3元一次方程组解法
三元一次方程组的解法步骤
三元一次方程组的解法步骤在数学中,方程组是一个或多个方程的集合,其中每个方程都包含一个或多个未知数。
解方程组是求出所有未知数的值,使得方程组中的每个方程都成立。
在本文中,我们将讨论三元一次方程组的解法步骤。
一、高斯消元法高斯消元法是解三元一次方程组的一种常用方法。
它的基本思想是通过一系列的行变换将方程组化为阶梯形式,然后通过回代求解未知数的值。
具体步骤如下:1. 将方程组写成增广矩阵的形式。
2. 选取第一个非零元素所在的行作为主元行,并将该行的第一个非零元素除以该元素的值,使其成为主元。
3. 将主元行以下的所有行都减去一个倍数,使得它们的第一个非零元素为零。
4. 重复步骤2和3,直到将矩阵化为阶梯形式。
5. 通过回代求解未知数的值。
二、克拉默法则克拉默法则是另一种解三元一次方程组的方法。
它的基本思想是通过求解系数矩阵的行列式和各个未知数对应的增广矩阵的行列式来求解未知数的值。
具体步骤如下:1. 将方程组写成增广矩阵的形式。
2. 求解系数矩阵的行列式。
3. 求解各个未知数对应的增广矩阵的行列式。
4. 将各个未知数对应的行列式除以系数矩阵的行列式,得到未知数的值。
三、矩阵法矩阵法是解三元一次方程组的另一种方法。
它的基本思想是将方程组写成矩阵的形式,然后通过矩阵的逆矩阵来求解未知数的值。
具体步骤如下:1. 将方程组写成矩阵的形式。
2. 求解矩阵的逆矩阵。
3. 将逆矩阵与增广矩阵相乘,得到未知数的值。
总结以上三种方法都可以用来解三元一次方程组,但它们的适用范围和计算复杂度不同。
在实际应用中,我们需要根据具体情况选择合适的方法来求解方程组。
无论采用哪种方法,我们都需要掌握基本的数学知识和计算技巧,才能够顺利地解决问题。
希望本文能够对读者有所帮助,让大家更好地掌握解三元一次方程组的方法。
如何解三元一次方程组
如何解三元一次方程组三元一次方程组是指包含三个未知数和三个方程的方程组。
解三元一次方程组的基本方法有两种:代入法和消元法。
以下将详细介绍两种方法。
一、代入法:代入法是指从方程组中选择一个方程,将该方程中的一个未知数用其他未知数的表达式表示,再将该表达式代入其他方程中,从而减少未知数的个数,直至得出所有未知数的值。
具体步骤如下:1.从方程组中选择一个方程,将其中一个未知数用其他未知数的表达式表示。
2.将该表达式代入其他方程中,得到一个新的方程。
3.解这个新的方程,求出一个未知数的值。
4.将此值代入原有的方程中,求解其他未知数的值。
5.最后检查解是否符合所有方程,如果符合,则为方程组的解;如果不符合,则无解。
二、消元法:消元法是指通过对方程组中的方程进行运算,使其中的一些未知数的系数为零,从而将方程组转化为含有更少未知数的方程组,最终降低问题的复杂度。
具体步骤如下:1.对方程组中的方程逐一进行消元运算,使得每个方程中最后一个未知数的系数为12.用第一个方程消去其他方程中与第一个方程中最后一个未知数系数相同的项。
3.对第二个方程进行类似操作,依此类推,直至最后一个方程。
4.得到转化后的简化方程组。
5.通过逆向代入的方法解出未知数的值。
6.最后检查解是否符合所有方程,如果符合,则为方程组的解;如果不符合,则无解。
实际解题过程中,我们可以根据具体情况选择采用代入法或消元法,或结合使用两种方法进行求解。
需要注意的是,三元一次方程组可能存在无解或无穷多解的情况,因此在解题过程中需要特别注意检查解是否满足所有方程。
如果方程组无解,则说明方程组中方程之间存在矛盾;如果方程组有无穷多解,则说明方程组中的方程不足以确定唯一解。
以上就是解三元一次方程组的基本方法。
实际解题过程中需要灵活运用这些方法,结合具体问题及方程组的特点,选择合适的方法进行求解。
三元一次方程组解法举例
6. 写出方程组的解,并检验解的正确性。
代入法应用举例
例如,对于三元一次方程组
$\left\{ \begin{array}{l} x + y + z = 6 \ x - y + 2z = 3 \ 3x + 2y - z = 8 \end{array} \right.$可以使用代入法求解
解法选择策略与注意事项
选择策略
在面对三元一次方程组时,首先观察方程组 的系数特点,如果系数简单且易于代入,可 以选择代入法;如果存在明显可消元的变量 ,可以尝试消元法;对于复杂方程组,建议 采用矩阵法进行求解。
注意事项
在使用代入法和消元法时,要注意选择合适 的变量进行代入或消元,避免计算过于复杂 ;在使用矩阵法时,需要确保理解矩阵运算 的基本原理,正确构建系数矩阵和常数矩阵 ,以保证求解的准确性。
三元一次方程组解法 举例
汇报人: 日期:
目录
• 三元一次方程组概述 • 三元一次方程组解法——代入法 • 三元一次方程组解法——消元法 • 三元一次方程组解法——矩阵法 • 三种解法的比较与总结
01
三元一次方程组概述
三元一次方程组的定义
定义
三元一次方程组是指包含三个未知数的一次方程所组成的方程组。
杂的方程组,可以通过计算机进行高效求解。
• 缺点:需要一定的线性代数基础知识,对于初学者可能难以
03
理解。
适用范围的讨论
代入法
适用于变量系数较为简单 ,易于进行代入计算的情 况。
消元法
适用于方程组中存在较为 明显的可消元变量的情况 。
矩阵法
三元一次方程组的解
三元一次方程组的解三元一次方程组是指含有三个未知数的一次方程组,我们可以通过一定的方法来求解这些方程的解。
下面就让我来为大家详细介绍一下三元一次方程组的解法。
一、初等变换法初等变换法是指通过对方程组进行加法、减法、乘法等基本运算,来得到方程组的解。
这种方法相对简单,适用于一些比较简单的方程组。
下面是一个使用初等变换法解三元一次方程组的例子:$x + y + z = 10$$2x - y + 3z = 5$$3x + 4y - 2z = 7$先将第2个式子加到第3个式子上,得到:$x + y + z = 10$$2x - y + 3z = 5$$5x + 3y + z = 12$再将第1个式子乘以2,得到:$2x + 2y + 2z = 20$$2x - y + 3z = 5$$5x + 3y + z = 12$将第1个式子减去第2个式子,得到:$x + 3y - z = 15$$2x - y + 3z = 5$$5x + 3y + z = 12$将第2个式子乘以3,得到:$x + 3y - z = 15$$6x - 3y + 9z = 15$$5x + 3y + z = 12$将第2个式子乘以2,得到:$x + 3y - z = 15$$12x - 6y + 18z = 30$$5x + 3y + z = 12$将第2个式子减去第1个式子的3倍,得到:$x + 3y - z = 15$$3x - 15z = 3$$5x + 3y + z = 12$再将第3个式子减去第1个式子的5倍,得到:$x + 3y - z = 15$$3x - 15z = 3$$4y - 4z = -63$由第2个式子得:$x = 5z + 1$将上面的式子带入第1个和第3个式子中,得到:$20z + 16y = 79$$25z + 14y = 47$解得 $y=-\dfrac{1}{2}$,$z=\dfrac{9}{5}$,最终得到:$x=3$,$y=-\dfrac{1}{2}$,$z=\dfrac{9}{5}$二、高斯消元法高斯消元法是求解三元一次方程组的一种比较常用的方法,它的主要思想是通过消元的方式,将方程组化成为一个上三角矩阵,然后就可以通过回带的方法来解方程组。
三元一次方程组
三元一次方程组定义:我们把含有三个未知数,并且含未知数的想的次数都是1的方程,叫做三元一次方程。
含有三个未知数,并且含未知数的项的次数都是1的方程组,叫做三元一次方程组。
三元一次方程组中各方程的公共解叫做这个三元一次方程组的解。
方法:提示:可以比较二元一次方程组的解法X+y+z=5 1x-y-5z=1 22x-3y+z=14 3解法:将1×5+2,再用3-1,消去未知数z,得到一个二元一次方程组,再求解。
解析:解三元一次方程组的关键是把三元一次方程组转化为二元一次方程组,在求解,所以,必须消去一个未知数,而本题是一个例子,将含有相同未知数的项的次数转化为一样的,再通过加减消去一个未知数。
x-z=4 1x-y+z=1 22x+3y+2z=17 3解法:由1得出z=x-4,再将z代入另外两个方程,得出一个含有z,y的二元一次方程组,求出z,y的值后将z,y代入,求出x。
解析:第二种消去一个未知数的方法就是将一个未知数用另外的未知数表示,然后再代入,从而得出一个二元一次方程组。
还有要注意,不能代入得出结论的方程,要代入另外两个方程。
三元一次方程组的应用若│3a+4b-c│+1/4(c-2b)²=0,则a:b:c=?答案:-2:3:6解析:绝对值和平方都有一个特性,就是非负数,而他们的和为0,所以说明了他们里面的数的和为0.根据此,由(c-2b)²得出c=2b。
已知c=2b,将c代入│3a+4b-c│中,得出│3a+2b│=0,又可以得出3a=2b,则a=2/3b.这三个未知数都表示成了b,所以比的时候可以吧b消去,再去分母,得出答案。
已知方程组2x+3y=n ,的解x,y的和为12,求n的值。
3x+5y=n+2答案:14解析:这个方程看似解不出来,但是,根据题意可以再得出一个方程:x+y=12,再联系题中方程组,得出一个简单的三元一次方程组,再解出来就可以了。
第一章完。
解三元一次方程
解三元一次方程三元一次方程,又称为三元线性方程,是指由三个未知数及三个一次项的一元一次方程组组成的方程组,其可以用于解决三重参数的实际问题,是一种经典的数学方程,被广泛地应用在数学、物理、化学等诸多领域。
下面就介绍三元一次方程的解法。
一、矩阵方法:使用矩阵方法进行求解时,首先将三元一次方程写成矩阵形式,然后采用行列式求解,即可得到未知量的值,从而求解三元一次方程。
二、消元法:消元法,即高斯消元法。
其基本思想简单易懂,但限制也较大,必须保证当前的非首元的系数用其首元乘以系数倍后,可以消去当前未知数的项。
三、分部求解法:采用分部求解法时,首先将原方程组按未知数拆分为多个一元方程组,然后分别解出每个一元方程,把解带回原来的方程组,联立求解,即可得到未知数的值,最后可以求出三元一次方程的解。
四、特例法:如果三元一次方程的系数存在一些特殊构型,比如某两个变量的系数相等、另一个变量的系数为零等,就可以采用特例法进行求解。
五、代数位移法:代数位移法是一种巧妙的求解三元一次方程的方法。
它的基本思想是利用一定的代数变换使方程的系数变成某种特殊结构,从而有利于简化求解工作,从而得出方程的解。
总结:1. 矩阵方法:将三元一次方程写成矩阵形式,然后采用行列式求解,即可得到未知量的值。
2. 消元法:假定当前的非首元的系数可以用其首元乘以系数倍后,可以消去当前未知数的项。
3. 分部求解法:将原方程组按未知数拆分为多个一元方程组,然后分别解出每个一元方程,把解带回原来的方程组,联立求解,即可得到未知数的值。
4. 特例法:如果三元一次方程的系数存在一些特殊构型,可以采用特例法进行求解。
5. 代数位移法:利用一定的代数变换使方程的系数变成某种特殊结构,从而有利于简化求解工作,从而得出方程的解。
通过以上介绍的五种解法,大家可以选择一种最合适的解法,进行三元一次方程的求解。
此外,完全可以使用多种解法结合,从而求出三元一次方程的解。
只要我们能灵活运用数学知识,就可以解决三元一次方程,灵活掌握各种解法,数学天赋就不会是一种障碍。
三元一次方程及其解法
三元一次方程组及其解法1.三元一次方程的定义:含有三个未知数的一次整式方程2.三元一次方程组:由三个一次方程 ( 一元、二元或三元 ) 构成并含有三个未知数的方程组叫做三元一次方程组3.三元一次方程组的解:能使三个方程左右两边都建立的三个未知数的值解题思路:利用消元思想使三元变二元,再变一元4.三元一次方程组的解法:用代入法或加减法消元,即经过消元将三元一次方程组转变为二元一次方程组,再转变为一元一次方程.例题分析一、三元一次方程组之特别型x y z 12 ①例 1:解方程组 x 2 y 5z 22 ②x 4 y ③剖析:方程③是对于 x 的表达式,经过代入消元法可直接转变为二元一次方程组,所以确定“消 x”的目标。
解法 1:代入法,消 x.5y z 12 ④把③分别代入①、②得6y ⑤5z 22y 2,解得z 2.把 y=2 代入③,得 x=8.x8,∴y 2, 是原方程组的解.z 2.依据方程组的特色,可概括出此类方程组为:种类一:有表达式,用代入法型.针对上例从而剖析,方程组中的方程③里缺z, 所以利用①、②消 z, 也能达到消元构成二元一次方程组的目的。
解法 2:消 z.①× 5 得 5x+5y+5z=60 ④④ - ②得 4x+3y=38 ⑤x 4y ③由③、⑤得4x3 y 38 ⑤x 8,解得y 2.把 x=8,y=2 代入①得 z=2.x 8,∴y 2, 是原方程组的解. z 2.依据方程组的特色,可概括出此类方程组为:种类二:缺某元,消某元型.2x y z 15 ①例 2:解方程组 x 2 y z 16 ②x y 2z 17 ③剖析:经过察看发现每个方程未知项的系数和相等;每一个未知数的系数之和也相等,即系数和相等。
具备这类特色的方程组,我们给它定义为“轮换方程组”,可采纳乞降作差的方法较简短地求出此类方程组的解。
解:由① +② +③得 4x+4y+4z=48,即 x+y+z=12 . ④①- ④得 x=3 ,②-④得 y=4 ,③- ④得 z=5 ,x3,∴y 4, 是原方程组的解.z 5.x y 20, ①典型例题举例:解方程组 y z 19, ②x z 21. ③解:由① +②+③得 2(x+y+z)=60 ,即 x+y+z=30 . ④④- ①得 z=10 ,④-②得 y=11 ,④-③得 x=9 ,x9,∴y 11, 是原方程组的解.z10.依据方程组的特色,由学生概括出此类方程组为:种类三:轮换方程组,乞降作差型.x : y : z 1:2:7 ①例 3:解方程组2x y ②3z 21剖析 1:察看此方程组的特色是未知项间存在着比率关系,依据过去的经验,看见比率式就会想把比率式化成关系式求解,即由 x:y=1:2 得 y=2x;由 x:z=1:7 得z=7x. 从而从形式上转化为三元一次方程组的一般形式,即y 2x, ①z 7x, ②,依据方程组的特色,可采用“有表达式,用代入法”求2x y 3z 21. ③解。
初中数学 三元一次方程组的解如何计算
初中数学三元一次方程组的解如何计算三元一次方程组是由三个未知数的一次项和常数项组成的方程组。
解三元一次方程组的方法有很多种,下面我将介绍几种常用的方法来计算三元一次方程组的解。
1. 消元法:消元法是一种通过变换方程组,使得方程组中的一个未知数的系数相等,然后相减消去该未知数的方法。
具体步骤如下:- 通过变换方程组,使得三个方程中的一个未知数的系数相等或成比例。
- 用一个方程的两倍减去另一个方程,消去这个未知数,得到一个含有两个未知数的方程。
- 重复以上步骤,再次消去另一个未知数,得到一个只含有一个未知数的方程。
- 解这个只含有一个未知数的方程,求得一个解,记作(x, y, z)。
- 将求得的解代入到任意一个原方程中,验证是否满足。
2. 代入法:代入法是一种通过将一个方程中的一个未知数表示为另一个方程中的未知数的函数,然后代入另一个方程中求解的方法。
具体步骤如下:- 从一个方程中解出一个未知数,例如将第一个方程解出x,得到一个关于y 和z 的表达式。
- 把这个表达式代入到另一个方程中,得到只含有两个未知数的方程。
- 解这个只含有两个未知数的方程,求得一个解,记作(x, y, z)。
- 将求得的解代入到任意一个原方程中,验证是否满足。
3. 矩阵法:矩阵法是一种通过矩阵运算来求解三元一次方程组的解的方法。
具体步骤如下:- 构造系数矩阵A 和常数矩阵B。
- 将方程组转化为矩阵形式,即AX = B。
- 如果A 的逆矩阵存在,则解为X = A^(-1) * B。
4. Cramer法则:Cramer法则利用行列式的性质来计算三元一次方程组的解。
具体步骤如下:- 构造系数矩阵A 和常数矩阵B。
- 计算系数矩阵A 的行列式值D。
- 分别用常数矩阵B 替换掉系数矩阵A 的第一列、第二列和第三列,得到三个矩阵D1、D2 和D3。
- 解方程组的解为(x, y, z) = (D1/D, D2/D, D3/D),其中D1、D2 和D3 分别为D1 = |B1|,D2 = |B2|,D3 = |B3|,D = |A|。
人教版七年级数学下册第八章《三元一次方程组解法(选学)》知识梳理、考点精讲精练、课堂小测、课后作业第
第15讲三元一次方程组解法(1)代入消元法(2)加减消元法三元一次方程组及其解法:方程组中一共含有三个未知数,含未知数的项的次数都是1,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组。
解三元一次方程组的关键也是“消元”:三元→二元→一元方程应用题:考点1、三元一次方程的解法例1、在解三元一次方程组中,比较简单的方法是消去()A.未知数B.未知数y C.未知数z D.常数例2、将三元一次方程组,经过①-③和③×4+②消去未知数z后,得到的二元一次方程组是()A.B.C.D.例3、写一个三元一次方程,使它的解有一组为x=1,y=1,z=1,这个三元一次方程为.例4例5、解下列三元一次方程组:(1)(2)(3)(4).1、已知,则x+y+z的值是()A.80 B.40 C.30 D.不能确定2、下列方程组:①;②;③;④,是三元一次方程组的是(填序号)3、已知三元一次方程2a+3b-4c=6,用含b、c的式子表示a为.4、当x=0、1、-1时,二次三项式ax2+bx+c的值分别为5、6、10,则a= ,5、解方程组:考点2、三元一次方程应用求解例1、已知|x-z+4|+|z-2y+1|+|x+y-z+1|=0,则x+y+z=()A.9 B.10 C.5 D.3例2、已知方程组,x与y的值之和等于2,则k的值为.例3、如果方程组的解使代数式kx+2y-z的值为10,那么k= .例4、已知x、y、z都不为零,且.求x:y:z.例5、对于有理数x,y定义新运算x*y=ax+by+c.其中a,b,c是常数,等式右边是通常的加法与乘法运算.已知1*2=9,(-3)*3=6,0*1=2,求(-2)*5的值.1、若方程组的解x与y的和为O,则m等于()A.-2 B.-1 C.1 D.22、已知,则x:y:z=______.34、如果方程组,的解也是方程3x+my+2z=0的解,求m的值.5、已知3x-4y-z=0,2x+y-8z=0,求的值.考点3、三元一次方程应用题例1、有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50 B.100 C.150 D.200例2、一件工作,甲乙合做8小时完成,甲丙合做6小时完成,乙丙合做4.8小时完成,若甲乙丙三人合做,小时完成.例3、已知,甲乙丙三个数的和为26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.例4、某工厂每天生产甲种零件120个,或乙种零件100个,或丙种零件200个.甲、乙、丙三种零件分别取3个、2个、1个才能配成一套,现要在30天内生产最多的成套产品,问甲、乙、丙三种零件各应生产多少天?例5、在第29届北京奥运会上,中国体育健儿共获得奖牌100枚,令国人振奋,世界瞩目,下面是两位同学的对话:小明:太厉害了,我们在金牌榜上居第一位,金牌比银牌的2倍还多9块!小华:是呀,我们的银牌也不少啊,只比铜牌少7块!你知道我们共获得金牌、银牌、铜牌各多少块吗?1、有甲、乙、丙三种货物,若购买甲3件,乙7件,丙1件,共需63元,若购甲4件,乙10件,丙1件共需84元.现在购买甲、乙、丙各一件,共需()元.A.21 B.23 C.25 D.272、甲乙丙三数之和为36,而甲乙二数之和与乙丙二数之和与甲丙二数的和之比为2:3:4,则甲乙丙三数分别为.3、已知△ABC的周长为25cm,三边a、b、c中,a=b,c:b=1:2,则边长a= .4、王明在超市用74元钱买了苹果、梨、香蕉三种水果共15.5/kg,苹果比梨多2kg,已知苹果5元/kg,梨5.5元/kg,香蕉4元/kg.王明买了苹果、梨、香蕉各多少/kg?5、某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50株,乙组植树植树多少株?6、已知△ABC的周长为48cm,最长边与最短边之差为14cm,另一边与最短边之和为25cm,求△ABC各边的长.1、解方程组时,第一次消去未知数的最佳方法是()A.加减法消去x,将①-③×3与②-③×2B.加减法消去y,将①+③与①×3+②C.加减法消去z,将①+②与③+②D.代人法消去x,y,z中的任何一个2、若2x+3y-z=0且x-2y+z=0,则x:z=()A.1:3 B.-1:1 C.1:2 D.-1:7 3、若2x+5y-3z=2,3x+8z=3,则x+y+z的值等于()A.0 B.1 C.2 D.无法求出4、关于关于x、y的方程组的解也是二元一次方程x+3y+7m=20的解,则m的值是()A.0 B.1 C.2 D.0.55、某校一年级有64人,分成甲、乙、丙三队,其人数比为4:5:7.若由外校转入1人加入乙队,则后来乙与丙的人数比为()A.3:4 B.4:5 C.5:6 D.6:76、买20枝铅笔、3块橡皮擦、2本日记本需32元;买39枝铅笔,5块橡皮擦、3本日记本需58元;则买5枝铅笔、5块橡皮擦、5本日记本需()A.20元B.25元C.30元D.35元7、若方程组中x和y值相等,则k= .8、已知单项式-8a3x+y-z b12c x+y+z与2a4b2x-y•3z c69、解下列方程组:(1)(2)10、已知方程组的解x、y的和为12,求n的值.11、若,求x,y,z的值.12、已知:△ABC的周长为18cm,且a+b=2c,,求三边a、b、c的长.13、一个三位数的三个数字的和是17,百位数字与十位数字的和比个位数字大3,如果把个位数字与百位数字的位置对调,那么所得的三位数比原数大495,求原来的三位数.1、已知3a-c=a+b+c=4a+2b-c,那么3a:2b:c等于()A.4:(-2):5 B.12:4:5C.12:(-4):5 D.不能确定2、若,且3x+2y+z=32,则(y-z)x= .3、已知=k,则k= .4、有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需315元;若购甲4件、乙10件、丙1件共需420元.问购甲、乙、丙各5件共需多少元?5、根据下面的等式,求出妈妈买回来的鱼、鸡、菜各花了多少钱?鸡+鸭+鱼+菜=35.4元鸡+鱼+菜=20.4元鸭+鱼+菜=21.4元鸭+菜=17元.1、解方程组,若要使运算简便,消元的方法应选取()A.先消去B.先消去yC.先消去z D.以上说法都不对2、已知是方程组的解,则a+b+c的值是()A.1 B.2 C.3 D.以上答案都不对3、甲、乙、丙三数之和为98,甲:乙=2:3,乙:丙=5:8,则乙=()A.50 B.45 C.40 D.304、三元一次方程组的解是()A.B.C.D.5、小华到学校超市买铅笔11支,作业本5个,笔芯2支,共花12.5元;小刚在这家超市买同样的铅笔10支,同样的作业本4个,同样的笔芯1支,共花10元钱.若买这样的铅笔1支、作业本1个,笔芯1支共需()元.A.3元B.2.5元C.2元D.无法求出6、若方程组的解是3a+nb=8的一个解,则n的值是()A.1 B.2 C.3 D.47、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买()A.11支B.9支C.7支D.4支8、如果x-y=-5,z-y=11,则z-x= .9、当K= 时,关于x、y的方程的解的和为200.10、有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需元钱.11、解方程组(1)(2)(3)12、在等式y=ax2+bx+c中,当x=1时,y=0;当x=2时,y=4;当x=3时,y=10.当x=4时y的值是多少?13、解方程组:.14、琪琪、倩倩、斌斌三位同学去商店买文具用品.琪琪说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”倩倩说:“我买了2支水笔,3本笔记本,10本练习本共用了20元.”斌斌说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.15、a为何值时,方程组的解x、y的值互为相反数,求出a的值,并求出方程组的解.第15讲三元一次方程组解法考点1、三元一次方程的解法例1、C例2、A例3、例4、例5、1、B2、3、4、5、考点2、三元一次方程应用求解例1、A例2、例3、例4、例5、1、D2、3、4、5、考点3、三元一次方程应用题例1、C例2、例3、例4、例5、1、A2、3、4、5、6、1、C2、D3、B4、C5、A6、C7、8、9、10、11、12、13、1、2、3、4、5、1、B2、C3、D4、C6、B7、D 8、9、10、11、13、.14、15、人教版七年级数学下册第八章《三元一次方程组解法(选学)》知识梳理、考点精讲精练、课堂小测、课后作业第15讲(有答案)21 / 21。
三元一次方程组解法举例
当原方程组有无数多个解时,需要检查方程组是否有多重解,或者 是否存在冗余的条件。
方程组有唯一解
当原方程组有唯一解时,需要注意解的精度和稳定性,以及解是否 符合实际情况。
05
三元一次方程组的应用举例
实际问题中的三元一次方程组应用举例
人口问题
通过三个方程表示三个国 家或地区的人口变化情况 ,可以解决人口迁移、出 生率、死亡率等问题。
1. 将方程组中的一个方程进行变形,将其中的一个未知数用其他未知数的表达式表 示。
2. 将得到的表达式代入其他方程中,消去一个未知数。
代入法解方程组举例
3. 对方程进行求解,得到一个或两 个变量的值。
4. 将得到的变量的值代入原方程组中 ,求得其他变量的值。
换元法解方程组举例
换元法解方程组步骤
2. 对新的方程组进行求解,得到 一组变量的值。
三元一次方程组解法举例
汇报人: 日期:
目录
• 引言 • 三元一次方程组的解法原理 • 三元一次方程组的解法举例 • 三元一次方程组的解法技巧与
注意事项 • 三元一次方程组的应用举例
01
引言
方程组解法的重要性
实际问题解决
方程组是描述多个变量间关系的 重要工具,掌握方程组解法有助 于解决实际问题。
代入法的目标
通过将一个或多个方程中的变量代入 另一个方程中,从而得到一个或多个 变量的值。
代入法的步骤
首先选择一个或多个方程中的变量, 将其代入另一个方程中,然后对方程 进行化简和求解,最终得到一个或多 个变量的值。
换元法的基本原理
换元法的目标
通过引入新的变量替换原方程组中的变量,从而简化问题。
换元法的步骤
三元一次方程组的解法及运用
__________________________________________________ 来,把这个工程交给了甲乙两个施工队,工期 50 天完成,甲乙两队合作了 30 天后,乙队因另外有任务需 要离开 10 天,于是甲队加快速度,每天多修了 0.6 千米,10 天后乙队回来,为了保证工期,甲队速度不 变,乙队每天也比原来多修 0.4 千米,结果如期完成。问:甲,乙两队原计划每天各修多少千米?
工作量=工作效率×工作时间(相对应的)
例 6.(遵义 07)某中学准备改造面积为1080m2 的旧操场,现有甲、乙两个工程队都想承建这项工程.经 协商后得知,甲工程队单独改造这操场比乙工程队多用 9 天;乙工程队每天比甲工程队多改造10m2 ;甲
船(飞机)航行问题:相对运动的合速度关系是: 顺水(风)速度=静水(无风)中速度+水(风)流速度; 逆水(风)速度=静水(无风)中速度-水(风)流速度。
车上(离)桥问题: ①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。 ②车离桥指车头离开桥到车尾离开桥的一段路程。所走的路程为一个成长 ③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长 ④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长 行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。
例 1.有大小两种货车,2 辆大车与 3 辆小车一次可以运货 15.5 吨,5 辆大车与 6 辆小车一次可以运货 35 吨。3 辆大车与 5 辆小车一次可以运货多少吨?
•
(2)行程问题(基本关系:路程=速度×时间。) 相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相 等为等量关系。甲走的路程+乙走的路程=全路程
解三元一次方程组的方法
解三元一次方程组的方法三元一次方程组是指含有三个未知数的一次方程组,通常形式为:a1x + b1y + c1z = d1。
a2x + b2y + c2z = d2。
a3x + b3y + c3z = d3。
解三元一次方程组的方法主要有消元法、代入法和矩阵法。
下面将分别介绍这三种方法的具体步骤。
一、消元法。
消元法是解三元一次方程组常用的方法之一,其基本思想是通过加减消元将方程组化简为二元一次方程组,然后逐步求解。
具体步骤如下:1. 选择一个方程,通过乘以适当的系数使得其系数与另一个方程中对应未知数的系数相等,然后将两个方程相加或相减,消去该未知数的项。
2. 重复以上步骤,逐步消去另外两个未知数的项,最终得到一个二元一次方程组。
3. 解二元一次方程组,得到一个未知数的值。
4. 将求得的未知数的值代入原方程组中,求解出另外两个未知数的值。
二、代入法。
代入法是另一种解三元一次方程组的常用方法,其基本思想是通过将一个方程中的一个未知数用另外两个未知数的表达式代入另外两个方程中,从而化简为一个二元一次方程组。
具体步骤如下:1. 选择一个方程,将其中一个未知数用另外两个未知数的表达式代入另外两个方程中,得到一个包含两个未知数的方程。
2. 解得一个未知数的值。
3. 将求得的未知数的值代入原方程组中,求解出另外两个未知数的值。
三、矩阵法。
矩阵法是利用线性代数中矩阵的性质来解三元一次方程组的方法,其基本思想是将方程组写成矩阵的形式,通过矩阵运算来求解未知数的值。
具体步骤如下:1. 将方程组写成增广矩阵的形式。
2. 通过行变换将增广矩阵化简为阶梯形矩阵或行最简形矩阵。
3. 根据化简后的矩阵,逐步求解得到未知数的值。
以上就是解三元一次方程组的方法,消元法、代入法和矩阵法是三种常用的解法,可以根据具体情况选择合适的方法来求解三元一次方程组。
希望本文可以帮助到您。
三元一次方程组的解法技巧
三元一次方程组的解法技巧在中学数学学习中,三元一次方程组的解法是一个基本的知识点。
掌握了解题的方法和技巧,就能够迅速地解决三元一次方程组。
下面将介绍一些常用的技巧和方法。
1. 增广矩阵法增广矩阵法是解决三元一次方程组的最基本方法之一。
将三元一次方程组转化为增广矩阵,然后通过高斯消元法,将增广矩阵化为行阶梯型矩阵,然后依次求出各个未知数的值。
2. 代数消元法代数消元法也是解决三元一次方程组的一种常用方法。
利用三个方程式间的关系式,进行代数式消元。
首先将其中两个方程的一个未知数消去,得到一元二次方程式,用剩下的两个方程式再进行类似操作,直到将所有未知数消元。
3. Cramer法则Cramer法则也是解决三元一次方程组的一种常用方法。
首先得到三个方程式的系数矩阵和常数矩阵,然后通过对系数矩阵求行列式,得到主行列式,再通过各未知数系数矩阵的行列式,得到三个次级行列式,最后将次级行列式与主行列式进行运算,得出各未知数的解。
4. 消元法消元法也是解决三元一次方程组的常用方法之一。
通过加减、乘除等操作,减少未知数的数量,逐步消去系数,直到得出未知数的值。
在解决三元一次方程组时,需要注意以下几点:首先,要对方程组进行简化,去除无用的信息,保留有用的数据;其次,要对方程组进行分类讨论,并运用适当的解题方法和技巧;最后,要检查所得到的解是否正确,尤其是涉及到分母的情况,需要判断是否存在为0的解。
在解决三元一次方程组时,不同的方法都有各自的优点和缺点。
因此,需要将各种方法进行灵活运用,综合考虑各种因素,以求解出正确的答案。
相信通过学习和练习,大家一定能够轻松掌握三元一次方程组的解题方法和技巧。
三元一次方程组的解法
三元一次方程组的解法三元一次方程组的解法(三元一次方程组的解法公式)--藕池网一般三元一次方程有三个未知数,三个方程:x,y,z,首先简化题目,消去一个未知数。
首先,平衡第一个和第二个方程并减去它们,然后消除第一个未知数。
然后,将其简化,成为一个新的二元线性方程。
然后,在平衡第二个和第三个方程后,我们想对它们进行约简,然后消去一个未知数,得到一个新的二元线性方程。
然后我们用消元法平衡两个二元线性方程组的约化,然后就可以求解其中一个未知数了。
然后将答案代入其中一个二元线性方程组得到另一个未知量,再将求解的两个未知量代入其中一个三元线性方程组得到最后一个未知量。
例如:①5x-4y+4z = 13②2x+7y-3z = 19③3x+2y-z =18②*①-5 *②:(10x-8y+8z)-(10x+35y-15z)= 26-95④43y-2333y。
④-43 *⑤:(731y-391 z)-(731y-301 z)= 1173-903 z =-3 .这是⑤的第一个替代:17y-7(-3)=21 y=0。
这是把z =-3,y=0代入①的第二种解法。
三元一次方程怎么解?所谓三元,就是有三个未知数,比如a,b,c,或者x,y,z等等。
三元一次方程只能用三个方程组成的方程组求解。
第一步用换元法消除一个未知数,第二步用换元法消除另一个未知数,即求一个未知数的值,然后解二元线性方程组,同样的方法求第二个和第三个未知数的值。
这是解决方案的结尾。
知道如何解三元线性方程组。
通过学习解三元线性方程组,提高逻辑思维能力。
培养抽象概括的数学能力。
重点难点:三元线性方程组的求解。
解决问题的技巧。
重点难点分析:1。
三元线性方程组的概念。
三元一次方程是三个未知数的积分方程,每个未知数的次数为1。
比如x+y-z=1,2a-3b+c=0等。
都是三元线性方程组。
2.三元线性方程组的概念。
一般情况下,由几个三元一次方程组成的方程组称为三元一次方程组。
三元一次方程组解法大全
.三元一次方程组的概念: 含有三个未知数,每个方程的未知项的次数都是1,并且共有三个方程,这样的方程组叫做三元一次方程组. 例如: 都叫做三元一次方程组. 注意:每个方程不一定都含有三个未知数,但方程组整体上要含有三个未知数. 熟练掌握简单的三元一次方程组的解法会叙述简单的三元一次方程组的解法思路及步骤. 思路:解三元一次方程组的基本思想仍是消元,其基本方法是代入法和加减法.步骤:①利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;②解这个二元一次方程组,求得两个未知数的值; ③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解. 灵活运用加减消元法,代入消元法解简单的三元一次方程组. (如果真的不会做,那就一定要学会消元法。
)例如:解下列三元一次方程组分析:此方程组可用代入法先消去y,把①代入②,得,5x+3(2x-7)+2z=2 5x+6x-21+2z=2 解二元一次方程组,得: 把x=2代入①得,y=-3 ∴例2. 分析:解三元一次方程组同解二元一次方程组类似,消元时,选择系数较简单的未知数较好.上述三元一次方程组中从三个方程的未知数的系数特点来考虑,先消z比较简单. 解:①+②得,5x+y=26④①+③得,3x+5y=42⑤④与⑤组成方程组: 解这个方程组,得把代入便于计算的方程③,得z=8 ∴注意:为把三元一次方程组转化为二元一次方程组,原方程组中的每个方程至少要用一次. 能够选择简便,特殊的解法解特殊的三元一次方程组. 例如:解下列三元一次方程组分析:此方程组中x,y,z出现的次数相同,系数也相同.根据这个特点,将三个方程的两边分别相加解决较简便. 解:①+②+③得:2(x+y+z)=30 x+y+z=15④再④-①得:z=5 ④-②得:y=9 ④-③得:x=1 ∴分析:根据方程组特点,方程①和②给出了比例关系,可先设x=3k,y=2k,由②得:z=y,∴z=×2k=k,再把x=3k,y=2k,z=k代入③,可求出k值,进而求出x,y,z 的值. 解:由①设x=3k,y=2k 由②设z=y=×2k=k 把x=3k,y=2k,z=k分别代入③,得3k+2k+k=66,得k=10 ∴x=3k=30 y=2k=20 z=k=16。
(完整版)三元一次方程及其解法
三元一次方程组及其解法1.三元一次方程的定义:含有三个未知数的一次整式方程2。
三元一次方程组:由三个一次方程(一元、二元或三元)组成并含有三个未知数的方程组叫做三元一次方程组3. 三元一次方程组的解:能使三个方程左右两边都成立的三个未知数的值 解题思路:利用消元思想使三元变二元,再变一元4.三元一次方程组的解法:用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程. 例题解析一、三元一次方程组之特殊型例1:解方程组⎪⎩⎪⎨⎧==++=++③②①y x z y x z y x 4225212分析:方程③是关于x 的表达式,通过代入消元法可直接转化为二元一次方程组,因此确定“消x ”的目标. 解法1:代入法,消x 。
把③分别代入①、②得⎩⎨⎧=+=+⑤④2256125z y z y解得2,2.y z =⎧⎨=⎩把y=2代入③,得x=8.∴8,2,2.x y z =⎧⎪=⎨⎪=⎩是原方程组的解。
根据方程组的特点,可归纳出此类方程组为: 类型一:有表达式,用代入法型.针对上例进而分析,方程组中的方程③里缺z ,因此利用①、②消z ,也能达到消元构成二元一次方程组的目的。
解法2:消z.①×5得 5x+5y+5z=60 ④ ④-② 得 4x+3y=38 ⑤ 由③、⑤得⎩⎨⎧=+=⑤③38344y x yx解得8,2.x y =⎧⎨=⎩把x=8,y=2代入①得z=2。
∴8,2,2.x y z =⎧⎪=⎨⎪=⎩是原方程组的解。
根据方程组的特点,可归纳出此类方程组为: 类型二:缺某元,消某元型.例2:解方程组⎪⎩⎪⎨⎧=++=++=++③②①172162152z y x z y x z y x 分析:通过观察发现每个方程未知项的系数和相等;每一个未知数的系数之和也相等,即系数和相等。
具备这种特征的方程组,我们给它定义为“轮换方程组",可采取求和作差的方法较简洁地求出此类方程组的解。
三元一次方程组的解法举例
三元一次方程组的解法举例在数学中,三元一次方程组是由三个含有三个未知数的一次方程组成的。
解决这种方程组可以帮助我们找到未知数的值,使得所有方程都成立。
在本文中,我们将介绍三种常见的解三元一次方程组的方法。
方法一:代入消元法代入消元法是解三元一次方程组最常用的方法之一。
它的基本思想是将方程组中的一个未知数用其他未知数的表达式代入其他方程中,从而减少未知数的数量,从而简化方程组。
以下是一个具体的例子:假设我们有三元一次方程组:2x + 3y + 4z = 103x + 2y + z = 5x + 2y + 3z = 7我们可以使用代入消元法来解决这个方程组。
首先,我们可以从第一个方程中解出x的表达式:x = (10 - 3y - 4z)/2将这个表达式代入第二个方程中得到:3((10 - 3y - 4z)/2) + 2y + z = 5化简这个方程,我们可以解出y的表达式:y = (39 - 10z)/11将这个表达式代入第三个方程中得到:(10 - 3((39 - 10z)/11) - 4z)/2 + 2((39 - 10z)/11) + 3z = 7化简这个方程,我们可以解出z的表达式:z = 1将z的值代入y的表达式,然后再代入x的表达式,我们可以得到:x = 2y = 3z = 1所以方程组的解为x = 2,y = 3,z = 1。
方法二:矩阵消元法矩阵消元法是解三元一次方程组的另一种常用方法。
它的基本思想是将方程组表示为矩阵的形式,然后通过一系列行变换将矩阵化简成行最简形,从而得到方程组的解。
以下是一个具体的例子:假设我们有三元一次方程组:2x + 3y + 4z = 103x + 2y + z = 5x + 2y + 3z = 7我们可以将这个方程组表示为矩阵的形式:[2 3 4 | 10][3 2 1 | 5][1 2 3 | 7]接下来,我们通过一系列行变换将矩阵化简成行最简形。
具体的步骤如下:1.将第一个方程乘以3,第二个方程乘以2,第三个方程乘以1,并进行相减:[6 9 12 | 30][6 4 2 | 10][1 2 3 | 7]2.将第二行乘以1/2,得到:[6 9 12 | 30][3 2 1 | 5][1 2 3 | 7]3.将第一行减去两倍的第二行,得到:[0 5 10 | 20][3 2 1 | 5][1 2 3 | 7]4.将第一行乘以1/5,得到:[0 1 2 | 4][3 2 1 | 5][1 2 3 | 7]5.将第二行减去三倍的第一行,将第三行减去一倍的第一行,得到:[0 1 2 | 4][3 -1 -2 | -7][1 0 1 | 3]6.将第二行乘以-1,得到:[0 1 2 | 4][-3 1 2 | 7][1 0 1 | 3]7.将第一行加上三倍的第二行,得到:[0 0 8 | 25][-3 1 2 | 7][1 0 1 | 3]8.将第三行减去一倍的第二行,得到:[0 0 8 | 25][-3 1 2 | 7][1 0 1 | 3]9.将第一行乘以1/8,得到:[0 0 1 | 25/8][-3 1 2 | 7][1 0 1 | 3]10.将第二行加上三倍的第一行,第三行减去第一行,得到:[0 0 1 | 25/8][0 1 5 | 23/8][1 0 1 | 3]11.将第三行减去一倍的第二行,得到:[0 0 1 | 25/8][0 1 5 | 23/8][1 0 1 | 3]12.将第三行减去五倍的第二行,得到:[0 0 1 | 25/8][0 1 5 | 23/8][1 0 0 | -2/8]最后得到了行最简形的矩阵,通过回代法可以求得方程组的解:x = -1/4y = 23/8z = 25/8所以方程组的解为x = -1/4,y = 23/8,z = 25/8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3元一次方程组解法
本周目标:
会解三元一次方程组.通过解三元一次方程组的学习,提高逻辑思维能力.培养抽象概括的数学能力.
重点、难点:
三元一次方程组的解法.解法的技巧.
重点难点分析:
1.三元一次方程的概念
三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1, 2a-3b+c=0等都是三元一次方程.
2.三元一次方程组的概念
一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.
例如,等都是三元一次方程组.
三元一次方程组的一般形式是:
3.三元一次方程组的解法
(1)解三元一次方程组的基本思想
解二元一次方程组的基本思想是消元,即把二元一次方程转化为一元一次方程求解,由此可以联想解三元一次方程组的基本思想也是消元,一般地,应利用代入法或加减法消去一个未知数,从而变三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.
(2)怎样解三元一次方程组?
解三元一次方程组例题
1.解方程组
法一:代入法
分析:仿照前面学过的代入法,将(2)变形后代入(1)、(3)中消元,再求解.
解:由(2),得x=y+1.(4)
将(4)分别代入(1)、(3)得
解这个方程组,得
把y=9代入(4),得x=10.
因此,方程组的解是
法二:加减法
解:(3)-(1),得x-2y=-8 (4)
由(2),(4)组成方程组
解这个方程组,得
把x=10,y=9代入(1)中,得z=7.
因此,方程组的解是
法三:技巧法
分析:发现(1)+(2)所得的方程中x与z的系数与方程(3)中x与z的系数分别对应相等,因此可由(1)+(2)-(3)直接得到关于y的一元一次方程,求出y 值后再代回,即可得到关于x、y的二元一次方程组
解:由(1)+(2)-(3),得y=9.
把y=9代入(2),得x=10.
把x=10,y=9代入(1),得z=7.
因此,方程组的解是
注意:
(1)解答完本题后,应提醒同学们不要忘记检验,但检验过程一般不写出.
(2)从上述问题的一题多解,使我们体会到,灵活运用代入法或加减法消元,将有助于我们迅速准确
求解方程组.
2.解方程组
分析:在这个方程组中,方程(1)只含有两个未知数x、z,所以只要由(2)(3)消去y,就可以得到只含有x,z的二元一次方程组.
解:(2)×3+(3),得11x+7z=29,(4)
把方程(1),(4)组成方程组
解这个方程组,得,
把x=-,z=5代入(2)得3(-)+2y+5=8,所以y=
因此,方程组的解是
3.解方程组
分析:用加减法解,应选择消去系数绝对值的最小公倍数最小的未知数.
解:(1)+(3),得5x+5y=25.(4)
(2)+(3)×2,得5x+7y=31.(5)
由(4)与(5)组成方程组
解这个方程组,得
把x=2,y=3代入(1),得3×2+2×3+z=13,
所以z=1.
因此,方程组的解是
4.解方程组
分析:题目中的y:x=3:2,即y=
法一:代入法
解:由(2)得x=y (4)
由(3)得z= (5)
将(4),(5)代入(1),得+y+y=111
所以y=45.
把y=45分别代入(4)、(5),得x=30,z=36.
因此,方程组的解是
法二:技巧法
分析:y∶x=3∶2,即x∶y=2∶3=10∶15,而y∶z=5∶4=15∶12,故有x∶y∶z=10∶15∶12.因此,可设x=10k,y=15k,z=12k.将它们一起代入(1)中求出k值,从而求出x、y、z的值.
解:由(2),得x∶y=2∶3,
即x∶y=10∶15.
由(3),得y∶z=5∶4,
即y∶z=15∶12.
所以x∶y∶z=10∶15∶12.
设x=10k,y=15k,z=12k,代入(1)中得10k+15k+12k=111,
所以k=3.
故x=30,y=45,z=36.
因此,方程组的解是
5.解方程组
分析:
1) 观察原方程组,我们准备先消去哪一个未知数?
2) 为什么要先消去z?注意到三个方程中都含有三个未知数,而在方程(3)中z一项的系数是-1,所以未
知数z易消.
3) 怎样在(1)和(2)中消去z?
4) 解这个关于x、y的方程组,求x和y的值是多少?
5) 怎样去求z的值?能不能把x=5, y=0代入(3)中去求z?
解:(1)+(3)×4 得17x+5y=85 (4)
(3)×3-(2) 得7x-y=35 (5)
(4)、(5)组成方程组
解得
把x=5, y=0代入(3),得15-z=18,
所以z=-3, 所以
总结:解三元一次方程组的一般步骤:
1.利用代入法或加减法,把方程组中的某一个未知数消去,得到关于另外两个未知数的二元一次方程
组;
2.解这个二元一次方程组,求出这两个未知数的值;
3.将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;
4.解这个一元一次方程,求出最后一个未知数的值;
5.将求得的三个未知数的值用“{”合写在一起,即可.
练习:
1.解方程组
2.解方程组
3.已知方程组的解使代数式x-2y+3z的值等于-10,求a的值.
练习答案
1.
分析:根据各方程中系数的特点,将方程(1)分别与方程(2)、方程(3)组成两组,利用加减法消去y比较简便.
解:(1)+(2), 有5x-z=14 (4)
(1)+(3), 有4x+3z=15 (5)
再解由(4)、(5)构成的二元一次方程组
(4)×3, 得15x-3z=42 (6)
(5)+(6),得19x=57, x=3.
把x=3代入(4),得z=1.
∴
把x=3, z=1代入(3),得y=8.
因此,方程组的解是
注意:解三元一次方程组,要先根据各方程的特点,灵活地确定消元步骤和消元方法,不要盲目消元.
2.
法-:代入法
解:由(1),得3y=2x, (4)
由(2)得5z=y, (5)
把(4)和(5)代入(3),得,
解得y=10.
把y=10分别代入(4)和(5),得
因此,方程组的解是
法二:技巧法
解:由(1),得x∶y=15∶10(根据分数的基本性质),
由(2),得y∶z=10∶2.
∴x∶y∶z=15∶10∶2.
设x=15k, y=10k, z=2k 并代入(3),
得15k+10k-2×2k=21,解得k=1.
∴x=15, y=10, z=2.
∴
小结:此方程组是三元一次方程组,这类方程组一般有两种基本解法,一是将比例
式化为等积式,把(1)变为,(2)变为,然后代入(3),可消去两个未知数
x和z,得到关于y的一元一次方程;二是把方程(1)和(2)的两个比统一为x∶y∶z=15∶10∶2然后设每一份为k,即x=15k, y=10k, z=2k,代入方程(3)可求出k,进而求得x, y, z 的值.。