《模拟电子技术基础》教学大纲
模拟电子技术基础课程教学大纲

《模拟电子技术基础》课程教学大纲课程编号:课程名称:模拟电子技术基础课程英文名:Analog Electronics课程类型:本科专业必修课前导课程:高等数学电路分析基础教学安排:总学时90学时 5学分(其中理论课72学时,实验课18学时)授课对象:电子信息工程专业本科生一、教学目的《模拟电子技术基础》课程是电子信息工程、通信工程、自动控制等电气信息类专业的专业基础课。
本课程以分立元件的基本放大电路为基础,以集成电路为主体,通过课堂讲授使学生理解各种基本放大电路的组成、工作原理和分析方法及应用;通过实验教学、开放实验室、课外实验等实践环节使学生加深对基本概念的理解,掌握基本电路的设计与调试方法,使学生获得电子技术方面的基本理论、知识和技能,并具备根据生产实践要求,用基本单元电路构成简单模拟电子系统的能力。
通过这门课的学习,使学生具备学习《数字电子技术基础》、《高频电子线路》等后续相关专业课的能力。
二、课程简介该课程主要讲授:半导体器件、放大电路的基本原理及频率响应、集成运算放大电路、反馈电路、信号的运算和处理电路、波形发生电路、功率放大电路以及直流电源等。
配合理论课的教学,还安排了相应的实验课教学,其主要内容是:各种基本放大电路性能的测试;集成运放在信号的运算和处理方面的应用以及各种波形发生器的研究等,同时在此基础上,学生自行设计一个综合实验。
并安排相应的课外计算机虚拟实验。
三、教学内容第一章半导体器件(9学时)1、半导体的特性2、半导体二极管的单向导电原理、伏安特性及主要参数3、稳压二极管的特性和主要参数4、三极管的结构、电流分配关系、特性曲线及主要参数5、结型、绝缘栅型场效应管的结构、工作原理、特性曲线及主要参数第二章放大电路的基本原理(15学时)1、放大的概念2、单管共射放大电路的组成、工作原理及主要技术指标3、放大电路的基本分析方法(图解法、微变等效电路法)4、工作点稳定问题5、典型的静态工作点稳定的共射电路的静、动态分析6、放大电路的三种基本组态7、共集电极、共基极放大电路的静、动态分析8、共源极、共漏极场效应管放大电路的静、动态分析9、多级放大电路的耦合方式,输入、输出电阻和放大倍数的计算第三章放大电路的频率响应(3学时)1、频率响应的一般概念(幅频特性和相频特性,上下限频率和通频带,波特图等)2、三极管的频率参数3、单管共射放大电路的参数等效电路及频率响应4、多级共射放大电路的频率响应第四章集成运算放大电路(5学时)1、集成放大电路的特点2、集成运放的基本组成3、基本差分及长尾差分放大电路的静、动态分析4、差分放大电路的输入、输出接法5、理想集成运算放大器的特点和技术指标第五章放大电路中的反馈(7学时)1、反馈的基本概念、分类和判断2、负反馈的四种组态3、反馈的一般表达式4、负反馈对放大电路性能的影响5、深度负反馈的概念、计算第六章模拟信号运算电路(5学时)1、比例运算电路的计算和应用2、求和电路的计算3、积分和微分电路4、对数和指数电路、乘法和除法电路的简介第七章信号处理电路(4学时)1、有源(低通、高通、带通、带阻)滤波器2、电压(过零、单限、滞回、双限)比较器第八章波形发生电路(9学时)1、正弦波振荡器的组成、振荡条件、分析方法2、RC、LC、石英晶体正弦波振荡器的组成,振荡条件及能否振荡的判断3、非正弦波(矩形波、三角波、锯齿波)发生电路第九章功率放大电路(3学时)1、功率放大电路的主要特点2、OTL互补对称功率放大电路的工作原理3、OCL互补对称功率放大电路的工作原理4、集成功率放大器的使用方法第十章直流电源(8学时)1、直流电源的组成2、单相整流电路的组成、工作原理3、滤波电路的组成、工作原理4、稳压管稳压电路的组成、工作原理5、串联型稳压电路的组成、工作原理及计算6、三端集成稳压器的使用方法复习及小结:3学时四、教材1、《模拟电子技术基础简明教程》(第二版)杨素行主编高等教育出版社 1998年五、主要教学参考书1、《模拟电子技术基础》(第三版)童诗白华成英主编高等教育出版社 2001年2、《电子技术基础》(第四版)康华光主编高等教育出版社 1999年3、《电子线路》线性部分(第四版)谢嘉奎主编高等教育出版社 1999年4、《模拟电子线路习题精解》宋文涛等编著科学出版社 2003年信息工程学院电子信息工程系(执笔者:李锦萍)。
(完整word版)模拟电子技术教学大纲

目录编写说明 (2)教材和教学参考书 (4)第一部分理论教学要求 (4)第二部分实践教学要求 (17)第三部分教学进度表 (20)第四部分考核要求 (21)《模拟电子技术》课程教学大纲贺存锋编写说明一、课程的性质和教学目的本课程是电气、电子类专业的主要技术基础课之一,是一门理论和实际紧密结合的应用性很强的课程。
教学目的:在使学生获得模拟电子技术必备的的基本理论、基础知识的同时,着重培养学生的智力技能,提高他们分析问题、解决问题以及实践应用的能力,为学习后续课程和毕业后从事电子技术方面的工作打下必要的基础。
二、课程的任务和基本要求通过本课程的学习,在基本理论和基本技能方面应达到以下要求:1.基本器件方面了解常用半导体二极管、三极管、场效应管、线性集成电路的基本工作原理、特性和主要参数,并能合理选择和使用这些器件。
2.基本电路原理及结构方面掌握共射、共集放大电路,差分放大电路,互补对称功率放大电路,负反馈放大电路,集成运算放大电路的结构、理解它们的工作原理、性能及应用。
3.应用电路方面(1)熟悉正弦和非正弦信号产生电路,一阶有源滤波电路、整流滤波电路的结构、工作原理、性能及应用;熟悉三端稳压器件的应用。
(2)了解集成功放、集成模拟乘法器、集成函数信号发生器的应用。
(3)了解调制解调的基本概念和调制解调的基本方式。
4.分析计算方面(1)了解单级放大电路的图解分析方法。
(2)掌握三极管简化H参数微变等效电路分析方法,能估算单级放大电路的电压放大倍数、输入和输出电阻,了解多级放大电路的分析方法。
(3)掌握负反馈放大电路的类型判别,在深度负反馈条件下,掌握利用虚短或虚断估算电路电压放大倍数的方法。
(4)掌握正弦振荡条件的判断。
(5)熟悉稳压管稳压电路、串联型稳压电路的工程计算。
(6)掌握理想运放的基本运算规则、线性应用和非线性应用的分析计算方法。
(7)了解放大器频率特性和指标含义。
5.基本技能方面(1)初步掌握阅读和分析模拟电路原理图的一般规律。
《模拟电子技术基础》课程教学大纲

《模拟电子技术基础》课程教学大纲课程编码:08T1060820课程名称:模拟电子技术基础课程英文名称:Fundamentals of Analog Electronics总学时:56 讲课学时:56 实验学时:0 习题课、讨论课学时:4 上机学时:0 学分:3.5开课单位:电气工程系授课对象:自动化专业;探测制导与控制技术专业;电子科学与技术专业;电子信息科学与技术专业;空间科学与技术专业;测控技术与仪器专业;电气工程及其自动化专业;交通信息与控制工程专业先修课程:大学物理;电路一、课程教学目的电子技术基础课程是高等工科院校中电气信息类及相关专业的一门主干课程,是一门培养学生电子技术基本技能的技术基础课,因此本课程在电气信息类及相关专业的教学中占有极其重要的地位。
电子技术基础课程包括模拟电子技术基础和数字电子技术基础,研究常用电子器件、电子电路的基本原理及其应用。
本课程的教学目的如下:1.掌握电子技术的基本理论、基本知识和基本分析方法,能够分析由几个单元电路组成的电子电路系统;2.了解电子技术的发展趋势,掌握最新的电子技术知识;3.具有采用计算机仿真软件进行分析和设计简单电子电路的能力;4.能够正确使用常规的电子仪器,能够正确调试简单的电子电路;5.具有独立查阅电子技术资料的能力。
二、教学内容及基本要求本课程的主要内容及基本要求如下:第1章模拟电子技术基础绪论(1学时)电子技术;模拟信号与数字信号;模拟电路与数字电路;模拟电子技术基础课程。
第2章半导体二极管及其基本应用电路(4学时)半导体基础知识、PN结;半导体二极管;稳压二极管。
第3章双极型晶体管及其基本放大电路(10学时)双极型晶体管的结构、类型、电流放大、特性曲线、主要参数、温度特性;放大的概念和放大电路的性能指标;共射基本放大电路的组成及工作原理;基本放大电路的分析方法;三种组态基本放大电路;放大电路的频率响应。
第4章场效应管及其基本放大电路(4学时)绝缘栅场效应管、结型场效应管、场效应管的主要参数;场效应管共源基本放大电路、共漏基本放大电路分析;双极型晶体管和场效应管基本放大电路的比较;场效应管基本放大电路的频率响应。
《模拟电子技术基础课程设计》教学大纲.doc

《模拟电子技术基础课程设计》教学大纲适用专业:电类专业实践课时:一周一、课程的性质、目的《模拟电子技术课程设计》是在“模拟电子技术”课程之后,集中安排的重要实践性教学环节。
学生运用所学的知识,动脑又动手,在教师指导下,结合某一专题独立地开展电子电路的设计与实验,培养学生分析、解决实际电路问题的能力。
它是高等学校电类专业的学生必须进行的一种综合性训练。
二、课程的任务与要求从课程设计的任务出发,应当通过设计工作的各个环节,达到以下教学要求:(1)巩固和加深学生对电子电路基本知识的理解,提高他们综合运用本课程所学知识的能力。
(2)培养学生根据课题需要选学参考书籍,查阅手册、图表和文献资料的自学能力。
通过独立思考,深入钻研有关问题,学会自己分析并解决问题的方法。
(3)通过电路方案的分析、论证和比较,设计计算和选取元器件初步掌握简单实用电路的分析方法和工程设计方法。
(4)了解与课题有关的电子电路以及元器件的工程技术规范,能按设计任务书的要求, 完成设计任务,编写设计说明书,正确地反映设计与实验的成果,正确地绘制电路图等。
(5)培养严肃、认真的工作作风和科学态度。
通过课程设计实践,帮助学生逐步建立正确的生产观点、经济观点和全局观点。
三、课程设计的内容与安排1.课程设计题目的选择课程设计题目选择的是否合适,直接关系到学生完成的情况和教学效果。
必须根据教学要求、学生实际水平、能完成的工作量和实验条件,恰当的选题。
争取让不同程度的学生, 经过努力能完成课程任务,在巩固所学知识,提高基本技能和能力等方面有所收获。
电了技术课程设计题目其主要内容均是电了电路课程中学过的知识,而且多是应用集成电路组成的实用电子装置,具有一定的实用性和趣味性,反映了电子技术的新水平。
噂题目有的以数字电路为主,有的以模拟电路为主,还有包含数学和模拟电路的综合性题目。
它们的设计指标不仅符合教学要求,并且都是从学生实际出发选定的课题内容,设计方法难易适中。
《模拟电子技术》教学大纲

《模拟电子技术》课程教学大纲课程名称: 模拟电子技术课程代码: 0730081课程类型: 专业核心课学分: 4 总学时: 72 理论学时: 56 实验(上机)学时: 16 先修课程: 电路基础高等数学大学物理适用专业:应用电子技术、电子信息工程、通信工程一、课程性质、目的和任务本课程是应用电子技术、电子信息工程、通信工程专业必修的专业基础课和核心课程。
本课程的目的和任务是使学生获得模拟电子技术的基本理论、基本知识和基本技能, 培养学生分析问题和解决问题的能力。
通过学习使学生掌握线性电子电路中基本单元电路的工作原理、分析方法、主要性能指标等, 获得信息传递技术必备的理论知识, 为学习后续课程以及从事有关的工程技术工作和科学研究工作打下一定的基础。
二、教学基本要求1.掌握各章节基本内容, 对基本电路原理的分析能力和实验能力是学习模拟电路课的最基本要求, 要求学生很好理解和掌握。
在教学中要注重培养学生的创新意识和科学精神。
2.本课程是电专业的非常重要的专业基础课, 也是电信专业研究生入学考试的必考课程, 且具有广阔的工程应用背景。
因此, 在教学中应注意培养学生的逻辑思维能力、综合运用模拟电路理论分析和解决问题的能力, 注意理论联系实际, 同时根据本课程的特点严格要求学生独立完成一定数量的习题与课程设计。
本课程教学的组织方式包括三大部分:基本理论课、习题课、实验课、理论课采用多媒体教学手段, 实验课将通过实际的操作和设计, 使学生加深对电路、器件模型等内容的理解, 巩固课堂教学内容。
3.本课程考核由期末卷面考试、期中考试、平时抽查、平时作业、实验过程、实验报告等部分组成。
期末考试: 50%;平时成绩(含平时考勤、提问、作业): 20%;实验: 10%;期中: 20%。
三、教学内容及要求第一章常用半导体元器件(10学时)内容①导体半导体和绝缘体、半导体的共价键结构半导体的导电机构--电子和空穴、P型半导体、N型半导体、半导体载流子的漂移运动和扩散运动、PN结的单向导电性②普通二极管的结构、伏安特性、主要参数及注意事项稳压管的结构、伏安特性、主要参数及注意事项③双极型三极管的结构、电流分配与放大原理、输入输出特性曲线, 主要参数及注意事项结型及绝缘体场效应管的结构、工作原理、主要参数及使用注意事项。
模拟电子技术基础课程教学大纲

“模拟电子技术基础"课程教学大纲课程名称:模拟电子技术基础教材信息:《模拟电子电路及技术基础(第三版)》,孙肖子XX主讲教师:孙肖子(西安电子科技大学电子工程学院副教授)学时:64学时一、课程的教学目标与任务通过本课程教学使学生在已具备线性电路分析的基础上,进一步学习包含有源器件的线性电路和线性分析、计算方法。
使学生掌握晶体二极管、稳压管、晶体三极管、场效应管和集成运放等非线性有源器件的工作原理、特性、主要参数及其基本应用电路,掌握XX种放大器、比较器、稳压器等电路的组成原理、性能特点、基本分析方法和工程计算及应用技术,获得电子技术和线路方面的基本理论、基本知识和基本技能.培养学生分析问题和解决问题的能力,为以后深入学习电子技术其他相关领域中的内容,以及为电子技术在实际中的应用打下基础。
二、课程具体内容及基本要求(一)、电子技术的与模电课的学习MAP图(2学时)介绍模拟信号特点和模拟电路用途,电子技术简史,本课程主要教学内容,四种放大器模型的结构、特点、用途及增益、输入电阻、输出电阻等主要性能指标,频率特性和反馈的基本概念.1。
基本要求(1)了解电子技术的,本课程主要教学内容,模拟信号特点和模拟电路用途。
(2)熟悉放大器模型和主要性能指标.(3)了解反馈基本概念和反馈分类。
(二)、集成运算放大器的线性应用基础(8学时)主要介绍XX种理想集成运算应用电路的分析、计算,包括同/反相比例放大、同/反相相加、相减、积/微分、V-I和I-V 变换电路和有源滤波等电路的分析、计算,简单介绍集成运放的实际非理想特性对应用电路的影响及XX应用中器件选择的依据和方法。
1。
基本要求(1)了解集成运算放大器的符号、模型、理想运放条件和电压传输特性。
(2)熟悉在理想集成运放条件下,对电路引入深反馈对电路性能的影响,掌握“虚短”、“虚断”和“虚地”概念。
(3) 掌握比例放大、相加、相减、积/微分、V—I和I-V变换电路的分析、计算。
模拟电子技术基础教学大纲

模拟电子技术基础教学大纲一、课程简介本课程旨在通过模拟电子技术基础的学习,培养学生的模拟电路设计和分析能力,帮助其深入了解模拟电子技术的相关理论和实践应用。
二、教学目标1.掌握基本的电路分析和设计方法;2.熟悉电子器件及其模型,了解电路元件的特性折线图;3.了解信号的时域和频域特性,掌握常见的几种信号形式;4.掌握模拟电路中的放大器、滤波器、振荡器等基本电路;5.了解集成电路的基本特性,并掌握模拟电路中常用的运算放大器和比较器的应用;6.掌握模拟电路分析和设计的方法,能够使用工具软件进行模拟。
三、教学内容第一章电路元件及基本电路1.1 电路元件 - 电阻、电感、电容、二极管及其模型; - 元器件参数、特性折线图等。
1.2 基本电路 - 电路基本定理及应用; - 串联、并联、变压器、桥式电路等。
第二章信号的时域和频域特性2.1 常见信号形式 - 正弦信号、三角波、方波、脉冲信号等; - 等幅信号、等间隔采样信号、脉冲编码调制等。
2.2 时域和频域特性 - 时域波形与频率透过率特性的关系; - 傅里叶级数、傅里叶变换及其应用。
第三章基本放大电路3.1 放大器的基础概念 - 放大器的分类、基本电路; - 放大器的增益、输入阻抗、输出阻抗等。
3.2 放大器的特性 - 声学放大器、直流放大器、宽带放大器、综合放大器等; - 通用放大器的放大特性等。
3.3 放大器的应用 - 模拟电路中的放大器在信号处理中的应用; - 最简单的信号衰减与放大实验等。
第四章基本滤波器和振荡器4.1 滤波器的基本概念 - 滤波器分类、基本电路; - 滤波器截止频率、通带、阻带等特性。
4.2 基本振荡电路 - 振荡器的基础概念、基本电路; - 振荡器的本振频率、频率稳定度、谐振电路等。
第五章运算放大器和比较器5.1 运算放大器 - 功放、运放的概念、功能、特性与电路; - 运算放大器电路的分析、设计与应用。
5.2 比较器 - 各种比较器电路、运算放大器比较器电路; - 比较器的原理、特性、应用等。
模拟电子技术 教学大纲

模拟电子技术教学大纲第一节:引言本教学大纲旨在提供有关模拟电子技术的全面指导,包括理论知识、实际应用和实验技能的培养。
通过本课程的学习,学生将掌握模拟电子技术的基本原理、电路设计和故障排除等方面的知识。
第二节:课程概述2.1 课程目标本课程旨在使学生:- 掌握模拟电子技术的基本概念和原理;- 理解模拟电子电路的设计原则和技巧;- 具备模拟电子电路故障排除和维修的实际能力;- 培养实验操作技能和数据分析能力。
2.2 教材和参考书籍- 主教材:《模拟电子技术导论》- 参考书籍:- 《模拟电子电路设计与制造技术》- 《模拟电子电路仿真与实验》- 《模拟电子技术维修与应用》2.3 授课方式本课程采用理论授课、实践操作和实验实训相结合的教学方式。
第三节:教学内容与进度安排3.1 模块一:基础理论- 模块简介:介绍模拟电子技术的基本概念和原理,包括电子元器件、电路分析方法和放大器设计等内容。
- 授课时间:2周- 主要教学内容:- 模拟电子技术概述- 电路基本定律- 电子元器件及其特性- 放大器原理与设计- 系统频率响应分析3.2 模块二:电路设计与仿真- 模块简介:介绍模拟电子电路的设计原则和技巧,以及通过仿真软件进行电路设计和分析的方法。
- 授课时间:3周- 主要教学内容:- 放大电路设计与优化- 滤波器设计与实现- 模拟电子电路仿真工具的使用- 仿真结果分析与改进3.3 模块三:实验技能培养- 模块简介:通过实验操作和实际电路的搭建与调试,培养学生独立完成模拟电子电路设计和故障排除的能力。
- 授课时间:4周- 主要教学内容:- 模拟电子电路测量仪器与设备- 常见电路故障排除与维修技巧- 实际电路设计与调试经验分享- 项目实践与成果展示第四节:考核与评价4.1 考核方式本课程将通过学生的课堂表现、实验报告、设计项目和期末考试等方式进行综合评价。
4.2 考核标准- 准时参加课堂授课和实验操作- 完成规定的实验报告和设计项目- 考试成绩达到及格标准4.3 成绩评定比例- 平时表现:30%- 实验报告和设计项目:30%- 期末考试:40%第五节:教学资源支持5.1 实验室设备本课程需要提供充足的实验室设备和仪器,以供学生进行实验操作和项目设计。
《模拟电子技术基础》教学大纲

《模拟电子技术基础》教学大纲课程类别: 技术基础课课程名称: 模拟电子技术基础开课单位: 课程编号: 2070215总学时: 72 学分: 4.5适用专业: 自动化类、电子信息类、电气类、计算机类、测控技术类等一、先修课程: 大学物理、电路基础等课程二、课程在教学计划中地位、作用电子技术基础是入门性质的技术基础课, 它既有自身的理论体系, 又有很强的实践性。
本课程的任务是使学生获得电子技术方面的基本理论、基本知识和基本技能, 培养分析问题和解决问题的能力, 为今后进一步学习、研究、应用电子技术打下基础。
本课程是我院工科电类专业本科生的必修课, 而且随着市场经济和对高等学校人才素质的要求, 也成为我院非电类专业本科生的必修课。
二、课程内容、基本要求绪论第1章半导体二极管及其基本电路1.1 半导体的基础知识1.2 半导体二极管1.3 半导体二极管的应用1.4 特殊二极管正确理解PN结的形成及其单向导电作用, 熟练掌握二极管、稳压管的外特性和主要参数。
熟练掌握二极管在电路中的应用。
重点: PN结的单向导电性;二极管应用电路分析;稳压管稳压条件及稳压电路分析。
难点: PN结的形成;应用电路中二极管模型的选择及二极管工作状态的判断。
第2章晶体管及其基本放大电路2.1 晶体管2.2 放大的概念及放大电路的性能指标2.3 共发射极放大电路的组成及工作原理2.4 放大电路的图解分析法2.5 放大电路的微变等效电路分析法2.6 分压式稳定静态工作点电路2.7 共集电极放大电路2.8 共基极放大电路2.9 组合单元放大电路正确理解晶体管的工作原理, 熟练掌握外特性和主要参数。
正确理解放大的基本概念, 放大电路的主要指标, 掌握放大电路的组成特点。
在放大电路的图解法, 主要用来确定静态工作点, 分析动态过程和波形失真。
熟练掌握放大电路的等效电路法, 会计算静态工作点, 能用H参数微变等效电路计算放大电路的电压放大倍数、输入和输出电阻。
模拟电子技术基础简明教程第三版教学大纲

模拟电子技术基础简明教程第三版教学大纲
课程目标
本门课程旨在介绍模拟电子技术的基础知识,包括基本电路原理、
模拟信号的产生、传输、处理和变换及常见模拟电子器件的工作原理
和特点。
通过本门课程的学习,学生将掌握模拟电子技术的基础知识,了解模拟电子技术在实际应用中的重要性,并具备基本的模拟电子电
路的设计和分析能力。
教学内容
第一章电子元器件基础
本章介绍电子元器件的基本概念和分类,包括二极管、晶体管、场
效应管、放大器、操作放大器、滤波器等。
同时,讲解电子元器件的
特性、参数和使用方法。
第二章基本电路原理
本章讲述基本电路原理,包括欧姆定律、基尔霍夫定律、电容、电
感等电路元件的特性和应用,以及这些元件在电路中的组合和应用。
第三章模拟信号的表示和处理
本章介绍模拟信号的产生、表示和处理方法,包括正弦波、方波、
三角波等基本波形的产生方法,以及滤波、放大、变换等信号处理方法。
《模拟电子技术》教学大纲

《模拟电子技术》教学大纲一、课程概述模拟电子技术是通信专业、计算机专业的一门必修的技术基础课,也是一门培养基本技能的技术实践课程。
本课程介绍模拟电子技术基本知识和基本技能,并介绍电子学的最新发展。
这门课程的重点是培养和训练学生认知、分析电子线路的能力,掌握模拟电子技术的基本原理和实践能力,为学习后继课程和专业知识打下良好的理论基础和实践基础,并具有将电路分析理论和电子技术应用于本专业的一定能力。
本课程的先修课程是大学物理、高等数学、电路分析原理,后继课程是数字电路与逻辑设计。
二、课程目标1.知道半导体的导电机理和PN结的形成,理解PN结的单向导电性。
2.掌握二极管、三极管、场效应管的主要特点、工作原理和特性及其作用;熟悉管子的主要参数并学会合理选择和使用这些参数。
3.掌握二极管基本电路原理和分析方法,理解二极管的应用。
4.理解三极管基本放大电路的基本结构及其工作原理,掌握静态工作点的估算,掌握小信号模型分析方法,了解输入、输出电阻的概念。
理解射极输出器的基本特点和用途。
5.知道场效应管的特性和工作原理,掌握场效应管放大电路的结构及工作原理,掌握FET放大电路的小信号模型分析方法。
6.知道多级放大电路的耦合方式及其特点。
7.知道稳定静态工作点和提高电压放大倍数的方法,并能估算有关参数(静态工作点、电压放大倍数、输入电阻、输出电阻等)。
8.知道放大电路的频率特性,理解幅频特性的含义。
9.理解功率放大电路的结构特点,并能分析和计算功率电路。
了解集成功率器。
10.深刻理解反馈的概念,能判断反馈的类型并定性分析负反馈对放大器性能的影响。
11.理解直流放大器的特点,掌握差动放大器的电路结构及工作原理,并能估算简单电路的有关参数(差模放大倍数、差模输入电阻和输出电阻、共模放大倍数和共模抑制比)。
12.知道集成运算放大器的组成及其主要参数和电压传输特性。
理解理想运算放大器并掌握其基本分析方法。
13.知道集成运算放大器在数学运算方面的应用,熟悉信号处理电路的原理和结构特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《模拟电子技术基础》教学大纲二、课程内容(一)课程教学目标本课程是电类各专业在电子技术方面入门性质的技术基础课,是一门实践性极强的课程。
本课程以分立元件的基本放大电路为基础,以集成电路为主体,通过课堂讲授使学生理解各种基本电路的组成、基本工作原理和基本分析方法及应用;通过课程实验、课程设计等实践环节使学生加深对基本概念的理解,掌握基本电路的设计与调试方法,便学生获得电子技术方面的基本理论、基本知识和基本技能,培养学生分析和解决问题的能力。
(二)基本教学内容第一章、绪论教学目的与要求:了解课程性质、特点、学习方法。
了解电子技术的发展及应用。
掌握放大电路的模型和主要性能指标。
教学重点:放大电路的模型,放大电路的主要性能指标及应用考虑。
教学难点:放大电路的主要性能指标及应用考虑。
教学内容:简单介绍本课程的性质、课程特点、课程学习方法等。
对电子技术的发展状况作简要介绍,引发学生对本课程学习的积极性。
对放大电路的模型、性能指标及应用做概要介绍。
对教材中第一章内容可不作详细讲解,待讲到相关内容时再作简要讲解。
第二章、集成电路运算放大器教学目的与要求:了解集成运放的主要结构,掌握理想运放的模型、特点及利用“虚短”和“虚断”分析理想放大器构成的应用电路。
熟练掌握集成运放构成的典型应用电路,包括同相放大、反相放大、加法、减法、微分、积分运算电路和仪用放大器。
通过自学和上机环节掌握模拟电路计算机仿真软件-PSPICE。
教学重点:理想运算放大器的模型、特性。
运算放大器构成的典型应用电路。
教学难点:对理想放大器的理解,“虚短”和“虚断”的理解和正确运用。
教学内容:(1)集成电路运算放大器了解集成动算放大器的内部构成、集成运算放大器的传输特性。
(2)理想运算放大器正确理解理想放大器条件下,放大器的电路参数及其物理意义。
(3)基本线性运放电路正确理解“虚短”和“虚断”的条件。
在负反馈条件下,分析理想运放构成的典型应用电路的输出与输入关系。
(4)模拟电路仿真问题通过自学和上机,学会模拟电路仿真软件应用,可选用软件建议PSPICE.第三章、二极管及其基本电路教学目的与要求:了解半导体的基本知识,PN结的形成及导电机理。
掌握二极管的结构、工作原理、特性曲线和主要参数。
熟练掌握二极管电路的分析方法与应用。
了解齐纳二极管、变容二极管、光电器件的特性及应用。
教学重点:二极管的特性、参数及应用电路分析。
对二极管的正向特性四种模型重点在理想模型和恒压降模型。
齐纳管的特性、参数及其特点。
教学难点:PN结的载流子运动机理。
二极管电路分析时,等效线性电路的建立。
教学内容:(1)半导体的基本知识物质的导电性能,半导体的特性,半导体的共价键结构,半导体的两种载流子—自由电子和空穴,空穴的导电特点;两种半导体—本征半导体和杂质半导体( P型半导体、N 型半导体)。
(2)PN结的形成及特性性半导体载流子的两种运动方式及两种电流—漂移运动与扩散运动及漂移电流与扩散电流。
PN结及其单向导电性。
二极管正向特性的四种模型。
(3)二极管(普通二极管)二极管的结构符号、伏安特性及参数;(4)二极管基本电路及其分析方法二极管正向特性的四种模型及应用条件;二极管的基本应用电路及分析方法。
根据电路正确选择二极管的等效模型和建立等效线性电路。
要有分段线性化概念。
戴维南定理、叠加定理应用于二极管电路分析。
(5)特殊二极管齐纳二极管、变容二极管、肖特基二极管、光电子器件的结构、符号、特性基本应用。
第四章、双极结型三极管及放大电路基础教学目的与要求:本章所述内容是本课程的基础,要求能熟练掌握并灵活运用所学内容。
其重点包含:BJT 的外特性及主要参数:共射、共集、共基三种组态放大电路的组成、工作原理、静态工作点的计算、性能指标计算。
多级放大电路的耦合方式及特点、性能指标分析计算。
对图解法和小信号模型分析法重点应在小信号模型分析。
正确理解和掌握放大电路的频率响应及简单分析方法—波特图法。
最重要的是建立电路模型,将非线性问题线性化,从而将问题归的到解线性电路分析上。
通过上机与计算机仿真实验,分析基本放大器的工作点、信号放大作用、参数对放大器性能的影响等,对放大器有更直观的理解。
通过理论分析计算、仿真与实际电路测量结果三者比较,对三种情况下的结果进行比较,得出结论。
教学重点:握BJT的外特性、参数及应用。
放大器的组成、小信号模型分析方法、性能指标及应用。
放大器的频率响应。
教学难点:非线性电路的线性分析方法-电路模型的建立及应用条件。
放大器的频率响应分析-电路模型的建立与简化,影响放大器频率响应的要素。
教学内容:(1) 半导体三极管(BJT)半导体三极管的结构、符号、分类;三极管的电流分配关系及放大作用;共射极三极管的输入特性与输出特性;三极管的主要参数及温度对其影响。
(2) 基本共射极放大电路放大电路的组成及组成原则;电路中各元件作用;电路基本工作原理;静态工作点的设置。
(3) 放大电路的分析方法图解分析法:静态工作情况、动态工作情况图解分析;BJT输出特性三个区的划分及特点。
小信号模型分析法:BJT小信号建模(BJT微变等效电路);利用BJT小信号模型分析共射放大电路—计算放大电路的A V、R i、R o。
(4) 放大电路的静态工作点稳定问题温度对放大电路静态工作点的影响;射极偏置电路—组成的特点,稳定静态工作点的物理过程、静态工作点及性能指标计算。
(5) 共集电极电路与共基极电路共集电极电路—组成、静态工作点及性能指标计算;电路的特点。
共基极电路—组成、静态工作点及性能指标计算。
(6) 组合放大电路:在掌握三种基本放大电路的特点的基础上,通过基本放大电路的组合,发挥各自优点,满足应用需要。
(7) 放大电路的频率响应:放大电路频率响应的基本概念和基本分析方法,频率响应的描述、频率失真( 幅频失真与相频失真)、对数频率特性。
(这部分内容参考第一章绪论有关内容)。
简单RC电路的频率响应。
单级放大电路的高频特性,低频特性折线波特图。
多级放大电路、耦合方式及特点、静态工作点计算、性能指标计算、频率特性、简介。
第五章、场效应管放大电路教学目的与要求:了解场效应管的结构、工作原理、V-I特性,熟练掌握场效应管的外特性参数及其应用,场效应管放大器的构成、工作原理及性能指标的分析计算。
理解场效应管放大器的特点及其应用。
通过课外资料查阅,了解场效应管及其构成的放大器的发展历程及趋势。
比较BJT与FET构成的放大器特点及其适用范围。
教学重点:场效应管的外特性及参数,场效应管放大电路的偏置电路及特点共源(Cs)、共漏(Cd)放大电路的静态工作点与性能指标计算。
教学难点:场效应管的工作原理。
教学内容:(1) 金属-氧化物-半导体场效应管(MOSFET):结构、工作原理、V-I特性曲线、大信号特性方程。
MOS场效应管的主要参数及应用。
(2) MOS放大电路:放大电路的构成,静态工作点分析计算,放大器性能指标的图解法分析和小信号模型分析。
(3) 结型场效应管(JFET):结构、工作原理、V-I特性曲线、大信号特性方程。
结型场效应管的主要参数及应用。
JFET的小信号模型。
(4) 砷化镓金属-半导体场效应管:了解其特点及应用。
(5) 各种放大器件电路性能比较:对BJT、FET及其构成的各种组态的电路性能进行比较,主要是从放大倍数、输入电阻、输出电阻、频率响应等方面进行比较,对电路应用选择起指导作用。
第六章、模拟集成电路教学目的与要求:正确理解集成电路中的各种直流偏置电路及其特点。
熟练掌握分放大电路的组成、工作原理及电路(静态与主要技术指标) 计算,差分放大器的主要特点。
了解差分方大器的传输特性;通过实例,了解运算放大器的具体结构。
熟练掌握集成运算放大器的主要参数的定义、测量方法及工程应用。
了解乘法器及其应用。
教学重点:零点漂移概念;差分式放大电路的基本概念,简单差分放大电路的组成、工作原理及电路(静态与主要技术指标) 计算,差分放大电路的分析与计算必须做到真正理解。
运算放大器的参数及工程应用。
教学难点:差分放大电路的分析,集成运算放大器的工程应用。
教学内容:(1) 模拟集成电路的直流偏置技术:BJT、FET各种电流源的构成、工作原理、特点与应用。
(2) 差分式放大电路:差分放大电路的结构,共模信号与差模信号的概念,差分放大电路的工作原理、静态分析和动态分析计算。
(3) 差分式放大电路的传输特性:分析差分放大电路的输出与输入的关系,从而得出其输入线性范围。
(4) 集成电路运算放大器:以实际运算放大器MC14573和LM741为例,分析CMOS 运放和BJT运放的偏置电路、输入级、中间放大级、输出级四个构成部分的具体电路。
(5) 实际集成运算放大器的主要参数和对应用电路的影响:实际运算放大器的直流参数和交流参数的定义、测试方法及其在工程应用中的影响。
根据集成运算放大器的性能和适用范围,集成运算放大器的分类。
非理想放大器应用分析。
(6) 模拟乘法器:简单介绍模拟乘法器的电路组成思想,介绍模拟乘法器的典型工程应用实例。
(7) 放大电路中的噪声与干扰:介绍放大电路中产生噪声的原因,评估噪声产生的影响,噪声的抑制方法。
放大器干扰的来源及抑制方法。
(8) 课外研究:通过查阅国际上知名的半导体器件生产商如ADI公司、TI公司等,了解模拟集成运算放大器的分类方法,当前发展水平及未来发展方向。
通过阅读几种不同的集成运算放大器,进一步理解集成运放的性能指标的定义、测试方法及应用。
第七章、反馈放大器教学目的与要求:熟练掌握反馈放大器的分类,负反馈放大器类型的判别方法,定性和定量分析引入负反馈后对放大器性能的改善。
掌握根据工程实际信号放大需要引入合适的负反馈放大器。
了解负反馈放大器的稳定性问题。
教学重点:反馈的判断,反馈对放大器的性能改善(定性和定量分析),深度负反馈条件下电路的分析计算,根据工程实际选择合适的负反馈放大器。
教学难点:定量分析负反馈放大器对性能的影响。
负反馈放大器的稳定性问题。
教学内容:(1)反馈的基本概念和分类:反馈的定义,直流反馈与交流反馈,正反馈与负反馈,串联反馈与并联反馈,电压反馈与电流反馈。
(2)负反馈放大电路的四种组态:电路的组成方式,电路实例,定性分析引入负反馈后对输出稳定性的影响,反馈系数的定义及计算。
(3)负反馈放大电路增益的一般表达式:根据反馈放大器的方框图推导出反馈放大器输出和输入关系的一般表大式,引出反馈深度的概念,对反馈深度进行讨论。
(4)负反馈对放大电路性能的影响:定性定量分析引入负反馈后对放大器性能的影响,包括:(a)提高增益稳定性,(b)减小非线性失真,(c)抑制反馈环内噪声,(d)对输入电阻和输出电阻的改变。
(5)在深度负反馈条件下的近似计算:推导出在深度负反馈条件下,得出反馈放大器的增益只与反馈系数相关,满足“虚短”和“虚断”的结论,利用此结论对放大器进行分析计算。