电力系统中继电保护技术论文

合集下载

电力系统中的继电保护技术研究

电力系统中的继电保护技术研究

电力系统中的继电保护技术研究继电保护是电力系统中至关重要的技术手段,它可用于侦测和快速隔离故障,以确保电力系统的安全与稳定运行。

随着电力系统规模的不断扩大和复杂性的增加,继电保护技术的研究与发展变得尤为重要。

本文将对电力系统中的继电保护技术进行研究,包括现有技术的发展、存在的问题和未来的发展方向。

在电力系统中,继电保护的主要任务是侦测和定位电力系统中的故障。

故障可能导致电力设备受损或系统崩溃,因此继电保护的准确性和可靠性至关重要。

目前,电力系统中使用广泛的继电保护技术包括过电流保护、差动保护、方向保护和距离保护等。

这些技术基于电力系统设备的电流、电压、功率等参数进行故障侦测和保护操作。

过电流保护是最常用的一种继电保护技术,它通过监测电流的大小来检测故障。

具体而言,过电流保护将电流信号与设定的保护动作值进行比较,一旦实际电流超过保护动作值,保护装置将发出信号,切断故障电路以保护电力系统。

该技术简单可靠,适用于绝大多数的电力系统,但也存在一些问题,如对短时故障的响应速度较慢。

差动保护是一种基于电流差异原理的保护技术,它适用于对传输和发电线路中的故障进行定位。

差动保护将入出口电流进行比较,若存在差异,则认为存在故障。

该技术能够快速侦测故障并准确定位,但它对线路的拓扑结构和参数变化较为敏感,需要精确的设置和校准。

方向保护是利用电力系统中电流压力之间的相位差来判断故障方向的保护技术。

当电力系统中出现故障时,故障电流与电压之间的相位差将发生变化。

通过测量和分析相位差,继电保护装置可以确定故障的位置。

该技术在电力系统中广泛使用,但在高阻抗故障和双电源情况下可能会出现误操作。

距离保护是一种基于电力系统中电压和电流之间关系的保护技术。

距离保护不仅可以检测故障,还可以判断故障位置。

它通过测量电流和电压的幅值和相位来计算故障的距离,从而实现快速故障定位和隔离。

该技术在传输和配电系统中得到广泛应用,但对电源变化和系统参数变化较为敏感。

电力系统继电保护毕业论文

电力系统继电保护毕业论文

电力系统继电保护毕业论文电力系统继电保护毕业论文随着电力系统的不断发展和扩大,继电保护在电力系统中的重要性也日益凸显。

继电保护是电力系统中的安全保障措施,其主要作用是在电力系统出现故障时,迅速切除故障部分,保护电力设备和系统的安全运行。

电力系统继电保护毕业论文旨在研究和探讨电力系统继电保护的相关理论和技术,提出有效的解决方案,以提高电力系统的可靠性和稳定性。

一、继电保护的基本原理继电保护的基本原理是通过测量电力系统中的电流、电压等参数,与预设的保护参数进行比较,当参数超出设定范围时,继电保护设备将发出保护信号,切除故障部分。

二、继电保护的分类继电保护可以根据其作用范围和功能进行分类。

常见的继电保护类型包括过电流保护、差动保护、距离保护、频率保护等。

每种类型的继电保护都有其特定的应用场景和适用范围。

三、继电保护的技术挑战在电力系统继电保护的研究和实践中,面临着一些技术挑战。

首先,电力系统规模越来越大,继电保护需要处理的数据量也越来越大,传统的继电保护设备可能无法满足需求。

其次,电力系统中存在各种复杂的故障模式,继电保护需要能够准确识别和判断不同类型的故障。

此外,电力系统的可靠性要求越来越高,继电保护需要能够快速响应和切除故障,以减少故障对电力系统的影响。

四、继电保护的发展趋势随着信息技术的发展和应用,继电保护也在不断演进和创新。

一方面,继电保护设备逐渐实现数字化和智能化,可以更好地处理大量的数据和信息。

另一方面,继电保护与其他电力系统设备的互联互通也日益紧密,形成了继电保护与通信技术、人工智能等领域的交叉应用。

五、继电保护的案例分析本论文还将通过对一些实际电力系统故障案例的分析,探讨继电保护在故障处理中的应用。

通过对故障原因的分析和继电保护的响应情况,可以评估继电保护的性能和可靠性,并提出改进方案。

六、结论继电保护作为电力系统中的重要组成部分,对于电力系统的安全运行至关重要。

本论文通过对继电保护的基本原理、分类、技术挑战和发展趋势的研究,以及对实际案例的分析,提出了一些解决方案和改进建议。

电力系统继电保护技术现状发展前景论文

电力系统继电保护技术现状发展前景论文

电力系统继电保护技术的现状分析及发展前景探讨【摘要】电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展源源不断地注入了新的活力,继电保护技术得到了快速发展。

【关键词】电力系统继电保护发展前景变电站继电保护系统是电力系统的一种复杂而特殊的系统,近几年来,我局的电网进行了比较大的自动化技术改造,变电站的无人值守化、综合自动化大部分工程都是与继保系统的施工相关联的。

尤其是在一些旧的变电站施工改造时,为了用户的利益,只能分区域或分时间段停电,因此继保设备改造大部分都在二次系统带电或者部分带电的情况下进行的。

为了保证变电站运行设备的安全可靠,在二次系统改造时必须采取严密的技术措施和安全措施一、继电保护技术的发展电力系统的继电保护技术目前已经被广泛适用,但是在建国初期,继电保护技术是经历了一个从无到有,一点点完善成熟的过程。

我们整个电力系统的继电保护技术利用十年的时间,完成了发达国家几十年才完成的任务,在后面的四十年里,电磁型、晶体管型、集成电路型等各种继电保护技术也都应运而生。

(一)电磁型继电保护技术的发展建国后的前几年里,我国工程技术人员不断研究揣摩外国的先进继电保护技术,分析器各种设备的特性,逐步建立起一整套完善的继电保护理论,积累了丰富的知识经验,也储备了大量的电力系统技术人员,这一时期的积累对后期的继电保护技术发展起到了关键性的指导作用。

(二)晶体管继电保护技术的发展随着我国继电保护技术的不断完善,再六十年代初期,我国开始投入人力和物力去研究晶体管继电保护技术,这一技术一直延续到八十年代,被广泛的发展和使用,是我国这一时期继电保护发展的主流技术。

(三)集成电路式继电保护技术的发展在七十年代初期,晶体管继电保护技术开始退出舞台,集成电路继电保护技术被研究和发展,这种技术重要应用集成运算的方式,到了八十年代中期技术已经研究的相当成熟,在后续的二十年内,该技术一直是继电保护技术的主流,在生产,应用等很多领域都处于主导性的地位,可以说这个时期集成继电保护时期。

电力系统中继电保护自动化的应用

电力系统中继电保护自动化的应用

电力系统中继电保护自动化的应用摘要:电力系统继电保护自动化技术的应用是降低故障发生概率与不良影响的关键技术,新时期继电保护自动化也提高了电力设备与系统运行水平。

文章对电力系统继电保护自动化技术原理进行分析,探讨电力系统中继电保护自动化的应用与发展策略。

关键字:电力系统;继电保护;自动化;继电自动化引言随着我国经济社会的不断发展,电网覆盖地域和规模持续扩大。

通过电气线路的应用可有效实现各类电器设备的紧密联系。

不过,在电气设备运行中,也会受到很多复杂环境因素的影响和人为因素的影响,从而引发电气设备的故障问题。

因此,为保证电网供配电系统的正常运行,还需进一步提高继电保护的可靠性。

其中,可靠性技术的应用主要以概率论为基础,可显著提高产品的质量。

同时,继电保护和自动化装置也是电力系统中二次回路保护和控制的重要组成部分,确保其运行的稳定性,是实现电力系统安全、可靠运行的关键所在。

1继电保护自动化技术的原理电力系统的稳定性和安全性是决定其供电质量的关键因素。

随着科学技术和信息技术的发展,人们逐渐认识到自动化测试技术能够有效提高检测水平。

因此,为避免电力事故的发生,我们必须采取有效的管理和技术措施,以确保电力系统的稳定和安全。

目前,在我国电网中出现的问题是很多的,其中最主要的就是继电保护问题。

通过将原有的继电保护技术转化为自动化的继电保护技术,并采用预警、跳闸等手段,实现对电力故障设备的切除或隔离,从而有助于维护电力系统的稳定性。

随着我国科技水平的提高,继电保护自动化技术水平也在不断提升,为保障电力系统安全稳定运行提供可靠依据。

随着电力行业的蓬勃发展,继电保护自动化技术已逐渐走向成熟。

为了保证电力系统的稳定,就必须加强继电保护自动化系统建设。

图1所呈现的是继电保护自动化技术的操作机制。

该技术将继电保护系统与计算机网络相结合,利用网络通信手段,实现了电网调度中心和变电站之间的联系以及控制管理。

通过收集与保护对象运行相关的信息,企业的监控体系能够对电力系统的运行状况进行深入分析,从而为管理者提供具有决策性和全面性的数据。

电力系统继电保护论文论文

电力系统继电保护论文论文

关于继电保护的讨论内容摘要继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段;当电力系统出现故障时,继电保护系统通过寻找故障前后差异可以迅速地,有选择地,安全可靠地将短路故障设备隔离出电力系统,从而达到电力系统安全稳定运行的目的。

本文从继电保护的现状与发展趋势出发,论述了电力系统继电保护技术的任务对继电保护的四个基本特性;继电保护的基本原理及继电保护装置的继电器特性,以及继电保护是怎样在由二次设备来控制保护一次设备的,并论述了电力系统继电保护的前景展望。

关键词:继电保护;发展前景;短路故障;四性;二次设备;继电器讨论方面第一部分继电保护的历史背景及发展现状第二部分电力系统继电保护的作用与意义第三部分电力系统继电保护的任务和基本要求第四部分电力系统继电保护的原理及组成第五部分电力系统继电保护发展的前景展望第六部分关于电力系统继电保护认识和结论第一部分继电保护的历史背景及发展现状上世纪90年代出现了装于断路器上并直接作用于断路器的一次式的电磁型过电流继电器,本世纪初,随着电力系统的发展,继电器才开始广泛应用于电力系统的保护。

这个时期可认为是继电保护技术发展的开端。

1901年出现了感应型过电流继电器;1908年提出了比较被保护元件两端的电流差动保护原理。

1910年方向性电流保护开始得到应用,在此时期也出现了将电流与电压比较的保护原理,并导致了本世纪29年代初距离保护的出现。

随着电力系统载波通讯的发展,在1927年前后,出现了利用高压输电线上高频载波电流传送和比较输电线两端功率或相位的高频保护装置。

在50年代,微波中继通讯开始应用与电力系统,从而出现了利用微波传送和比较输电线两端故障电气量的微波保护。

早在50年代就出现了利用故障点产生的行波实现快速继电保护的设想。

经过20余年的研究,终于诞生了行波保护装置。

电力系统继电保护毕业设计论文

电力系统继电保护毕业设计论文

变压器相间短路保护研究摘要:通过对差动保护比率制动整定计算中动作电流与自动系数分析,纠正了整定计算中一些错误概念。

实现这种动作特性的纵差继电器以差动电流作为动作电流,引入一侧或多侧短路电流作为制动电流。

评论了各种微机差动保护,在此基础上拟定了多段式微机差动继电器方案,并介绍了差动比率制动整定方案和内部故障时灵敏度问题。

关键词:相间短路;差动保护; 复合电压启动过电流保护;相位补偿1。

引言随着电力系统容量的增大,大机组不断增多,在电力主设备上要求装设优越完善的或者双重化的继电保护装置,这不仅对电力系统的可靠运行有着重大意义,而且可保护重要而昂贵的的主设备减少在各种设备和异常运行中所造成的设备损坏,还有着显著的经济效益。

因此,在电力主设备的保护设计中应遵守的原则是符合现行的《继电保护和安全自动装置技术规程》(GB 14285-2006),对具体的工程设计项目,则要求保护在配置、原理接线和设备选型等方面,根据电气主接线和被保护设备的一次接线及主设备的运行工况和结构特点,达到可靠性、灵敏性、速动性和选择性等四性要求。

当灵敏性与选择性产生矛盾时,首先要保证灵敏性,没有灵敏性即失去了装设保护的意义;当快速性与选择性产生矛盾时,宜先满足选择性,但特殊情况下也可考虑快速无选择性动作并采取补救措施。

2变压器保护装设原则]1[电力变压器是电力系统中十分重要的供电元件,它的故障将对对供电可靠性和系统的正常运行带来严重的影响。

同时大容量的电力变压器也是十分重要的元件,因此必须根据变压器的容量和重要程度考虑装设性能良好,工作可靠的继电保护装置。

(一)变压器应根据工程具体情况考虑装设相应的保护对升压、降压、联络变压器的下列故障及异常运行状态,按规定装设相应的保护装置:①绕组及引出线的相间短路和中性点直接接地或经小电阻接地侧的接地短路;②绕组的匝间短路;③外部相间短路引起的过电流;④中性点直接接地或经小电阻接地电网中外部短路引起的过电流及中性点过电压;⑤过负荷;⑥过励磁;⑦中性点非有效接地侧的单相接地故障;⑧油面降低;⑨变压器油温、绕组温度过高及邮箱压力过高和冷却系统故障。

电力系统继电保护技术应用研究

电力系统继电保护技术应用研究

电力系统继电保护技术应用研究摘要:继电保护装置保证了电力系统得以稳定、高效率的运行,因此,对于当前的电力公司而言,也需要加强继电保护的管理工作,提高继电保护的可靠性,为电力系统的安全运行加上一道保险。

关键词:电力系统;继电保护;技术1电力系统继电保护的特点电力系统在运行期间所产生的各种突发情况和潜在问题,很多都是由于电网中有关部件的失效所引起的。

在这种情况下,完善的继电保护设施也是保证电力系统有效运行的重要措施,在电力系统中设置继电保护装置,可以迅速地发现电网中的各种异常情况,并根据故障的种类和原因,找到相应的故障部件,以便检修和更换,避免因为某个部件的不正常运转,导致整个电网的运行异常。

电力公司必须适应新的发展趋势,并将更先进的现代技术相结合,对电网的安全管理和继电保护进行改进。

在继电保护装置的优化过程中,从电磁装置一直发展到目前的微型计算机保护装置。

这种装置与原有的晶体管保护、集成电路保护、电磁保护装置相比,具有很大的优越性,能够迅速地对电网的异常进行分析,并根据这些信息找到故障的来源,避免传统装置的效率低下。

从这一点可以看出,科学技术的发展给电力公司带来了巨大的发展机遇。

但是,随着电网规模的不断扩大,部分企业却对如何正确地设置继电保护措施采取了漠视的态度,从而造成了大量的故障,影响了电网的总体供电质量。

2电力系统继电保护技术的应用2.1过电流保护技术过电流保护是电力系统中最常用的继电保护技术之一,主要应用于电力线路和变压器等设备的保护。

其原理主要是通过检测电力系统中电流的大小和方向判断是否存在故障。

当电力系统中发生过电流故障时,过电流保护装置会检测电流的大小和方向,并在故障电路上启动保护措施,切断故障电路,保护电力设备和线路的安全。

过电流保护可分为瞬时过电流保护和时间过电流保护两种。

瞬时过电流保护是指在电流瞬间达到一定值时立即动作,切断故障电路;时间过电流保护是指在电流持续一定时间后才动作,切断故障电路。

电力系统继电保护毕业论文

电力系统继电保护毕业论文

电力系统继电保护毕业论文电力系统继电保护是电力系统中至关重要的组成部分。

其主要功能是在电力系统出现故障时,及时地检测出故障信号,并切断故障电路。

本文旨在探讨电力系统继电保护的原理、分类和应用。

一、继电保护原理继电保护的基本原理是通过检测电力系统中电流、电压等物理量的变化,判断系统是否出现故障,以及故障的位置和类型,同时切断故障电路,保护系统正常运行。

电力系统中常用的继电保护装置有电流互感器和电压互感器,它们可以将高电压、高电流信号转化为低电压、低电流信号,方便继电保护装置的检测和处理。

继电保护装置内部一般由比较器、逻辑器和执行器组成,最终通过电磁器等执行器实现故障切除。

二、继电保护分类1. 按照保护对象分类(1) 发电机保护发电机保护是电力系统中重要的保护对象,其主要目的是防止发电机出现故障,如过电流、过温、不平衡等。

(2) 变压器保护变压器是电力系统中常用的电力变换设备,变压器保护的主要目的是防止变压器出现故障,如过载、内部短路等。

(3) 输电线路保护输电线路保护是指对电力系统中的输电线路进行保护。

其主要目的是防止输电线路出现故障,如接地故障、短路故障等。

2. 按照保护方式分类(1) 时间保护时间保护是一种常用的继电保护方式,其原理是通过设置保护时限,当电力系统发生故障时,在规定的时间范围内,继电保护装置会将故障电路切断。

(2) 差动保护差动保护是一种常用的电气保护方式,其原理是通过检测电力系统中的电流差值,来判断系统是否存在故障。

(3) 反向保护反向保护的原理是在电力系统出现单向故障的情况下,利用一些特殊的电气元件,实现故障检测和切除。

三、继电保护应用继电保护在电力系统中应用十分广泛,其主要作用是保护电力设备和保证电力系统的稳定运行。

一般来说,继电保护应用的主要场景有以下几个:(1) 发电机保护为了保护发电机的安全运行,通常应用差动保护、过电流保护和低压保护等。

(2) 变压器保护变压器是电力系统中的重要设备,在其运行过程中,可能会出现过温、过载及短路等故障。

电力系统继电保护技术研究

电力系统继电保护技术研究

电力系统继电保护技术研究引言:电力系统是现代社会运转的重要基础设施,而继电保护技术作为电网安全稳定运行的重要保障,一直备受关注。

本文将从继电保护的概念、作用、发展历程、技术研究现状等方面来探讨电力系统继电保护技术的研究现状。

一、继电保护的概念与作用继电保护是电力系统中最重要的保护手段之一,它的主要作用是在电力系统出现故障时,能够快速准确地识别故障,并采取相应的控制措施以保护电力设备的安全运行,将故障局限在最小范围内。

继电保护系统可以分为主保护和备用保护两部分,主保护是指在故障发生时最优先起作用的保护,而备用保护则是在主保护失效时起作用的保护。

二、继电保护技术的发展历程继电保护技术始于20世纪初,经过了近百年的发展,从最早的机械式继电器,到后来的电子继电器,再到今天的数字继电保护设备,技术的发展不断推动了电力系统的进步。

早期的继电保护技术主要依赖于人工判断和手动操作,这极大地限制了电力系统的安全性和稳定性。

而随着电子技术的飞速发展和计算机技术的普及应用,继电保护技术得到了长足的发展。

目前,数字继电保护设备已经成为电力系统继电保护技术的主流,其高精度的数据采集和处理能力,大大提高了电力系统的安全性和可靠性。

三、继电保护技术的研究现状1. 继电保护原理的研究继电保护技术的原理研究一直是学术界和工程界的研究重点。

目前,已经提出了许多继电保护原理,如距离保护原理、差动保护原理、变流器保护原理等。

这些原理通过不同的技术手段,能够更加准确地识别故障,并快速地采取相应的保护措施。

未来,继电保护原理的研究还需要进一步深化,以应对电力系统发展中面临的各种挑战。

2. 智能化继电保护技术随着智能电网建设的推进,智能化继电保护技术也逐渐成为研究的热点。

智能化继电保护技术通过引入人工智能、大数据等先进技术,能够对电力系统进行智能化监测和自动化控制,提高电力系统的可靠性和安全性。

此外,智能化继电保护技术还可以实现设备的在线状态监测和故障预警,有效降低故障损失和维修成本。

试论电力系统继电保护技术及配置应用

试论电力系统继电保护技术及配置应用

试论电力系统继电保护技术及配置应用随着社会水平的不断发展,人们对于电力的需求量将会不断的增加,因此在电力系统中实施继电保護技术十分必要。

为此,我们需要采取多种措施,例如,利用母线进行保护、利用输配电线路进行接地保护、对电力变压器进行保护等等,使继电保护技术不断朝着更加智能化和自动化的方向发展,确保各项用电安全。

本文主要就是针对电力系统继电保护技术及配置应用来进行分析。

标签:电力系统;继电保护技术;配置应用引言:在社会的经济建设过程中,对于电力系统的能源保障工作发展也提出了更高的要求,只有通过技术上的更新,才能够实现能源的安全、平稳供应。

在电力系统的工作中,只有实现良好的继电保护技术与配置应用,才能够保障良好的电力系统运行能力。

随着科学技术的不断加强,在继电保护的技术上,也实现技术上的更新,能够与电力系统的发展相协调,从而避免电力系统的故障产生,造成电力系统不必要的工作瘫痪,达到提升电力系统的运转能力,提高电力系统工作能力的效果,为电力系统实现高效率的工作能力提供技术保障。

在电力系统的继电保护环节中,对于继电保护装置实现科学有效的维护工作,对于电力系统的平稳工作具有非常重要的工作意义。

1、电力系统中继电保护技术的现状随着科技的不断进步,继电保护技术得到了快速发展和完善。

继电保护技术经过不同的发展阶段,呈现出不同的存在形态。

主要有电磁式、晶体管式、集成电路式和计算机辅助装置四种类型。

计算机网络技术的不断发展给社会各行各业的发展带来了蓬勃生机,有力地推动了各行业的飞速发展。

在电力系统中广泛地运用计算机技术,极大地促进了电力系统的发展。

目前,电力系统已经渗透到了社会的各个行业中,实现了智能化、网络化、一体化和数字化发展的新格局。

电力系统越来越广泛地应用到各行各业中,并且发展速度如此迅速,不可避免地给电力系统带来了一系列制约发展的不良问题。

电力系统不断地进行扩容和增容,加上不同的地理环境、不同的地区情况对电力系统的要求不一样,使得电力系统无法有效满足日益增加的供电需求,呈现出滞后的发展现状。

电力系统继电保护技术及其维护毕业论文(DOC)

电力系统继电保护技术及其维护毕业论文(DOC)

电力系统继电保护技术及其维护毕业论文(DOC)电力系统中的继电保护技术是保证电网安全和稳定运行的重要技术手段之一。

本文从继电保护的定义、原理、分类入手,着重探讨了电力系统中常见的继电保护技术,包括过电流保护、差动保护、接地保护、跳闸保护等,并介绍了每种保护技术的原理和应用。

此外,文章还对继电保护的维护工作进行了研究,包括对继电保护设备的检测、校验和维修,以保证继电保护能够正常运行,并提出了一些优化维护工作的建议。

一、继电保护的定义和原理继电保护是指在电力系统中采用继电技术进行电力设备和电力系统障碍物检测和维护的一种技术。

其基本原理是通过测量电力系统中的电流、电压等参数,对系统进行监测和控制,及时发现故障并切除有故障的设备或区域,保持电力系统的安全和稳定运行。

继电保护包括多种类型,例如过电流保护、差动保护、接地保护等,通过对电力系统不同方面的检测,保证电力设备的运行和安全。

继电保护设备通常由配电控制装置、接点继电器、监测单元和数字保护装置等部分组成,可以包括多种保护器和电源,以供继电保护各部分使用。

二、继电保护的分类根据不同的保护对象、保护时间和保护方法,继电保护可分为以下几类:1. 过电流保护过电流保护是一种常见的保护技术,通过检测电力系统中的电流变化,及时发现电流异常,保证电力设备在电流异常期间能够正常运行并防止设备因电流过大而损坏。

过电流保护通常从过流量、过流时间、过流放电等多方面考量,也可通过互感器、传感器等技术检测改变的相位变化,保护电力系统和设备的安全运行。

2. 差动保护差动保护是指通过对电力设备的电流、电压等参数进行差动计算,判断设备是否处于正常运行状态,保护设备在可能出现故障的前状态进行操作。

差动保护通常包含主差动和全差动两种保护方法,在电力系统中使用频率较高,可以检测出多种类型的故障。

3. 接地保护接地保护主要用于检测电力设备或系统中的接地故障,保护电力系统的电子设备和操作员的安全。

电力系统继电保护技术论文

电力系统继电保护技术论文

电力系统继电保护技术论文摘要:随着电力系统继电保护技术的飞越,在电力系统继电保护技术开始涉及计算机技术、网络技术等学科,但是随着继电保护技术的不断提升,电网结构的扩大,电力系统继电保护系统想要进一步发展就必须要继续创新。

关键词:继电保护;计算机技术;发展趋势前言电力系统可靠性运行不仅关乎电厂的有效运行,更关乎着国家经济的发展,了解和把握继电保护技术现状对提高电机系统稳定性具有现实的意义。

建国以来我国政府加大了对电力行业的投入,无论从电力设施建设还是电力系统技术研发上都取得了很大进步,其中最为重点的一方面就是电力系统继电保护技术,随着时代的发展,电力系统继电保护技术主要经历了计算机化,网络化,保护、控制、测量、数据通讯一体化和人工智能化。

1概述电力系统继电保护技术是随着电力系统的发展和不断适应电力系统发展要求而发展的。

智能电网是当今世界电力系统发展变革的最新动向,被认为是2l 世纪电力系统重大科技创新和发展趋势。

作为全球最大的公用事业企业,国家电网公司根据我国特高压电网建设规划,结合大力发展风电等清洁新能源政策,充分考虑世界电网发展新趋势及我国电网现状,提出了建设以特高压电网为骨干网架、各级电网协调发展的坚强电网为基础,利用先进的通信、信息和控制技术,构建以信息化、自动化、数字化、互动化为特征的自主创新、国际领先的坚强智能电网的战略发展目标。

电力系统继电保护及其自动化是针对电力系统继电保护和自动装置的研究,涉及到一次系统故障后一些参数的变化,但主要的是研究继电保护的构成,设计和整定等问题。

电力系统及其自动化与前者的区别只要是加强对电力系统的研究,如对系统特点、运行方式、故障分析等,对相应的自动装置的研究。

2我国继电保护技术发展现状2.1我国继电保护技术发展概况我国继电保护技术起步较晚,50年代组建继电保护技术队伍,60年代研究出第一套高压电网电磁式继电保护技术,70年代继电保护技术开始引入计算机,晶体管继电保护开始广泛采用,其中葛洲坝500kV线路就采用了晶体管高频保护和闭锁距离保护技术,80年代末初集成电路保护技术发展成为主流,90年代继电保护进入维护保护装置。

电力系统中的新型继电保护技术

电力系统中的新型继电保护技术

电力系统中的新型继电保护技术随着科技的不断进步和电力系统的快速发展,新型继电保护技术在电力系统的可靠性和安全性方面发挥着重要作用。

本文将讨论一些新型继电保护技术,包括数字式继电保护、智能继电保护和自适应保护等。

通过深入了解这些技术的原理和应用,我们可以更好地理解电力系统的保护机制,并为未来继电保护技术的发展提供一些思路。

数字式继电保护技术是目前电力系统中最常见的新型保护技术之一。

传统的继电保护设备通常是基于模拟电路工作的,而数字式继电保护技术采用数字信号处理的方法,可以实现更精确和可靠的保护功能。

数字式继电保护设备主要包括数字式继电保护装置和数字式继电保护终端。

数字式继电保护装置通过采集电力系统中的电流和电压信号,并利用数字信号处理技术进行计算和判断,从而实现对电力设备的保护。

数字式继电保护终端则用于与数字式继电保护装置进行通信和数据传输,实现对电力系统状态的监测和控制。

智能继电保护技术是另一种重要的新型继电保护技术。

智能继电保护设备具备自主判断和决策能力,可以根据电力系统的实际运行状态和故障情况实时调整保护参数和控制策略,从而实现对电力设备的精确保护。

智能继电保护设备通常基于人工智能、模糊逻辑和神经网络等技术实现。

它不仅可以提高电力系统的安全性和可靠性,还可以提高继电保护设备的自动化水平,减少运行和维护成本。

智能继电保护技术在电力系统中的应用前景非常广阔,其中一个重要的应用领域是智能配电网。

自适应保护技术是一种根据电力系统的运行状态和故障情况自动调整保护参数和控制策略的新型继电保护技术。

传统的继电保护设备通常采用固定的保护参数和控制策略,对于不同的故障情况和运行状态可能不够灵活和精确。

而自适应保护技术通过实时监测和分析电力系统的工作状态和故障情况,利用自适应算法和控制策略进行调整,从而实现对电力设备的精确保护。

自适应保护技术可以有效应对电力系统的复杂变化和恶劣环境,提高系统的抗干扰能力和适应能力。

谈谈电力系统继电保护技术现状及发展趋势论文

谈谈电力系统继电保护技术现状及发展趋势论文

谈谈电力系统继电保护技术的现状及发展趋势摘要:本文介绍了继电保护技术的原理及其在电力系统中的应用,分析了继电保护技术的发展现状,并对其前景进行了展望,有一定参考价值。

关键词:电力系统;继电保护;现状;发展趋势中图分类号:f407.61 文献标识码:a 文章编号:1 继电保护在电力系统中的组成及原理在电力系统中,继电保护装置的类型有许多种。

根据继电保护装置的功能与构成来划分,可以分为:机电型和静态型,以及整流型三种继电器。

其中,机电型和静态型继电器又分别分为:感应式继电器和极化式继电器、电磁式继电器;晶体管继电器和集成电路继电器等。

根据继电保护装置输入的电气量和量度来划分,可以分为:电流、电压继电器和频率、阻抗、差动继电器等。

这些继电保护装置都是由逻辑和测量,以及执行三个模块所构成。

通过测量模块对电力传输系统中相关的保护对象信号进行采集,并将采集到的信号与整定值相比较后,传送结果到逻辑模块中。

逻辑模块通过对组合测量模块中的各种参数进行运算,更具运算结果确定动作是否进行。

当运算结果为1时,动作信号将直接发送给执行模块在实现响应后,对电力系统是否安全运行执行报警命令。

2继电保护在电力系统中的应用2.1 继电保护应用分析2.1.1 网络自动化应用分析计算机的发展带动了继电保护的发展。

在电力系统中,微机保护不仅要从基本功能上进行改善,还需要从存储故障信息和数据的空间、对数据的快速处理、语言编程和通信能力,以及其它保护和控制、网络等方面进行改善。

计算机网络自动化作为当代信息技术和通信的桥梁,大大提高了继电保护实现网络化的可靠性和高保护性。

在计算机网络化基础上实现电力系统的继电保护,使整个电力系统建立在一个智能的终端上,方便获取电力系统运行和故障中的信息与数据,并将获取到的保护信息通过任意一个终端传送给网络控制中心。

不仅有利于继电保护装置完成对电力系统的功能保护,还有利于在电力系统安全正常的运行状况下,完成对电气设备的测量和控制,以及通信,实现继电保护在电力系统中应用的一体化。

电力系统继电保护技术论文

电力系统继电保护技术论文

浅谈电力系统的继电保护技术摘要:随着我国电力系统的逐步完善,电力系统继电保护技术要求也变得更高。

且随着计算机技术、电子技术及通讯技术的发展,继电保护技术也实现了突飞猛进的发展。

在本案,笔者以电力系统基点保护装置为研究对象,简要阐释其组成、工作原理、维护及发展前景。

关键字:电力系统基点保护技术发展前景中图分类号:tm73文献标识码: a 文章编号:不断完善的电力系统要求更高、更先进的继电保护技术,加之通信技术及计算机技术的发展,继电保护技术实现了突飞猛进的发展。

电力系统继电保护的基础为计算机技术,其主要通过继电保护发挥电力保护的功能。

继电保护技术凭借着自身独特的优势而被广泛应用于各个领域,所以,积极推进电力系统继电保护装置网络化、计算机化及智能化势在必行。

一、继电保护装置组成及工作原理(一)继电器分类1.就继电保护作用而言,继电器可划分为辅助继电器及测量继电器。

测量继电器将对电气量变化情况做直接性地反应。

就所反应电气量而言,测量继电器可划分为电压继电器、电流继电器、正序负序零序继电器、频率继电器、功率方向继电器、阻抗继电器及差动继电器等。

辅助继电器主要发挥完善及改进保护的功能。

就作用而言,辅助继电器可划分为事件继电器、中间继电器及信号继电器等。

2.就结构型式而言,继电器可划分为感应型继电器、静态型继电器、电磁型继电器及整流型继电器。

(二)继电器组成及原理尽管继电保护种类繁多,但其组成成分均包括逻辑模块、测量模块、执行模块。

输入信号即为源自于电力传输系统保护对象的信号,测量模块收集源自于被保护对象的特殊信号,对比分析测量信号与给定整定值,且将对比结果输送至逻辑模块。

逻辑模块应该以测量模块输出比较值性质、大小、产生次序及各参数组合为依据展开相应的逻辑运算。

逻辑值及逻辑运算结果被作为继电器动作与否的主要参考依据。

若逻辑值为1(即为真),则动作信号将被输送至执行模块,从而致使执行模块立即响应、警报命令或延时执行掉电命令等。

继电保护技术论文六篇

继电保护技术论文六篇

继电保护技术论文六篇继电爱护技术论文范文1【关键词】继电爱护现状进展1继电爱护进展现状电力系统的飞速进展对继电爱护不断提出新的要求,电子技术、计算机技术与通信技术的飞速进展又为继电爱护技术的进展不断地注入了新的活力,因此,继电爱护技术得天独厚,在40余年的时间里完成了进展的4个历史阶段。

建国后,我国继电爱护学科、继电爱护设计、继电器制造工业和继电爱护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。

50年月,我国工程技术人员制造性地汲取、消化、把握了国外先进的继电爱护设备性能和运行技术[1],建成了一支具有深厚继电爱护理论造诣和丰富运行阅历的继电爱护技术队伍,对全国继电爱护技术队伍的建立和成长起了指导作用。

阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。

因而在60年月中我国已建成了继电爱护讨论、设计、制造、运行和教学的完整体系。

这是机电式继电爱护富强的时代,为我国继电爱护技术的进展奠定了坚实基础。

自50年月末,晶体管继电爱护已在开头讨论。

60年月中到80年月中是晶体管继电爱护蓬勃进展和广泛采纳的时代。

其中天津高校与南京电力自动化设备厂合作讨论的500kV晶体管方向高频爱护和南京电力自动化讨论院研制的晶体管高频闭锁距离爱护,运行于葛洲坝500kV线路上[2],结束了500kV线路爱护完全依靠从国外进口的时代。

在此期间,从70年月中,基于集成运算放大器的集成电路爱护已开头讨论。

到80年月末集成电路爱护已形成完整系列,渐渐取代晶体管爱护。

到90年月初集成电路爱护的研制、生产、应用仍处于主导地位,这是集成电路爱护时代。

在这方面南京电力自动化讨论院研制的集成电路工频变化量方向高频爱护起了重要作用[3],天津高校与南京电力自动化设备厂合作研制的集成电路相电压补偿式方向高频爱护也在多条220kV和500kV线路上运行。

我国从70年月末即已开头了计算机继电爱护的讨论[4],高等院校和科研院所起着先导的作用。

电力系统继电保护技术简要论文

电力系统继电保护技术简要论文

电力系统继电保护技术的简要探讨摘要提出了未来继电保护技术发展的趋势是:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化。

关键词电力系统继电保护微机继电保护发展在电力系统的运行中,为了防止或减少故障的发生,必须采用保护装置来检测和监测系统的运行状况,这种保护装置通常由继电器或其附属设备组成,称为继电保护。

一、我国继电保护技术发展现状电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。

二、继电保护的未来发展继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。

(一)计算机化:随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。

原华北电力学院研制的微机线路保护硬件已经历了3个发展阶段:从8位单cpu结构的微机保护问世,不到5年时间就发展到多cpu结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。

作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。

继电保护装置的微机化、计算机化是不可逆转的发展趋势。

但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。

(二)网络化:计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。

它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。

到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。

继电保护的作用也只限于切除故障元件,缩小事故影响范围。

这主要是由于缺乏强有力的数据通信手段。

国外早已提出过系统保护的概念,这在当时主要指安全自动装置。

因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈电力系统中继电保护技术
【摘要】本文结合工作实践,介绍了电力系统中继电保护的组成及其工作原理,结合几种典型的继电器比较,分析了继电保护装里可靠性提高的方法,讨论了继电保护常见故障及其影响因素和排除方法,并对未来继电保护技术的发展作出了展望。

【关健词】电力系统;继电器保护;可靠性;技术分析;
中图分类号:tm73文献标识码: a 文章编号:
前言
电力系统安全可靠性是电力传输过程中的关键技术问题,也是电力技术人员热点关注和着力解决的问题之一。

一般的电力及传输系统由发电系统、电压转换系统、系统母线、电路配送线路及用电设备终端等组成。

电力及电力传输系统过程中产生的故障属非正常运行,导致电力传输系统或其中部分子系统不能正常工作,因此,用电终端不能正常工作、配电系统功能损坏或供电质量下降,甚至造成电路传输设备和用户终端设备损坏和财产损失等。

电力系统各元件设备任何单元发生故障,都导致系统的不能正常运行。

因此,在发现、预测或检测到系统故障时,要求切断线路的时间短到0.1s 甚至更短。

1、继电保护工作原理
电力系统及电力传输系统供电过程中出现异常故障,由于故障的不可预见性会引起电流的陡增或者电压的陡降,同时电流电压间的相位角也会发生变化,为了避免上述问题,继电保护根据不同的功
能和原理出现不同原理和类型的继电保护器。

继电保护的种类很多,但其组成一般都是由测量模块、逻辑模块、执行模块组成,其组成原理如图1。

图1 一般继电器组成原理
逻辑模块根据测量模块输出比较值的大小、性质及产生的次序或上述多种参数的组合,进行逻辑运算,得到的逻辑值是决定是否动作的主要依据。

当逻辑值为真,即为1时,激励动作信号至执行模块,此刻,由执行模块立即响应或在规定的延时时刻执行掉电或者警报命令。

2、几种典型继电器的比较
根据下图2:设母线上由m个设备终端,根据电流定律,任意时刻,流入、流出系统的电流和应该为零,即i1+i2+i3+…+im=0,如果令i1+i2+i3+…+im=ic,则ic =0,把ic称为母线保护的差动电流。

当母线发生故障时,设流入故障点的电流为ir,则i1+i2+i3+…+im=ir,即ic=ir。

如电流ic大于母线保护的动作电流时,母线保护开始作用,使联结在母线上的故障点有效的断路器跳开。

因为电流差动继电器独立工作,所以能够正确区分近点和远点故障,因此它是一种可及时作用并且非常可靠的母线系统保护装置。

其中fb-1型和bcd-2型电流差动继电器曾在电力系统中广泛地应用。

图2 母线系统示意图
2.1电流差动继电器特性分析
电流差动继电器的动作特性线如图3所示,在ia和ib的直角坐标系上,直线oc平行于直线od,可得到电流差动继电器的动作区域为平行线oc,od上部和下部区域,直线oc. od斜率均为1。

直线oa表示母线流入和流出的电流相等,可以表示为:ia/ib=1。

直线ob表示电流互感器的误差为0.1的直线,可以表示为:ia/ib =-0.90由图上分析可知,直线od和ob相交,说明当电流互感器存在误差为0.1时,电流差动继电器将发生误判别,产生误动作。

当ia/ib=0. 5时表示母线短路时有一半的电流流出,不难得到其在电流很小时即和电流差动继电器动作区域相交。

因此从以上分析可知电流差动继电器是不能用于大电流流出的母线系统。

图3 差动继电器的动作特性线图4 比率差动继电器的动作特性线
2.2比率差动继电器特性分析
比率差动继电器的动作特征线如图4所示,做出0.5的电流流出线、0.1电流互感器误差线和继电器动作线,如图4所示,此时k 大于等于1/3时。

保护的动作线和10%误差线无法相交,继电器的动作线和50%电流流出线是平行的,因此该类继电器抗ct误差能力较好,并适用母线短路电流为50%的情况。

在图4中,若k=0.7或者更大,则继电器电流流出为50%时会错误判决,产生误动作。

因此不同的系数对应于不同的电流流出数值。

3、继电保护常见故障影响及排除研究
3.1电流互感器饱和对配电系统的影响
电流互感器饱和对变电设备和配电保护的影响非常大,随着配电系统设备终端负荷的不断增容,系统如果发生短路,其短路电流很大,当系统靠近终端设备区发生短路时,电流固然大,可以达到或接近电流互感器单次额定电流的百倍量级。

在常态短路情形下,越大,电流互感器误差随着一次短路电流倍数增大而增大,当电流速断保护使灵敏度低时就可能阻止动作。

在线路短路时,由于电流互感器电流饱和,再次感应的二次电流小或接近于零,也会导致定时限过流保护装置无法动作。

当在配电系统的出口线过流保护拒动作导致配电所进口线保护动作了,则使整个配电系统断电。

3.2开关保护设备选择不当造成影响
开关保护设备的选择也很重要,现在,多数配电都采用了在高负荷密集区建立开关站,即采用变电所一一开关站一一配电变压器的供电输电方式。

在未实现继电保护自动化的开关站内,广泛采用负荷开关或与其组合的继电器设备系统作为开关保护设备。

通常来说,对开关站入口线路采用负荷开关实现日常分合负载电流不设保护;对直接带配电变压设备的出口线路选用负荷开关组合电器;通常为负荷开关与熔断器组合的电器,因此在造成配电所出口故障时,开关站容易越级跳闸。

3.3继电保护系统故障信息的排除
故障信息处理模块主要实现以下功能:(1)与不同厂家、不同型
号的厂站端子系统进行通信,获取各种实时信息并进行处理、显示和存储;(2)对主站、子站历史数据进行查询、管理和统计分析:全面分析和定位故障,对录波文件进行波形分析,利用故障线路两端的记录数据,采用双端测距,完成各种复杂的计算,达到对故障点的精确定位,根据故障分析结果,自动判断相关装置的动作行为是否正确。

3.4继电保护中常见隐形故障的排除
经过调查,现在用电系统上有四分之三以上的停电事故都是由于电力系统保护系统的造成的,继电保护存在很多隐形故障,当前已经成为电力配电系统工程技术人员研究解决的热点问题之一,大多文章中都强调对继电保护隐形故障的分析。

对干重要的输电线路,在跳闸元件故障情况下所有的本地的和远地的跳闸指令有效。

所有的这些设计需要有一个更可靠的继电保护系统。

完成这样的设计才能使一个配电系统在正常操作运行时具有足够的安全系数。

4、继电保护技术的发展展望
(1)信息化。

随着计算机等现代通讯技术的迅猛发展.基于cpu核实现的硬件保护也在不断发展。

自动化芯片控制的电路保护硬件已经历的发展阶段为:从16位单cpu结构的微机保护发展到32位多cpu结构,后又发展到总线结构,性能和响应速度大大提高,目前开始得到广泛应用。

(2)网络化。

计算机网络在信息处理和数据通信过程中已成为当今国家能源和国民经济建设作用,网络化带来的便利,近年来也逐
渐开始应用到电力传输与配电系统中来。

(3)智能化。

近年来,人工智能技术如神经网络、遗传算法、模糊算法和自适应算法等在电力系统自动化相关领域都得到了广泛应用,在继电保护领域应用的研究和应用也逐渐兴起。

在实现继电保护的计算机化和网络化的条件下,使保护、控制、测量、数据通信一体化,并逐渐实现继电保护的智能化,是当今乃至今后电力及电力传输系统继电保护技术发展的主要方向。

结束语
综上所述,在电力系统中人工无法实现的情况下,需要继电保护装置来完成瞬间切断。

因此,继电器是构成继电保护装置的核心元件,是当采集量的变化满足上限要求时,在电气输出电路中使被控量发生预定阶跃变化的一种自动器件。

对电力系统中继电保护技术的应用和研究,还需大力深入探索。

【参考文献:】
1 赵洪建,几种母线保护差动继电器的比较[j].电站系统工程,第25卷第2期;
2 张秋增,浅谈电力系统继电保护技术的现状与发展[j].科技资讯,2009,4;
3 金午桥,变电站自动化系统发展策略[j] ;。

相关文档
最新文档