真空技术基础知识
真空技术基础
极限真空Pu(Pa):真空系统所能达到的最高真空,决定镀 膜的质量; 抽气速率S(L/S):规定压强下单位时间所抽出的气体的体 积,决定抽真空需要的时间。 真空系统所能达到的真空度由方程决定:
Q V dPi P Pu S S dt
式中,Pi为被抽空间气体的分压强,Q为真空室的各种放 气源的气体流量,V为真空室的体积,t为时间。
39
吸气 吸气
吸气截止
压缩
排气
40
41
42
对机械泵油的基本要求:������ 1.饱和蒸汽压低。不容易挥发。������ 2.有一定的润滑性和粘度。润滑和油封性能好。 3.稳定性高。耐高温,不易氧化变质。 4. 定期检查油面,补充泵油。
43
空气中水蒸汽的处理
气镇阀
44
1.3.2 油扩散泵
麦克斯韦速度分布曲线
16
用麦克斯韦速度分布函数求平均值 平均速度
va
0
v vf (v)dv
0
m 4 2kT
8kT m
3/ 2
2 mv 3 v exp 2kT dv
va v
17
方均根速度
vr
v
2
式中1/π是由于归一化条件,即位于2π立体角中的几率为1而出现 的。
27
余弦散射律的意义:
固体表面会将分子原有的方向性彻底消除,均满足余弦 定律;散射的本质是一个再发射过程,分子在固体表面要停 留一定时间,使之与固体进行能量交换。
28
作业:
试举出工业上利用真空技术的5个例子。 试从荧光灯的发光原理出发,解释荧光 灯管为什么要抽真空? 估算标准状态下空气分子的平均自由程。 (空气分子的平均直径等相关参数请 查阅有关文献。)
真空技术基础(电阻规 电离规)
5
接 阀门 机 械 泵
0
5
2 1 1 0 5 0 图3-3 抽气曲线
2 5
热 偶 规
时间(分)
图 3-4
定容法抽速测量装置
2. 定容法测量抽速实验 在真空系统中,对一定容积的被抽容器,随着气体逐渐被抽出,容器内压强包括抽气机进 口处的压强不断降低,因而每次抽出的气体在不断减少,抽速就不断变化。这样,抽气机 的抽速应是在某一瞬时压强下被抽气体体积对时间的导数。即:
7
根据(3-2)或(3-3)式,只要测出一系列压强、时 图 3-5 三级高真空油扩散泵 间值。可在半对数坐标纸上作出抽气曲线。求出抽 1. 进气口 6. 回油管 d ( gP) / dt 代入(3-3)式, 2. 冷凝阱 7. 扩散泵油 即可 气曲线某点的斜率 3. 冷却水套 8. 喷射喷口 求出该压强下的抽气速率。 4. 第一级喷口 9. 出气口 如只需粗略估计抽速,可求其平均抽速。 5. 第二级喷口
70
油蒸汽一起向下运动。油蒸汽被冷却水套冷却,结成油滴回到泵底循环使用,空气分子此 时向喷口下方集结。如此三级喷口逐级起作用,将进气口空气分子集结到出气口,再由机 械泵将积聚起来的气体抽走,可见扩散泵和机械泵必须串接使用才形成抽气过程获得高真 空。 一般三级油扩散泵的极限真空度为 10 帕。影响极限真空度的主要因素是油蒸汽压和 气体分子的反扩散。若加低温冷凝阱(放入干冰或液氮等),阻截油蒸汽分子进入系统, 或采用低蒸汽压扩散泵油,可使极限真空度提高 1-2 个数量级。 玻璃扩散泵的抽速一般为几十升/秒,金属扩散泵可达几百升/秒以上。 扩散泵使用注意事项: (1) 扩散泵不能单独工作,一定要用机械泵作前级泵,并使系统抽到 10 帕量级时才能 启动扩散泵; (2) 泵体要竖直,按规定量加油和选用加热电炉功率; (3) 牢记先通冷却水,后加热。结束时则应先停止加热,冷却一段时间后才能关闭。 4. 其它几种真空泵 (1) 分子泵 分子泵是靠高速转动的转子携带气体分子而获得高真空、超高真空的一种机械真空泵。 -8 工作压强范围为 1 ~ 10 帕。泵的转速为10000 转/分到 50000 转/分,这种泵的抽速范围很宽, 但不能直接对大气排气,需要配置前级泵。分子泵抽速与被抽气体的种类有关,如对氢的 抽速比对空气的抽速大 20% 。 分子泵适用于真空作业,如真空冶炼,半导体提纯,大型电子管排气、原子能工业、 空间模拟等。 (2) 吸附泵 许多化学性活泼的金属元素,如钛、钨、钼、锆、钡等都具有很强的吸气能力。其中 钛有强烈的吸气能力,在室温下性质稳定,易于加工,所以广泛用于真空技术,发展成为 一种超高真空泵¾¾钛泵。 钛泵的抽气机理是气体分子碰撞在新鲜的钛膜上,形成稳定的化合物,随后又被不断 蒸发而形成的新钛膜所复盖。新钛膜又继续吸附气体分子,如此形成稳定的抽气。钛泵对 被抽气体有明显的选择性,对活性气体抽速很大,对惰性气体抽速很小。因而往往需要扩 -6 -10 散泵等作为辅助泵。钛泵的极限真空度为 10 ~ 10 帕。 钛泵可应用于热核反应装置,加速器,空间模拟,半导体元件的镀膜技术和要求无油 污染的真空设备。 (3) 低温吸附泵 用低温介质将抽气面冷却到 20K 以下,抽气面就能大量冷凝沸点温度比该抽气面温度 高的气体,产生很大的抽气作用。这种用低温表面将气体冷凝而达到抽气目的的泵叫做低 温泵,或称冷凝泵。
一章真空技术基础pptppt课件-PPT课件
1. 真空的基本知识
2. 真空的获得 3.3.真空测量 4.4.真空系统
一、真空的基本知识
1. 什么是真空? “真空” 拉丁文Vacuo,其意义是虚无 =>气体较 稀薄的空间。
2.真空的基本特点 a 气体分子的平均自由程大
室温下, 压强为 10-4 Pa 时氮分子的平均自由程 >50km。因此体积有限的超真空系统中,气体分子之 间或气体分子与带电粒子之间的碰撞都可以近似忽略。
3. 真空的应用
(1)产生压力差以完成某些过程
(2)降低某些过程发生所需要的能量势垒,如
凝聚或蒸发过程 (3)隔热 (4)产生干净表面,表面过程,可控薄膜沉积、 wafer bonding
(5)净化腔体(气体、灰尘)
(6)真空干燥
(7)提高分子运动平均自由程
4. 真空度的单位
真空状态下气体稀薄程度称为真空度,通常用压力值表 示。1958年,第一界国际技术会议曾建议采用“ 托 ”(Torr)作为测量真空度的单位。国际单位制(SI)中规定压 力的单位为帕(Pa)。我国采用SI真空单位。
想要得到高纯度的薄膜,就必须尽量在较高真空度的环境 下,或是在不会与薄膜材料产生反应的氩气等的惰性气体中 进行。
e 改变反应进程
1 2 Si3N4 C SiC N2 3 3 G T 1 124117 83 G2 124117 83T RT ln p2/3
压强修正
压强降低,降低了反应温度
真空区域划分
真空区域划分为:粗 2 1 10 ~ 1 10 Pa
低真空
高真空 超高真空 极高真空
2 1 1 10 ~ 1 10 Pa
1 10 ~ 1 10 Pa
真空技术的基本知识
例:2X一70 表示双级旋片式真空泵,抽气速率为70L/S。
利用真空与大气之间的压力差所产生的力可实现真空在下述 方面的力学应用。
具体应用: 1. 真空吸引和输运固体、液体、胶体和微粒; 2. 真空吸盘起重、真空医疗器械; 3. 真空成型,复制浮雕; 4. 真空过滤; 5. 真空浸渍。
中真空 1.33×102 ~1.33×10-1(Pa)
气体分子间,分子与器壁间的相互碰撞不相上下,气体分子 密度较小 。
1. 真空的含义及表征
1.1大气与真空 1.2真空度的表征及单位 1.3真空区域的划分
2. 真空的获得
2.1 真空获得设备 旋片泵 定片式真空泵 往复泵 罗茨泵 水环真空泵 分子泵 滑阀式真空泵 油扩散泵
2.2 真空泵的选型
第一章 真空技术的基本知识
3. 真空测量及其设备
3.1 什么是真空测量
高的压强;
1.3 真空区域的划分
划分依据:真空在技术上的应用特点、真空的物理特性、 真空获得设备和真空检测仪表的有效适用范围 (GB3163)
低真空 1.33×105 ~1.33×102(Pa)
低真空这种气体状态与常压状态相比较,只有分子数目由多 变少的变化,而无气体分子空间特性的变化,分子相互间碰撞频 繁。
2. 真空的获得
分子密度减小 分子数减少
抽走 化学反应
吸附 结晶 容积扩大
2.1 真 空 获 得 设 备
真空技术基础知识
第七单元 真空技术7-0 真空技术基础知识“真空”是指气体分子密度低于一个大气压的分子密度稀薄气体状态。
真空的发现始于1643,那年托利拆利(E.Torricelli )做了有名的大气压力实验,将一端密封的长管注满水银倒放在盛有水银的槽里时,发现了水银柱顶端产生了真空,确认了真空的存在。
此后,人们不断致力于提高真空度,随着科学技术的发展,现在已经能够获得低于10-10Pa 的极高真空。
在真空状态下,由于气体稀薄,分子之间或分子与其它质点之间的碰撞次数减小,分子在一定时间内碰撞于表面上的次数亦相对减小,这导致其有一系列新的物化特性,诸如热传导与对流减小,氧化作用小,气体污染小,气化点降低,高真空的绝缘性能好等等,这些特征使得真空特别是高真空技术已发展成为先进技术之一,目前,在高能粒子加速器、大规模集成电路、表面科学、薄膜技术、材料工艺和空间技术等科学研究的领域中占有重要地位,被广泛应用于工业生产,尤其是在电子工业的生产中起着关键的作用。
一、真空物理基础 1. 真空的表征表征真空状态下气体稀薄程度的物理量称为真空度。
单位体积内的分子数越少,气体压强越低,真空度越高,习惯上采用气体压强高低来表征真空度。
在SI 单位制中,压强单位为 牛顿/米2(N/m 2):1牛顿/米2=1帕斯卡(Pascal ), (7-0-1)帕斯卡简称为帕(Pa ),由于历史原因,物理实验中常用单位还有托(Torr )。
1标准大气压(atm )=1.0135×105(Pa),1托=1/760标准大气压 (7-0-2) 1托=133.3帕斯卡习惯采用的毫米汞柱(mmHg )压强单位与托近似相等(1mmHg=1.00000014)托。
各种单位之间的换算关系见附表7-1 2. 真空的划分真空度的划分(不同程度的低气压空间的划分)与真空技术的发展历史密不可分。
通常可分为:低真空(Pa 10~1013-)、高真空(Pa 10~1061--)、超高真空(Pa 10~10-10-6)和极高真空(低于Pa 1010-)。
真空技术基础
不需要油作为介质,又称为无油泵
1.3 真空的获得-抽真空
极限真空(极限压强Pu)和抽气速率
——是表示真空泵性能的两个重要参数。极限压强是该系 统所能达到的最低压强;抽气速率是在规定压强下单位时间 抽出气体的体积,它决定抽真空所需要的时间。
理论上,一个系统所能达到的真空度:
Q V dP P Pu i S S dt
旋片式机械泵结构示意图和工作原理图
1.3 真空的获得-抽真空
玻-马洛特定律
V P P0 1 V V n次循环后
V Pn P0 V V
n
P0 V lg mt lg 1 Pi V Kt
lgP0/Pi
Pn达到极限值?
体分子的扩散系数;v油蒸气在喷口处的速度 扩散泵的实际抽速:
S (3 ~ 4)d
2
d是进气口直径
泵油要求:
化学稳定性好(无毒、无腐蚀) 热稳定性好(高温不分解) 抗氧化 较低的饱和蒸气压(小于等于10-4Pa)
工作时应有尽可能高的蒸气压
无任何阻挡的话,返油率高达10-3mg/cm2· s
1.3 真空的获得-抽真空
赫兹-克努曾公式
va 8k T 8 RT m M
P 2mk T
温度一定时, P
稀薄气体的基本性质
示例
气体分子密度
P n 7.2 10 (m-3 ) T
22
标准状态: P = 105Pa,n = 2.461019分子/cm3
P = 1.3 10-8Pa,n = 3.24105分子/cm3
1 1 nva 3.24 10 5 8.5 10 4 6.9 10 9 分子 / cm2 s 4 4
真空技术基础
克努森准数Kn —划分分子流状态与黏滞流状态
Kn D /
其中,D为气体容器的尺寸, 为气体分子的平均自由程。
根据Kn的大小,气体的流动可 被划分为三个不同的区间:
分子流状态:
过渡状态: 黏滞流状态:
Kn﹤1
Kn=1~110 Kn﹥110
§4-2 气体管路的流导
流导:真空系统中总包括有真空管路,而真空管路中气 体的通过能力称为它的流导。 设某一真空部件使流动着的气体形成一定程度的压力 降低,则其流导C的定义为:
Q C P 1P 2
式中,P1和P2为部件两端的气体压力;Q为单位时间内通过该真空部 件的气体流量(L)。
流导的求解: 当不同的流导C1,C2,C3之间相互串连或并联时,形 成的总流导C可以通过下式求出:
串联流导:
1 1 1 1 1 C C1 C2 C3 Cn
并联流导:
II. 理想气体状态方程:
m PV RT M
P
其中:
m m N RT kN0T kT nkT VM VN 0 V
R P0V0 / T0 8.3149 J mol1 K 1
k R / N0 1.3810
23
J /K
m 为气体的质量,M 为气体的摩尔质量, 为气体分子的
2
n为单位体积内气体分子的数目。
平均自由程( )与气体的热力学温度(T)、玻耳兹曼常数 (k=R/N0)、某种气体分子的有效截面直径d(常温常压下= 0.5 nm)、气体压力和单位体积内气体分子数n之间的关系 为(普通物理学,程守洙主编,P299) :
平均自由程(
kT 1 1 2 2 2d p nd 2
C C1 C2 C3 Cn
第一章 真空技术基础
几个基本概念:
• 真空:气体分子数量低于大气压状态的空间。但不是完全空 的。 • 真空术语: 本底真空度:全密封真空腔体内抽空时的气压。 工作真空度:实验或工艺过程中所必需的气体压力。 极限真空度:没有漏气和内壁脱气条件下,真空泵所能达 到的最低气压。 真空规:测量真空中气压的仪表或传感器。 真空度单位:气压的单位。 真空度就是真空中的气压。真空度的测量就是气压的测量。
1mba 100 1atm
1.013×105 760
二、真空区域的划分
1105 ~ 1102 Pa
粗真空
低真空 高真空 超高真空
1102 ~ 1101 Pa
粘滞流
1101 ~ 1106 Pa
110 Pa
11010 Pa
6
粘滞流
分子流
极高真空
分子流
三、固体对气体的吸附及气体的脱附
• 缺点:泵内油蒸汽的回流会直接造成真空 系统的污染。 • 应用领域:真空镀膜、真空炉、电子、化 工、航空、航天、冶金、材料、生物医药 、原子能、宇宙探测等领域。
思考:
1. 扩散泵能否单独使用,即从大气开始抽真空?为什么? 2. 如果使用扩散泵时,忘记开冷却水,结果会怎样?
附:钛升华泵
加热钛靶蒸发生成钛膜,并与气体发生反应 工作范围 10-8-10-11 Torr 价格便宜,可靠
油扩散泵的结构如示意图
• 泵的底部—是装有真空泵油的蒸发器,真空泵油经电 炉加热沸腾后,产生一定的油蒸汽,蒸汽沿着蒸汽导 流管传输到上部,经由三级伞形喷口向下喷出。喷口 外面的压强较油蒸汽压低,于是便形成一股向出口方 向运动的高速蒸汽流,使之具有很好的运载气体分子 的能力。油分子与气体分子碰撞,由于油分子的分子 量大,碰撞的结果是油分子把动量交给气体分子自己 慢下来,而气体分子获得向下运动的动量后便迅速往 下飞去.并且,在射流的界面内,气体分子不可能长 期滞留,因而界面内气体分子浓度较小.由于这个浓 度差,使被抽气体分得以源源不断地扩散进入蒸汽流 而被逐级带至出口,并被前级泵抽走.慢下来的蒸汽 流在向下运动的过程中碰到水冷的泵壁,油分子就被 冷凝下来,沿着泵壁流回蒸发器继续循环使用.冷阱 的作用是减少油蒸汽分子进入被抽容器。
真空基本知识
•真空泵是吸入口形成负压,排气口直通大气,两端压力比很大抽出气体的机械
右图是运用真空泵的典型真 空回路
18
2 真空获得
☞ 机械泵
Rotary Vane Pumps
19
2、真空获得
工作原理:
依靠插在偏心转子中的数个可以
滑进滑出的旋片将泵体内的气体隔离、 压缩,然后将其排出泵体之外。
极限真空度: 10-2 -10-1 Pa左右。 优点:结构简单、工作可靠。 缺点:油蒸气回流、引起污染
托/Torr 7.5×10-3 1 0.75 760
毫巴/mbar 1× 10-2 1.333 1 1.013 ×103
标准大气压 9.87× 10-6 1.316 ×10-3 9.87× 10-4 1
3
1.1 真空知识
☞ 真空的划分
粗真空: 1x105 ~ 1x102 Pa (粘滞流) 真空干燥、真空浸渍 低真空: 1x102 ~ 1x10-1 Pa (分子流) 热处理、低压化学气相沉积 高真空: 1x10-1 ~ 1x10-6 Pa
20
2、真空获得
☞ 罗茨泵(Roots Pumps)
工作原理:
两个8字形的转子以相反的方向 旋转,两个转子始终保持相切合,咬 合精度很高,切合处气体始终不能通 过,只能从上、下两边被扫出真空系 统。用作次级泵。
极限真空度: 10-4 Pa左右(双级)。 优点:结构简单、无油气回流,
抽速很大。
缺点:
2)平均速率
v
3)方均根速率
v 2 v vp
速率与声速(340m/s)相比拟
7
1.2 稀薄气体性质
☞ 平均自由程
气体分子在连续两次碰撞之间的平均路程称分子的平均自由程。
真空技术基础知识
真空技术基础知识前言1. 真空“真空”来源于拉丁语“Vacuum ”,原意为“虚无”,但绝对真空不可达到,也不存在。
只能无限的逼近。
即使达到10-14—10-16托的极高真空,单位体积内还有330—33个分子。
在真空技术中,“真空”泛指低于该地区大气压的状态,也就是同正常的大气比,是较为稀薄的气体状态。
真空是相对概念,在“真空”下,由于气体稀薄,即单位体积内的分子数目较少,故分子之间或分子与其它质点(如电子、离子)之间的碰撞就不那么频繁,分子在一定时间内碰撞表面(例如器壁)的次数亦相对减少。
这就是“真空”最主要的特点。
利用这种特点可以研究常压不能研究的物质性质。
如热电子发射、基本粒子作用等。
2. 真空的测量单位一、用压强做测量单位真空度是对气体稀薄程度的一种客观量度,作为这种量度,最直接的物理量应该是单位体积中的分子数。
但是由于分子数很难直接测量,因而历来真空度的高低通常都用气体的压强来表示。
气体的压强越低,就表示真空度越高,反之亦然。
根据气体对表面的碰撞而定义的气体的压强是表面单位面积上碰撞气体分子动量的垂直分量的时间变化率。
因此,气体作用在真空容器表面上的压强定义为单位面积上的作用力。
压强的单位有相关单位制和非相关单位制。
相关单位制的各种压强单位均根据压强的定义确定。
非相关单位制的压强单位是用液注的高度来量度。
下面介绍几种常用的压强单位。
【标准大气压】(atm )1标准大气压=101325帕【托】(Torr )1托=1/760标准大气压【微巴】(μba )1μba=1达因/厘米2【帕斯卡】(Pa )国际单位制1帕斯卡=1牛顿/m2【工程大气压】(at )1工程大气压=1公斤力/厘米2二、用真空度百分数来测量%100760760%⨯-=P δ 式中P 的单位为托,δ为真空度百分数。
此式适用于压强高于一托时。
3. 真空区域划分有了度量真空的单位,就可以对真空度的高低程度作出定量表述。
此外,为实用上便利起见,人们还根据气体空间的物理特性、常用真空泵和真空规的有效使用范围以及真空技术应用特点这三方面的差异,定性地粗划为几个区段。
真空技术基础知识
202mbar
100%
-811 mbar -1,013mbar
0 mbar
四真空度 测量单位 官方单 帕斯卡 位: (Pa)
bar、 其他单 mbar、% 位: 等 单位换 算:
1001PMaP=a1=h 1x106Pa Pa
1hPa=1mb ar 1mbar=0. 001bar
1Pa =1N/m2
一 真空 的概念 物理学上 将真空定 义为:一 个空间不 含有任何 物质的状 态(或称 之为绝对 真空);然 而事实上 这种状态 无法实 现.因此 通常当某 一空间内 的空气压 力低于其 外部大气 压力或是 空间内空 气分子颗 粒密度下 降时,我 们称之为 真空状 态.
真空技术基础知识
压力表
压力表
恒温下,所含分子微 粒少,压力小,真空度 越高
真空抽取力 N (大)
2、当一个物体接触 吸盘时,流量减少, 浮子弹簧力向上。 这样密封被打开, 真空就在吸盘处产 生。
P 《 F,浮子下 降,安全阀被打 开。
1、当吸盘与大气相 通时,浮子被吸会 壳体。 在这个位置上气体 只能通过浮子末端 小孔流动。
2 吸盘时,流 浮子弹簧力 这样密封被 真空就在吸 生。
真空发生器包括一个气流喷嘴(文丘里 和一个排气口(消声器)、吸盘连接口。 通过狭小的喷嘴(文丘里喷嘴)时气流
5倍。在排气口与文丘里喷嘴 之间有一段很短的间隙,来自入口的压 在通过该间隙时体积膨胀,并产生吸气 于是在这个装置的输出口(即真空口)
真空值采 特点: 用正值
105 GV(低真空)
102 FV(中等真空)
10-1 HV(高真空)
10-5 UHV(超高真空)
10-14
应用于抓取技术的真 空范围;
《真空基础知识》课件
高真空
超高真空
超高真空是指在极低压力下的真空状 态,通常在10^-6Pa至10^-9Pa之间 。
高真空是指在较高压力下的真空状态 ,通常在10^-3Pa至10^-5Pa之间。
02
真空的物理性质
真空中的气体分子分布
真空环境
在真空环境中,气体分子数极低,物质处于高度纯净状态, 有利于科学研究和技术应用。
真空的度量单位
帕斯卡(Pa)
帕斯卡是国际单位制中压力的单位,也是真空度的一种度量单位。
托(Torr)
托是国际单位制中压力的单位,常用于表示真空度。
毫米汞柱(mmHg)
毫米汞柱是常用的真空度单位,常用于表示低压力下的真空度。
中需要使用高真空或超高真空环境。
02
在物理实验中,高真空可以消除空气阻力对实 验的影响,例如在研究自由落体运动、弹性碰
撞等实验中需要使用高真空。
04
在材料科学中,高真空可以用于材料制备、表面处 理等,例如在薄膜制备、晶体生长等领域中需要使
用高真空或超高真空环境。
真空在工业生产中的应用
真空在工业生产中的应用也非常 广泛,例如在机械制造、航空航 天、电子制造等领域中需要使用 真空技术。
机械真空泵
利用机械运动将气体吸入并排出,以达到抽气 的目的。
扩散泵
通过加热使气体分子热运动加速,从而实现气 体扩散。
溅射泵
利用高能粒子将气体分子打散,使气体分子从 表面逸出。
真空的测量 技术
皮拉尼真空计
利用电阻丝加热后冷却的原理,测量 真空度。
冷阴极电离真空计
利用不同气体在加热状态下热导率不 同的原理,测量真空度。
真空技术的基本原理和应用
真空技术的基本原理和应用真空技术是现代科学技术的重要分支之一,广泛应用于航空航天、半导体制造、光学镀膜、电子器件和材料科学等领域。
本文将介绍真空技术的基本概念、常见真空度和真空泵的分类、原理及应用等内容。
一、真空技术的基本概念真空是指在一个封闭的容器结构内,气体分子的平均自由程大于或等于该结构的尺寸,无法通过碰撞相互传递,从而形成的气体状态。
真空技术是利用真空环境下气体的流动性和物理、化学性质进行材料加工、产品测试和科学研究的技术。
二、常见真空度和真空泵的分类1. 常见真空度真空度的单位是帕(Pa),衡量压强大小的基本单位。
一般来说,真空度等于1帕时已经属于"真空"。
根据压力的不同,真空度通常分为大气压(约1*10^5帕)、高真空(10^3~10^5帕)、超高真空(10^-1~10^3帕)和极高真空(10^-7~10^-1帕)等不同等级。
2. 真空泵的分类真空泵是用于排气并维持真空度的设备,按照其工作原理和结构特点可以分为机械泵、扩散泵、栅极放电离子泵、离子泵、分子泵等多种类型。
机械泵通常用于真空度在1~10^3帕范围内的气体排放,而分子泵、离子泵等则应用于超高真空范围内。
三、真空泵的原理及应用1. 机械泵机械泵是利用机械运动原理将气体压缩并加速排放的泵,适用于真空度在1~10^3帕范围内。
机械泵一般被广泛应用于高真空系统中,如微电子器件制造中的真空流程,以及真空实验中的真空度维持等。
2. 扩散泵扩散泵利用分子扩散原理把气体分子从低压区域转移到高压区域的泵,适用于高真空和超高真空范围。
扩散泵可被广泛应用于真空制程、真空加热、真空镀膜等领域。
3. 离子泵离子泵利用静电力场和磁场作用于离子,将气体分子逐渐抛离到反极板上,并将离子吸入电场内,使离子发生新的电离交换。
适用于超高真空和极高真空范围。
离子泵是现代半导体制造和核物理等领域中高效的承压排气设备。
4. 分子泵分子泵是一种利用气体分子中的分子扩散和抽吸作用将气体排到高真空范围内的泵。
《真空技术基础》课件2
THANKS
感谢观看
机遇和挑战。
真空技术的突破
目前,真空技术已经广泛应用于各个领域,如电子、能源、环保等。未来,随着技术的 不断突破,真空技术的应用领域将进一步扩大,为人类社会的发展带来更多的便利和效
益。
真空技术在新能源领域的应用
太阳能光伏产业
真空技术在太阳能光伏产业中发 挥着重要作用,如太阳能电池的 制造需要高真空环境,而真空镀 膜技术可以提高太阳能电池的光
详细描述
真空镀膜技术利用物理或化学方法,在材料表面形成一层具 有特殊性能的薄膜,如高硬度、高耐磨性、高反射率等。这 种技术广泛应用于眼镜、钟表、手机等产品的表面处理,提 高产品的外观和性能。
真空热处理技术
总结词
真空热处理技术是一种在真空中对金属材料进行加热和冷却处理,以达到改变 材料性能的工艺。
详细描述
气体净化
对进入系统的气体进行净化处理,以 减少气体杂质对密封面的磨损和腐蚀 。
定期维护
对密封件进行定期检查和维护,以保 证密封效果和延长使用寿命。
04
真空技术的应用实例
真空镀膜技术
总结词
真空镀膜技术是一种在真空中将金属、非金属或化合物蒸气 沉积在材料表面形成薄膜的工艺,广泛应用于光学、电子、 机械、建筑等领域。
真空电子器件制造技术需要在高真空条件下进行,以保证电子器件的性能和稳定 性。这种技术广泛应用于电视、电脑、手机等电子产品中,是现代电子工业的基 础之一。
真空在科研领域的应用
总结词
真空在科研领域的应用广泛,如真空镀膜、真空热处理、真空电子器件制造等,为科学研究提供了重要的实验手 段和基础条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真空技术基础知识前言1. 真空“真空”来源于拉丁语“Vacuum ”,原意为“虚无”,但绝对真空不可达到,也不存在。
只能无限的逼近。
即使达到10-14—10-16托的极高真空,单位体积内还有330—33个分子。
在真空技术中,“真空”泛指低于该地区大气压的状态,也就是同正常的大气比,是较为稀薄的气体状态。
真空是相对概念,在“真空”下,由于气体稀薄,即单位体积内的分子数目较少,故分子之间或分子与其它质点(如电子、离子)之间的碰撞就不那么频繁,分子在一定时间内碰撞表面(例如器壁)的次数亦相对减少。
这就是“真空”最主要的特点。
利用这种特点可以研究常压不能研究的物质性质。
如热电子发射、基本粒子作用等。
2. 真空的测量单位一、用压强做测量单位真空度是对气体稀薄程度的一种客观量度,作为这种量度,最直接的物理量应该是单位体积中的分子数。
但是由于分子数很难直接测量,因而历来真空度的高低通常都用气体的压强来表示。
气体的压强越低,就表示真空度越高,反之亦然。
根据气体对表面的碰撞而定义的气体的压强是表面单位面积上碰撞气体分子动量的垂直分量的时间变化率。
因此,气体作用在真空容器表面上的压强定义为单位面积上的作用力。
压强的单位有相关单位制和非相关单位制。
相关单位制的各种压强单位均根据压强的定义确定。
非相关单位制的压强单位是用液注的高度来量度。
下面介绍几种常用的压强单位。
【标准大气压】(atm )1标准大气压=101325帕【托】(Torr )1托=1/760标准大气压【微巴】(μba )1μba=1达因/厘米2【帕斯卡】(Pa )国际单位制1帕斯卡=1牛顿/m2【工程大气压】(at )1工程大气压=1公斤力/厘米2二、用真空度百分数来测量%100760760%⨯-=P δ 式中P 的单位为托,δ为真空度百分数。
此式适用于压强高于一托时。
3. 真空区域划分有了度量真空的单位,就可以对真空度的高低程度作出定量表述。
此外,为实用上便利起见,人们还根据气体空间的物理特性、常用真空泵和真空规的有效使用范围以及真空技术应用特点这三方面的差异,定性地粗划为几个区段。
但这种划分并不是十分严格的,下面介绍一种划分方法。
粗真空<760~10托低真空<10~10-3托高真空<10-3~10-8托超高真空<10-8~10-12托极高真空<10-12托4.真空技术在国民经济中的应用真空技术在工业生产和近代科学的发展中已日益渗透到各个领域,成为电子、冶金、机械、食品、化工、半导体、低温技术、原子能、宇航等国防、国民经济、科研部门中必不可少的新技术之一。
其应用具体包括在如下几个方面。
一、形成压差,可以做功。
二、提高热、电绝缘性能。
三、利用真空,撤除氛围气体屏障。
四、延长粒子飞行路径。
五、减少有害气体作用。
六、促成材料出气效应。
七、模拟宇宙环境。
气体在平衡状态下的特性1.分子运动论的基本观点气态是物质存在的各种状态中最简单的一种状态。
气态的最主要特征是:它既无一定形状,也无一定体积。
任一数量的气体,都能无限制地膨胀而充满于任何形状与大小的容器中。
气体又能均匀的混合在一起。
任何不同种类的气体,不论其比例如何,都能混合成均匀状态。
对于气体的大量现象及实验总结出来的规律,需进一步作出解释,于是发展起来了气体分子运动论。
其基本观点如下:一、物质是由分子组成的从化学中已知一切物质都是由分子、原子构成的,而分子是物质保持其化学性质的最小单位。
分子的直径大约是10-8厘米的数量级。
通过大量的实践,使人们认识到自然界中每一物体不管它处于什么状态,都不是密实的连续体,也就是说物质结构是不连续的,分子之间是有空隙的。
不同的物质空隙大小不同。
二、分子永远在不规则的运动——热运动扩散现象说明分子是在不停地运动的例子。
分子运动的特点也只能从一些间接的实验中观察到。
布朗运动就是其中一种。
三、分子之间存在相互作用力已知物质是由分子组成,分子在不停的运动,而且分子间还有空隙。
那么为什么物质内分子、原子又能结合成一个整体呢?这是因为分子有相互吸引力。
当我们把物体的一部分分开时,必须加外力来克服这些分子间的引力才行。
另外我们压缩物体时也需要力,这说明分子间还存在着排斥力。
正因为分子间的排斥力,才使物质分子不是一个挨着一个紧靠在一起,而是有一定的空隙。
因此分子之间不但存在着吸引力,而且也存在着排斥力。
它们均为短程力。
实验证明:当两个分子之间的距离约小于10-8厘米,斥力大于引力,分子间的作用表现为斥力;当两个分子间距离大于10-8厘米,小于10-6厘米时,吸引力大于排斥力,分子间的作用力表现为吸引力;分子间的距离大于10-6厘米时,作用力就十分微弱,可以认为分子间没有相互作用了。
2.气体的实验定律和理想气体一、气体的实验定律玻义耳定律一定质量的任何气体,在恒定温度下,气体的压强和体积的乘积为常数,换言之,即它们的压强和体积成反比,其数学表达式为:常数PV=盖·吕萨克定律一定质量的任何气体,若变化过程中压强保持不变(这样的变化过程称为等压过程),而且变化过程中所经历的中间状态均可近似的看作平衡状态,则体积和温度之商保持不变。
数学表达式为:V=常数T查理定律一定质量的任何气体,若变化过程中体积保持不变(这样的变化过程为等容过程),而且变化过程中过经历的中间状态均可近似的看作平衡状态,则压强和温度之商保持不变。
数学表达式为:P=常数T状态过程方程一定质量的任何气体,当从一平衡态过渡到另一平衡态时,压强和体积的乘积与温度之商为一恒量。
数学表达式为:PV常数=T阿伏伽德罗定律在标准状态下(T0=273K,P0=1atm)一摩尔的任何气体的体积等于22.4升。
(包含6.02×1023个分子)。
上述的几条定律是大量的气体实验的总结,而实验总是在一定的条件下进行的,所以定律有局限性,不同气体的局限性也不同。
同时各种气体相对于定律的结论都有不同程度的偏离,也就是存在近似性。
这种近似性既来源于测量的误差,也决定于各种气体本身的个性。
这种个性趋于同一,很自然的使我们设想一种理想化的模型。
二、理想气体凡是严格服从上述各条气体实验定律的气体,称为理想气体。
这就是理想气体的宏观定义。
理想气体是一个理论模型,实际是不存在的。
这个假想的概念引进的实际意义基于以下的事实,即在较低的压强和较高的温度下,各种气体都可以十分近似的看作理想气体,也就是在我们真空技术中所遇到的气体都可以当作理想气体。
从结构上看,理想气体具有以下特点:(1)分子本身大小比起它们之间的距离来可以忽略不计,因此可以把分子看作是没有体积的几何质点。
气体体积的确切意义应为分子能自由到达的整个空间,所以上述特点可以使气体体积这一状态参量更加明确,即可用容器的容积代替。
(2)除了分子相互碰撞的瞬间外,分子间没有相互作用力。
也就是说除了分子碰撞瞬间外,可视为自由粒子,直线飞行,牛顿第二定律对个别粒子也是成立的。
这一特点,保证了气体分子的压强不受分子间作用的影响。
(3)分子在运动中不断相互碰撞,而且也不断地与容器壁发生碰撞,这些碰撞是完全弹性的。
由于碰撞的时间是如此的短,碰撞过程中的能量转换过程亦可忽略,由于没有动能损失,气体分子的热运动平均动能亦不受损失。
以后我们将看到,系统可由一确定的温度来描述其状态。
以上特点亦可作为理想气体的微观定义。
实际气体对实验定律的偏离实质上也就是其结构上对上述特点的偏离。
现在我们再回过来看看为什么压强较低、温度较高的气体都可以十分近似地看作理想气体。
首先,压强较低,气体显然处于较稀薄的状态,分子间的平均距离大,从而保证了理想气体结构上的第一个特点。
其次,温度较高,分子飞行速度较快,在两次碰撞之间的时间里所受到其他分子的作用较小,从而保证了理想气体结构上的第二个特点。
三、理想气体状态方程在真空技术中,除了研究状态参量的变化规律外,有时需要分析在某一确定状态下P 、V 、T 三者和气体质量M 之间的联系的规律。
这种规律称为状态定态方程,简称状态方程或物态方程。
其数学表达式为:RT MPV μ=式中μ为一摩尔气体的质量,称为气体的摩尔质量。
R 为一常数,称为理想气体的普适常数。
R 是对任何气体都适用的常数,在不同的单位制里,R 有不同的数值和单位。
常用的有 R=8.31焦耳/摩尔·开R=2卡/摩尔·开状态方程还可以有如下的形式:nKT P =其中n 为气体的分子密度。
K 亦为一物理常数,称为玻尔兹曼常数,它定义为:K J N R K /1038.1230-⨯== 0N 为阿佛加德罗常数,mol N /1002.6230个⨯=由状态方程,可得气体密度为RTP V M μρ== 假如某种气体在温度不变的情况下,μ、R 、T 均为常量,状态方程可写为C PV =·M式中C 为常数。
这说明PV 的乘积与气体的质量成正比,也就是PV 决定了气体量的大小。
所以真空技术中都用PV 来表述气体量。
最后应指出,状态方程以及前述的一些气体定律对于未饱和蒸汽亦成立。
至于饱和蒸汽,凡牵涉到状态的变化,上述有关定律就不适用了。
3. 理想气体的压强气体对器壁的压强在各个方向都存在,且在平衡状态下,各个方向的压强都相等。
气体压强起因不同于固体和液体。
它既不是重力引起的,也不是流动性所致,而是由于分子不停的运动,撞击在容器壁上,把一部分动量传递给器壁。
对个别分子而言,这种行为是偶然的和间断的,而对大量分子而言,传递的动量总和在单位时间里便是一个恒定的数值,也就是在宏观上表现出对器壁产生一个持续的作用。
气体压强的大小决定于单位时间内气体分子传递给器壁单位面积上法线方向的动量的多少。
如果假定所有的气体分子都以同一个速度V 运动,则这一传递的动量数值显然正比于每一个分子的动量mV ,也正比于单位时间碰撞上去的分子数,而这一分子数既决定于单位体积内的气体分子数n ,也决定于分子运动的快慢,即速率V 。
由此可推断:mV P ∝·n ·V考虑到气体分子实际上以各种可能的速率运动,应取其平均值,经严格的理论推到,可得231V mn P = 或232k E mn P =其中221V m E k =,为气体分子的平均平动动能。
2V 为气体分子的速率平方的平均值,令 2V V S =S V 为均方根速率,则231s V mn P = 上式便是理想气体压强公式,它是气体分子运动论的基本公式之一。
道尔顿分压定律不互相起化学作用的混合气体的总压强等于各气体分压强的总和。
所谓分压强是指个别气体在单独存在时,即在与混合气体的温度和体积相同并且与混合气体中所包含的这种成分的摩尔数相等的条件下所具有的压强。
可用下式表示i P P P P P ++++= (321)P 为混合气体的总压强,1P ,2P ,……i P 为各气体分压强。