高频电子线路课程设计-同步检波器设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同步检波器
摘要
振幅调制信号的解调过程称为检波。有载波振幅调制信号的包络直接反映调制信号的变化规律,可以用二极管包络检波的方法进行检波。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变换规律,无法用包络检波进行解调,所以要采用同步检波方法。
同步检波器主要是用于对DSB 和SSB 信号进行解调(当然也可以用于AM )。它的特点是必须加一个与载波同频同相的恢复载波信号。外加载波信号电压加入同步检波器的方法有两种。利用模拟乘法器的相乘原理,实现同步检波是很简单的,利用抑制载波的双边带信号V s (t ),和输入的同步信号(即载波信号)V c (t ),经过乘法器相乘,可得输出信号,实现了双边带信号解调
课程设计作为高频电子线路课程的重要组成部分,目的是一方面使我们能够进一步理解课程内容,基本掌握数字系统设计和调试的方法,增加集成电路应用知识,培养我们的实际动手能力以及分析、解决问题的能力。
另一方面也可使我们更好地巩固和加深对基础知识的理解,学会设计中小型高频电子线路的方法,独立完成调试过程,增强我们理论联系实际的能力,提高电路分析和设计能力。通过实践引导我们在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 通过设计,一方面可以加深我们的理论知识,另一方面也可以提高我们考虑问题的全面性,将理论知识上升到一个实践的阶段。
同步检波器功能分析
根据高频电子线路理论分析,双边带信号DSB,就是抑制了载波后的调制信号,它的有用
信号成分以边带形式对称地分布在被抑制载波的两侧。由于有用信号所在的双边带调制信号的上、下边频功率之和只有载波功率的一半,即它只占整个调幅波功率1/3,实际运用中,调制度 a m 在0.1~1之间变化,其平均值仅为0.3,所以边频所占整个调幅波的功率还要小。为了节省发射功率和提高有限频带资源的利用率,一般采用传送抑制载波的单边带调制信号SSB,单边带调制信号已经包含了所有有用信号成分,电视信号采用残留单边带发送图像的调幅信号就是其中一例。而要实现对抑制载波的双边带调制信号DSB 或单边带调制信号SSB 进行解调,检出我们所需要的调制有用信号,不能用普通的二极管包络检波电路,而需要用同步检波电路。
同步检波电路与包络检波不同,检波时需要同时加入与载波信号同频同相的同步信号。利用乘法器可以实现调幅波的乘积检波功能,普通调幅电压乘积器的原理框图如图2.1所示。
图2.1 普通调
幅电压乘积器原理框图
图2.1中,设输入信号)(t U AM 为普通调幅信号:
t t m U U x y a XM AM ωωcos )cos 1(+= (2.1) 限幅器输出为等幅载波信号 ,乘法器将两输入信号进行相乘后输出信号为: )()()(t v t v K t v c s E o =
(2.2)
(条件:s y c x v v mA V V =<=,28为大信号)
再通过低通滤波器作为乘法器的负载,将所有高频分量去除,并用足够大的电容器隔断直流分量,就可以得到反映调制规律的低频电压。
设计方案
根据功能分析,可知同步检波必须外加一个与载波同频同相的恢复载波信号。
同步检波器原理
这种方法是将外加载波信号电压与接收信号在检波器中相乘,再经过低通滤波器,最后
检出原调制信号,如图2.2所示。
图2.2乘积型同步检波器
设输入的已调波为载波分量被抑制的DSB 信号u 1为:
t t U u ωcos cos 11Ω= (2.3)
本地载波电压: )cos(ϕω+=t U u c c c (2.4) 上两式中,1ωω=c ,即本地载波的角频率等于输入信号的角频率,它们的相位不一定 相同 )cos(cos cos 1112ϕωω+Ω=t t U U u C (2.5) 低通滤波器滤除21ω附近的频率分量后,得到频率为Ω的低频信号:
t U U u C o Ω=cos cos 2
1
1ϕ (2.6)
由上式可见,低频信号的ϕcos 成正比。当ϕ=0时,低频信号电压最大,随着相位差变大,输出电压变小。所以我们不但要求本地载波与输出信号载波的角频率必须相等。
方案集成MC1496同步检波器
集成MC1496同步检波器特点:R
1,R
2
,R
3
对压控吉尔伯特电路T
1
~T
4
偏置,并防止T
1
~
T 4 进入饱和,其他电阻保证T
5
~T
6
工作在放大区;+12V单电源供电,能采用电阻分压网络;
v s 为很小的信号,所以Ω
=100
2
E
R即可以得到线性检波.
元器件选择
根据上述对比,采用乘积型同步检波器。此电路中最关键的电子元件是乘法器,这里我们选择的是集成模拟乘法器,集成模拟乘法器是完成两个模拟信号(电流或电压)相乘的电子器件。采用集成模拟乘法器实现上述功能比采用分立器件要简单的多,而且性能优越。从价格和性能的角度我们选择MC1496芯片实现模拟乘法器功能。
MC1496是爽平衡四象限模拟乘法器,VT1、VT2与VT3、VT4组成双差分对放大器。其内部结构如图3.1所示。
图3.1
MC1496的内部电路及引脚图
静态工作点设置
MC1496可以采用单电源供电,也可以采用双电源供电。器件的静态工作点由外接元件
确定。
a、静态偏置电压的确定
静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集—基极间的电压应大于或等于2V ,小于或等于最大允许工作电压。根据MC1496的特性参数,对于图7-1所示的内部电路,应用时,静态偏置电压(输入电压为0时)应满足下列关系,即
12641108,,
u u u u u u === (3.1)
⎪⎭
⎪
⎬⎫
≥-≥≥-≥≥-≥V u u u V V u u u u V V u u u u V 7.2),(157.2),(),(152),(),(1554141108108126 (3.2)
b、静态偏置电压的确定
一般情况下,晶体管的基极电流很小,对于图7-1(a ),三对差分放大器的基极电流8I 、
10I 、1I 和4I 可以忽略不记,因此器件的静态偏置电流主要由恒流源0I 的值确定。当器件为
单电源工作时,引脚14接地,5脚通过一电阻R 5接正电源(+U CC 的典型值为+12V ),由于0I 是5I 的镜像电流,所以改变电阻R 5可以调节0I 的大小,即
P D =2I 5(V 6-V 14)+I 5(V 5-V 14) (3.3)
根据MC1496的性能参数,器件的静态电流应小于4mA ,一般I o =I 5=1mA 。器件的总散耗功率可以由下式估算出P D 应小于器件的最大散耗功率为33mW 。
调幅信号发生器
要实现同步检波,首先应该得到DSB 信号。这里采用将高频载波信号与低频调制信号