04.静电场中的导体答案

合集下载

电磁学智慧树知到答案章节测试2023年天津大学

电磁学智慧树知到答案章节测试2023年天津大学

第一章测试1.下列几个说法中哪一个是正确的?A:在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同B:电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向C:D:电场强度正比于检验电荷受到的力,反比与检验电荷的电荷量答案:C2.设有一无限大均匀带正电荷的平面。

取x轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度随距离平面的位置坐标x变化的关系曲线为(规定场强方向沿x轴正向为正、反之为负):A:B:C:D:答案:D3.在无限大均匀带电平面M的附近, 有一面积为S的平面N.要使通过N的电通量最小, 应使A:N面与M面平行B:NN面与M面垂直C:NN面的法线与M面的法线成30°夹角D:NN面的法线与M面的法线成45°夹角答案:B4.在任何静电场中, 任一闭合曲面上各点的电场强度是由A:曲面内的电荷和曲面外的电荷共同提供B:曲面内的电荷提供C:曲面外的电荷提供D:电场强度的通量由曲面内的电荷和曲面外的电荷共同提供答案:A5.设无穷远处电势为零,则半径为R的均匀带电球体产生的电场的电势分布规律为(图中的φ0和b皆为常量):A:B:C:D:答案:C6.静电场的高斯定理表明静电场是A:无源场B:无旋场C:有旋场D:有源场答案:D7.静电场的环路定理表明静电场是A:有旋场B:无旋场C:无源场D:有源场答案:B8.为什么静电场中可以引入电势?A:因为静电场是有旋场B:因为静电场是保守场C:因为静电场是无源场D:因为静电场是有源场答案:B9.若干根根电场线同时穿过三个大小不等的面S1、S2和S3.如果S1>S2>S3, 则它们的通量关系是A:B:C:D:答案:C10.半径为R的均匀带电球面, 若其面电荷密度为 , 则在球面外距离球面R处的电势为(选择无限远处的电势为零)A:B:C:D:答案:B第二章测试1.导体处于静电平衡中,其满足的条件描述正确的是:A:导体内部的场强处处为0B:导体内靠近表面处场强方向和表面处处垂直C:导体表面处电场强度和表面处处平行D:导体内部的场强和电荷的分布有关答案:A2.关于静电平衡中的导体,下列描述正确的是:A:导体表面是等势面B:导体表面的电势和曲率半径成反比C:导体表面电荷处处为0D:导体内部的电荷均匀分布答案:A3.如下图(图中表示的电荷等不一定正确),描述正确的是:A:导体外表面电荷和导体腔内的电荷大小相等,类型相同B:导体腔内的电势和导体相等C:导体外表面没有电荷D:导体不再是等势体,外表面电势为0,内部电势不为零答案:C4.关于静电场中的导体,描述正确的是:A:在电场作用下,电子是固定不动的B:在电场作用下,将产生感应电荷C:处于静电屏蔽中,外电场对导体的影响仍然存在D:在电场作用下,自由电子将重新排布答案:BCD5.关于介质中的高斯定理,下列描述正确的是:A:引入电位移矢量没有任何意义B:引入电位移矢量后只需要计算自由电荷即可C:真空中的高斯定理依然可以使用D:真空中的高斯定理不再适用答案:BC6.在孤立带电的导体板之间插入介质,导致的变化描述正确的是:A:在导体板之间以及插入的导体内部,电位移矢量的大小改变了B:介质内部和表面都不存在电荷C:导体板上的电量没有变化D:导体的电容减小了答案:C7.根据下图,选择从左到右各个力线表示的物理量:A:E、P、DB:P、D、EC:D、P、ED:E、D、P答案:D8.如图,介质进入电容器中,其经典能变化的描述正确的是:A:静电能减小B:Q不变静电能守恒C:无法判断D:外界作用,静电能增大答案:A9.如图,电介质插入电容中,静电能的变化为:A:无法判断B:静电能增加C:静电能减小D:U不变,静电能不变答案:B10.关于电容器的并联和串联,下列描述正确的是:A:和电阻的并联和串联的计算方法相反B:和电阻的并联和串联的计算方法相同C:是单独的规律,并联的电容不变,串联的电容增加D:无法计算答案:A第三章测试1.以下关于电流和电流密度的说法,错误的是:A:电流密度为垂直通过单位截面积的电流B:电荷的定向移动形成电流C:电流是标量电流密度是矢量D:流过某截面的电流等于穿过该截面的电流密度的通量答案:A2.恒定电流线是闭合的。

大学物理习题答案 19 静电场中的导体(1)

大学物理习题答案 19 静电场中的导体(1)

与球外点电荷 + q 的作用力: F1
=
1 4πε 0
− q′ ⋅ q (r − b)2

由于 1 (r − b)2
>
1 r2

F1
=
1 4πε 0
− q′⋅ q (r − b)2
<
1 4πε 0
− q′⋅q r2

左侧电荷 Q
+
q′ 与点电荷 +
q 的作用力: F2
=
1 4πε 0
(Q + q′)⋅ q (r + a)2
50
大学物理习题解答
σ′ =
Q+q 4π R22
= 1.274 ×10−5 C
m2
,金属球外表面场强大小: E
σ′ =
ε0
= 1.44 ×106 V
m.
6. 题目有误!
7. 点电荷 − Q 位于空腔导体内,静电平衡后,空腔导体内表面感应电荷的电量为 + Q ,空腔导体原来电中性,
不带电,则空腔导体外表面感应电荷的电量为 − Q ;所以空腔导体外表面的净余电荷总量是 − Q ,空腔导体内表
− VC
=
E2
⋅d
=
σ2 ε0
d2 ;
B
A
C
σ1 σ2
−σ1 −σ2
由于 B 和 C 板用导线相连,电势相等,即VB = VC ⇒ VA −VB = VA −VC

σ1 ε0
d1
=
σ2 ε0
d2
⇒ σ1 = d2 . σ 2 d1
(第 10 题图)
11. (1)金属平板静电平衡后,金属平板 A 和 B 相邻两表面电荷电量等量异号,设电荷面密度分别为 σ 和 − σ ;

第十章 静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质习题解答

10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。

试求: (1) 球壳内外表面上的电荷;(2) 球心O 点处,由球壳内表面上电荷产生的电势;(3) 球心O 点处的总电势。

习题10-1图解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。

(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为0d 4q qU aπε-=⎰aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=04qr πε=04qa πε-04Q qb πε++01114()q r a bπε=-+04Q bπε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。

试求:(1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。

习题10-2图解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()220cos 024P q E r b θσεπε⊥=+=+ ∴ ()2/3222/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()3222d d d //Q S qbr r r bσ==-+q Q a bO r()q brrr qb S Q S-=+-==⎰⎰∞2322d d /σ10-3 如题图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为A q 和B q 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B C R AP Oq A q Bba习题10-3图解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为. ()()000d 4=4////AP A B S U U S R q a q a σπεπε==⋅+⎰⎰∵d 0AS S σ⋅=⎰⎰∴ ()()04///P A B U q a q a πε=+10-4 三个电容器如题图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?ABC 1C 2 C 3U习题10-4图解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C10-5 一个可变电容器,由于某种原因所有动片相对定片都产生了一个相对位移,使得两个相邻的极板间隔之比为2:1,问电容器的电容与原来的电容相比改变了多少?(a) (b)习题10-5图解:如图所示,设可变电容器的静片数为n ,定片数为1-n ,标准情况下,极板间的距离为d (图a ),极板相对面积为S 。

静电场中的导体与电介质一章习题解答

静电场中的导体与电介质一章习题解答

静电场中的导体与电介质一章习题解答习题8—1 A 、B 为两个导体大平板,面积均为S ,平行放置,如图所示。

A 板带电+Q 1,B 板带电+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为:[ ] (A)S Q 012ε (B) SQ Q 0212ε- (C) S Q 01ε (D) SQ Q 0212ε+解:B 板接地后,A 、B 两板外侧均无电荷,两板内侧带等值异号电荷,数值分别为+Q 1和-Q 1,这时AB 间的场应是两板内侧面产生场的叠加,即SQS Q S Q E 01010122εεε=+=板间 所以,应该选择答案(C)。

习题8—2 C 1和C 2两个电容器,其上分别标明200pF(电容量),500V(耐压值)和300pF ,900V 。

把它们串联起来在两端加上1000V 的电压,则[ ](A) C 1被击穿,C 2不被击穿 (B) C 2被击穿,C 1不被击穿 (C) 两者都被击穿 (D) 两者都不被击穿 答:两个电容器串联起来,它们各自承受的电压与它们的电容量成反比,设C 1承受的电压为V 1,C 2承受的电压为V 2,则有231221==C V V ①100021=+V V ②联立①、②可得V 6001=V , V 4002=V可见,C 1承受的电压600V 已经超过其耐压值500V ,因此,C 1先被击穿,继而1000V 电压全部加在C 2上,也超过了其耐压值900V ,紧接着C 2也被击穿。

所以,应该选择答案(C)。

习题8—3 三个电容器联接如图。

已知电容C 1=C 2=C 3,而C 1、C 2、C 3的耐压值分别为100V 、200V 、300V 。

则此电容器组的耐压值为[ ](A) 500V (B) 400V (C) 300V (D) 150V (E) 600V解:设此电容器组的两端所加的电压为u ,并且用C 1∥C 2表示C 1、C 2两电容器的并联组合,这时该电容器组就成为C 1∥C 2与C 3的串联。

第十二章 静电场中的导体和电介质作业答案

第十二章 静电场中的导体和电介质作业答案

B E dx
A
B A
q1 q2 S20
dx
q1 q2 20S
d
3. 有一接地的金属球,用一弹簧吊起,金属球原来不带电.若在它的下方放置一电荷
为q的点电荷,如图所示,则 C
(A) 只有当q 0时,金属球才下移.
(B) 只有当q 0时,金属球才下移.
(C) 无论q是正是负金属球都下移.
(D) 无论q是正是负金属球都不动.
0
Q球
1 2
q
二、填空题
1. 地球表面附近的电场强度约为100N/C,方向垂直地面向下,假设地球上的电荷都均
匀分布在地球表面上,则地面的电荷密度为______。
分析:地球是一个等势体,里边的场强为零,达到静电平衡,表面附近的场强
E
0
100
0 100 8. 85 1012 100 8. 85 1010 C2 m-2
q UAB
q
1
UAB
q
1
UAB 40RB外表面
1
q UAB
1 4 0 R B外表面
40RB外表面
q UAB
q UAB
4 0 R B外表面
q
1
UAB
q
1
UAB 40RB外表面
jintian 2. 在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示,当电 容器充电后,若忽略边缘效应,则电介质中的场强E与空气中的场强E0相比较,应
q
分析:一带电量为q、半径为R的金属薄球壳,里边的场强为零,电介质不被极化,电介质
不产生附加电场,壳外是真空,壳外的场强就是电量q产生的场强。半径为R的金属薄球壳
是一个等势体,
E U壳

《物理学基本教程》课后答案 第九章 静电场中的导体和电介质

《物理学基本教程》课后答案 第九章 静电场中的导体和电介质

第九章 静电场中的导体和电介质9-1 把一厚度为d 的无限大金属板置于电场强度为0E 的匀强电场中,0E 与板面垂直,试求金属板两表面的电荷面密度.分析 对于有导体存在的静电场问题,首先由静电平衡条件分析放入静电场后导体上电荷的重新分布情况,再计算空间电场和电势的分布.本题中,将金属板放入均匀电场后,由于静电感应,平板两面带上等值异号感应电荷.忽略边缘效应,两带电面可视为平行的无限大均匀带电平面.解 设平板两表面的感应电荷面密度分别为σ'和σ'-,如图9-1所示.由例题8-7结果知,带感应电荷的两表面视为带等量异号电荷的无限大平行平面,在导体中产生的场强为0εσ'='E ,方向与0E 相反,由场强叠加原理,平板中任一点的总场强为00εσ'-='-=E E E E 根据静电平衡条件,金属板中场强0=E ,代入上式得000='-εσE 则 00εσE =', 00εσE -='- 结果与板的厚度无关.9-2 一金属球壳的内外半径分别为R 1和R 2,在球壳内距球心为d 处有一电荷量为q 的点电荷,(1)试描述此时电荷分布情况及球心O 处电势;(2)将球壳接地后,以上问题的答案;(3)如原来球壳所带电荷量为Q ,(1)、(2)的答案如何改变.分析 当导体内达到静电平衡后,应用高斯定理可以确定导体上电荷重新分布的情况,然后用电势叠加原理求电势.解 (1)按照静电平衡条件,导体内部0=E ,在球壳内外表面间作同心高斯球面,应用高斯定理,可知球壳内表面上应有q -的感应电荷,为非均匀分布,如图9-2所示.根据电荷守恒定律和高斯定理,球壳外表面上有+q 的感应电荷,且均匀分布.点电荷q 在O 点产生的电势为dq V 0=πε41球壳内外表面上的感应电荷q -和+q 无论分布情况如何,到球心距离分别为R 1和R 2,电势叠加原理表达式为标量求和,所以在O 点产生的电势分别为124R q V 0-=πε 234R q V 0=πεO 点电势为 21321444R qR q d q V V V V 000+-=++=πεπεπε111(421R R d q +-=πε (2)将球壳接地后,外球面上的感应电荷消失,球面上电荷分布不变,得)11(4121R d qV V V -=+=0πε (3)如果原来球壳带电量为Q ,达静电平衡后外球面上电荷Q +q 均匀分布,内球面上电荷分布不变,得2213214)111(4R Q R R d q V V V V 00++-=++=πεπε 球壳接地后,结果与(2)相同.9-3 一无限长圆柱形导体半径为R a ,单位长度带有电荷量λ1,其外有一共轴的无限长导体圆筒,内外半径为分为R b 和R c ,单位长度带有电荷量λ2,求(1)圆筒内外表面上每单位长度的电荷量;(2)a R r <,b c R r R <<,c b R r R <<,c R r >四个区域的电场强度.分析 静电平衡条件下,在圆筒导体内场强为零,用高斯定理和电荷守恒定律可求出感应电荷的分布.解 (1)如图9-3所示,在圆筒形导体内作半径为r ,高为单位长的同轴圆柱形高斯面S ,设导体圆筒内外表面单位长的感应电荷分别为λ'-和λ',由静电平衡条件知导体内0=E , 故有⎰=⋅S E d 0)(1110='-=∑λλεεq即得半径为R b 的圆筒内表面单位长上的感应电荷为-λ1.由电荷守恒定律知,半径为R c 的圆筒外表面上单位长的感应电荷应为λ1,加上原有电荷量λ2,单位长上总带电量为12λλ+.(2)电荷重新分布的结果形成三个同轴的无限长带电圆柱面如图9-3,由于电荷分布具有轴对称性的,产生的电场也是轴对称的,用高斯定理可求出a R r <时,0=Eb a R r R <<时,rE 0=πελ21c b R r R <<时, 0=E c R r >时, rE 0212πελλ+=9-4 证明:两平行放置的无限大带电的平行平面金属板A 和B 相向的两面上电荷面密度大小相等,符号相反,相背的两面上电荷面密度大小相等,符号相同,如果两金属板的面积同为100cm 2,电荷量分别为C 1068A -⨯=Q 和C 1048B -⨯=Q ,略去边缘效应,求两个板的四个表面上的电荷面密度.分析 根据静电平衡条件,一切净电荷都分布在导体表面,本题中的电场空间可视为四个无限大均匀带电平行平面产生的电场的叠加,金属板A 、B 内任意点场强为零.由电荷守恒定律可以建立各表面的电荷面密度与两金属板的总电荷量之间的关系.解 设A 、B 两板的四个表面上的电荷面密度(先假定为正)分别为σ1、σ2、σ3和σ4,如图9-4所示.设向右为正向,由无限大均匀带电平面的场强公式和场强叠加原理,考虑到金属板A 、B 内任意点场强为零,得 金属板A 内0222243201=---000εσεσεσεσ 金属板B 内 0222243201=-++000εσεσεσεσ 解得32σσ-=, 41=σσ又由电荷守恒定律得 A Q S =+21)(σσ,B Q S =+)(43σσ 联立解得 26BA C/m 105-41⨯=+==SQ Q σσ 261A2C/m 101S-⨯=-=σσQ 263C/m 101-2⨯-=-=σσ9-5 三个平行金属板A 、B 和C ,面积都是200cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm ,B 、C 两板都接地,如图9-5所示,如果A 板带正电C 100.37-⨯,略去边缘效应,(1)求B 板和C 板上感应电荷各为多少?(2)以地为电势零点,求A 板的电势.分析 由静电平衡条件,A 、B 、C 板内各点的场强均为零,A 板上电荷分布在两个表面上,因B 、C 两板均接地,感应电荷应分布在内侧表面上.解 (1)设A 板1、2两面上带电量分别为q 1和q 2,B 、C 两板与A 相对的两内侧表面3、4 上的感应电荷分别为q 1’和q 2’,如图9-5所示.作侧面与平板垂直的高斯面1S ,两端面处E =0,忽略边缘效应,侧面无电场线穿过,由高斯定理0)(11d 110=+'==⋅0⎰∑S S q S S q q ∆∆εεS E 得11q q -=' 同理可得22q q -='.AB 板间和AC 板间为匀强电场,场强分别为S q E 0=ε11 Sq E 0=ε22又已知AC AB V V =,即2211d E d E =因 C 100.3721-⨯==+q q q 由以上各式,得B 、C 两板上的感应电荷分别为C 100.13711-⨯-=-=-='qq q C 100.227122-⨯-=-=-='q q q (2)取地电势为零,A 板电势即为A 、B 间电势差V 103.231111⨯====0Sd q d E V V AB A ε 9-6 半径为cm 0.11=R 的导体球所带电荷量为C 100.110-⨯=q ,球外有一个内外半径分别为cm 0.32=R 和cm 0.43=R 的同心导体球壳,壳上带有电荷量C 111110-⨯=Q ,求:(1)两球的电势;(2)用导线把两球连接起来时两球的电势;(3)外球接地时,两球电势各为多少?(以地为电势零点.)分析 根据静电平衡条件可以确定感应电荷的分布,用导线连接的导体电势相等,外球接地后电势为零.解 (1)根据静电平衡条件,导体球壳内表面感应电荷为-q ,外表面感应电荷为q ,原有电荷量Q .由电势叠加原理,导体球电势为321144R Q q R q R q V 000++-4=πεπεπεV 103.3)(412321⨯=++-=0R Qq R q R q πε导体球壳的电势为V 107.244442333302⨯=+=++-=000R qQ R q Q R q R q V πεπεπεπε(2)球壳和球用导线相连后成为等势体,电势等于半径为R 3带电量为Q +q 的均匀带电球面的电势,以无穷远为电势零点,得V 107.24232⨯=+=0R qQ V πε(3)外球接地后,只乘下内表面的电荷-q ,由电势叠加原理内球电势为V 6044211=-='00R q R q V πεπε外球壳接地与地等势,即02='V另外,求V 1’时还可以用内球产生的电场的线积分计算,即V 60)11(4d 4212221=-=='00⎰R R q r r q V R R πεπε 9-7 半径为R 的金属球离地面很远,并用细导线与地相连,在与球心的距离为R D 3=处有一点电荷q +,试求金属球上的感应电荷.分析 由于导体球接地,其表面上的感应正电荷通过导线与地球内负电荷中和,只剩下负感应电荷在金属球表面不均匀地分布,如图9-7所示.接地后,导体球上各点电势均为零,球心O点的电势应等于点电荷在该点电势与金属球表面感应负电荷在该点电势的代数和.解 设金属球上感应电荷为q ',在金属球表面不均匀地分布,但这些电荷到O 点距离相等,电势叠加后得R q V 0'=πε42点电荷q 在O 点的电势为 R q V 3410=πε043421='+=+=00Rq Rq V V V πεπε得感应电量为 3qq -='由此可以推证,当nR D =时, nqq -='9-8 如图9-8所示,三个“无限长”的同轴导体圆柱面A 、B 和C ,半径分别为A R 、B R 、C R ,圆柱面B 上带电荷,A 和C 都接地,求:B 的内表面单位长度电荷量1λ,外表面单位长度电荷量2λ之比值21/λλ.分析 本题与题9-5的解题思路相似.解 在导体B 内作单位长圆柱面形高斯面,可以说明A 面单位长度上感应电荷为1λ-.同理,可说明C 面单位长度上感应电荷为2λ-.由高斯定理可知场强分布为B A R r R <<时,rE 012=πελ1,方向沿径向由B 指向A . C B R r R <<时,rE 02=πελ22,方向沿径向由B 指向C . BA 间电势差BAV ⎰⋅=A B d 2R R r E ⎰00=-=AB A B 11ln 22R R R R r drπελπελBC 间电势差 BC 02BCln 2R R V πελ=B 为等势体,A 、C 接地,BC BA V V =,从而)/ln()/ln(A B B C 21R R R R =λλ9-9 半径分别为1R 和)(122R R R >的两个同心导体薄球壳,电荷量分别为1Q 和2Q ,今将内球壳用细导线与远处的半径为r 的导体球相联,导体球原来不带电,并假设导线上无电荷分布,试求相连后,导体球所带电荷量q .分析 带电的内球壳与导体球用导线相连后,一部分电荷通过导线转移到导体球表面上.两者相距甚远,可以认为两球壳与球的电场互不影响,已假设导线上无电荷分布,利用内球壳与远处导体球电势相等建立方程求解.解 因两球壳与球的电场互不影响,导体球电势为214r q V 0=πε假设导线上无电荷分布,则内球壳上电荷量变为q Q -1,由电势叠加原理,内球壳的电势为2211244R Q R q Q V 00+-=πεπε内球壳与远处导体球电势相等,即21V V =2211444R Q R q Q r q000+-=πεπεπε 解得)()(121221r R R Q R Q R r q ++=9-10 地球表面的电场强度为150N/C ,方向垂直指向地面,若把地球视为导体,试求地球表面的电荷面密度和地球带的总电荷量.分析 由于地球表面的电场强度方向垂直指向地面,可知地球带负电,将地球视为导体,在静电平衡状态下,电荷分布在表面上.解 设地球表面的电荷面密度为σ,表面附近的场强0εσ=E ,则 292120C/m 1033.1C/m )1085.8150(--⨯-=⨯⨯-==εσE地球半径m 1037.66⨯≈R ,地球带的总电荷量为kC 680C 108.6C 41033.14529-=⨯-=10⨯6.37⨯⨯⨯-==12-2ππσR q9-11 设有一孤立导体球,半径为R .,(1)试求其在真空中的电容表示式;(2)若把地球视为m 1037.66⨯=R 的导体球,它的电容量多大?(3)欲使地球的电势改变1V ,需使其所带电荷量改变多少?解 (1)将孤立导体球视为与无穷远处的同心导体球面组成的球形电容器,利用球形电容器电容表达式,(9-4)式给出孤立导体球的电容R VQC 0==πε4. (2)地球电容F 107F 1037.6446--12⨯=⨯⨯10⨯8.85⨯=πC(3)欲使地球电势改变1伏特,需使地球电量的改变为C 1071107ΔΔ44--⨯=⨯⨯==V C Q这个值很大,所以地球带电量的日常变化不会引起地球电势发生明显的改变,这就是通常可以选取地球作为电势零点的原因.9-12 已知空气的击穿电场强度为V/m 1036⨯,求处于空气中一个半径为1m 的导体球最多能带多少电荷及能达到的最高电势.分析 在带电导体球周围的空气形成一种绝缘介质包围着导体球,当导体球产生的电场足够强时,会使其周围的空气发生电离而成为导体,致使带电导体球放电,通常称为空气被击穿.因均匀带电导体球面的电场强度和电势与带电量成正比,为了不击穿周围的空气,带电导体球所带电量要受到限制.解 由题意击穿电场强度V /m 1036max ⨯=E而 2maxmax 4RQ E 0=πε C 103.3C 11085.841034421262max max --0⨯=⨯⨯⨯⨯⨯==ππεR E Q最高电势为 V 103446max 2max max max ⨯====00RE R R E C Q V πεπε或 V 103V 14103.3464max max ⨯=⨯10⨯8.85⨯⨯==12--0ππεR Q V9-13 收音机里的可变电容器如图9-13(a )所示,其中共有n 块金属片,相邻两片的距离均为d ,奇数片联在一起固定不动(叫定片),偶数片联在一起可一同转动(叫动片),每片的形状如图9-13(b )所示,求当动片转到使两组片重叠部分的角度为θ时,电容器的电容.分析 除了最外侧的两片外,每块金属片的两个表面分别与相邻的金属片表面构成一个电容器,如图9-13(c )所示,所以n 块金属片如此连接等效于(1-n )个平行板电容器并联.当两组片重叠部分的角度为θ时,每个电容器有效极板面积为)(θS ,因此电容器的等效电容是θ的函数.收音机调频的电容器就是根据这个原理设计的.解 当两组片重叠部分的角度为θ时,每个电容器有效极板面积为)(3602212-︒=r r S ππθ(n -1)个极板面积为S ,板间距为d 的平行板电容并联时的等效电容为dr r n d Sn C ⋅︒)-(-=-=0360)1()1(21220θπεε式中θ以度计.9-14 半径都为a 的两根平行长直导线相距为)(a d d >>.(1)设两导线每单位长度上分别带电λ+和λ-,求两导线的电势差;(2)求此导线组每单位长度的电容.分析 因a d >>,可设两导线的电场互不影响,由场强叠加原理可求出两导线间的场强分布,再用场强与电势的积分关系求两导线间电势差,由电容器电容的定义即可求出单位长导线组的等效电容.解 作两导线组合的截面图,以带正电导线轴心为原点建立坐标系如图9-14所示.不难看出,正负电荷在P 点的场强均沿r 轴正向,矢量叠加简化为标量和-11()(2rd r r d r E E E +2=-2+=+=000-+πελπελπελ 两导线间电势差为=-+V r E ad a d ⋅⎰-⎰-0-+=a d a r rd r d 11(2πελa ad -=0ln πελ 由电容器电容的定义,导线单位长电容为aad V C -==-+lnπελ9-15 有两个半径分别为1R 和2R 的导体球放在真空中,两球表面相距为d ,已知1R d >>和2R d >>,试求两导体构成的电容器的电容.分析 按题意 2R d >>,可认为当两导体球分别带电Q +和Q -时,彼此电场互不影响,即各球面上电荷分布仍是均匀的,由场强叠加原理可求出两球球心连线上任一点的场,用与上题相似的方法可以求出两球电势差和两球构成的电容器电容.解 以大球球心为原点,建立如图9-15所示的坐标系,在坐标为r 处的P 点(在连心线上),两球产生的电场均沿r 轴正向,得2212)(44r d R R Qr Q E E E -+++=+=00-+πεπε两带电导体球间电势差为-+V ⎰+⋅=dR R r E 11d ⎰+0-+++=dR R r r d R R r Q 112212d ])(11[4πε)1111(42121R d R d R R Q +-+-+=πε 考虑到1R d >>,2R d >>,可将电势近似表示为)211(421dR R Q V -+=-+πε 此两导体球构成的电容器电容为dR V Q C 21R 421-+1==0-+πε9-16 两只电容器F 81μ=C ,F 22μ=C ,分别把它们充电到1000V ,然后将它们反接,如图9-16所示,求此时两极间电势差.分析 并联电容极板间电压相同,因两电容器电容不等,则反接前两电容器带的电量必定不等.反接后,相连的极板上正负电荷中和,可以计算出中和后电荷量的代数和及并联电容器的等效电容C ,从而求出电势差.解 反接前,设1C 和2C 带电量分别为1Q 和2Q ,充电电压V 10000=U ,则011U C Q = 022U C Q =反接后,正负电荷中和,中和后总电量为21Q Q Q -=,并联等效电容 21C C C +=,则并联电容器两板间电势差为V 600V 1021081000)102108()(666621021=⨯+⨯⨯⨯-⨯=+-==----C C U C C C Q U 9-17 如图9-17所示,F 0.5,F 0.5,F 10321μμμ===C C C ,求:(1)AB 间的电容;(2)在AB 间加上100V 电压时,求每一个电容器上的电荷量和电压;(3)如果C 1被击穿,问C 3上的电荷量和电压各是多少?分析 并联电容器极板电势相等,串联电容器极板上电荷量相等,总电压等于各电容器上电压之和.当1C 上电压超过1C 的额定电压,1C 将被击穿,1C 支路即短路,全部电压就加在3C 上,如超过3C 的额定电压,3C 将被击穿,A 、B 间就发生短路.所以,在设计电容器组合电路时,除应计算等效电容外,还应考虑分配到每个电容器上的电压是否超过所选电容器的额定电压.解 (1)1C 和2C 并联电容为21C C C +=',再与3C 串联后,等效电容为F 75.333μ='+'=C C C C C (2)等效电容所带电量为CU Q =,串联的电容所带电量相等C 1075.343-⨯===CU Q QV 75333==C Q U V 25221121==='==C Q C Q C Q U U又因 Q Q Q =+21可解得 C 105.241-⨯=QC 1025.142-⨯=Q(3)如果C 1被击穿,AB 间电压就加在C 3上,即V 1003==U U则 C 1054333-⨯==U C Q9-18 平板电容器,两极间距离为1.5cm ,外加电压39kV ,若空气的击穿电场强度为30kV/cm ,问此时电容器是否会被击穿?现将一厚度为0.3cm 的玻璃插入电容器并与两板平行,若玻璃的相对电容率为7,击穿电场强度为100kV/cm ,问此时电容器是否会被击穿?结果与玻璃片的位置有无关系?分析 加玻璃片后,电场被分成两部分,应分别计算出空气和玻璃中的电场强度,再判断是否有哪种介质中的场强超过了其击穿场强.可以证明结果与玻璃板的位置无关.解 未加玻璃前平板电容器内场强为kV/cm 30kV/cm 26V/cm 5.139<===d U E 因其量值小于空气的击穿电场强度,电容器不会被击穿.加玻璃后,设电容器极板的电荷面密度为σ,平行板电容器中电位移σ=D .设玻璃和空气中场强分别为1E 和2E ,则有r 01εεσε==DE 002εσε==D E玻璃厚为d 1,则空气层厚为d - d 1,得U d d E d E =-+)(1211由以上各式得kV /cm 48.4)(r111=-+=εd d d UE30kV /cm kV /cm 4.31)(r11r2>=-+=εεd d d U E即空气部分首先被击穿,然后全部电压加在玻璃板上,致使玻璃中场强为kV /cm 100kV /cm 1303.03911>==='d U E 玻璃部分也会被击穿.9-19一平板电容器极板面积为S ,两板间距离为d ,其间充以相对电容率分别为r1ε、r2ε的两种均匀介质,每种介质各占一半体积,若忽略边缘效应,(1)与两种不同介质相对的两部分极板所带电荷面密度是否相等?如果不相等,求:21/σσ=?(2)试证此电容器的电容为⎪⎭⎫⎝⎛+=2210r r d S C εεε 分析 忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,从而可以确定两种不同介质中场强与极板电势差的关系,以及与两部分极板上的电荷面密度的关系,从而可知极板上的总电荷量.另一种思路是将充入两种介质后的电容器视为由两个电容器并联而成,直接应用并联电容器的计算公式.解1 (1)设电容器端电压为U ,两种介质中场强分别为E 1和E 2,由充满均匀介质的平行板电容器的场强与电压的关系可得dUE E ==21 (1)设1σ、2σ分别为两种不同介质对应部分极板上的电荷面密度,忽略边缘效应,电容器中的电场可视为无限大平行平面间的电场,则有r1011εεσ=E r2022εεσ=E (2) 代入(1)式可得 r2r121εεσσ=即两部分极板所带电荷面密度不相等.由(1)和(2)式可得极板上的总电荷量为)2()(2r2r1021εεεσσ+=+=d SU SQ 由电容器定义得 )2(210r r d S U Q C εεε+==解2 由并联电容器公式求总电容)2(22210201021r r r r d S d S d S C C C εεεεεεε+=+=+= 可见第二种方法计算简单,用第一种方法可对物理过程、电场电荷分布有更明确的概念.另外在第一种方法中亦可用介质中的高斯定理求解.9-20 一球形电容器,在外球壳的半径R 和内外导体间的电势差U 维持恒定的条件下,内球半径R '为多大时才能使内球表面附近的电场强度最小?并求这个最小电场强度的值.分析 导体表面附近的场强与电荷面密度成正比,而当极板间电势差恒定时,极板所带电荷量取决于电容C ,电容器的电容由电介质性质和几何因素决定,根据这些关系可以确定内球半径对内球表面附近电场强度的影响.解 球形电容器电容为R R R R C '-'=πε4 极板上带电量为RR UR R CU q '-'==πε4当外球壳的半径R 和极板间电势差U 恒定时,q 是内球半径R '的函数.内球表面附近的场强大小为)(42R R R RUR q E '-'='==πεεσ 即E 也是R '的函数.欲求场强E 的最小值,令0])(2[d d 22='-'-'='R R R RR RU R E 得 2RR =' 并有2R R ='时,0d d 22>'R E ,即2RR ='时,场强有极小值,且 RUE 4min =9-21 图9-21为水蒸气分子O H 2中氧氢原子核及核外电子云示意图.由于分子的正负电荷中心不重合,故其为有极分子,电矩m C 102.630⋅⨯=-p .(1)水分子有10个正电荷及10个负电荷,试求正负电荷中心之距d=?(2)如将水蒸气置于N/C 105.14⨯=E 的匀强电场中,求其可能受到的最大力矩?(3)欲使电矩与外场平行反向的水分子转到外场方向(转向极化),问电场力作功多少?这功的大小为室温(300K )水分子的平均平动动能kT 23的多少分之一?在室温下实现水分子的转向极化,外加电场强度应该多大?分析 由电矩qd p =及已知的水分子电量可计算正负电荷中心之距d .由电偶极子在外场中受的力矩M E p ⨯=,θsin pE M =,可知,当p 与E 正交时力矩最大.当电矩与外场平行反向)180(︒=θ时,电场力的力矩作功将使θ减小,最后0=θ,注意到在此过程中0d <θ.如果这个功与室温下水分子的平均平动动能kT 23相比较是微不足道的,那么要使水分子在常温下实现极化,外电场作的功至少要等于平均平动动能才能克服热运动的干扰,这就要求外电场足够强.本题的目的在于启发在实际问题中综合各种物理因素的分析方法和数量级分析的方法.解 (1)由题意,水分子正负电荷中心不重合,形成一个电偶极子,电量 e q 10=, ∴ 电矩大小d e qd p )10(==正负电荷中心之距m 109.3106.110102.610121930---⨯=⨯⨯⨯==e p d 题9-21图中,OH 键距为m 10958.010-⨯,d 为这个距离的4%.(2)由电场力作用于电偶极子的力矩M E p ⨯=,力矩大小为θsin PE M =,︒=90θ,M 达极大.m N 103.9105.1102.626430max ⋅⨯=⨯⨯⨯==--PE M(3)力矩作功为⎰=θd M W ,本题中,当转向极化进行时,力矩作正功但0,<θd∴⎰︒-⨯==-=18025109.12d sin J PE PE W θθ 而T =300K 时,水分子的平均平动动能J kT k 2123102.63001038.12323--⨯=⨯⨯⨯==ε32630=Wkε可见在这样大小的外电场中,水分子的转向极化将被分子的热运动干扰,要实现转向极化,使︒=180θ的水分子也转到外电场的方向上 ,电场力作的功至少要等于分子热运动的平均平动动能k ε,从而外场场强值至少要达到N/C 105102.62102.62283021⨯=⨯⨯⨯=='='--p p W E k ε 9-22 平板电容器两级板相距3.0 cm ,其间平行地放置一层0.2=r ε的介质,其位置和厚度如图9-22(a)所示,已知A 板带负电、B 板带正电,极板上电荷面密度为3100C/m 1085.8-⨯=σ,略去边缘效应,求:(1)极板间各区域的D 、E ;(2)极板间距A 极1cm 、2cm 、3cm 处的电势(设A 板电势为零);(3)绘出x D -、x E -、x U -曲线;(4)介质表面的极化电荷面密度.解 (1)作如图9-22(a)所示的高斯面1S 和2S ,由介质中的高斯定理可以证明各区域D 相等,得2100c/m 1085.8-⨯==σD介质外场强 V /m 1000==εDE(3)x D -,x E -,x V -曲线如图9.22(b)所示.(4)介质表面的极化电荷面密度为C/m 10425.4)11(10-⨯=-='σεσr9-23 平板电容器两极间充满某种介质,板间距mm 2=d ,电压600V ,如果断开电源后抽出介质,则电压升高到1800V ,求:(1)介质的相对电容率;(2)介质上的极化电荷面密度;(3)极化电荷产生的电场强度.分析 断开电源后抽出介质意味着极板上的自由电荷电量保持不变,电位移σ=D 也不变,但是电场强度改变,电压也会改变.在计算有均匀各向同性电介质的平行板电容器之间的电场时,电场强度可以表示为0000εσεσ'-='-=E E E ,即自由电荷的电场和极化电荷产生的附加电场的叠加,其中电介质对电场的影响以极化电荷面密度σ'的形式表现出来,反映了空间电场是自由电荷和极化电荷共同产生的;介质中的电场强度也可以直接表示为r00εεσ=E ,其中电介质对电场的影响以相对电容率r ε的形式表现出来,也反映了空间的电场是自由电荷和极化电荷共同产生的.这两种表现形式是等效的.解 (1) 由d U E 00=,dUE =,得相对电容率为 3600180000r ====U U E E ε (2)在平行板电容器两极板间充满均匀电介质时,忽略边缘效应,得C/m 1031.5 )11( )11(600rr-⨯=-=-='εεσεσE(3)极化电荷的分布形成等量异号带电板,忽略边缘效应,得V /m 10650⨯='='εσE9-24 盖革计数器可用来测量电离辐射,它的正极是半径为1R 的金属丝,负极是半径为2R 的同轴圆柱面,当管内充以低压惰性气体,并使两极间建立起强电场,若有辐射粒子进入器壁时将使气体电离,在电子向正极运动的过程中,又会与其他气体原子产生碰撞电离,这样将有更多的电子到达正极并产生一个信号,记录下该辐射,假设m 104.1,m 10252261--⨯=⨯=R R ,管长m 10162-⨯=L ,两级间电势差V 6000=U ,低压惰性气体的相对电容率1r ≈ε,试计算此时阳极上的电荷量和电荷数.分析 由于12,R L R L >>>>,忽略边缘效应,可以把盖革计数器视为带等量异号电荷的无限长同轴圆柱面电容器.解 两级间场强为rE 02πελ=,方向沿径向指向阴极.电势差为 ⎰==211200ln 2d 2R R R R r r U πελπελ 则 120ln R R Uπελ2=阳极上电荷量为)1025/104.1ln(101660002ln 2622120----12⨯⨯⨯⨯⨯10⨯8.85⨯===ππελR R UL L q C 9104.8-⨯= 相应的电荷数为 101991025.5106.1104.8⨯=⨯⨯==--e q N9-25 圆柱形电容器是由半径为1R 的导体圆柱和与它同轴的导体圆筒构成的,圆筒的半径为2R ,电容器的长为L ,其间充满相对电容率为r ε的介质,设沿轴线单位长度上圆柱带电荷量为λ+,圆筒单位长带电荷量为λ-,忽略边缘效应,求:(1)介质中的电位移和电场强度;(2)介质表面的极化电荷面密度;(3)两极之间的电势差U ,从而求电容器电容.分析 已知电荷分布,由介质中的高斯定理可知介质中的D 和E ,由场强叠加原理可求出极化电荷的面密度.解 (1)由于电场具有轴对称性,以半径为r 作高为L 的同轴高斯面,介质中的高斯定理得L D rL λπ=⋅2rD πλ2=rr DE r 2επελπελε0=2==(1) (2)设介质内外表面单位长上的极化电荷分别为λ'和λ'-,在介质内,其内表面极化电荷产生的附加电场的场强为rE 02πελ'-=' 根据场强叠加原理,在介质内电场是导体圆柱表面的自由电荷产生的电场和介质内表面极化电荷产生的附加电场的叠加,即rr E E E 00022πελπελ'-='-= (2) 由(1)和(2)式解得)11(rελλ-='介质内外表面单位长的面积分别为22R π,12R π,则极化电荷面密度分别为)1(22r 11επλπλσ1--='-='-R R )1(22r22επλπλσ1-='='R R (3)电容器两极板电势差为=U ⎰⋅21d R R r E ⎰2==2112r 0r 0ln 2d R R R R r r επελεπελ电容为 12r 012r 0ln 2ln 2R R LR R LUQC επεεπελλ===9-26 在半径为R 的金属球外有一层外半径为R '的均匀介质层,设电介质的相对电容率为r ε,金属球带电量为Q ,求:(1)介质层内外的电场强度;(2)介质层内外的电势;(3)金属球的电势.分析 本题为球对称场,已知电荷分布由介质中的高斯定理可求出D 、E 分布.以无穷远电势为零由场强与电势的积分关系或电势叠加原理可求电势分布.解 (1)如图9-26,作半径为r 的球面为高斯面,由有介质的高斯定理得Q D r =24π24r QD π=在介质内,R r R '<< 2r 0r014r Q DE επεεε==在介质外,R r '> 224rQDE 00==πεε(2)介质内任一点的电势为⎰⎰'∞'+=R rR r E r E V d d 211⎥⎦⎤⎢⎣⎡'+'-=0R R r Q 1)11(14r επε (1) 介质外任一点电势为⎰∞==rrQ dr E V 0224πε(3)金属球的电势可由(1)式中令R r =得到,即⎥⎦⎤⎢⎣⎡'+⎪⎭⎫ ⎝⎛'-=R R R Q V 11114r 00επε 9-27 球形电容器由半径为1R 的导体球和与它同心的导体球壳组成,球壳内半径为3R ,其间有两层均匀电介质,分界面半径为2R ,相对电容率分别为1r ε和r2ε,如图9-27所示,求:(1)当内球所带电荷量为Q +时,电场强度的分布;(2)各介质表面上的束缚电荷面密度;(3)电容器电容.分析 本题电场为球对称的,已知电荷分布,可由介质中的高斯定理先求D ,再求E 的分布.束缚电荷分布在内外两层介质的四个表面上,因为各表面的曲率。

静电场中的导体和电介质习题解答

静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。

设无限远处的电势为零,则导体球的电势为 ( )20200π4 . D )(π4 . C π4 . B π4 .A R)(a qaR a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aqV 0π4ε=据电势叠加原理,球心处的电势aqV V V 00π4ε='+=。

所以选(A )2. 已知厚度为d的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为 ,如图所示,则板外两侧的电场强度的大小为 ( )0002 . D . C 2 . B 2 .A εdE=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。

所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。

用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为 ( ))R d (q R d q11π4 D. 4πq C.π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电荷为零,所以有)π4π4000Rq d q V εε-+=。

所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比R /r 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D.r / R解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rRq Q = Rrr q R Q r R ==22 4/4/ππσσ 所以选(D )o R d +q . 选择题3图选择题2图d5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr ε0) E解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。

电磁学第二章习题答案

电磁学第二章习题答案

习题五(第二章 静电场中的导体和电介质)1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳内表面所带的电量为q ,外表面所带电量为 q +Q 。

2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小204/r Q E πε=,球壳的电势R Q V 04/πε=。

3、导体静电平衡的必要条件是导体内部场强为零。

4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。

现使它们互相接触,则这两个金属球上的电荷( B )。

(A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多5、半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B )(A) R/r (B) r/R (C) R 2/r 2 (D) 16、有一电荷q 及金属导体A ,且A 处在静电平衡状态,则( C )(A)导体内E=0,q 不在导体内产生场强;、(B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。

7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q , 在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。

试求:、(1)球壳外表面上的电荷;(2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。

解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a <R <b )的rARQ)O· Q ·b·Oarq B高斯球面S,由高斯定理01εqq dS E S +=⋅⎰⎰ ,根据导体静电平衡条件,当a <R <b 时,0=E。

则0=⋅⎰⎰SdS E ,即01=+q q ,得q q -=1根据电荷守恒定律,金属球壳上的电量为21q q Q +=(qQ q Q q +=-=∴12(2)在内表面上任取一面元,其电量为dq ,在O 点产生的电势adq dV o πε411=q 1在O 点产生的电势aq aq adq dV V o o o πεπεπε4441111-====⎰⎰内内(3) 同理,外球面上的电荷q 2在O 点产生的电势bqQ bq V o o πεπε4422+== 点电荷q 在O 点产生的电势rq V o q πε4=∴ O 点的总点势o q V V V V πε41210=++=(bq Q a q r q ++-) 8、点电荷Q 放在导体球壳的中心,球的内、外半径分别为a 和b ,求场强和电势分布。

大学物理下册第10章课后题答案

大学物理下册第10章课后题答案

习题10-3图第10章 静电场中的导体和电介质习 题一 选择题10-1当一个带电导体达到静电平衡时,[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高(D) 导体内任一点与其表面上任一点的电势差等于零 答案:D解析:处于静电平衡的导体是一个等势体,表面是一个等势面,并且导体内部与表面的电势相等。

10-2将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,导体B 的电势将[ ](A) 升高 (B)降低 (C)不会发生变化 (D)无法确定 答案:A解析:不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

10-3将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图10-3所示),则[ ](A) N 上的负电荷入地 (B) N 上的正电荷入地 (C) N 上的所有电荷入地 (D) N 上所有的感应电荷入地 答案:A解析:带负电的带电体M移到不带电的导体N附近的近端感应正电荷;在远端感应负电荷,不带电导体的电势将低于无穷远处,因此导体N的电势小于0,即小于大地的电势,因而大地的正电荷将流入导体N,或导体N的负电荷入地。

故正确答案为(A)。

10-4 如图10-4所示,将一个电荷量为q电的导体球附近,点电荷距导体球球心为d。

设无穷远处为零电势,则在导体球球心O点有[ ](A)0E,4πε=qVd(B)24πε=qEd,4πε=qVd(C) 0E,0V(D)24πε=qEd,4πε=qVR答案:A解析:导体球处于静电平衡状态,导体球内部电场强度为零,因此0E。

导体球球心O点的电势为点电荷q及感应电荷所产生的电势叠加。

感应电荷分布于导体球表面,至球心O的距离皆为半径R,并且感应电荷量代数和q∑为0,因此4qVRπε==∑感应电荷。

静电场中的导体解答

静电场中的导体解答

(2) 球心O点处,由球壳内表面上电荷
产生的电势. (3) 球心O点处的总电势.
a
q
r Ob
Q
图3-1
静电场中的导体
第六章 静电场中的导体与电介质
解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q,
外表面上带电荷q+Q.
(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一
电荷元离O点的距离都是a,所以由这些电荷在O点产生的
电势为 U q
dq
4 0a
q
4 0a
(3) 球心O点处的总电势为分布在球壳内外表面上的电荷和
点电荷q在O点产生的电势的代数和
UO
U q U q UQq q q
4 0 r 4 0a
Qq
4 0b
a
q
r Ob
Q
q (1 1 1) Q
4 0 r a b 4 0b
图3-1
静电场中的导体
第六章 静电场中的导体与电介质
6. 假想从无限远处陆续移来微量电荷使一半径为R的 导体球带电.(1) 当球上已带有电荷q时,再将一个电荷 元dq从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q的过程中,外力共作 多少功?
解:
U q
4 0 R
dW dq U qdq
4 0R
2 0
,
2 0
所以合场强为:E0
ቤተ መጻሕፍቲ ባይዱ
2
0
,
E0
2 0
静电场中的导体
第六章 静电场中的导体与电介质
4.一空心导体球壳,其内、外半径分别为R1和R2,带 电荷q,如图所示.当球壳中心处再放一电荷为q的点电

11 静电场中的导体和电解质习题参考答案 (1)

11 静电场中的导体和电解质习题参考答案 (1)

第十一章 静电场中的导体和电介质习题参考答案三、计算题1.答案:(1)330V ,270V ; (2)270V ,270V ; (3)60V , 0V ; (4) 0V ,180V 。

解:本题可用电势叠加法求解,即根据均匀带电球面内任一点电势等于球面上电势,均匀带电球面外任一点电势等于将电荷集中于球心的点电荷在该点产生的电势。

首先求出导体球表面和同心导体球壳内外表面的电荷分布。

然后根据电荷分布和上述结论由电势叠加原理求得两球的电势。

若两球用导线连接,则电荷将全部分布于外球壳的外表面,再求得其电势。

(1) 据题意,静电平衡时导体球带电101.010C q -=⨯,则 导体球壳内表面带电为101.010C q --=-⨯; 导体球壳外表面带电为101210C q Q -+=⨯, 所以,导体球电势U 1和导体球壳电势U 2分别为101231330V 4q q q Q U R R R πε⎛⎫+=-+= ⎪⎝⎭203331270V 4q q q Q U R R R πε⎛⎫+=-+= ⎪⎝⎭(2)两球用导线相连后,导体球表面和同心导体球壳内表面的电荷中和,电荷全部分布于球壳外表面,两球成等势体,其电势为12031270V 4q QU U U R πε+'====(3)若外球接地,则球壳外表面的电荷消失,且02=U1012160V 4q q U R R πε⎛⎫=-= ⎪⎝⎭(4)若内球接地,设其表面电荷为q ',而球壳内表面将出现q '-,球壳外表面的电荷为Q q '+.这些电荷在球心处产生的电势应等于零,即10123104q q q Q U R R R πε⎛⎫'''+=-+= ⎪⎝⎭解得10310C q -'=-⨯,则 203331180V 4q q q Q U R R R πε⎛⎫'''+=-+= ⎪⎝⎭2.解:(1) dSC r 2101εε=dSC r 2202εε=, 则)(221021r r dSC C C εεε+=+=(2)2/101d SC r εε=2/202d SC r εε=, 则 )(21112121021r r r r d S C C C εεεεε+=+=3.答案:(1)2倍; (2)21rrεε+倍。

静电场中的导体

静电场中的导体

第八章 静电场中的导体一、选择题1、当一个带电导体达到静电平衡时,应有:[ ]()A 表面上电荷密度较大处电势较高;()B 导体内任一点与其表面上任一点的电势差等于零; ()C 导体内部的电势比导体表面的电势高;()D 表面曲率较大处电势较高。

2、如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:[ ]()A 0; ()B02εσ;()C 0εσh ; ()D 02εσh 。

3、对于处在静电平衡下的导体,下面的叙述中,正确的是:[ ]()A 导体内部无净电荷,电荷只能分布在导体外表面;()B 导体表面上各处的面电荷密度与当地表面紧邻处的电场强度的大小成反比;()C 孤立的导体处于静电平衡时,表面各处的面电荷密度与各处表面的曲率有关,曲率半径大的地方,面电荷密度也大;()D E 是导体附近某点处的场强,则紧邻该点处的导体表面处的面电荷面密度0/2E σε=。

式中E 是场强的数值。

当场强方向指向导体时,σ取负值。

4、如图所示,两个同心均匀带电导体球,内球面半径为R 1、带有电荷Q 1,外球面半径为R 2、带有电荷Q 2,则在外球面外面、距离球心为r 处的P 点的场强大小E 为: [ ] (A)20214r Q Q επ+. (B)()()2202210144R r Q R r Q -π+-πεε. (C)()2120214R R Q Q -π+ε.(D) 224r Q επ. 5、两块面积均为S 的金属平板A 和B 平行放置,板间距为d (d 远大于)板的限度,设A 板带有电荷Q 1,B 板带有电荷Q 2, 则两板间的电势差为:[ ](A)d S Q Q 0212ε+ (B) d S Q Q 0214ε+ (C) d S Q Q 0212ε- (D) d SQ Q 0214ε- 二、填空题1、一均匀电场E 中,沿电场线的方向平行放一长为l 的铜棒,则铜棒两端的电势差U =__________。

大学物理静电场中的导体和电介质习题答案

大学物理静电场中的导体和电介质习题答案

第13章 静电场中的导体和电介质P70.13.1 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E rπε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04cq U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl .设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q qU r a bπεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少?图14.3图14.4(2)A板电势为多少?[解答](1)设A的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为q1 = σ1S和q2 = σ2S,在B、C板上分别感应异号电荷-q1和-q2,由电荷守恒得方程q = q1 + q2 = σ1S + σ2S.①A、B间的场强为E1 = σ1/ε0,A、C间的场强为E2 = σ2/ε0.设A板与B板的电势差和A板与C板的的电势差相等,设为ΔU,则ΔU = E1d1 = E2d2,②即σ1d1 = σ2d2.③解联立方程①和③得σ1 = qd2/S(d1 + d2),所以q1 = σ1S = qd2/(d1+d2) = 2×10-8(C);q2 = q - q1 = 1×10-8(C).B、C板上的电荷分别为q B= -q1 = -2×10-8(C);q C= -q2 = -1×10-8(C).(2)两板电势差为ΔU = E1d1 = σ1d1/ε0 = qd1d2/ε0S(d1+d2),由于k = 9×109 = 1/4πε0,所以ε0 = 10-9/36π,因此ΔU = 144π= 452.4(V).由于B板和C板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A,带电量为q,在它的附近放一块与A平行的金属导体板B,板B有一定的厚度,如图所示.则在板B的两个表面1和2上的感应电荷分别为多少?[解答]由于板B原来不带电,两边感应出电荷后,由电荷守恒得q1 + q2 = 0.①虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S,则面电荷密度分别为σ1 = q1/S、σ2 = q2/S、σ = q/S,它们产生的场强大小分别为E1 = σ1/ε0、E2 = σ2/ε0、E = σ/ε0.在B板内部任取一点P,其场强为零,其中1面产生的场强向右,2面和A板产生的场强向左,取向右的方向为正,可得E1 - E2–E = 0,即σ1 - σ2–σ= 0,或者说q1 - q2 + q = 0.②解得电量分别为q2 = q/2,q1 = -q2 = -q/2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V,两板间相距为1.2mm,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0.由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0.由于两板带等量异号的电荷,所以σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d,所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m-2),σ2 = -σ3 = -8.84×10-7(C·m-2).13.7 一球形电容器,内外球壳半径分别为R1和R2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214RCR Rπε=-表示.(提示:可看作两个球电容器的并联,且地球半径R>>R2)[证明]方法一:并联电容法.在外球外面再接一个半径为R3大外球壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为P2图14.5图14.61210012211441/1/R R C R R R R πεπε==--外球壳和大外球壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-202214R R R πε=-. 方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-. 根据高斯定理可得两球壳之间的场强为122002`44R q q E r R rπεπε==-, 负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r =⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰ 1212021202()11()44R q R R q R R R R πεπε-=-= 球面间的电容为202214R q C U R R πε==-.13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为120012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为C 1 = ε1S/d 1和C 2 = ε2S/d 2. 总电容的倒数为122112*********d d d d C C C S S Sεεεεεε+=+=+=, 总电容为 122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl , 根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLR U E r r r λπε=⋅==⎰⎰⎰E l 21ln 2R R λπε=. 电容为 212ln(/)q lC U R R πε==. 在真空时的电容为00212ln(/)l q C U R R πε==, 所以倍数为C/C 0 = ε/ε0.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布; (2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为2d d 4d SSD S r D Φπ=⋅==⎰⎰D S高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4rQ rεπ-r. 在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0. (2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1. 两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2. 13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d . 13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d . (2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d . (3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得01112211/C U C QQ C C C C ==++, 真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S dεσε===++. 同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S dεεσε==++.13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少?[解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=- 20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16 设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R =[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2VVW w V E V ε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰.当R = b 时,能量为210ln 4l b W aλπε=;当R =22200ln48l l b W aλλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R =13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l ,根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln 44bV aQ Q bW W r lr l a πεπε===⎰⎰.(3)由公式W = Q 2/2C 得电容为222ln(/)Q lC W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=, 得 1212120PF C C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U1 = Q/C1 = CU/C1 = 600(V);第二个电容器两端的电压为U2 = Q/C2 = CU/C2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。

大学物理下 静电场中的导体和电介质习题解答

大学物理下 静电场中的导体和电介质习题解答

q
q q
2.如图所示,一带负电荷的金属球,外面同 心地罩一不带电的金属球壳,则在球壳中一点 P处的场强大小与电势(设无穷远处为电势零 点)分别为:
(A) E = 0,U > 0. (B) E = 0,U < 0. B
(C) E = 0,U = 0. (D) E > 0,U < 0.
P
球壳内表面带正电荷,外表面带负电荷 金属球壳是一个等势体
ε1 ε2
5. 一导体球外充满相对介电常量为εr的均匀电介质,若测得导 体表面附近场强为 E ,则导体球面上的自由电荷面密度ε0 εr E 。
D ds Dds ds D
s
D
0
r
E
6. 一电荷为q的点电荷,处在半径为R、介电常量为ε1的各向同性、
均匀电介质球体的中心处,球外空间充满介电常量为ε2的各向同
性、均匀电介质,则在距离点电荷r (r<R) 处的场强为

电势 (选U∞=0)为

D ds qi
s
i
4r 2 Dr q
Er Dr
U
E
4Rrq1rR2
Er d r , U
q 4π1
1 r
1 R
q 4 2 R
2 1 qr R
7. 两金属球的半径之比为1:4,带等量的同号电荷。当两者的距 离远大于两球半径时,系统具有电势能W04 r
q 4 r
0
0
球心O点处总电势为分布在球壳内、外表面上的电荷和点电荷
q在O点产生的电势的代数和,
U 0
Uq
Uq
UQq
q 4 r
0
q 40R1
q Q 4 R
02

(整理)静电场中的导体和电介质习题详解

(整理)静电场中的导体和电介质习题详解

习题二一、选择题1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。

设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q QE U r rεε==ππ; (B )010, 4QE U r ε==π;(C )00, 4QE U rε==π;(D )020, 4QE U r ε==π。

答案:D解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得000202Q Q Q QU r r r r εεεε-=++=4π4π4π4π2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。

设地的电势为零,则球上的感应电荷q '为[ ](A )0; (B )2q ; (C )2q-; (D )q -。

答案:C解:导体球接地,球心处电势为零,即000044q q U dRπεπε'=+=(球面上所有感应电荷到球心的距离相等,均为R ),由此解得2R qq q d '=-=-。

3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2200,44r Q Q E D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。

答案:C解:由高斯定理得电位移 24QD r =π,而 2004D QE r εε==π。

4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图所示。

当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,在极板间的空气区域中处于平衡。

大学物理第六章课后习题答案

大学物理第六章课后习题答案

第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。

因而正确答案为(A )。

6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。

设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )R εq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。

点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。

因而正确答案为(A )。

6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。

静电场中的导体和电介质(含答案,大学物理作业,考研真题)

静电场中的导体和电介质(含答案,大学物理作业,考研真题)

1、一片二氧化钛晶片,其面积为 1.0cm2, 厚度为 0.10mm 。把平行板电容器的两极板紧
贴在晶片两侧。此时电容器的电容为_____________. ;当在电容器的两板上加上 12V 电压时,
极板上的电荷为_____________. ;电容器内的电场强度为_____________ .。(二氧化钛的相
[
]
3、(2018 年暨南大学)将一带电量为 Q 的金属小球靠近一个不带电的金属导体时,则有:
(A)金属导体因静电感应带电,总电量为-Q;
(B)金属导体因感应带电,靠近小球的一端带-Q,远端带+Q;
(C)金属导体两端带等量异号电荷,且电量 q<Q;
(D)当金属小球与金属导体相接触后再分离,金属导体所带电量大于金属小球所带电量。
二、 填空题
1、导体在达到静电平衡时,其导体内部的场强应为______;整个导体(包括导体表面)
的电势应是______;导体表面的场强方向应是______。
2、当空腔导体达到静电平衡时,若腔内无电荷,则给该空腔导体所带的电荷应分布

;若腔内有电荷,则空腔导体上的电荷应分布


3、如图所示,两同心导体球壳,内球壳带电量+q,外球壳带电量-2q。
(C)、使电容增大,但与介质板的位置无关;(D)、使电容增大,但与介质板的位置有关。
[
]
3、(2011 年太原科技大学)两个半径相同的金属球,一为空心,一为实心,把两者各自
孤立时的电容值加以比较,则:
(A)空心球电容值大;
(B)实心球电容值大;
(C)两球电容值相等;
(D)大小关系无法确定
[
]
二、 填空题
(1)若两极上分别带有电荷+Q 和—Q,求各区域的电位移 D,电场强度 E,及电势 U;

第十章静电场中的导体与电介质(标准答案)

第十章静电场中的导体与电介质(标准答案)

一、选择题[ B ]1(基础训练2) 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-. (D) σ 1 = - σ, σ 2 = 0. 【提示】“无限大”平面导体板B 是电中性的:σ 1S+σ 2S=0,静电平衡时平面导体板B 内部的场强为零,由场强叠加原理得:022202010=-+εσεσεσ联立解得: 1222σσσσ=-=,[ C ]2(基础训练4)、三个半径相同的金属小球,其中甲、乙两球带有等量同号电荷,丙球不带电。

已知甲、乙两球间距离远大于本身直径,它们之间的静电力为F ;现用带绝缘柄的丙球先与甲球接触,再与乙球接触,然后移去,则此后甲、乙两球间的静电力为:(A) 3F / 4. (B) F / 2. (C) 3F / 8. (D) F / 4. 【提示】设原来甲乙两球各自所带的电量为q ,则2204q F rπε=;丙球与它们接触后,甲带电2q ,乙带电34q ,两球间的静电力为:203324'48q q F F r πε⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭==[ C ]3(基础训练6)半径为R 的金属球与地连接。

在与球心O 相距d =2R 处有一电荷为q 的点电荷。

如图所示,设地的电势为零,则球上的感生电荷q '为:(A) 0. (B)2q . (C) -2q. (D) -q . 【提示】静电平衡时金属球是等势体。

金属球接地,球心电势为零。

球心电势可用电势叠加法求得:000'044q dq q R d πεπε'+=⎰, 00'01'44q q dq R d πεπε=-⎰, 'q q R d =-,其中d = 2R ,'2qq ∴=-[ C ]4(基础训练8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图所示),此时两极板间的电势差为:A+σ2(A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V【提示】反接,正负电荷抵消后的净电量为661212(82)101000610Q Q Q C U C U C --=-=-=-⨯⨯=⨯这些电荷重新分布,最后两个电容器的电压相等,相当于并联。

大物(2)期末复习

大物(2)期末复习

11练习一 静电场中的导体三、计算题1. 已知某静电场在xy 平面内的电势函数为U =Cx/(x 2+y 2)3/2,其中C 为常数.求(1)x 轴上任意一点,(2)y 轴上任意一点电场强度的大小和方向.解:. E x =U/x=C [1/(x 2+y 2)3/2+x (3/2)2x /(x 2+y 2)5/2]= (2x2y 2)C /(x 2+y 2)5/2E y =U/y=Cx (3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2x 轴上点(y =0) E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3y 轴上点(x =0) E x =Cy 2/y 5=C /y 3 E y =0E =C i /y 32.如图,一导体球壳A (内外半径分别为R 2,R 3),同心地罩在一接地导体球B (半径为R 1)上,今给A 球带负电Q , 求B 球所带电荷Q B 及的A 球的电势U A .静电场中的导体答案解: 2. B 球接地,有 U B =U =0, U A =U BAU A =(Q+Q B )/(40R 3)U BA =[Q B /(4)](1/R 21/R 1)得 Q B =QR 1R 2/( R 1R 2+ R 2R 3 R 1R3)U A =[Q/(40R 3)][1+R 1R 2/(R 1R 2+R 2R 3R 1R 3)]图22 =Q (R 2R 1)/[4(R 1R 2+R 2R 3R 1R 3)]练习二 静电场中的电介质三、计算题1. 如图所示,面积均为S =的两金属平板A ,B 平行对称放置,间距为d =1mm,今给A , B 两板分别带电 Q 1=×10-9C, Q 2=×10-9C.忽略边缘效应,求:(1) 两板共四个表面的面电荷密度1,2,3,4;(2) 两板间的电势差V =U A -U B .解:1. 在A 板体内取一点A , B 板体内取一点B ,它们的电场强度是四个表面的电荷产生的,应为零,有E A =1/(2)2/(20)3/(2)4/(2)=0E A =1/(2)+2/(20)+3/(2)4/(2)=0而 S (1+2)=Q 1 S (3+4)=Q 2有 1234=01+2+34=01+2=Q 1/S 3+4=Q 2/S解得1=4=(Q 1+Q 2)/(2S )=108C/m 22=3=(Q 1Q 2)/(2S )=108C/m 2两板间的场强 E=2/=(Q 1Q 2)/(2S )V=U A -U B ⎰⋅=BAl E d=Ed=(Q 1Q 2)d /(2S )=1000V四、证明题导体 图A Q 1图Q 21234331. 如图所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.解:1. 设在同一导体上有从正感应电荷出发,终止于负感应电荷的电场线.沿电场线ACB 作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l+⋅⎰ACBl E d ⎰⋅ABl E d 2=⎰⋅ACBlE d 0与静电场的环路定理=⋅⎰l E d l 0相违背,故在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习三 电容 静电场的能量三、计算题1. 半径为R 1的导体球带电Q ,球外一层半径为R 2相对电容率为r的同心均匀介质球壳,其余全部空间为空气.如图所示.求:(1)离球心距离为r 1(r 1<R 1), r 2(R 1<r1<R2), r 3(r 1>R 2)处的D 和E ;(2)离球心r 1, r 2, r 3,处的U ;(3)介质球壳内外表面的极化电荷. 解:1. (1)因此电荷与介质均为球对称,电场也球对称,过场点作与金属球同心的球形高斯面,有iSq0d ∑=⋅⎰S D4r 2D=q 0i当r=5cm <R 1, q 0i =0得 D 1=0, E 1=0 当r=15cm(R 1<r <R 1+d ) q 0i =Q=×108C 得D 2=Q /(4r 2)=×108C/m 2E 2=Q /(40rr 2)=×103N/C图R 2BA C当r=25cm(r>R1+d )q 0i=Q=×108C 得D3=Q/(4r2)=×108C/m2E3=Q/(40r2)=×104N/CD和E的方向沿径向.(2) 当r=5cm<R1时U1=⎰∞⋅r lE d⎰=R r r E d1⎰++d RRrE d2⎰∞++dRrE d3=Q/(40r R)Q/[40r(R+d)]+Q/[40(R+d)]=540V当r=15cm<R1时U2=⎰∞⋅r lE d⎰+=d RrrE d2⎰∞++dRrE d3=Q/(40r r)Q/[40r(R+d)]+Q/[40(R+d)]=480V当r=25cm<R1时U3=⎰∞⋅r lE d⎰∞=rrE d3=Q/(40r)=360V(3)在介质的内外表面存在极化电荷,P e=0E=0(r1)E =P e·n r=R处, 介质表面法线指向球心=P e·n =P e cos =0(r 1)Eq =S=0(r1) [Q /(40r R2)]4R2=(r1)Q/r=×108Cr=R+d处, 介质表面法线向外=P e·n =P e cos0=0(r1)Eq=S=0(r1)[Q /(40r(R+d)2]4(R+d)2=(r1)Q/r=×108C44552.两个相距很远可看作孤立的导体球,半径均为10cm ,分别充电至200V 和400V ,然后用一根细导线连接两球,使之达到等电势. 计算变为等势体的过程中,静电力所作的功. 解;2.球形电容器 C =4RQ 1=C 1V 1= 40RV 1 Q 2=C 2V 2= 4RV 2W 0=C 1V 12/2+C 2V 22/2=2R (V 12+V 22)两导体相连后 C =C 1+C 2=8RQ=Q 1+Q 2= C 1V 1+C 2V 2=40R (V 1+V 2)W=Q 2/(2C )= [4R (V 1+V 2)]2/(16R )=R (V 1+V 2)2静电力作功 A=W 0W=2R (V 12+V 22)R (V 1+V 2)2=R (V 1V 2)2=×107J练习六 磁感应强度 毕奥—萨伐尔定律三、计算题1. 如图所示, 一宽为2a 的无限长导体薄片, 沿长度方向的电流I 在导体薄片上均匀分布. 求中心轴线OO上方距导体薄片为a 的磁感强度.解:1.取宽为d x 的无限长电流元d I=I d x/(2a ) d B=0d I/(2r )=I d x/(4ar )d B x =d B cos =[0I d x/(4ar )](a/r )=I dx/(4r 2)= 0I d x/[4(x 2+a2)]xy d Bd IPr OO Ixy zP2a图66 d B y =d B sin =Ix d x/[4a (x 2+a 2)]()⎰⎰-+==aax x a x xI B B 2204d d πμ=[I/(4)](1/a )arctan(x/a )a a-=I/(8a )()⎰⎰-+==aay y ax a xIx B B 2204d d πμ=[I/(8a )]ln(x 2+a 2)a a-=02. 如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面. 设线圈的总匝数为N ,通过线圈的电流为I . 求球心O 的磁感强度.解:2. 取宽为d L 细圆环电流, d I=I d N=I [N/(R/2)]R d =(2IN/)d d B=d Ir 2/[2(r 2+x 2)3/2]r=R sin x=R cosd B=NI sin 2 d /(R )⎰⎰==πππθθμ220d sin d RNI B B=0NI/(4R )练习七 毕奥—萨伐尔定律(续) 磁场的高斯定理三、计算题1.在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路, 回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比. 解: 1.取窄条面元d S =b d r ,O R 图图2aaaS 2S 1 bx d Bd I77面元上磁场的大小为B =0I /(2r ), 面元法线与磁场方向相反.有1=⎰-=aabIbdr r I 2002ln 2cos 2πμππμ 2=⎰-=aabI bdr r I 42002ln 2cos 2πμππμ 1/2=12. 半径为R 的薄圆盘均匀带电,总电量为Q . 令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为,求轴线上距盘心x 处的磁感强度的大小和旋转圆盘的磁矩. 解;2. 在圆盘上取细圆环电荷元d Q =2r d r , [=Q /(R 2) ],等效电流元为d I =d Q /T =2r d r/(2/)=r d r(1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与同向,大小为 d B=d Ir 2/[2(x 2+r 2)3/2]=r 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=R Rxrx r r xr rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++R xrx r x r 0232222220d 4σωμ()()⎰++R xrx r x 023222220d 4σωμ=⎪⎪⎭⎫⎝⎛+++RR x r x xr 022202202σωμ =⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ (2)求磁距. 电流元的磁矩 d P m =d IS=r d r r 2=r 2d r ⎰=R m dr r P 03πσω=R 4/4=QR 2/488 练习八 安培环路定律三、计算题1. 如图所示,一根半径为R 的无限长载流直导体,其中电流I 沿轴向流过,并均匀分布在横截面上. 现在导体上有一半径为R 的圆柱形空腔,其轴与直导体的轴平行,两轴相距为 d . 试求空腔中任意一点的磁感强度.解:1. 此电流可认为是由半径为R 的无限长圆柱电流I 1和一个同电流密度的反方向的半径为R 的无限长圆柱电流I 2组成.I 1=J R 2 I 2=J R2J =I/[ (R 2R2)]它们在空腔内产生的磁感强度分别为B 1=0r 1J/2 B 2=0r 2J/2方向如图.有 B x =B 2sin2B 1sin1=(J/2)(r 2sin2r 1sin1)=B y =B 2cos2+B 1cos1=(J/2)(r 2cos 2+r 1cos1)=(J/2)d所以 B = B y = 0dI/[2(R 2-R2)]方向沿y 轴正向2. 设有两无限大平行载流平面,它们的电流密度均为j ,电流流向相反. 求: (1) 载流平面之间的磁感强度; (2) 两面之外空间的磁感强度.解;2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为 B 1=J /2在平面①的上方向右,在平面①的下方向左; 电流②在空间产生的磁场为 B 2=J /2图O 2RdORI 1 I 2① ②OO Irr B B y xRRd在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有B=B1+B2=0J(2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有B=B1B2=0练习九安培力三、计算题1. 一边长a =10cm的正方形铜导线线圈(铜导线横截面积S=, 铜的密度=cm3), 放在均匀外磁场中. B竖直向上, 且B = 103T, 线圈中电流为I =10A . 线圈在重力场中求:(1) 今使线圈平面保持竖直, 则线圈所受的磁力矩为多少.(2) 假若线圈能以某一条水平边为轴自由摆动,当线圈平衡时,线圈平面与竖直面夹角为多少.解:1. (1) P m=IS=Ia2方向垂直线圈平面.线圈平面保持竖直,即P m与B垂直.有M m=P m×BM m=P m B sin(/2)=Ia2B=×10-4m N(2) 平衡即磁力矩与重力矩等值反向M m=P m B sin(/2-)=Ia 2B cosM G= M G 1 + M G2 + M G 3= mg(a/2)sin+ mga sin+ mg(a/2)sin =2(Sa)ga sin=2Sa2g sinBn/2mgmgmg991010Ia 2B cos =2Sa 2g sintan=IB/(2Sg )==152. 如图所示,半径为R 的半圆线圈ACD 通有电流I 2, 置于电流为I 1的无限长直线电流的磁场中, 直线电流I 1 恰过半圆的直径, 两导线相互绝缘. 求半圆线圈受到长直线电流I 1的磁力.解:2.在圆环上取微元I 2d l = I 2R d该处磁场为B =0I 1/(2R cos )I 2d l 与B 垂直,有d F= I 2d lB sin(/2)d F=0I 1I 2d/(2cos )d F x =d F cos =0I 1I 2d/(2)d F y =d F sin =0I 1I 2sin d/(2cos )⎰-=222102πππθμd I I F x =0I 1I 2/2因对称F y =0.故 F =0I 1I 2/2 方向向右.练习十 洛仑兹力三、计算题1. 如图所示,有一无限大平面导体薄板,自下而上均匀通有电流,已知其面电流密度为i (即单位宽度上通有的电流强度)(1) 试求板外空间任一点磁感强度的大小和方向.(2) 有一质量为m ,带正电量为q 的粒子,以速度v 沿平板法线方向向外运动. 若不计粒子重力.求:(A) 带电粒子最初至少在距板什么位置处才不与大平板碰撞. (B) 需经多长时间,才能回到初始位置.. 解:1. (1)求磁场.用安培环路定律得 B =i/2iv图I 1 I 2图I 1I 2Rx y d F在面电流右边B的方向指向纸面向里,在面电流左边B的方向沿纸面向外.(2) F =q v×B=m a qvB=ma n=mv2/R带电粒子不与平板相撞的条件是粒子运行的圆形轨迹不与平板相交,即带电粒子最初位置与平板的距离应大于轨道半径.R=mv/qB= 2mv/(0iq)(3) 经一个周期时间,粒子回到初始位置.即t=T=2R/v= 4m/(0iq)2. 一带电为Q质量为m的粒子在均匀磁场中由静止开始下落,磁场的方向(z轴方向)与重力方向(y 轴方向)垂直,求粒子下落距离为y 时的速率.并讲清求解方法的理论依据.解:2. 洛伦兹力Q v×B垂直于v,不作功,不改变v的大小;重力作功.依能量守恒有mv2/2=mgy,得v=(2gy)1/2.练习十一磁场中的介质三、计算题1. 一厚度为b的无限大平板中通有一个方向的电流,平板内各点的电导率为,电场强度为E,方向如图所示,平板的相对磁导率为r1,平板两侧充满相对磁导率为r2的各向同性的均匀磁介质,试求板内外任意点的磁感应强度.解:1. 设场点距中心面为x,因磁场面对称以中心面为对称面过场点取矩形安培环路,有⎰⋅l lH d=ΣI0 2LH=ΣI0(1)介质内,0<x<b/2. ΣI0=2x lJ=2x l E,有H=x E B=0r1H=0r1x E(2)介质外,x>b/2. ΣI0=b lJ=b l E,有H=b E/2 B=0r2H=0r2b E/2×EHHl111112122. 一根同轴电缆线由半径为R 1的长导线和套在它外面的半径为R 2的同轴薄导体圆筒组成,中间充满磁化率为m的各向同性均匀非铁磁绝缘介质,如图所示. 传导电流沿导线向上流去, 由圆筒向下流回,电流在截面上均匀分布. 求介质内外表面的磁化电流的大小及方向.解: 2. 因磁场柱对称 取同轴的圆形安培环路,有 ⎰⋅l l H d =ΣI 0在介质中(R 1r R 2),ΣI 0=I ,有2rH = I H = I /(2r )介质内的磁化强度M =mH =mI /(2r )介质内表面的磁化电流J SR 1= M R 1×n R 1= M R 1=mI /(2R 1)I SR 1=J SR 12R 1=mI (与I 同向)介质外表面的磁化电流J SR 2= M R 2×n R 2= M R 2=mI /(2R 2)I SR 2=J SR 22R 2=mI (与I 反向)练习十二 电磁感应定律 动生电动势三、计算题1. 如图所示,长直导线AC 中的电流I 沿导线向上,并以d I /d t = 2 A/s 的变化率均匀增长. 导线附近放一个与之同面的直角三角形线框,其一边与导线平行,位置及线框尺寸如图所示. 求此线框中产生的感应电动势的大小和方向.解: 1. 取顺时针为三角形回路电动势正向,得三角形面法线垂直纸面向里.取窄条面积微元20cm10cm5cm 图bBla图rrrbE图OI图R 1R 21313d S =y d x =[(a+b x )l/b ]d xm=⎰⋅S d S B=()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a bIl ln 20πμ εi =dm/d t=()dt dIa b a b a b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ =×10-8V负号表示逆时针2. 一很长的长方形的U 形导轨,与水平面成 角,裸导线可在导轨上无摩擦地下滑,导轨位于磁感强度B 垂直向上的均匀磁场中,如图所示. 设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计, abcd 形成电路. t=0时,v=0. 求:(1) 导线ab 下滑的速度v 与时间t 的函数关系; (2) 导线ab 的最大速度v m .解: 2. (1) 导线ab 的动生电动势为εi =lv×B ·d l=vBl sin(/2+)=vBl cos I i =εi /R = vBl cos /R方向由b 到a . 受安培力方向向右,大小为F =l(I i d l×B )= vB 2l 2cos /RF 在导轨上投影沿导轨向上,大小为F = F cos =vB 2l 2cos 2/R重力在导轨上投影沿导轨向下,大小为mg sinmg sin vB 2l 2cos 2/R=ma=m d v /d t dt=d v /[g sin vB 2l 2cos 2/(mR )]1414()[]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t l B el B mgR v θθθ222cos 2221cos sin --=(2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .练习十三 感生电动势 自感三、计算题1. 在半径为R 的圆柱形空间中存在着均匀磁场B ,B 的方向与柱的轴线平行.有一长为2R 的金属棒MN 放在磁场外且与圆柱形均匀磁场相切,切点为金属棒的中点,金属棒与磁场B 的轴线垂直.如图所示.设B 随时间的变化率d B /d t 为大于零的常量.求:棒上感应电动势的大小,并指出哪一个端点的电势高. (分别用对感生电场的积分εi =l E i·d l 和法拉第电磁感应定律εi =-d /d t 两种方法解)..解:(1) 用对感生电场的积分εi =l E i·d l 解:在棒MN 上取微元d x (R<x<R ),该处感生电场大小为E i =[R 2/(2r )](d B/d t )与棒夹角满足tan =x/Rεi =⎰⋅NMl E i d =⎰NMi x E θcos d=()⎰-⋅RRr R r x t B R 22d d d =⎰-+⋅RR R x xt B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )RR-=R 2(d B/d t )/4因εi =>0,故N 点的电势高. (2) 用法拉第电磁感应定律εi =-d /d t 解:图×× × ×OR 2RBa2az图L× ×× ×OBMNd E × ×× ×OB1515沿半径作辅助线OM ,ON 组成三角形回路MONMεi =⎰⋅N Ml E i d =⎰⋅-MNl E i d=⎢⎣⎡⋅⎰M N l E i d +⎰⋅O M l E i d +⎥⎦⎤⋅⎰N O l E i d=-(-dmMONM/d t ) =dmMONM/d t而mMONM=⎰⋅S d S B =R 2B/4故 εi =R 2(d B/d t )/4N 点的电势高.2. 电量Q 均匀分布在半径为a ,长为L (L >>a )的绝缘薄壁长圆筒表面上,圆筒以角速度绕中心轴旋转.一半径为2a ,电阻为R 总匝数为N 的圆线圈套在圆筒上,如图所示.若圆筒转速按=(1t/t 0)的规律(,t 0为已知常数)随时间线性地减小,求圆线圈中感应电流的大小和流向.解:2. .等效于螺线管B 内=nI=[Q /(2)]/L=Q /(2L )B 外=0=SB d S=B a 2=Q a 2 /(2 L )εi =-d /d t=-[Q a 2 /(2 L )]d /d t=Q a 2 /(2 L t 0)I i =εi /R=Q a 2 /(2 LR t 0)方向与旋转方向一致.练习十四 自感(续)互感 磁场的能量三、计算题1. 两半径为a 的长直导线平行放置,相距为d ,组成同一回路,求其单位长度导线的自感系数L 0.1616解:1. 取如图所示的坐标,设回路有电流为I ,则两导线间磁场方向向里,大小为 0≤r ≤a B 1=Ir/(2a 2)+I/[2(d r )]a ≤r ≤d a B 2=0I/(2r )+0I/[2(d r )]d a ≤r ≤d B 3=I/(2r )+I (d r )/(2a 2)取窄条微元d S=l d r ,由m=⎰⋅S S B d 得ml =⎰aa r Irl 0202d πμ+()⎰-a r d rIl 002d πμ +⎰-ad ar r Il πμ2d 0+()⎰--a d ar d r Il πμ2d 0+⎰-ad ar r Il πμ2d 0+()⎰-a d aa rl r -d I 202d πμ =Il/(4)+[0Il/(2)]ln[d/(d a )]+[Il/(2)]ln[(d a )/a ] +[Il/(2)]ln[(d a )/a ]+[Il/(2)]ln[d/(d a )]+Il/(4)=Il/(2)+(Il/)ln(d/a )由L l =l/I ,L 0= L l /l=l/(Il ).得单位长度导线自感 L 0==0l/(2)+(l/)ln(d/a )2 内外半径为R 、r 的环形螺旋管截面为长方形,共有N 匝线圈.另有一矩形导线线圈与其套合,如图(1)所示. 其尺寸标在图(2) 所示的截面图中,求其互感系数.解:2. 设环形螺旋管电流为I , 则管内磁场大小为B =NI/(2) r ≤≤R图(1Rrh a b(21717方向垂直于截面; 管外磁场为零.取窄条微元d S=h d ,由m=⎰⋅S S B d 得m=⎰RrNIh πρρμ2d 0=0NIh ln(R/r )/(2)M =m/I ==Nh ln(R/r )/(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《大学物理》练习题 No .4 静电场中的导体 电介质及能量
班级 ___________ 学号 ___________ 姓名 ___________ 成绩 ________
一、 选择题
1. 如图4.1,真空中有一点电荷Q 及空心金属球壳A, A 处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是
[ E ] (A) E M ≠0, E N =0 ,Q 在M 处产生电场,而在N 处不产生电场; (B) E M =0, E N ≠0 ,Q 在M 处不产生电场,而在N 处产生电场; (C) E M = E N =0 ,Q 在M 、N 处都不产生电场;
(D) E M ≠0,E N ≠0,Q 在M 、N 处都产生电场; (E) E M = E N =0 ,Q 在M 、N 处都产生电场.
2.如图4.2,原先不带电的金属球壳的球心处放一点电荷q 1 , 球外放一点电荷q 2 ,设q 2 、金属内表面的电荷、外表面的电荷对q 1的作用力分别为F 1、F 2、F 3 , q 1受的总电场力为F , 则 [ C ] (A) F 1=F 2=F 3=F =0.
(B) F 1= q 1 q 2 / ( 4 π ε0 d 2 ) , F 2 = 0 , F 3 = 0 , F =F 1 .
(C) F 1= q 1 q 2 / ( 4 π ε0 d 2 ) , F 2 = 0 ,F 3 =- q 1 q 2 / ( 4 π ε0 d 2 ) (即与F 1反
向), F =0 .
(D) F 1= q 1 q 2 / ( 4 π ε0 d 2 ) , F 2 = - q 1 q 2 / ( 4 π ε0 d 2 ) (即与F 1反
向) ,F 3 =0, F =0 .
(E) F 1= q 1 q 2 / ( 4 π ε0 d 2 ) , F 2=- q 1 q 2 / ( 4 π ε0 d 2 ) (即与F 1反向), F 3 = 0, F =0 .
3. 一导体球外充满相对电容率为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为: [ B ] (A) ε0E .
(B) ε0εr E . (C) εr E .
(D) (ε0εr -ε0)E .
4. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则: [ C ] (A) 空心球电容值大.
(B) 实心球电容值大. (C) 两球电容值相等. (D) 大小关系无法确定.
5.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C , 极板间电压V ,极板空间(不含插入的导体板)电场强度E 以及电场的能量W 将(↑表示增大,↓表示减小) [ B ] (A) C ↓,U ↑,W ↑,E ↑.
(B) C ↑,U ↓,W ↓,E 不变. (C) C ↑,U ↑,W ↑,E ↑. (D) C ↓,U ↓,W ↓,E ↓.
∙Q
图4.1,
q 图4.2
二.填空题
1.地球表面附近的电场强度约为100N/C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度σ = 0100ε- , 地面电荷是 负 电荷(填正或负).
2.一平行板电容器,充电后断开电源, 然后使两极板间充满相对介电常数为εr 的各向同性均匀电介质, 此时两极板间的电场强度为原来的
r
ε1
倍, 电场能量是原来的
r
ε1
倍.
3.分子的正负电荷中心重合的电介质叫做 无极分子 电介质,在外电场的作用下,分子的正负电荷中心发生相对位移,形成 电偶极子 。

4. 当平行板电容器板间为真空时,其电容为0C ,板间场强大小为0E ,电位移大小为0D ,当充满相对介电常数为r ε的电介质,则电容为 0C r ε ,场强大小为 r
E ε0
,电
位移大小为 0D
三.计算题
1. C (( (1)A AB 、AC
AB
E q =21 依题意 C A B A u u u u -=- AC AC AB AB E d E d = 可得
2
1
d d ==AB AC AC AB E E ∴ C 100.2C
100.1727
1--⨯=⨯=q q
即B 板上感应电荷为C 100.17
1-⨯-=-q ,C 板上感应电荷为C 100.27
2-⨯-=-q
A 板的电势
AB AB AB A S
q E u d d 01
ε=
= V 103.210
2001085.8100.4100.13
4
1237⨯=⨯⨯⨯⨯⨯⨯=----
2.半径为R1=1.0cm 的导体球带电量C q 10
10
0.1-⨯=,
球外有个内外半径分别为R 2=3.0cm 和R 3=4.0cm 的同心导体球壳,壳上带有电量C Q 10
1011-⨯=。

求:
(1)两球电势,(2)若用导线把两球连接起来时两球的电势,(3)若外球接地时,两球的电势各为多少? (1)内球电荷q 均匀分布在外表面,外球内表面均匀感应电荷-q ,外表面均匀分布电荷q+Q ,由高斯定理可求得电场分布(略) 011=<E R r 2
022141
r q E R r R πε=
<< 0332=<<E R r R
2
043
41
r Q
q E R r +=
>πε
由电势定义可求得内球电势

⎰∞++=2
1
3d 41d 41
202
0R R R r r Q q r r q u πεπε内 V 1030.304.010*******.0101.01100.1109411142109
1093
0210⨯=⨯⨯
⨯+⎪⎭
⎫ ⎝⎛-⨯⨯⨯=++⎪⎪⎭⎫ ⎝⎛-=
--R Q q R R q πεπε ⎰∞
-⨯⨯⨯=+=+=304.010*******d 41
109
3
020R R Q q r r Q q u πεπε外
V 1070.22
⨯=
(2)用导线把两球连接起来时,内球和外球内表面电荷中和,这时只有外球的外表面
带有q+Q 电荷,外球壳外场强不变,外球电势不变,这时两球是等势体,其电势均为原外球壳电势270V 。

(3)若外球壳接地,外球电势为零,外球外表面电荷为零,内球的电荷以及外球内表面电荷分布不变,所以内球的电势

⎪⎪⎭⎫
⎝⎛-=
=2
1
21
20114d 41
R R R R q r r q u πεπε内
V 6003.0101.01
100.110910
9
=⎪⎭
⎫ ⎝⎛-⨯⨯⨯⨯=-
3.球形电容器,内外球壳半径分别为1R 和2R ,其间充满相对介电常数为r ε的电介质,两球壳电势差为U 。

求:
(1)电容器的电容。

(2)电容器储存的能量。

解:两球壳之间的电场强度的大小,2
41
r q E πε=
电势差为,U R R R R q l d E U U R R =-=⋅=
-⎰
11121242
1
πε
所以,电容器的电容1
22
104R R R R U q C r -==
επε 电容器储存的能量22
1
CU W = 所以,2
1
22102U R R R R W r -=επε。

相关文档
最新文档