 (B )0.432 (C )0.36 (D )0.312(5)已知()00,y x M 是双曲线12:22=-y x C 上的一点,21,F F 是C 上的两个焦点,若021<∙→→MF MF ,则0y 的取值范围是 ( )(A )⎪⎪⎭⎫ ⎝⎛-33,33 (B ) ⎪⎪⎭⎫ ⎝⎛-63,63 (C )⎪⎪⎭⎫ ⎝⎛-322,322 (D )⎪⎪⎭⎫⎝⎛-332,332 (6)《九章算术》是我国古代内人极为丰富的数学名著。

书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为“在屋内墙角处堆放米(,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺米堆的高度为5尺,问米堆的体积和米各是多少?已知1斛米的体积为1.62立方米 ( )(A )14斛 (B ) 22斛 (C )36斛 (D )66斛 (7)设D 为ABC ∆所在平面内的一点,→→=CD BC 3;则 ( )(A )→+→-=→AC AB AD 3431 (B ) →-→=→AC AB AD 3431(C )→+→=→AC AB AD 3134 (D )→-→=→AC AB AD 3134(8)函数())cos(ϕ+=wx x f 的部分图像如图所示,则()x f 的单调递减区间为 ( )(A )z k k k ∈⎪⎭⎫ ⎝⎛+-,43,41ππ (B ) z k k k ∈⎪⎭⎫ ⎝⎛+-,432,412ππ(C )z k k k ∈⎪⎭⎫ ⎝⎛+-,43,41 (D )z k k k ∈⎪⎭⎫ ⎝⎛+-,432,412(9)执行右面的程序框图,如果输入的t=0.01,则输出的n= ( ) (A )5 (B ) 6 (C )7 (D )8(10)()52y x x ++的展开式,25y x 的系数为 ( ) (A )10 (B ) 20 (C )30 (D )60(11)圆柱被一个平面截取一部分后与半球(半径为r )组成的几何体,该几何体的正视图和俯视图如图所示,若该几何体的表面积为π2016+,则r= ( )(A )1 (B ) 2 (C )4 (D )8(12)设函数(),)12(a ax x e x f x +--=其中1<a ,若存在唯一的整数0x ,使得,则a 的取值范围是 ( )(A )⎪⎭⎫⎢⎣⎡-1,23e (B )⎪⎭⎫⎢⎣⎡-43,23e (C )⎪⎭⎫⎢⎣⎡43,23e (D )⎪⎭⎫⎢⎣⎡1,23e第II 卷本卷分为必做题和选做题两部分,第(13)题-第(21)题为必做题,每个考生都必须作答,第(22)题-第(24)为选做题,考生按要求作答。

2015年7月高数4试题答案

2015年7月高数4试题答案

0
0
0
3
0dxdy 0
1
D
----- 7 分
2
I 2( x y 1)dxdydz
1
3
----- 8 分
五.(本题满分 8 分) 求幂级数 2n 3n xn 的收敛半径和收敛域.
n1 n
本题 得分
解:因 lim n
an1 an
n lim n n 1
2n1 2n
3n1 3n
(C)收敛于 u1 a ;
(D)发散.
4.
.改变积分次序
e
1
ln
dx0
x
f ( x, y)dy 【D

密 封 线
(A)
e
dy
ln x f ( x, y)dx ;(B)
1
dy
ln y f ( x, y)dx ;
1
0
0
0
(C)
1
dy
e f ( x, y)dx ;
(D)
1
dy
e
f ( x, y)dx .
本题 得分
解: : z 1 x y
zx 1 , zy 1
----- 1 分
I xy(1 x y) 1 (1)2 (1)2 d xdy
D
1
1 x
3 0 dx0 xy(1 x y)dy
----- 4 分
3 120
----- 6 分
四.(本题满分 8 分)设 是锥面 z 1 x2 y2 被 z 0所截部分的上侧,利用高斯公式
线
1 1 1 1
5 1 x 6 1 x
5
6
1 ( 1 )n 5 n0
xn 5n
1 6

2015年河南省高考数学试卷(理科)(全国新课标ⅰ)

2015年河南省高考数学试卷(理科)(全国新课标ⅰ)

2015年河南省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1 B.C.D.22.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3125.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.810.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.6011.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.812.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)(x i﹣)(y i(w i﹣)表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年河南省高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2015•新课标Ⅰ)设复数z满足=i,则|z|=()A.1 B.C.D.2【分析】先化简复数,再求模即可.【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.【点评】本题考查复数的运算,考查学生的计算能力,比较基础.2.(5分)(2015•新课标Ⅰ)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【分析】直接利用诱导公式以及两角和的正弦函数,化简求解即可.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=.故选:D.【点评】本题考查诱导公式以及两角和的正弦函数的应用,基本知识的考查.3.(5分)(2015•新课标Ⅰ)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.4.(5分)(2015•新课标Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.【点评】本题考查独立重复试验概率的求法,基本知识的考查.5.(5分)(2015•新课标Ⅰ)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.【点评】本题考查向量的数量积公式,考查双曲线方程,考查学生的计算能力,比较基础.6.(5分)(2015•新课标Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.【点评】本题主要考查椎体的体积的计算,比较基础.7.(5分)(2015•新课标Ⅰ)设D为△ABC所在平面内一点,,则()A.B.C.D.【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.【解答】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.8.(5分)(2015•新课标Ⅰ)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z【分析】由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos(πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值;还考查了余弦函数的单调性,属于基础题.9.(5分)(2015•新课标Ⅰ)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.8【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n值为7,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)(2015•新课标Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60【分析】利用展开式的通项,即可得出结论.=,【解答】解:(x2+x+y)5的展开式的通项为T r+1令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键.11.(5分)(2015•新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.12.(5分)(2015•新课标Ⅰ)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【分析】设g(x)=e x(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g (x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D【点评】本题考查导数和极值,涉及数形结合和转化的思想,属中档题.二、填空题(本大题共有4小题,每小题5分)13.(5分)(2015•新课标Ⅰ)若函数f(x)=xln(x+)为偶函数.则a= 1.【分析】由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解【解答】解:∵f(x)=xln(x+)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x+)=xln(x+),∴﹣ln(﹣x+)=ln(x+),∴ln(﹣x+)+ln(x+)=0,∴,∴lna=0,∴a=1.另解:函数f(x)=xln(x+)为偶函数,可得g(x)=ln(x+)为R上奇函数,即g(0)=0,即有a=1.故答案为:1.【点评】本题主要考查了偶函数的定义及对数的运算性质的简单应用,属于基础试题.14.(5分)(2015•新课标Ⅰ)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.【解答】解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.【点评】本题考查椭圆的简单性质的应用,圆的方程的求法,考查计算能力.15.(5分)(2015•新课标Ⅰ)若x,y满足约束条件.则的最大值为3.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),则k OA==3,即的最大值为3.故答案为:3.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义以及直线的斜率,利用数形结合的数学思想是解决此类问题的基本方法.16.(5分)(2015•新课标Ⅰ)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).【分析】如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m﹣x=+﹣x,∴AB的取值范围是(﹣,+).故答案为:(﹣,+).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为﹣;②直线接近点E时,AB趋近最大值,为+;故答案为:(﹣,+).【点评】本题考查求AB的取值范围,考查三角形中的几何计算,考查学生的计算能力,属于中档题.三、解答题:17.(12分)(2015•新课标Ⅰ)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.【分析】(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣an2+2(an+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣an2=(an+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.18.(12分)(2015•新课标Ⅰ)如图,四边形ABCD为菱形,∠ABC=120°,E,F 是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE 丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【分析】(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,运用线面垂直的判定定理得到EG⊥平面AFC,再由面面垂直的判定定理,即可得到;(Ⅱ)以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,求得A,E,F,C的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC=,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG=,且EG⊥AC,在直角△EBG中,可得BE=,故DF=,在直角三角形FDG中,可得FG=,在直角梯形BDFE中,由BD=2,BE=,FD=,可得EF=,从而EG2+FG2=EF2,则EG⊥FG,AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,﹣,0),E(1,0,),F(﹣1,0,),C(0,,0),即有=(1,,),=(﹣1,﹣,),故cos <,>===﹣.则有直线AE与直线CF 所成角的余弦值为.【点评】本题考查空间直线和平面的位置关系和空间角的求法,主要考查面面垂直的判定定理和异面直线所成的角的求法:向量法,考查运算能力,属于中档题.19.(12分)(2015•新课标Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)(x i﹣)(y i(w i﹣)表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.【分析】(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,即当x=46.24时,年利润的预报值最大.【点评】本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.20.(12分)(2015•新课标Ⅰ)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.21.(12分)(2015•新课标Ⅰ)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.【分析】(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0解出即可.(ii)对x分类讨论:当x∈(1,+∞)时,g(x)=﹣lnx<0,可得函数h(x)=min { f(x),g(x)}≤g(x)<0,即可得出零点的个数.当x=1时,对a分类讨论:a≥﹣,a<﹣,即可得出零点的个数;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.对a分类讨论:①当a≤﹣3或a≥0时,②当﹣3<a<0时,利用导数研究其单调性极值即可得出.【解答】解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}≤g(x)<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f(x)在(0,1)内有一个零点.综上可得:当或a<时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.选修4一1:几何证明选讲22.(10分)(2015•新课标Ⅰ)如图,AB是⊙O的直径,AC是⊙O的切线,BC 交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.【分析】(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x 值,可得所求角度.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°【点评】本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题.选修4一4:坐标系与参数方程23.(10分)(2015•新课标Ⅰ)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.【点评】本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.选修4一5:不等式选讲24.(10分)(2015•新课标Ⅰ)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【分析】(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f (x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.参与本试卷答题和审题的老师有:刘长柏;qiss;maths;changq;caoqz;豫汝王世崇;cst;lincy;吕静;双曲线;whgcn;沂蒙松(排名不分先后)菁优网2017年3月2日。

2015年全国各地高考数学试题及解答分类汇编大全几何证明选讲、坐标系与参数方程、不等式选讲、矩阵与变换)

2015年全国各地高考数学试题及解答分类汇编大全几何证明选讲、坐标系与参数方程、不等式选讲、矩阵与变换)

2015年全国各地高考数学试题及解答分类汇编大全(18选修4:几何证明选讲、坐标系与参数方程、不等式选讲、矩阵与变换)一、几何证明选讲:选修4—1;几何证明选讲1. (2015广东理) 如图1,已知AB 是圆O 的直径,4AB =,EC 是圆O 的切线,切点为C , 1BC =,过圆心O 做BC 的平行线,分别交EC 和AC 于点D 和点P ,则OD=图1POECD A B【答案】8.【考点定位】本题考查直线与圆、直角三角形的射影定理,属于中档题.2. (2015广东文) 如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C 23E =,则D A = .【答案】3考点:1、切线的性质;2、平行线分线段成比例定理;3、切割线定理.3.(2015湖北理)如图,PA 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=.【答案】21考点:1.圆的切线、割线,2.切割线定理,3.三角形相似.4. (2015湖南理)(Ⅰ)如图,在圆O 中,相交于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 相交于点F ,证明: (1)180MEN NOM ∠+∠=; (2)FE FN FM FO ⋅=⋅【答案】(1)详见解析;(2)详见解析.【考点定位】1.垂径定理;2.四点共圆;3.割线定理.【名师点睛】本题主要考查了圆的基本性质等知识点,属于容易题,平面几何中圆的有关问题是高考考查的热点,解题时要充分利用圆的性质和切割线定理,相似三角形,勾股定理等其他平面几何知识点的交汇.5. (2015江苏) 如图,在ABC ∆中,AC AB =,ABC ∆的外接圆圆O 的弦AE 交BC 于点D求证:ABD ∆∽AEB ∆【答案】详见解析考点:三角形相似6.(2015全国新课标Ⅰ卷文、理)如图AB 是 O 直径,AC 是 O 切线,BC 交 O 与点E . (I )若D 为AC 中点,求证:DE 是 O 切线; (II )若3OA CE = ,求ACB ∠的大小.ABCE DO(第21——A 题)【答案】(Ⅰ)见解析(Ⅱ)60° 【解析】 试题分析:(Ⅰ)由圆的切线性质及圆周角定理知,AE ⊥BC ,AC ⊥AB ,由直角三角形中线性质知DE =DC ,OE =OB ,利用等量代换可证∠DEC +∠OEB =90°,即∠OED =90°,所以DE 是圆O 的切线;(Ⅱ)设CE =1,由OA =得,AB=AE =x,由勾股定理得BE 得2AE CE BE = ,列出关于x 的方程,解出x ,即可求出∠ACB 的大小.【考点定位】圆的切线判定与性质;圆周角定理;直角三角形射影定理【名师点睛】在解有关切线的问题时,要从以下几个方面进行思考:①见到切线,切点与圆心的连线垂直于切线;②过切点有弦,应想到弦切角定理;③若切线与一条割线相交,应想到切割线定理;④若要证明某条直线是圆的切线,则证明直线与圆的交点与圆心的连线与该直线垂直.7. (2015全国新课标Ⅱ卷文、理)如图,O 为等腰三角形ABC 内一点,圆O 与ABC ∆的底边BC 交于M 、N 两点与底边上的高AD 交于点G ,与AB 、AC 分别相切于E 、F 两点.GAEFOND B CM(Ⅰ)证明://EF BC ;(Ⅱ) 若AG 等于O 的半径,且AE MN ==求四边形EBCF 的面积.【答案】(Ⅰ)详见解析;. 【解析】 试题分析:(Ⅰ)由已知得AD BC ⊥,欲证明//EF BC ,只需证明AD EF ⊥,由切线长定理可得AE AF =,故只需证明AD 是角平分线即可;(Ⅱ)连接OE ,OM ,在Rt AEO ∆中,易求得030OAE ∠=,故AEF ∆和AEF ∆都是等边三角形,求得其边长,进而可求其面积.四边形EBCF 的面积为两个等边三角形面积之差. 试题解析:(Ⅰ)由于ABC ∆是等腰三角形,AD BC ⊥,所以AD 是CAB ∠的平分线.又因为O 分别与AB 、AC 相切于E 、F 两点,所以AE AF =,故AD EF ⊥.从而//EF BC .(Ⅱ)由(Ⅰ)知,AE AF =,AD EF ⊥,故AD 是EF 的垂直平分线,又EF 是O 的弦,所以O 在AD 上.连接OE ,OM ,则OE AE ⊥.由AG 等于O 的半径得2AO OE =,所以030OAE ∠=.所以ABC ∆和AEF ∆都是等边三角形.因为AE =,所以4AO =,2OE =.因为2OM OE ==,12DM MN ==,所以1OD =.于是5AD =,AB =.所以四边形EBCF 的面积221122⨯⨯=考点:1.等腰三角形的性质;2、圆的切线长定理;3、圆的切线的性质. 8. (2015陕西文、理)如图,AB 切O 于点B ,直线AO 交O 于,D E 两点,,BC DE ⊥垂足为C .(I)证明:CBD DBA ∠=∠(II)若3,AD DC BC ==O 的直径.【答案】(I)证明略,详见解析; (II)3. 【解析】 试题分析::(I)因为DE 是O 的直径,则90BED EDB ∠+∠=︒,又BC DE ⊥,所以90CBD EDB ∠+∠=︒,又AB 切O 于点B ,得DBA BED ∠=∠,所以CBD DBA ∠=∠;(II)由(I)知BD 平分CBA ∠,则3BA ADBC CD==,又BC =,从而AB =222AB BC AC =+,解得4AC =,所以3AD =,由切割线定理得2AB AD AE =⋅,解得6AE =,故3DE AE AD =-=,即O 的直径为3.试题解析:(I)因为DE 是O 的直径, 则90BED EDB ∠+∠=︒又BC DE ⊥,所以90CBD EDB ∠+∠=︒ 又AB 切O 于点B , 得DBA BED ∠=∠ 所以CBD DBA ∠=∠(II)由(I)知BD 平分CBA ∠,则3BA ADBC CD==,又BC =,从而AB =,所以4AC = 所以3AD =,由切割线定理得2AB AD AE =⋅即26AB AE AD==, 故3DE AE AD =-=, 即O 的直径为3.考点:1.几何证明;2.切割线定理.9.(2015天津文、理)如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为( )(A )83 (B )3 (C )103 (D )52E【答案】A【解析】 试题分析:由相交弦定理可知,,AM MB CM MD CN NE AN NB ⋅=⋅⋅=⋅,又因为,M N 是弦AB 的三等分点,所以AM MB AN NB CN NE CM MD ⋅=⋅∴⋅=⋅,所以24833CM MD NE CN ⋅⨯===,故选A.考点:相交弦定理.10.(2015重庆理)如图,圆O 的弦AB ,C D 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于点P ,若PA =6,AE =9,PC =3,CE :ED =2:1,则BE =_______.【答案】2【考点定位】相交弦定理,切割线定理.二、坐标系与参数方程:选修4-4:坐标系与参数方程1.(2015安徽理)在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是 .【答案】6【解析】由题意2sin ρρθ=,转化为普通方程为228x y y +=,即22(4)16x y +-=;直线()3R πθρ=∈2. (2015北京理)在极坐标系中,点π23⎛⎫ ⎪⎝⎭‚到直线()cos 6ρθθ+=的距离为.【答案】1 【解析】试题分析:先把点(2,)3π极坐标化为直角坐标,再把直线的极坐标方程()cos 6ρθθ=化为直角坐标方程60x +-=,利用点到直线距离公式1d ==.考点:1.极坐标与直角坐标的互化;2.点到直线距离.3.(2015福建理)在平面直角坐标系xoy 中,圆C 的参数方程为13cos (t )23sin x ty tì=+ïí=-+ïî为参数.在极坐标系(与平面直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为sin()m,(m R).4pq -=? (Ⅰ)求圆C 的普通方程及直线l 的直角坐标方程; (Ⅱ)设圆心C 到直线l 的距离等于2,求m 的值. 【答案】(Ⅰ) ()()22129x y -++=,0x y m --=;(Ⅱ) m=-3±【解析】试题分析:(Ⅰ)将圆的参数方程通过移项平方消去参数得()()22129x y -++= ,利用cos x ρθ=,sin y ρθ=将直线的极坐标方程化为直角坐标方程;(Ⅱ)利用点到直线距离公式求解.试题解析:(Ⅰ)消去参数t ,得到圆的普通方程为()()22129x y -++=,sin()m 4pq -=,得sin cos m 0r q r q --=, 所以直线l 的直角坐标方程为0x y m --=.(Ⅱ)依题意,圆心C 到直线l 的距离等于2|12m |2,--+=解得m=-3±考点:1、参数方程和普通方程的互化;2、极坐标方程和直角坐标方程的互化;3、点到直线距离公式.4.(2015广东理) 已知直线l 的极坐标方程为24sin(2=-)πθρ,点A 的极坐标为74A π⎛⎫ ⎪⎝⎭,则点A 到直线l的距离为【解析】依题已知直线l :2sin 4πρθ⎛⎫-=⎪⎝⎭74A π⎛⎫ ⎪⎝⎭可化为l :10x y -+=和()2,2A -,所以点A 与直线l 的距离为2d ==,故应填入. 【考点定位】本题考查极坐标与平面直角坐标的互化、点与直线的距离,属于容易题.5. (2015广东文) 在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C的参数方程为2x ty ⎧=⎪⎨=⎪⎩t 为参数),则1C 与2C 交点的直角坐标为 .【答案】()2,4- 【解析】试题分析:曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28y x =,由228x y y x+=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为()2,4-,所以答案应填:()2,4-. 考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点. 16.(2015湖北理)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB =. 【答案】52考点:1.极坐标方程、参数方程与普通方程的转化,2.两点间的距离.7.(2015湖南理)(Ⅱ)已知直线5:12x l y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1) 将曲线C 的极坐标方程化为直角坐标方程;(2) 设点M的直角坐标为,直线l 与曲线C 的交点为A ,B ,求||||MA MB ⋅的值. 【答案】(1)0222=-+x y x ;(2)18.的两个实数根分别为1t ,2t ,则由参数t 的几何意义即知,1821==⋅|t |t |MB||MA|. 【考点定位】1.极坐标方程与直角坐标方程的互相转化;2.直线与圆的位置关系.【名师点睛】本题主要考查了极坐标方程与直角坐标方程的互相转化以及直线与圆的位置关系,属于容易题,在方程的转化时,只要利用θρcos =x ,θρsin =y 进行等价变形即可,考查极坐标方程与参数方程,实为考查直线与圆的相交问题,实际上为解析几何问题,解析几何中常用的思想,如联立方程组等,在极坐标与参数方程中同样适用.8、(2015湖南文)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2sin ρθ=,则曲线C 的直角坐标方程为_____.【答案】2211x y +-=() 【解析】试题分析:将极坐标化为直角坐标,求解即可.曲线C 的极坐标方程为222sn sn ρθρρθ=∴=, ,它的直角坐标方程为222x y y += ,2211x y ∴+-=(). 故答案为:2211x y +-=().考点:圆的极坐标方程9.(2015江苏)已知圆C 的极坐标方程为2sin()404πρθ+--=,求圆C 的半径.考点:圆的极坐标方程,极坐标与之间坐标互化10.(2015全国新课标Ⅰ卷文)在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 【答案】(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)12【解析】试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN 的面积.试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ|MN|=1ρ-2ρ因为2C 的半径为1,则2C MN 的面积o11sin 452⨯=12.【考点定位】直角坐标方程与极坐标互化;直线与圆的位置关系【名师点睛】对直角坐标方程与极坐标方程的互化问题,要熟记互化公式,另外要注意互化时要将极坐标方程作适当转化,若是和角,常用两角和与差的三角公式展开,化为可以公式形式,有时为了出现公式形式,两边可以同乘以ρ,对直线与圆或圆与圆的位置关系,常化为直角坐标方程,再解决.11. (2015全国新课标Ⅰ卷理)在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系。

2015年河南省高考理科数学试题与答案(word版)

2015年河南省高考理科数学试题与答案(word版)

2015年河南省高考理科数学试题与答案(word 版)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设复数z 满足1+z1z -=i ,则|z|=(A )1 (B(C(D )2(2)sin20°cos10°-con160°sin10°=(A)2- (B)2 (C )12- (D )12 (3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n(C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A )0.648 (B )0.432 (C )0.36 (D )0.312(5)已知M (x 0,y 0)是双曲线C :2212x y -= 上的一点,F 1、F 2是C 上的两个焦点,若1MF ∙2MF <0,则y 0的取值范围是(A )(-3,3) (B )(-6,6) (C )(3-,3) (D )(3-,3)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)设D 为所在平面内一点ABC ∆,3=,则(A )3431+-= (B )3431-=- (C ) 3134+= (D )3134-= (8)函数)cos()(ϕω+=x x f 的部分图像如图所示,则f (x )的单调递减区间为(A)(),k(B)(),k(C)(),k(D)(),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A )5 (B )6 (C )7 (D )8(10)52)(y x x ++的展开式中,25y x 的系数为(A )10 (B )20 (C )30 (D )60(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

2015-2016高数(一.二)期末试卷A参考答案

2015-2016高数(一.二)期末试卷A参考答案

课程名称:高等数学(一、二)(期末考试A )第 3 页 (共 4 页)学 院: 专 业: 学号: 姓名:―――――――――――――装――――――――――――订――――――――――――线――――――――――――――提示:请将答案写在答题纸上,写在试卷页或草稿纸上的无效。

交卷时请将答题纸(1-2页)和试卷页、草稿纸分开上交。

写在背面或写错位置的一定要注明。

一、 填空题(3分*5=15分)1. 设曲线L 是正方形区域{}(,)|01,01x y x y ≤≤≤≤的边界,则曲线积分4Lds =⎰16.2. 若级数∑∞=-1)1(n nu收敛,则=∞→n n u lim 1.3. 设0>p ,当p 满足1p >时,级数∑∞=--11)1(n pn n 绝对收敛. 4. 微分方程y x y y '=''-'''2)(的通解中含有 3 个相互独立的任意常数. 5. 微分方程212y x ''=满足初始条件00x y ==,01x y ='=的特解为4y x x =+. 二、单项选择题(3分*5=15分)1. 设∑是球面2221x y z ++=,而1∑是∑位于第一卦限部分,则曲面积分d z S ∑=⎰⎰( A ).(A )0; (B )12d z S ∑⎰⎰; (C )18d z S ∑⎰⎰; (D )⎰⎰∑1d 4S z .2.若级数∑∞=1n nu绝对收敛,则下列级数中发散的是( C ).(A )1n n u ∞=∑; (B )1n n u ∞=∑; (C )11()n n u n ∞=+∑; (D )11()3n n n u ∞=+∑.3.设2lim1=+∞→nn n a a ,则幂级数20n n n a x ∞=∑的收敛半径=R ( A ). (A )21; (B )1; (C )2; (D )2.4. 函数221ec x c y +=(21,c c 为任意常数)是微分方程02=-'-''y y y 的(C )(A )通解. (B)特解. (C)解但不是通解、特解. (D)不是解.5.已知二阶常系数线性齐次微分方程0=+'+''qy y p y 对应的特征方程有根2,3,则该微分方程通解为( D ).(A)12cos 2sin 3y C x C x =+. (B) 212()x y C C x e =+. (C)32x x y e e =+. (D)3212x x y C e C e =+.三、曲线积分与曲面积分(8分*2=16分)1. 沿曲线L 从点)01(,A 到点)10(,B 计算对坐标的曲线积分⎰++Ly x x xy 1)d (d 22,其中L 为折线AOB (O 是原点).解:法(1)2P Qx y x∂∂==∂∂,所以积分与路径无关,(2分) 选择路径:L x y -=1,则(4分)⎰⎰-++-=++0122d )]1)(1()1(2[1)d (d 2x x x x y x x xy L (6分)=+-=+-=⎰111d )123(12x x x 1. (8分)法(2)OB AO L +=,其中:AO 0=y ; :OB 0=x ,则⎰⎰⎰+++++=++OBAOLy x x xy y x x xy y x x xy 1)d (d 21)d (d 21)d (d 2222(2分)012120d 00(01)d x x x =⋅++++⎰⎰(6分)1=.(8分) 2. 计算曲面积分()()()I y z dydz z x dzdx x y dxdy ∑=-+-+-⎰⎰,其中∑是z =在0,1z z ==部分下侧.解:补面1221:1z x y =⎧∑⎨+≤⎩方向向上,(2分)记22:1xy D x y +≤,100I I dv Ω+==⎰⎰⎰,(5分) 所以1()0xyD I I x y dxdy =-=--=⎰⎰.(8分)课程名称:高等数学(一、二)(期末考试A )第 3 页 (共 4 页)学 院: 专 业: 学号: 姓名:―――――――――――――装――――――――――――订――――――――――――线――――――――――――――四、级数(8分*3=24分) 1. 证明级数∑∞=+-121)1(n n n 条件收敛.解:由n nn n n n 2131111)1(2222=+≥+=+- ,及级数∑∞=121n n 发散, 得级数∑∞=+-121)1(n n n 发散(3分);又112+=n u n ,有nn u n n u =+≤++=+111)1(1221,及011limlim 2=+=∞→∞→n u n n n ,由莱布尼茨判别法,得∑∞=+-121)1(n n n 收敛.(6分)因此级数∑∞=+-121)1(n n n 条件收敛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本卷共 6 页第 2 页
得分 评卷人
四、计算题(每题 6 分,共 30 分)
1. 求极限 x0
lim x ln x
. 4.求不定积分 x ln xdx .
2. 设函数 y ln( x x 2 1) ,求 y( 3) .
5.设由曲线 y x ,直线 x 4 及 x 轴所围图形为T (1)求 T 的面积; (2)求 T 绕 x 轴旋转而成的旋转体的体积.
2 1 ������
5.已知函数������ (������ ) = ������ 2 在[0,1]内满足拉格朗日中值定理的条件,则定理中������ 值为 ( ) (A)
1 4
(B)
1 3
(C)
1 2
(D)
2 3
������������ ������������的值为 2
1
本卷共 6 页第 1 页
“×”) (每题 3 分,共 15 分) 1.y = lg
1−������ ������
x→∞
(D) lim (1 + ) = ������
x→∞ x
1 ������
2.若函数������(������ )在������0处不可导,则下列说法正确的是 (A)������(������ )在������0处一定不连续
学号:_____________
年级:___________
专业:_______________任课教师_______________
得分 评卷人
1 2
五、综合题(15 分)
讨论函数 y x 4 x 3 1的增减性、极值、凹向及拐点.
本卷共 6 页第 5 页 本卷共 6 页第 6 页
sin ������,������ ≠ 0 4.函数y = { ������ 在点������ = 0处连续。 ⁡ ⁡ ⁡ ⁡ ⁡ 0, ������ = 0 5.若������(������ )在������0处取得极值,则必有������(������0 ) = 0。
( )
学号:_____________
得分 评卷人 二、填空题(每题 4 分,共 20 分)
( ) (B)d ( ) = ln ������������������
������ 1
������������
1.已知������为常数, lim (
x→∞Biblioteka ������2 +1 ������
− ������������ + 1) = 1,则������ =
( )
与y = lg⁡ (1 − ������)-lg ������ 是相同的函数。 在������ → ∞时为无穷小量。
|������| ������
( ) ( )
(B)������(������ )在������0处一定不可微 (C)������(������ )在������0处的左极限与右极限必有一个不存在 (D)������(������ )在������0处的左导数与右导数必有一个不存在 , ������ ≠ 0 3.函数������(������ ) = { ������2 ,则������ = 0是函数������(������ )的 ⁡ ⁡ ⁡ ⁡ ⁡ 0, ������ = 0 (A)跳跃间断点 (B)连续点 (C)震荡间断点 (D)可去间断点 4.下列等式成立的是 (A)d(√������) =
河南师范大学 2015--2016 学年度第一学期 2015 级期末考试《高等数学》 (公修)四类 A 卷 题号
…………………………….密……………………………………封……………………………………线……………………………… 专业:_______________任课教师_______________
得分 评卷人 三、选择题(每题 4 分,共 20 分)
1 √������ 1−cos ������
2.数列������ =
1 ������2
年级:___________
3.由理由 lim −
������→0 1
存在,且 lim +
������→0
|������| ������
,得出结论lim
|������|
������→0 ������
存在。
( ) ( ) ( )
。 。 。 。 。
(C)d(������ −������ ) = ������−������ ������������
(D)d(cos ������ ) = ( − sin ������ )������������
姓名:____________
2.函数������(������ ) = (������ − 1) (������ − 2) (������ − 3) (������ − 4)的拐点为 3.设函数y = √������ 2 + ������2 (������为常数) ,则微分dy = 4.曲线������(������ ) = ������ 2 + 1在(1,2)处的切线方程是 5.定积分∫ 1





总分人 复核人
总分
1.下列结论正确的是 (A) lim (1 − )
x→∞ x 1 1−x
1
( ) (B) lim (1 + )
x→∞ x 1 −x
2
得分
= ������
= ������
(C) lim (1 − ) = ������
1 ������ x
得分 评卷人 一 、 判 断 题( 正确时 在括号中 打“√”,错误时打
3.设函数 f ( x)
ax 2, x 1
2 x b, x 1
在 x 1 处可导,求常数 a 和 b .
本卷共 6 页第 3 页
本卷共 6 页第 4 页
姓名:____________ …………………………….密……………………………………封……………………………………线………………………………
相关文档
最新文档