幂的运算经典练习题
(完整版)幂的运算经典习题
一、同底数幂的乘法1、下列各式中,正确的是( ) A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-•-y x y x4、若a m =2,a n =3,则a m+n 等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =•6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ).(A)a 7 (B)a 8 (C)a 6 (D)a 383a a a a m =••,则m=7、-t 3·(-t)4·(-t)58、已知n 是大于1的自然数,则()c -1-n ()1+-•n c 等于 ( )A. ()12--n c B.nc 2-C.c-n2 D.n c 29、已知x m-n ·x 2n+1=x 11,且y m-1·y 4-n =y 7,则m=____,n=____. 二、幂的乘方 1、()=-42x 2、()()84aa =3、( )2=a 4b 2;4、()21--k x =5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x •的结果是 ( )A. 12xB. 14xC. x 19D.84x7、()()=-•342a a8、n n 2)(-a 的结果是 9、()[]52x --= 10、若2,x a =则3x a = 三、积的乘方1)、(-5ab)2 2)、-(3x 2y)2 3)、332)311(c ab - 4)、(0.2x 4y 3)2 5)、(-1.1x m y 3m )2 6)、(-0.25)11×411 7)、-81994×(-0.125)1995 四、同底数幂的除法 1、()()=-÷-a a 42、()45a a a =÷3、()()()333b a ab ab =÷4、=÷+22x x n5、()=÷44ab ab .6、下列4个算式: (1)()()-=-÷-24c c 2c(2) ()y -()246y y -=-÷(3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )A.4个B.3个C.2个D.1个 7、 ÷a 2=a 3。
(完整版)幂的运算经典习题
(完整版)幂的运算经典习题⼀、同底数幂的乘法1、下列各式中,正确的是() A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-?-y x y x4、若a m =2,a n =3,则a m+n 等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =?6、在等式a 3·a 2·( )=a 11中,括号⾥⾯⼈代数式应当是( ).(A)a 7 (B)a 8 (C)a 6 (D)a 383a a a a m =??,则m=7、-t 3·(-t)4·(-t)58、已知n 是⼤于1的⾃然数,则()c -1-n ()1+-?n c 等于 ( )A. ()12--n c B.nc 2-C.c-n2 D.n c 29、已知x m-n ·x 2n+1=x 11,且y m-1·y 4-n =y 7,则m=____,n=____. ⼆、幂的乘⽅ 1、()=-42x 2、()()84aa =3、( )2=a 4b 2;4、()21--k x =5、323221??-z xy =6、计算()734x x ?的结果是 ( )A. 12xB. 14xC. x 19D.84x7、()()=-?342a a8、n n 2)(-a 的结果是 9、()[]52x --= 10、若2,x a =则3x a = 三、积的乘⽅1)、(-5ab)2 2)、-(3x 2y)2 3)、332)311(c ab - 4)、(0.2x 4y 3)2 5)、(-1.1x m y 3m )2 6)、(-0.25)11×411 7)、-81994×(-0.125)1995 四、同底数幂的除法 1、() ()=-÷-a a 42、()45a a a =÷3、()()()333b a ab ab =÷4、=÷+22x x n5、()=÷44ab ab .6、下列4个算式: (1)()()-=-÷-24c c 2c(2) ()y -()246y y -=-÷(3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )A.4个B.3个C.2个D.1个 7、 ÷a 2=a 3。
幂的运算专项练习50题(有答案)
幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。
幂运算练习题大全
幂运算练习题大全幂运算,是数学领域中一种常见的运算方式。
它用于表示一个数的某个指数次幂,例如2的3次幂就是2×2×2,通常表示为2^3。
幂运算在数学、物理、计算机科学等领域有着重要的应用。
在本文中,我们将提供一系列幂运算的练习题,帮助读者更好地掌握幂运算的概念和运用。
1. 简化以下幂运算:a) 2^4b) 3^2c) 5^3d) 10^02. 计算以下幂运算的结果:a) 2^5b) 4^3c) 6^2d) 8^43. 给定以下幂运算,求未知数的值:a) 2^x = 16b) 3^x = 27c) 4^x = 256d) 5^x = 6254. 简化以下幂运算的结果,使用负指数:a) 2^-3b) 3^-2c) 5^-4d) 10^-15. 简化以下幂运算的结果,使用幂与根相互抵消的关系:a) √(4^3)b) ∛(8^2)c) ∜(16^2)d) ⁵√(32^3)6. 简化以下幂运算的结果,使用幂运算的运算法则:a) (2^3) × (2^4)b) (3^2) ÷ (3^5)c) (5^6)^2d) (10^4)^07. 计算以下复合幂运算的结果:a) (2^3)^2b) (4^2)^3c) (6^4)^2d) (8^5)^08. 解决以下问题,应用幂运算的概念:a) 一台计算机每秒钟可以执行10^9次运算,那么1分钟内可以执行多少次运算?b) 一辆汽车每小时行驶80公里,那么2小时内可以行驶多远?c) 一块土地的面积为5^2平方米,如果将其分割成边长为1米的小方块,可以得到多少个小方块?9. 解决以下问题,应用幂运算的运算法则:a) 简化表达式:(2^3 × 2^4) ÷ 2^2b) 简化表达式:(3^5)^2 ÷ (3^2)c) 简化表达式:(5^3 ÷ 5^2) × 5^4d) 简化表达式:(10^6)^2 ÷ 10^3通过以上的练习题,可以帮助读者巩固幂运算的知识点和运用技巧。
幂的运算经典练习题
同底数幂的乘法1、下列各式中,正确的是( )A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107 =3、()()()345-=-∙-y x y x4、若a m =2,a n =3,则a m+n 等于( )(A)5 (B)6 (C)8 (D)95、()54a a a =∙6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ).(A)a 7 (B)a 8 (C)a 6 (D)a 37、83a a a a m =∙∙,则m=8、-t 3·(-t)4·(-t)59、已知n 是大于1的自然数,则()c -1-n ()1+-∙n c 等于 ( )A. ()12--n cB.nc 2-C.c -n 2D.n c 210、已知x m -n ·x 2n+1=x 11,且y m -1·y 4-n =y 7,则m=____,n=____.幂的乘方1、()=-42x2、()()84a a=3、( )2=a 4b 2;4、()21--k x =5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x ∙的结果是 ( )A. 12xB. 14xC. x 19D.84x7、()()=-∙342a a8、n n 2)(-a 的结果是 ()[]52x --=9、若2,x a =则3x a =三、积的乘方1、 (-5ab)22、 -(3x 2y)23、332)311(c ab4、(0.2x 4y 3)25、(-1.1x m y 3m )26、(-0.25)11×4117、-81994×(-0.125)1995同底数幂的除法1、()()=-÷-a a 4 2、()45a a a =÷3、()()()333b a ab ab =÷4、=÷+22x x n5、()=÷44ab ab .6、下列4个算式 (1)()()-=-÷-24c c 2c (2) ()y -()246y y -=-÷ (3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )A.4个B.3个C.2个D.1个幂的混合运算1、a 5÷(-a 2)·a = 2、(b a 2)()3ab ∙2= 3、(-a 3)2·(-a 2)3 4、()m m x x x 232÷∙= 5、()1132)(--∙÷∙n m n m x x x x6、(-3a)3-(-a)·(-3a)27、()()()23675244432x x x x x x x +∙++ 8、下列运算中与44a a ∙结果相同的是( ) A.82a a ∙ B.()2a4 C.()44a D.()()242a a ∙4 *9、32m ×9m ×27=10、化简求值a 3·(-b 3)2+(-21ab 2)3 ,其中a =41,b =4。
幂的运算经典练习题
同底数幂的乘法1、下列各式中,正确的是( )A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-∙-y x y x 4、若a m=2,a n=3,则a m+n等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =∙6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ). (A)a7(B)a8(C)a6(D)a 383a a a a m =∙∙,则m=7、-t 3·(-t)4·(-t)58、已知n 是大于1的自然数,则()c -1-n ()1+-∙n c 等于 ( ) A. ()12--n c B.nc 2- C.c-n2D.nc29、已知x m -n ·x 2n+1=x 11,且y m -1·y4-n =y 7,则m=____,n=____.幂的乘方 1、()=-42x 2、()()84a a =3、( )2=a 4b 2; 4、()21--k x = 5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x ∙的结果是 ( )A. 12x B. 14x C. x 19D.84x7、()()=-∙342a a8、nn 2)(-a 的结果是 ()[]52x --= 若2,xa =则3xa =同底数幂的除法1、()()=-÷-a a 42、()45a aa =÷3、()()()333b a ab ab =÷ 4、=÷+22x x n5、()=÷44ab ab . 6、下列4个算式(1)()()-=-÷-24c c 2c (2)()y -()246y y -=-÷ (3)303z z z =÷(4)44a a a mm=÷其中,计算错误的有 ( )A.4个B.3个C.2个D.1个幂的混合运算1、a 5÷(-a 2)·a = 2、(b a 2)()3ab ∙2=3、(-a 3)2·(-a 2)34、()m mx x x 232÷∙=5、()1132)(--∙÷∙n m n m x x x x6、(-3a)3-(-a)·(-3a)27、()()()23675244432x x x x x x x +∙++8、下列运算中与44a a ∙结果相同的是( ) A.82a a ∙ B.()2a 4C.()44aD.()()242a a ∙4*9、32m×9m×27=10、化简求值a 3·(-b 3)2+(-21ab 2)3, 其中a =41,b =4。
幂运算复习练习题.doc
幂的运算练习题(每日一页)【基础能力训练】一、同底数幂相乘1 .下列语句正确的是()A.同底数的幂相加,底数不变,指数相乘;B.同底数的幂相乘,底数合并,指数相加;C.同底数的幂相乘,指数不变,底数相加;D.同底数的幂相乘,底数不变,指数相加2. a4·a m·a n=()A.a4m B.a4(m+n)C.a m+n+4D.a m+n+4 3.(- x)·(- x)8·(- x)3=()A .(- x)11B .(- x)24C .x12D .- x124 .下列运算正确的是()A .a2·a3=a6B .a3+a3=2a6C .a3a2=a6D .a8- a4=a45 . a· a3x可以写成()A .( a3)x+1B .(a x)3+1C .a3x+1D .(a x) 2x+1 6.计算: 100×100m-1×100m+17.计算: a5·(- a)2·(- a)38.计算:(x-y)2·(x-y)3-( x-y)4·(y-x)二、幂的乘方9.填空:(1)(a8)7=________;(2)(105)m=_______;(3)(a m)3 =_______;(4)(b2m)5=_________;(5)(a4)2·( a3)3=________.10.下列结论正确的是()A.幂的乘方,指数不变,底数相乘;B.幂的乘方,底数不变,指数相加;C. a 的 m次幂的 n 次方等于 a 的 m+n次幂;D. a 的 m次幂的 n 次方等于 a 的 mn次幂11 .下列等式成立的是()A .( 102)3 =105B .(a2)2=a4C .(a m)2 =a m+2D .(x n)2=x2n12 .下列计算正确的是()A.( a2)3·(a3)2 =a6· a6 =2a6B.(- a3)4·a7=a7· a2=a9C.(- a2)3·(- a3)2=(- a6)·(- a6)=a12D.-(- a3)3·(- a2)2=-(- a9)·a4=a1313.计算:若 642× 83=2x,求 x 的值.三、积的乘方14.判断正误:(1)积的乘方,等于把其中一个因式乘方,把幂相乘()(2)(xy)n=x·y n()(3)(3xy)n=3(xy)n()(4)(ab)nm=a m b n()(5)(- abc)n=(- 1)n a n b n c n()15 .(ab3)4=()A.ab12 B .a4b7 C .a5b7 D .a4b1216 .(- a2b3 c)3=()A.a6b9c3B.-a5b6c3C.-a6b9c3D.-a2b3c317.(- a m+1b2n)3 =()A.a3m+3b6n B.-a3m+b6n C.-a3m+3b6n D.-a3m+1b8m318 .如果( a n b m b)3=a9b15,那么 m, n 的值等于()A.m=9,n=-4B.m=3,n=4C .m=4,n=3D.m=9,n=6 【综合创新训练】一、综合测试19.计算:(1)(- x m+1·y)·(- x2-m y n-1)(2)10×102× 1 000×10n- 3(3)(- a m b n c)2·(a m-1b n+1c n)2 (4)[ ()2 ] 4·(- 23)3二、创新应用20 .下列计算结果为14的是()m2 7 7 7 6 7 8 6A .m·mB .m+mC .m·m· mD . m· m·m 21.若 5m+n=56·5n-m,求 m的值.22.已知 2×8n×16n=222,求 n 的值.23.已知 x3n=2,求 x6n+x4n·x5n的值.24.若 2a=3, 4b=6,8c=12,试求 a,b,c 的数量关系.25.比较 6111,3222,2333的大小.26.比较 3555,4444,5333的大小.三、巧思妙想27 .(1)( 2)2×42 (2)[ ()2] 3×( 23)3(3)(-)12×(- 1)7×(- 8)13×(-)9(4)- 82003×()2002+()17× 417答案:【基础能力训练】1 .D2 .D3 . C4 . C5 . C6 . 1002m+17 .- a108.原式 =( x-y)5-( x-y)4·[ -( x-y)]=2 (x-y)59.( 1) a56(2)105m(3)a3m(4)b10m(5)a1710. D 11 .B 12 . D13.左边 =(82)2×83=84×83=87 =( 23)7=221而右边 =2x,所以 x=21.14.(1)× (2)× (3)× (4)× (5)∨15. D 16 .C 17 . C 18 .C【综合创新运用】19.原式 =(-)×()·x m+1·x2-m· y· y n-1=x m+1+2- m·y1+n-1 =x3y n(2)原式 =10×102×103×10n-3 =101+2+3+n-3=103+n(3)原式 =(- 1)2( a m)2·(b n)2·c2·(a m-1)2·( b n+1)2(c n)2 =a2m·b2n·c2·a2m- 2b2n+2c2n=a4m-2b4n+2c2n+2(4)原式 =()2×4·(- 1)3·23×3=-()8· 29=-=-2209 7 15.. C 解析: A 应为 m, B 应为 2m, D应为 m21 .由 5m+n=56· 5n-m=56+m-n得 m+n=6+n- m,即 2m=6,所以 m=3.22.式子 2×8n×16n可化简为: 2×23n×24n=21+7n,而右边为 222比较后发现 1+7n=22, n=3.23. x6n+x4n·x5n=x6n+x9n=(x3n)2+(x3n)3把 x3n=2 代入可得答案为 12.24.由 4=6 得 22b=6,8c=12 即 23c=12,所以 2a·22b=2×6=12 即 2a+2b=12,所以 2a+2b=23c,所以 a+2b=3c.25.3222=(32)111=9111,2333=(23)111=8111 因为9111>8111>6111,所以3222>2333>6111.26.4444>3555 >533327.(1)原式 =()2× 42 =81(2)原式 =()6× 29 =(× 2)6× 23 =23=8(3)原式 =(-)12×(-)7×(- 8)13×(-)9=-()12×813×()7×()9=-(× 8)12×8×(×)7×()2 =- 8×(4)原式 =- 82003×()2002+(-)17×417=-( 8×)2002×8+(-× 4)17=-8+(- 1)=-9【探究学习】设拉面师傅拉 n 次就可以变成一碗面条,则2n=256,由于 256=28,∴ n=8.。
(完整word版)幂的运算练习题及答案
则;
考点 :单项式乘单项式;幂的乘方与积的乘方;多项式乘多
(2)同类项的概念是所含字母相同, 相同字母的指数也相同
项式。
的项是同类项,不是同类项的一定不能合并.
分析: 根据幂的乘方与积的乘方、合并同类项的运算法则进
4、 a 与 b 互为相反数,且都不等于 0,n 为正整数,则下列
行逐一计算即可.
各组中一定互为相反数的是(
)
A、2x+3y=5xy
B、(﹣ 3x2y)3= ﹣ 9x6y3
C、
,正确;
D、应为( x﹣ y) 3=x3﹣3x2y+3xy 2﹣ y3,故本选项错误.
故选 C. 点评:( 1)本题综合考查了整式运算的多个考点,包括合并
C、
D 、 同类项,积的乘方、单项式的乘法,需要熟练掌握性质和法
(x﹣y)3=x 3﹣y3
法公式做(注意一个负数的偶次幂是正数,奇次幂是负数) ;
④利用乘法分配律的逆运算. 解答: 解: ①∵ a5+a5=2a5;,故 ①的答案不正确; ②∵(﹣ a)6?(﹣ a)3=(﹣ a)9=﹣ a9,故② 的答案不正确; ③∵ ﹣ a4?(﹣ a)5=a9;,故 ③的答案不正确;
8 / 17
④25+2 5=2 ×25=2 6. 所以正确的个数是 1, 故选 B. 点评: 本题主要利用了合并同类项、同底数幂的乘法、乘法 分配律的知识,注意指数的变化. 二、填空题(共 2 小题,每小题 5 分,满分 10 分) 6、计算: x2?x3= x5 ;(﹣ a2)3+(﹣ a3)2= 0 . 考点 :幂的乘方与积的乘方;同底数幂的乘法。 分析: 第一小题根据同底数幂的乘法法则计算即可;第二小 题利用幂的乘方公式即可解决问题. 解答: 解: x2?x3=x5;
幂的运算经典练习题
幂的运算经典练习题1、正确的式子是C.mm=m。
2、102·107=109.3、(x-y)5·(x-y)4=(x-y)9.4、am+n=2+3=5.5、a4·a1=a5.6、a3·a2·a3=a8,括号里的代数式是a3.7、-t3·(-t)4·(-t)5=-t12.8、(-c)n-1·(-c)n+1=-c2n。
9、m=5,n=8.10、(-x2)4=x8.11、a4·a4=a8.12、(ab)2=a2b2.13、xn+2=xn·x2.14、(ab)4/ab4=a3b3.15、计算错误的算式是第四个,应该是a4m/am=a3m。
16、a5/(-a2)·a=-a2.17、(a2b)(ab3)=a3b4.18、(-a3)2·(-a2)3=-a12.19、x2·xm/x2m=xm-2.20、xm·(xn)3/xm-1·2xn-1=xn+1.21、(-3a)3-(-a)·(-3a)2=-24a3.22、x3·x4+x4·x2+x5·x7/x3·x2=x9+x6+x12/x5=x4+x6+x7.与a4·a4结果相同的是B.a8.14、长为2.2×10m,宽是1.5×10m,高是4×10m的长方体体积为_________。
答案:16.5×10^3 m^3.一、选择题:(每小题3分,共24分)1.可以写成()A。
B。
C。
D。
答案:B。
2.下列计算正确的是()A。
B。
C。
D。
答案:C。
3.下列计算正确的是()A。
B。
C。
D。
答案:B。
4.如果将写成下列各式,正确的个数是( ) ①;②;③;④;⑤。
A。
1;B。
2;C。
3;D。
4.答案:C。
5.计算的结果正确的是()A。
(完整word版)《幂的运算》习题精选及答案(可编辑修改word版)
《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m 是正整数时,下列等式成立的有()A、a n与b nB、a2n与b2nC、a2n+1 与b2n+1D、a2n﹣1 与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0 个B、1 个C、2 个D、3 个二、填空题(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.6、计算:x2•x3=.;(﹣a2)3+(﹣a3)2=A、4 个B、3 个C、2 个D、1 个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y33 2 1 24 47、若2m=5,2n=6,则2m+2n= .三、解答题8、已知 3x(x n+5)=3x n+1+45,求 x 的值。
C、4x y•(﹣2x y)= ﹣2x yD、(x﹣y)3=x3﹣y34、a 与b 互为相反数,且都不等于 0,n 为正整数,则下列各组中一定互为相反数的是()9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知 2x+5y=3,求 4x•32y的值.11、已知 25m•2•10n=57•24,求 m、n.12、已知 a x=5,a x+y=25,求 a x+a y的值.13、若 x m+2n=16,x n=2,求 x m+n的值.15、如果 a2+a=0(a≠0),求 a2005+a2004+12 的值.16、已知 9n+1﹣32n=72,求 n 的值.18、若(a n b m b)3=a9b15,求 2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)120、若 x=3a n,y=﹣2n﹣1,当 a=2,n=3 时,求a n x﹣ay 的值.14、比较下列一组数的大小.8131,2741,9612a2 22 3 3 321、已知:2x =4y+1,27y =3x ﹣1,求 x ﹣y 的值.22、计算:(a ﹣b )m+3•(b ﹣a )2•(a ﹣b )m •(b ﹣a )523、若(a m+1b n+2)(a 2n ﹣1b 2n )=a 5b 3,则求 m+n 的值.24、用简便方法计算:1(1)(24) ×4(2)(﹣0.25)12×412(3)0.52×25×0.1251(4)[(2) ] ×(2 )答案与评分标准一、选择题(共5 小题,每小题4 分,满分20 分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。
(完整版)幂的运算测试题(经典题型
幂的运算性质1、下列各式计算过程正确的是( )(A )x 3+x 3=x 3+3=x 6 (B )x 3·x 3=2x 3=x 6(C )x ·x 3·x 5=x 0+3+5=x 8 (D )x 2·(-x )3=-x 2+3=-x 52、化简(-x )3·(-x )2,结果正确的是( )(A )-x 6 (B)x 6 (C )x 5 (D)-x 53、下列计算:①(x 5)2=x 25;②(x 5)2=x 7;③(x 2)5=x 10;④x 5·y 2=(xy )7;⑤x 5·y 2=(xy )10;⑥x 5y 5=(xy )5;其中错误..的有( ) (A )2个 (B )3个 (C )4个 (D)5个4、下列运算正确的是( )(A )a 4+a 5=a 9 (B )a 3·a 3·a 3=3a 3 (C )2a 4×3a 5=6a 9 (D)(-a 3)4=a 75、下列计算正确的是( )(A )(-1)0=-1 (B )(-1)-1=+1 (C )2a -3=321a (D )(-a 3)÷(-a )7=41a6、下列计算中,运算错误的式子有( )⑴5a 3-a 3=4a 3;⑵x m +x m =x 2m ;⑶2m ·3n =6m +n ;⑷a m +1·a =a m +2;(A )0个 (B )1个 (C )2个 (D)3个7、计算(a -b )2(b -a )3的结果是( )(A )(a -b )5 (B )-(a -b )5 (C )(a -b )6 (D )-(a -b )68.计算9910022)()(-+-所得的结果是( ) A .-2 B 2 C .-992 D .9929.当n 是正整数时,下列等式成立的有( )(1)22)(m m a a = (2)m m a a )(22= (3)22)(m m a a -= (4)m m a a )(22-=A.4个 B.3个 C.2个 D.1个10.若52=m ,62=n ,则n m 22+= .11、(2m -n )3·(n -2m )2= ;12、要使(x -1)0-(x +1)—2有意义,x 的取值应满足什么条件?13、如果等式()1122=-+a a ,则a 的值为14、232324)3()(9n m n m -+ 15、422432)(3)3(a ab b a ⋅-⋅ 16、已知: ()1242=--x x ,求x 的值。
幂的运算》习题精选及答案
幂的运算》习题精选及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99的结果是()A。
-299 B。
-2 C。
299 D。
22.当m为正整数时,下列等式成立的有()1) a^(2m) = (a^m)^22) a^(2m) = (a^2)^m4) a^(2m-1) = (-a^2)^(m-1)A。
4个 B。
3个 C。
2个 D。
1个3.下列运算正确的是()A。
2x+3y=5xyB。
(-3x^2y)^3 = -9x^6y^3C。
x^3-y^3 = (x-y)(x^2+xy+y^2)D。
(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^34.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。
a^n和b^nB。
a^(2n)和b^(2n)C。
a^(2n+1)和b^(2n+1)D。
a^(2n-1)和(-b)^(2n-1)5.下列等式中正确的个数是()①a^5+a^5=a^10②(-a)^6*(-a)^3*a=a^10③(-a)^4*(-a)^5=a^20④2^5+2^5=2^6A。
1个 B。
2个 C。
3个 D。
4个二、填空题6.计算:x^2*x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5) = 3x^(n+1) + 45,求x的值。
9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))(x*y^n)的值.10.已知2x+5y=3,求4x*32y的值.11.已知25^m*2*10^n=57*2^4,求m、n.12.已知ax=5,ax+y=25,求ax+ay的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,961.15.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^(n-5)*(a^(n+1)*b^(3m-2))^2 + (a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^n,当a=2,n=3时,求a^n*x-a*y 的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)*(b-a)^2*(a-b)^m*(b-a)^5 /(m+1)*n+2*2^n-1*2^n-5*3又∵ax=5。
幂的运算数学题
幂的运算1. 同底数幂相乘a m ·a n =a m +n a m +n = a m ·a n同底数幂相乘,底数不变,指数相加.计算,结果用幂的形式表示.(1) a ·a 6 ; (2) (-2)3×(-2)2 ;(3) –a m ·a 2m ; (4) 25×23×24 .计算,结果用幂的形式表示.1)(2y +1)2·(2y +1)5;(2)(p -q )5·(q -p )2;(3)a 4·a 6+a 5·a 5.2. 幂的乘方幂的乘方法则:(a m )n =a mn . a mn =(a m )n .幂的乘方,底数不变,指数相乘.1.计算 (102)3 ;(b 5)5 ;(a n )3 ;-(x 2)m .2.计算:(1) ( 104 )2;(2)(x 5)4;(3)-(a 2)5 ;(4) (-23)20 .3.积的乘方(ab )n =a n b n a n b n =(ab )n积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘.计算:1(1) (5m )3; (2) (-xy 2)3.2(1)(31xy 2)2; (2)(-2ab 3c 2)4. 4. 同底数幂的除法运1)n m n m a a a -=÷(m 、n 为正整数) m n m n a a a -=÷(m 、n 为正整数) 同底数幂相乘除,底数不变,指数相减.计算:(1)26a a ÷;(2)()()b b -÷-8;(3)()()24ab ab ÷; (4)232t t m ÷+(m 是正整数)2)当m =n 时,0a a a a n m n m ==÷-1=÷=÷m m n m a a a a10=a (a ≠0)即任何不等于0的数的0次幂等于1.3).n n aa 1=-(a ≠0, n 为正 整数),即任何不等于0的数的-n (n 是正整数)次幂,等于这个数的n 次幂的倒数.计算:(1)05a a ÷(a ≠0);(2)25-÷a a (a ≠0).用小数或分数表示下列各数:(1)24-;(2)33--;(3)51014.3-⨯练习2.(1)812=x ,则x = ; (2)1011=-x ,则x = ; (3)1000.010=x ,则x = .。
(完整版)幂的运算测试题(经典题型
幂的运算性质1、下列各式计算过程正确的是( )(A )x 3+x 3=x 3+3=x 6 (B )x 3·x 3=2x 3=x 6(C )x ·x 3·x 5=x 0+3+5=x 8 (D )x 2·(-x )3=-x 2+3=-x 52、化简(-x )3·(-x )2,结果正确的是( )(A )-x 6 (B )x 6 (C )x 5 (D )-x 53、下列计算:①(x 5)2=x 25;②(x 5)2=x 7;③(x 2)5=x 10;④x 5·y 2=(xy )7;⑤x 5·y 2=(xy )10;⑥x 5y 5=(xy )5;其中错误..的有( ) (A )2个 (B )3个 (C )4个 (D )5个4、下列运算正确的是( )(A )a 4+a 5=a 9 (B )a 3·a 3·a 3=3a 3 (C )2a 4×3a 5=6a 9 (D )(-a 3)4=a 75、下列计算正确的是( )(A )(-1)0=-1 (B )(-1)-1=+1 (C )2a -3=321a(D )(-a 3)÷(-a )7=41a 6、下列计算中,运算错误的式子有( )⑴5a 3-a 3=4a 3;⑵x m +x m =x 2m ;⑶2m ·3n =6m +n ;⑷a m +1·a =a m +2;(A )0个 (B )1个 (C )2个 (D )3个7、计算(a -b )2(b -a )3的结果是( )(A )(a -b )5 (B )-(a -b )5 (C )(a -b )6 (D )-(a -b )68.计算9910022)()(-+-所得的结果是( ) A .-2 B 2 C .-992 D .9929.当n 是正整数时,下列等式成立的有( )(1)22)(m m a a = (2)m m a a )(22= (3)22)(m m a a -= (4)m m a a )(22-=A.4个 B.3个 C.2个 D.1个10.若52=m ,62=n ,则n m 22+= .11、(2m -n)3·(n-2m)2= ;12、要使(x -1)0-(x +1)-2有意义,x 的取值应满足什么条件?13、如果等式()1122=-+a a ,则a 的值为14、232324)3()(9n m n m -+ 15、422432)(3)3(a ab b a ⋅-⋅ 16、已知:()1242=--x x ,求x 的值.17、(-2a 2b )3+8(a 2)2·(-a )2·(-b )3; 18、(-3a 2)3·a 3+(-4a )2·a 7-(5a 3)3;逆向思维19、0.25101×4100= ;(-0.5)2002×(-2)2003= ;22006×32006的个位数字是 ;20、若a =999111,b =111222,则a 、b 的大小关系是 ;21、已知:10a =5,10b =6,求102a +3b 的值. 练: 若3m =6,9n =2,求32m-4n +1的值;22、若n 为正整数,且x 2n =4,求(x 3n )2-2(x 2)n 的值.23、若n 为正整数,且x 2n =3,求(3x 3n )2-8(x 2)2n 的值.24、已知:352=+y x ,求y x 324⋅的值; 25、012200420052006222222------ 的值26、已知y x y x x a a aa +==+求,25,5的值. 27、已知472510225•=••n m ,求m 、n .。
完整word版幂的运算综合专项练习题有答案过程ok
幂的运算专项练习50题(有答案)55443322,试比较a,b,c,b=3,c=4,,d=56.若a=2d的大小..1237÷m.+m7.计算:(﹣2 m )3222)×(﹣a2. (4abb)2﹣33﹣2﹣2))?.计算:8(2m(n﹣mn 1.(;)3.计算:.9 23;)(2 (3x)(?﹣x)0﹣23.)+210.(﹣)÷(﹣2)×(﹣22;7mp m3()?7mp÷(﹣)xy+1yx﹣1,求x﹣=3y的值. 11.已知:2=427, 2a 4()(﹣3a+1).()3xy的值. 4?32﹣12.若2x+5y3=0,求yx+yx2x﹣y的值.aa求:a,a.已知4=2=3与mm16,求m的值.27×.已知1339×=3 3m+2nmn yx,用=y3,=x3.已知5,3表示.nm3915m+nmmmm30,求m的值.=3?27,求2 的值. ?812414.若(a.已知:b3b)=a9b?6﹣b32262b+111a﹣14﹣b5,求a+b??xy=x=y,且y的值.15.计算:(xx? ).已知÷x .25xx22n3n+22﹣1y..,求4=09 ?2726.若16.计算:(a2x+3y)÷a?a﹣3n2m﹣nm =的值.,试求a17.若a=8,a243362.﹣(2a27.计算:(3ax))x.计算:.28 2nn+1 18.已知9﹣3=72的值.,求nm2n﹣22m+nnnmm+32010的值.) n﹣=9×3m29.已知16=4×2,求.已知19x=3,x=5x的值.,求27,(2362m﹣2﹣2m4n+1nm2n12.求m+n1016的值.×4×2)=2 =1039320.已知=6,=2,求(的值.,30.已知5345342.)))(﹣a÷(﹣?(﹣aa31(用幂的形式表示))﹣([yx.21(﹣)yx] .﹣m+n2﹣1﹣﹣mnn3m+2n2﹣2.(xx,求0≠x,=2,=16.若22xx(),的值.32.(a2abb)) ?39﹣2a2b2ba+b24﹣3﹣(23.计算:的值.)(﹣x33 .)ba()b5a?.已知?x3=x,求(﹣)+36/ 244244226nn3n232n)(﹣ab﹣3[?a+(a)﹣(﹣3x)(﹣ab)].42.计算:(ab)+534.a..43 m15n365m+n2m﹣ y)=xy,求35.已知(x的值.nmn3m+2n2n﹣3mn﹣5n+13m﹣22n﹣1m﹣233m+2) b(ab)(﹣44.计算:aba36.已知=2,a=7,求a()﹣a+a 的值.2n+2n332n ])÷[(﹣x37.计算:(﹣3xy)y aba﹣b2a﹣b x2)求的值.(45.已知x=2,x=6.1)求x(的值.232﹣2﹣3﹣1﹣.xy)(xy)?(38.计算:abc为整数,,b,c246.已知?27?37=1998,其中a1998﹣c)的值.a求(﹣b2m3n3m22n32m3n的值+a?b),39.已知a=2b=3,求(a)﹣(b19981999.))×(﹣4.﹣(﹣470.253n23n2n3)4(x3x为正整数,且40.已知nx=7,求()﹣的值.3n23n22n)x﹣34()x41.若n为正整数,且=5,求(3x2n+13n﹣42a+b()?))(1.48()2a+b(2a+b? 的值.6/ 350.计算下列各式,并把结果化为正整数指数幂的形式.52).y﹣(2)(x﹣y)x?(23﹣13);(2ab (1)ab﹣2﹣23﹣13﹣22﹣1﹣223;. 49.(1)(3x y(z(2))(?(5xyabcz)))2﹣32﹣432﹣22﹣12﹣.))3)24x2)((yz2ab )(?2xyz)c÷(÷(yz)ab(.(题参考答案:50幂的运算x2y+2, =2∴2∴x=2y+2 ①﹣1.解:xy+1, =411.解:∵2原式=4﹣14=﹣1;yx﹣1,=327 又∵763248)=16a2. 原式=b﹣2a×(﹣abb3yx﹣1,=33 ∴∴3y=x﹣1②﹣(﹣1)原式=5)×3=15; 3.解:(76 9x=﹣;(2)原式=9xx?(﹣)联立①②组成方程组并求解得,232 pm7mp÷(﹣)=(3)原式=7m﹣p;22∴x﹣y=3 3.﹣3=6a﹣7a﹣=6a(4)原式9a+2a﹣xy2x5y2x+5y227=2.解:4??326a、﹣﹣7a3 2=2、﹣故答案为﹣159xm、﹣12p yxx+y∵2x+5y﹣3=0,即2x+5y=3, 3=6.解:4a;=a?a=2×3=8 =2∴原式22xyy2x﹣÷3==2=a÷aa mm,×2713.解:∵3×92m3m3m2n,5.解:原式=3×3 ,×3=3×31+5m2nm3,(=3)3×(=3),1+5m3216,3 =3=xy ∴11511∴1+5m=16,;(2)=32.解:6a=11114解得m=3 ;(b=3)=81nm311311n3m333n3m+3,b(ab)(c=4) =48;=a(b14.解:∵(a bb))=11211∴3n=9,3m+3=15,;(d=5)=25解得:d acb可见,>>> m=4,n=3,m+n2737=128(﹣7.解:2m)+m÷=2∴2 ,m563223610610﹣64÷x +m,=x15.解:原式=(x=x)÷x=xm)(﹣=2×()2n23n+2266 a)?÷﹣=8m+m,a.解:16(a4n63n+22﹣=7m ?=aa ÷a4n﹣3n﹣22 ?=aa433﹣29﹣6﹣2﹣2﹣2 n﹣22mn=?n)﹣()n2m(8.解:?mn=8m a=a?n﹣2+2=a n1=0 =.解:原式9×+4)4(﹣=a2m﹣3nm2n3, a=())÷(a17.解:a1 ÷(﹣=.解:原式10×)+2nm=,aa∵=8, 2+2 =﹣ =06/ 4∴n=2m①,.÷∴原式=64=5123nnm+3,)27=9×3∵(3m+323n512故答案为)=3×3,∴(3m+53nn+12nn+1nnn∴3=3,93=9﹣=9(9﹣1)=9×8,而72=918.解:∵9﹣∴3n=m+58,②,×n2nn+18=9×8,∴当9﹣3=72时,9×由①②得:n,=9∴9 ,∴n=1 m=1,n=2解得:2010nm2﹣m)∴(19.解:原式=(x)?x n20102﹣1=3×5 )=(2 5 =1 =9×226866202m﹣23=45)(30.解:∵16×4×2=2×2×2=2=210,122nn2nn2m2.=10,.解:由题意得,209=3=2,3=6=36 =104n4n+12m ﹣2m﹣2=20,2n=12,∴2m 33故=3×3÷3=36×÷4=27354354解得:m=11,n=6,=]x=x)](x﹣y)[(﹣y)﹣)21.解:(x﹣y[(y17125m+n=11+6=17∴)y=﹣y)(x﹣x(x﹣y)?(5+125m+2nn1222﹣,=1622.解:∵x,x=2 )=÷(﹣)=﹣aa31.原式=(﹣a)?a÷(﹣a15m+nn172m+2n∴x÷x=x=16÷a.a÷2=8, a=﹣3n3nm+2nm﹣ =2 =16÷2=xx÷x22﹣﹣1﹣3﹣24﹣322﹣2 ?.解:(ab b(5a(b)?a))(2ab)3223.解:2﹣﹣684﹣ab=25ab?4﹣63﹣2? =(ab)(ab)6﹣10 b=25a14﹣ ab= ==mmmm24.解:由题意知,3?9?27?81,m2m3ma+b2b﹣a94m=3?3?3?3, 33.解:∵x?x=x,m+2m+3m+4m∴a+b+2b﹣a=9, =3,30解得:b=3,,=3b3333 m+2m+3m+4m=30∴,=23)=2×(﹣3)3)+(﹣3)=(﹣3)+(﹣∴(﹣×(﹣, 27)=﹣54 整理,得10m=30888m=3 解得 9x,34.解:原式=a+a﹣886﹣b4﹣b2b+1511a﹣125.解:∵x?x9x=x,且y=y, y=2a﹣?3n﹣﹣n315m+3n6m5m+n2m,xy)=xy35.解:(1565m+n2m﹣n3∴,,y)=xy∵(x,∴解得:,解得:,则a+b=10m326.解:∵2x+3y﹣4=0,则n=(﹣9)=﹣243mn,∴2x+3y=436.解:∵a=2,a=7,3m+2n2n﹣21x﹣y2x﹣23y2x+3y﹣23mm3n2n2m3∴a﹣a=(a)?(a)﹣(a)=9 ?9∴?27=33=3=3 ÷(a)=8×49126621261232436﹣(x(27.解:3a)2ax)xxx﹣4a=23a=27a8= 49÷﹣32 28.解:原式=?ab=n2n+2n23337.解:(﹣3xy)÷[(﹣xy)],6n+6m3n32n2n﹣2=﹣27xy÷(﹣xy)2.解:∵2916=4×,,6n+63n2m422n﹣6n2n= 2=2∴(2)×,﹣27xy÷xy,6n2+22n4m﹣=﹣27x,2∴=2 y﹣2﹣3﹣12﹣32﹣∴2n,2+2=4m38.解:(x?y)?(x?y),6/ 5234﹣625)x﹣﹣y)y, ?((=x2y)原式?x=y﹣(x736﹣)x﹣, y=x=y﹣(22﹣ = ())(49.解:(1)原式=?3n2n32m3m2?b﹣(b,a39.解:())+a3n2m32m3n2? = =(a,)?﹣(b)b+a23×+2=23﹣3, =5=;6n6n﹣40.解:原式=27x4x6n =23x23n =23(x)÷?2)原式= (7 ×=23×7 =11272n =5,.解:∵41x26 z=?y3n223n﹣34(3x)x)∴(6n6n 34x=9x﹣32n=125(x)=﹣23﹣1323﹣13+36;b=2a)50.解:(1)a25=﹣×5 bb(2a =2ab =﹣3125﹣2﹣3622n2n6n6nn﹣13,(bc(2)(a42.解:原式=ab)+5ab3﹣(ab))66n2n3﹣36n2n, =ab b=6acb﹣3a6n2n =3ab=;150505010050(x=43.解:原式())x?=x2﹣6m5n﹣2n+2﹣432633n﹣3m﹣3m+2﹣2,),))÷(ab)(.解:原式44=a3a(b2()+a2abbcb(﹣2﹣3n3﹣﹣4﹣6226m﹣﹣﹣6m43n34 c,)÷(ba)=abb(+a=2(﹣b4a,)66﹣46m33n﹣﹣6m﹣3n34﹣4 c,a=8ab =a,bb﹣ =0ba 45,xx1.解:()∵=2,=6 =b﹣aba;÷=x÷x=26=x∴ba)∵(2x=2,,x=62ab2b2a﹣÷xx(=)÷=2∴x6=33bca 46.解:∵×=2,3×3737?23? a=1∴c=1,,,b=11998 1﹣(=∴原式1)1=1 ﹣19981998 4)4×(﹣×(﹣,))=.解:原式47﹣(19981998)44×﹣(=)×(﹣,1998)4×=﹣(×(﹣,)4 ×(﹣﹣=1,)4 =4)n(+3+)2n+1(﹣4 =)原式1(.解:48)2a+b(3n(=;)2a+b6/ 6。
幂函数的运算专项练习50题(有答案)
幂函数的运算专项练习50题(有答案)以下是50道关于幂函数运算的练题,每题都有详细的答案供参考。
1. 计算 2^3。
答案:2^3 = 8。
2. 计算 (-3)^4。
答案:(-3)^4 = 81。
3. 计算 (4^2)^3。
答案:(4^2)^3 = 4^6 = 4096。
4. 计算 (2^3)(2^4)。
答案:(2^3)(2^4) = 2^(3+4) = 2^7 = 128。
5. 计算 (2^3)^4。
答案:(2^3)^4 = 2^(3*4) = 2^12 = 4096。
6. 计算 (2^3)/2。
答案:(2^3)/2 = 2^(3-1) = 2^2 = 4。
7. 计算 (2^4)/(2^2)。
答案:(2^4)/(2^2) = 2^(4-2) = 2^2 = 4。
8. 计算 (-5^2)-3.答案:(-5^2)-3 = (-25)-3 = -28。
9. 计算 (-5)^2-3.答案:(-5)^2-3 = 25-3 = 22。
10. 计算 (-2)^3-(-2)^2.答案:(-2)^3-(-2)^2 = -8-4 = -12。
11. 计算 (-3)^2-(-3)^3.答案:(-3)^2-(-3)^3 = 9-(-27) = 36。
12. 计算 (2^3)^2/2^2.答案:(2^3)^2/2^2 = 2^6/2^2 = 64/4 = 16。
13. 计算 (2^3)^2/2^3.答案:(2^3)^2/2^3 = 2^6/2^3 = 64/8 = 8。
14. 计算 (2^3)^2-(2^2)^3.答案:(2^3)^2-(2^2)^3 = 2^6-2^6 = 64-64 = 0。
...(以下省略)这些练题旨在帮助您熟悉幂函数的运算规则和性质,通过练可以更好地掌握幂函数的计算方法。
每一题都有详细的答案解析,如果您有任何疑问或需要进一步讲解,请随时向我提问。
祝您练习顺利!。
完整版)幂的运算经典习题
完整版)幂的运算经典习题幂的运算练一、同底数幂的乘法1、下列各式中,正确的是()A.m4m4=m8B.m5m5=2m25C.m3m3=m9D.y6y6=2y12正确答案为A。
2、102·107=10(2+7)=109.3、(x-y)5·(x-y)4=(x-y)9.4、若am=2,an=3,则am+n=2+3=5.5、a4·a=a5.6、在等式a3·a2·()=a11中,括号里面的代数式应当是a6.a·a3·am=a4+m,所以a4+m=a8,解得m=4.7、-t3·(-t)4·(-t)5=-t12.8、已知n是大于1的自然数,则(-c)n-1·(-c)n+1=-c2n。
9、已知xm-n·x2n+1=x11,且ym-1·y4-n=y7,则m=5,n=3.二、幂的乘方1、(-x2)4=x8.2、a4·a4=a8.3、(ab)2=a4b2.4、(-xk-1)2=x2k-2.5、(-xy2z3)5=-x5y10z15.6、计算(x4)3·x7的结果是x19.7、a8·(-a)3=-a5.8、(-an)2n=(-a)2n·n=an·n。
9、[-(-x)2]5=-x10.10、若ax=2,则a3x=23=8.三、积的乘方1)、(-5ab)2=25a2b2;2、-(3x2y)2=-9x4y2;3、-(1/abc3)3=-1/a3b3c9;4、(0.2x4y3)2=0.04x8y6;5、(-1.1xm y3m)2=1.21x2m y6m;6、(-0.25)11×411=-0.2511+4=-0.2515;7、-×(-0.125)1995=.四、同底数幂的除法1、(-a)4÷(-a)=-a3.2、a5÷a=a4.3、(ab)3÷(ab)=a3b3.4、xn+2÷x2=xn。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同底数幂的乘法
1、下列各式中,正确的是( ) A .8
44m m m = B.25
552m m m = C.9
33m m m = D.66y y 12
2y =
2、102
·107
= 3、()()(
)34
5-=-•-y x y x
4、若a m =2,a n =3,则a m+n
等于( ) (A)5 (B)6 (C)8 (D)9
5、()
5
4
a a a =•
6、在等式a 3·a 2·( )=a 11
中,括号里面人代数式应当是( ).
(A)a 7 (B)a 8 (C)a 6 (D)a 3
83a a a a m =••,则m=
7、-t 3
·(-t)4
·(-t)5
8、已知n 是大于1的自然数,则()c -1
-n ()1
+-•n c 等于 ( )
A. ()1
2--n c B.nc 2-
C.c
-n
2 D.n
c 2 9、已知
x
m -n ·x 2n+1
=x
11
,且
y
m -1
·y
4-n
=y 7
,则m=____,n=____.
幂的乘方
1、()=-4
2
x
2、()()
8
4
a a =
3、( )2=a 4b 2
; 4、()2
1
--k x =
5、3
23221⎥⎥⎦⎤
⎢⎢⎣
⎡⎪⎭⎫ ⎝⎛-z xy =
6、计算()
73
4x x •的结果是 ( )
A. 12x
B. 14x
C. x 19
D.84
x
7、()()
=-•3
4
2
a a
8、n
n
2)(-a 的结果是 ()[
]5
2x --= 若2,x
a
=则3x a =
同底数幂的除法
1、()()=-÷-a a 4
2、()
45
a a a =÷ 3、()()()3
33b a ab ab =÷
4、=÷+22
x x
n 5、()=÷44
ab ab .
6、下列4个算式
(1)()()-=-÷-2
4
c c 2
c
(2) ()y -(
)2
4
6
y
y
-=-÷
(3)303z z z =÷ (4)4
4a a a m
m
=÷ 其中,计算错误的有 ( ) 个 个 个 个
幂的混合运算
1、a 5
÷(-a 2
)·a= 2、(b a 2)()3
ab •2
=
3、(-a 3)2
·(-a 2)3
4、()m
m x x x 23
2
֥=
5、()1
132)(--•÷•n m n m x x
x x 6、(-3a)3
-(-a)·(-3a)2
7、()
()
()
2
36752
4
44
32x x x x x x x +•++
8、下列运算中与4
4a a •结果相同的是( )
A.8
2
a a • B.()2
a 4
C.()4
4a D.()()
24
2a a •4
*9、32m ×9m
×27= 10、化简求值a 3
·(-b 3
)2
+(-
21ab 2)3 ,其中a =4
1
,b =4。
混合运算整体思想
1、(a +b)2·(b+a)3
=
2、(2m -n)3·(n-2m)2
= ; 3、(p -q)4÷(q-p)3·(p-q)2
4、()a b - ()3
a b -()5
b a -
5、()[
]3
m n -p
()[]5
)(p n m n m --•
6、()m m
a b b a 25)(--()m a b 7-÷ (m 为偶数,b a ≠)
7、()()y x x y --2
+
3
)(y x -+
()x y y x -•-2)(2
负指数的意义
1、要使(x -1)0-(x +1)-2
有意义,x 的取值应满足什么条件 2、如果等式()1122=-+a a ,则a 的值为 3、已知: ()
124
2=--x x ,求x 的值.
化归思想
1、计算25m
÷5m
的结果为 2、若32,35n m ==,则2313m n +-= 3、已知a m =2,a n =3,求a 2m-3n
的值。
4、已知: 8·22m -1
·23m
=2
17
.求m 的值 5、若2x+5y —3=0,求4
x -1
·32
y
的值
6、解关于x 的方程:
33x+1·53x+1=152x+4
数的计算
1、下列计算正确的是 ( ) A .14
3341-=⨯÷
- B.()121050
=÷- C.52⨯2
210= D.81912
=⎪
⎭⎫ ⎝⎛--
2、()()2
30
2
559131-÷-+⎪⎭
⎫ ⎝⎛+⎪⎭
⎫ ⎝⎛--
3、053102)
(-⨯⨯-2101012
⨯⨯⎪⎭
⎫ ⎝⎛-
4、4-(-2)-2-32÷π)0
5、×55
= 7、 2004
×(-8)
2005
= 8、2007
2006
522125⎛⎫
⎛⎫-⨯ ⎪
⎪⎝⎭
⎝⎭
=
9、()5.1)3
2(2000
⨯1999()
1999
1-⨯
10、)
1(16997111
11-⎪⎭
⎫
⎝⎛⎪⎭⎫ ⎝⎛11
11、(7
104⨯)(
)5
10
2⨯÷= 12、()()=⨯⨯⨯2
4
10310
5________;
13、(
)()()2
2
3
312105.0102102⨯÷⨯-÷⨯-
14、长为×103 m ,宽是×102m ,高是4×102
m 的长方体体积为_________。
一、选择题:(每小题3分,共24分)
1.可以写成()A.B.C.D.
2.下列计算正确的是()
A.B.C.D.
3.下列计算正确的是()
A.B.
C.D.
4.如果将写成下列各式,正确的个数是 ( )
①;②;③;④;⑤.
A.1B.2C.3 D.4
5.计算的结果正确的是()
A.B.C..D.
6.下列运算正确的是()
A.B.C.D.
7.的结果是()A.B.C.D.
8.与的关系是()
A .相等
B .互为相反数
C .当n为奇数时它们互为相反数;当n为偶数时,它们相等.
D .当n为奇数时它们相等;当n为偶数时,它们互为相反数.
二、填空题:(每小题3分,共18分)
9.______________.
10.= .
11.用科学记数法:____________.
12.____________.
13.若5n=3,4n=2,则20n的值是__________.
14.若,则____________.
三、计算题:(每小题3分,共18分)
17.(1) ;(2) ;
(3);(4);
(5);(6).
18.计算题(每小题4分,共16分)
(1);(2);
(3);(4).
四、解答题:(每小题6分,共24分)
19.若为正整数,且,则满足条件的共有多少对
20.设n为正整数,且,求的值.
21.已知求的值.
22.一个小立方块的边长为,一个大立方体的边长为,
(1)试问一个小立方块的体积是大立方体体积的几分之几试用科学记数法表示这个结果.(2)如果用这种小立方块堆成那样大的立方体,则需要这种小立方块多少个
参考答案
一、选择题:(每小题3分,共24分)
二、填空题:(每小题3分,共18分)9.10. 11.12.13. 6 14.
三、计算题:
17.(1) (2)(3)(4)(5)(6)
18.(1)(2)(3)(4)
19.满足条件的共有4对.
20.
21.
22.;;个.。