排队论讲义,讲深入浅出挺好不看不知道呵呵精讲共99页文档
合集下载
《运筹学排队论》课件
资源分配
合理分配服务器资源,以提高系统的吞吐量 和响应时间。
最优服务策略问题
总结词
研究如何制定最优的服务策略,以最大化系 统的性能指标。
服务顺序策略
确定服务器的服务顺序,以最小化顾客的等 待时间和平均逗留时间。
服务中断策略
在服务器出现故障时,选择最优的服务中断 策略,以最小化对顾客的影响。
服务时间分布策略
等待队长
指在某一时刻,正在等待服务的顾客总数。
逗留时间与等待时间
逗留时间
指顾客从到达系统到离开系统所经过的时间 。包括接受服务和等待的时间。
等待时间
指顾客到达系统后到开始接受服务所经过的 时间。
忙期与空闲期
要点一
忙期
指系统连续有顾客到达并接受服务的时间段。在这个时间 段内,系统内的顾客数可能会超过系统的容量。
03
02
交通运输
分析铁路、公路、航空等交通系统 的调度和运输效率。
计算机科学
研究计算机网络、云计算、分布式 系统的性能和优化。
04
排队论的基本概念
服务器
提供服务的设施或 人员。
等待时间
顾客到达后到开始 接受服务所需的时 间。
顾客
需要接受服务的对 象。
队列
顾客按到达顺序等 待服务的排列。
服务时间
顾客接受服务所需 的时间。
《运筹学排队论》ppt课件
目录
• 排队论简介 • 排队系统的组成 • 排队模型的分类 • 排队模型的性能指标 • 排队论的优化问题 • 排队论的发展趋势与展望
01
排队论简介
排队论的定义与背景
1
排队论(Queueing Theory)是运筹学的一个重 要分支,主要研究排队系统(Queueing Systems)的行为特性。
合理分配服务器资源,以提高系统的吞吐量 和响应时间。
最优服务策略问题
总结词
研究如何制定最优的服务策略,以最大化系 统的性能指标。
服务顺序策略
确定服务器的服务顺序,以最小化顾客的等 待时间和平均逗留时间。
服务中断策略
在服务器出现故障时,选择最优的服务中断 策略,以最小化对顾客的影响。
服务时间分布策略
等待队长
指在某一时刻,正在等待服务的顾客总数。
逗留时间与等待时间
逗留时间
指顾客从到达系统到离开系统所经过的时间 。包括接受服务和等待的时间。
等待时间
指顾客到达系统后到开始接受服务所经过的 时间。
忙期与空闲期
要点一
忙期
指系统连续有顾客到达并接受服务的时间段。在这个时间 段内,系统内的顾客数可能会超过系统的容量。
03
02
交通运输
分析铁路、公路、航空等交通系统 的调度和运输效率。
计算机科学
研究计算机网络、云计算、分布式 系统的性能和优化。
04
排队论的基本概念
服务器
提供服务的设施或 人员。
等待时间
顾客到达后到开始 接受服务所需的时 间。
顾客
需要接受服务的对 象。
队列
顾客按到达顺序等 待服务的排列。
服务时间
顾客接受服务所需 的时间。
《运筹学排队论》ppt课件
目录
• 排队论简介 • 排队系统的组成 • 排队模型的分类 • 排队模型的性能指标 • 排队论的优化问题 • 排队论的发展趋势与展望
01
排队论简介
排队论的定义与背景
1
排队论(Queueing Theory)是运筹学的一个重 要分支,主要研究排队系统(Queueing Systems)的行为特性。
排队论方法讲解
排
队 论 方 法
1. 基本概念
1.排队过程的一般模型 顾客服务过程分为四个步骤:
进入排队系统(输入) 等候服务 接受服务 离开系统(输出)
顾客接受服务后立即离开系统,因此输出 过程可以不用考虑,则
讲
解
输入过程 排队系统排队规则 服务机构
排
队 论
①输入过程: I.顾客总体 (顾客源)
排
队 论
1.5.2 指数分布
当顾客流为泊松流时,用T表示两顾客相 继到达的时间间隔,则T是一个随机变量, 其分布函数为
FT (t ) P{T t} 1 P(T t ) 1 P0 (t )
t t 又P ( t ) e , 则 F ( t ) 1 e , 0 T
k 0 n
讲
解
(全概公式、独立性 ) Pn k (t ) Pk (t , t t )
k 0 n
Pn (t )(1 t ) Pn 1 (t )t o(t )
排 队 论
Pn (t , t t ) Pn (t ) o(t ) Pn (t ) Pn 1 (t ) t t
讲
解
排
队 论
(1) 无后效性:在不相交的时间区 间内,顾客到达数相互独立,即在 [t,t+△t]时段内到达的顾客数,与 时刻t之前到达的顾客数无关; (2)平稳性:对于充分小的△t,在 [t,t+△t]内有1个顾客到达的概率, 只与△t有关,而与t无关,且 P1 (t , t t ) t o(t ),
t
实际中,多数问题都属于稳态情 况,且通常在经过某一时段后即可 到达稳态,而不需要t→∞
排
队 论
排队论模型专业知识课件
排队等待旳顾客数,其期望记为
(队长)=等待服务旳顾客数+正被服务旳顾客数,所以
越大,
;排队长度则仅指在队列中
. 系统中旳顾客数
阐明服务效率越低。
(2)等待时间:是指从顾客到达时间算起到他开始接受
顾客到达时刻算起到他接受服务完毕为止所需要旳时间,
逗留时间=等待时间+服务时间 (3)忙期:是指服务台连续繁忙旳时间,即顾客从到达空闲服务台算起到服务台再次变为空闲时止旳这段时间。这是服务台最关心数量指标,它直接关系到服务员工作强度,与忙期相相应旳是闲期,这是指服务台连续保持空闲旳时间长度;显然,在排队系统中忙期与闲期,是交替出现旳。
从而在生灭过程中取
(9.5)
记 ,称为服务强度 当 时,模型不稳( 时达不到统计) 当 <1时,模型稳定,有稳定解 (3)X(t)旳分布律 由(9.12),(1.15)式得此模型旳微分差分方程组 (9.6) 当 时,稳态解满足
1.生灭过程旳定义 设有一种系统,具有有限个状态,其状态集s={0,1,2…k}或有可数个状态,状态集s={0,1,2…},令X(t)为系统在时刻t所处旳状态,若在某一时刻t系统旳状态数为n,假如对△t>0有。 (1)到达(生):在(t,t+△t)内系统出现一种新旳到达旳概率为
服务时止旳这段时间,其期望值记
;逗留时间则指从
即是顾客在系统中所花费旳总时间,其期望值记
。
排队系统除了上述三个主要数量指标外,另外服务台旳利用率(即服务员忙碌旳时间在总时间中所占百分比)在排队论旳研究中也是很主要旳指标。
(二)排队模型旳符号表达与几种主要排队模型 1.排队模型旳符号一般表达法 一般表达法 A/B/C/D/E/F A:顾客来到时间间隔旳分布类型 B:服务时间旳分布类型 C:服务员个数 D:系统容量 E:顾客源个数 F:服务规则 先来先服务旳等待排队模型主要由三参数法即A/B/C例“M/M/1/k/
(队长)=等待服务旳顾客数+正被服务旳顾客数,所以
越大,
;排队长度则仅指在队列中
. 系统中旳顾客数
阐明服务效率越低。
(2)等待时间:是指从顾客到达时间算起到他开始接受
顾客到达时刻算起到他接受服务完毕为止所需要旳时间,
逗留时间=等待时间+服务时间 (3)忙期:是指服务台连续繁忙旳时间,即顾客从到达空闲服务台算起到服务台再次变为空闲时止旳这段时间。这是服务台最关心数量指标,它直接关系到服务员工作强度,与忙期相相应旳是闲期,这是指服务台连续保持空闲旳时间长度;显然,在排队系统中忙期与闲期,是交替出现旳。
从而在生灭过程中取
(9.5)
记 ,称为服务强度 当 时,模型不稳( 时达不到统计) 当 <1时,模型稳定,有稳定解 (3)X(t)旳分布律 由(9.12),(1.15)式得此模型旳微分差分方程组 (9.6) 当 时,稳态解满足
1.生灭过程旳定义 设有一种系统,具有有限个状态,其状态集s={0,1,2…k}或有可数个状态,状态集s={0,1,2…},令X(t)为系统在时刻t所处旳状态,若在某一时刻t系统旳状态数为n,假如对△t>0有。 (1)到达(生):在(t,t+△t)内系统出现一种新旳到达旳概率为
服务时止旳这段时间,其期望值记
;逗留时间则指从
即是顾客在系统中所花费旳总时间,其期望值记
。
排队系统除了上述三个主要数量指标外,另外服务台旳利用率(即服务员忙碌旳时间在总时间中所占百分比)在排队论旳研究中也是很主要旳指标。
(二)排队模型旳符号表达与几种主要排队模型 1.排队模型旳符号一般表达法 一般表达法 A/B/C/D/E/F A:顾客来到时间间隔旳分布类型 B:服务时间旳分布类型 C:服务员个数 D:系统容量 E:顾客源个数 F:服务规则 先来先服务旳等待排队模型主要由三参数法即A/B/C例“M/M/1/k/
运筹学课件第十章排队论
第十章 排队论
第一节 引言
一、排队系统的特征及排队论 排队论研究排队系统的数学理论和方法, 是运筹学的一个重要分支。 排队问题表现:
到达的顾客 1、不能运转机器 2、病人 3、打电话 4、等待降落飞机 5、河水进入水库
要求的服务 修理 就诊 通话 降落 放水,调整水 位
服务机构 修理工人 医生 交换台 跑道指挥机构 水闸管理员
四、排队系统的主要数量指标和记号 描述一个排队系统运行状况的主要指标: 1、队长、排队长 队长:系统中的顾客数量(排队顾客+接受服务顾客)。
排队长:系统中的正在排队等待服务的顾客数量。
2、等待时间和逗留时间 等待时间:从顾客到达时刻起到他开始接受服务止这段时间 为等待时间。 逗留时间:从顾客到达时刻起到他接受服务完成这段时间为 逗留时间。
(i)队长有限:系统等待空间有限。 有限系统的空间为K, 顾客到达时的队长为L。若 L<K,则顾客进入队列等待服务,若L=K,则 顾客离去。 (ii) 等待时间有限: 顾客对等待时间具有不耐烦 性的系统。设最长等待时间是T0,某个顾客从 进入队列后的等待时间为 T。若T<T0,顾客继 续等待;若T=T0,则顾客脱离队列而离去。 (iii)逗留时间有限:等待时间与服务时间之和。
排队可以是人,也可以是物。 为了一致:将要求得到服务的对象统称为“顾客”,将提 供服务的服务者称为“服务员”或“服务机构”。
排队系统的一般描述; 顾客为了得到服务而到达系统,如果不能 立刻得到服务而又允许排队等待,则加入 等待队伍,待获得服务后离开系统。
顾客到达 队列 服务台 单服务台服务系统 服务完后离开
n 0
n ,n C 1 , 2 , 3 ,...... n u n p p , n 1 , 2 , 3 ,...... n 0
第一节 引言
一、排队系统的特征及排队论 排队论研究排队系统的数学理论和方法, 是运筹学的一个重要分支。 排队问题表现:
到达的顾客 1、不能运转机器 2、病人 3、打电话 4、等待降落飞机 5、河水进入水库
要求的服务 修理 就诊 通话 降落 放水,调整水 位
服务机构 修理工人 医生 交换台 跑道指挥机构 水闸管理员
四、排队系统的主要数量指标和记号 描述一个排队系统运行状况的主要指标: 1、队长、排队长 队长:系统中的顾客数量(排队顾客+接受服务顾客)。
排队长:系统中的正在排队等待服务的顾客数量。
2、等待时间和逗留时间 等待时间:从顾客到达时刻起到他开始接受服务止这段时间 为等待时间。 逗留时间:从顾客到达时刻起到他接受服务完成这段时间为 逗留时间。
(i)队长有限:系统等待空间有限。 有限系统的空间为K, 顾客到达时的队长为L。若 L<K,则顾客进入队列等待服务,若L=K,则 顾客离去。 (ii) 等待时间有限: 顾客对等待时间具有不耐烦 性的系统。设最长等待时间是T0,某个顾客从 进入队列后的等待时间为 T。若T<T0,顾客继 续等待;若T=T0,则顾客脱离队列而离去。 (iii)逗留时间有限:等待时间与服务时间之和。
排队可以是人,也可以是物。 为了一致:将要求得到服务的对象统称为“顾客”,将提 供服务的服务者称为“服务员”或“服务机构”。
排队系统的一般描述; 顾客为了得到服务而到达系统,如果不能 立刻得到服务而又允许排队等待,则加入 等待队伍,待获得服务后离开系统。
顾客到达 队列 服务台 单服务台服务系统 服务完后离开
n 0
n ,n C 1 , 2 , 3 ,...... n u n p p , n 1 , 2 , 3 ,...... n 0
排队论(脱产)PPT课件
等待制与损失制
等待制
顾客等待时间有限,超过一定时 间仍无法接受服务则离开;或者 顾客可以无限等待,直到获得服 务。
损失制
顾客到达时若无法立即接受服务 ,则离开系统。
稳态与瞬态
稳态
排队系统在长时间后达到平衡状态,顾客到达和服务的时间间隔均服从某一概 率分布。
瞬态
排队系统未达到平衡状态,顾客到达和服务的时间间隔不服从概率分布。
WENKU DESIGN
WENKU DESIGN
2023-2026
ONE
KEEP VIEW
排队论(脱产)ppt课件
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
CATALOGUE
目 录
• 引言 • 排队论的基本概念 • 常见的排队模型 • 排队论中的性能指标 • 排队论的应用实例 • 总结与展望
PART 04
排队论中的性能指标
队长与等待队长
队长
指在任意时刻队列中的顾客数。它通常用来衡量系统的负载状况。队长是描述系 统状态的重要参数,其分布情况决定了系统的性质。
等待队长
指在队列中等候的顾客数。等待队长是衡量系统性能的重要指标,特别是在处理 能力有限的情况下。等待队长的大小直接影响到顾客的等待时间和系统的效率。
交通系统
地铁调度
地铁调度中心需要确保列车按时到达车 站并保持适当的间隔。排队论可用于分 析列车的到达时间和等待时间,优化列 车的调度和运行计划,提高地铁系统的 运输效率和安全性。
VS
机场安检
机场安检是保证乘客安全的重要环节,但 安检队伍过长或等待时间过长会影响乘客 的满意度和机场的运行效率。排队论可用 于分析安检队伍的长度和等待时间,优化 安检流程和资源配置,提高机场的运行效 率和乘客满意度。
运筹学第五章排队论PPT课件
第五章 排队论(Queuing Theory)
排队论(queuing),也称随机服务系统理论,是 运筹学的一个主要分支。
1909年,丹麦哥本哈根电子公司电话工程师A. K. Erlang的开创性论文“概率论和电话通讯理论” 标志此理论的诞生。排队论的发展最早是与电话, 通信中的问题相联系的,并到现在是排队论的传统 的应用领域。近年来在计算机通讯网络系统、交通 运输、医疗卫生系统、库存管理、作战指挥等各领 域中均得到应用。
1.排队系统的统计推断:即通过对排队系统主 要参数的统计推断和对排队系统的结构分析,判 断一个给定的排队系统符合于哪种模型,以便根 据排队理论进行研究。
2.系统性态问题:即研究各种排队系统的概率 规律性,主要研究队长分布、等待时间分布和忙 期分布等统计指标,包括了瞬态和稳态两种情形。
3.最优化问题:即包括最优设计(静态优化),
• 顾客源有限模型[M/M/1][∞/M/ FCFS]
1
2
... n
单队多服务台(串列)
.
1
1
2
3
2
混合形式
5
2)服务方式分为单个顾客服务和成批顾客服务。 3)服务时间分为确定型和随机型。 4)服务时间的分布在这里我们假定是平稳的。
§1.2 排队系统的模型分类
上述特征中最主要的、影响最大的是: • 顾客相继到达的间隔时间分布 • 服务时间的分布 • 服务台数
最优运营(动态优化)。
.
8
§2.2 排队问题求解(主要指性态问题)
求解一般排队系统问题的目的主要是通过
研究排队系统运行的效率指标,估计服务质
量,确定系统的合理结构和系统参数的合理
值,以便实现对计等。
排队问题的一般步骤:
排队论(queuing),也称随机服务系统理论,是 运筹学的一个主要分支。
1909年,丹麦哥本哈根电子公司电话工程师A. K. Erlang的开创性论文“概率论和电话通讯理论” 标志此理论的诞生。排队论的发展最早是与电话, 通信中的问题相联系的,并到现在是排队论的传统 的应用领域。近年来在计算机通讯网络系统、交通 运输、医疗卫生系统、库存管理、作战指挥等各领 域中均得到应用。
1.排队系统的统计推断:即通过对排队系统主 要参数的统计推断和对排队系统的结构分析,判 断一个给定的排队系统符合于哪种模型,以便根 据排队理论进行研究。
2.系统性态问题:即研究各种排队系统的概率 规律性,主要研究队长分布、等待时间分布和忙 期分布等统计指标,包括了瞬态和稳态两种情形。
3.最优化问题:即包括最优设计(静态优化),
• 顾客源有限模型[M/M/1][∞/M/ FCFS]
1
2
... n
单队多服务台(串列)
.
1
1
2
3
2
混合形式
5
2)服务方式分为单个顾客服务和成批顾客服务。 3)服务时间分为确定型和随机型。 4)服务时间的分布在这里我们假定是平稳的。
§1.2 排队系统的模型分类
上述特征中最主要的、影响最大的是: • 顾客相继到达的间隔时间分布 • 服务时间的分布 • 服务台数
最优运营(动态优化)。
.
8
§2.2 排队问题求解(主要指性态问题)
求解一般排队系统问题的目的主要是通过
研究排队系统运行的效率指标,估计服务质
量,确定系统的合理结构和系统参数的合理
值,以便实现对计等。
排队问题的一般步骤:
排队论 第2章PPT课件
出现次数fn
10 28 29 16 10 6 1 100
表9-4
为病人完成手术时 间v(小时)
0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 1.0-1.2 1.2以上 合计
出现次 数fv
38 25 17 9 6 5 0 100
表9-5
26
1.参数的确定
nfn
算出每小时病人平均到达率= 1 0 0 =2.1(人/小时)
41
例 设船到码头,在港口停留单位时间损失cI元, 进港船只是最简单流,参数为 ,装卸时间服从参数为
的负指数分布,服务费用为
是一个正常数.
求使整个系统总费用损失最小的服务率
解 因为平均队长
的损失费为
服务费用为
所以船在港口停留 因此总费用为
42
求 使F达到最小,先求F的导数
让
解出
因为
最优服务率是
当
它说明服务机构(手术室)有84%的时间是繁忙(被利用),有16 %的时间是空闲的。
27
4.依次算出各指标: 在病房中病人数(期望值)
排队等待病人数(期望值)
Ls
2.1 5.25(人) 2.52.1
L q0 .8 4 5 .2 54 .4 1 (人 )
病人在病房中逗留时间(期望值) Ws 2.51 2.12.5(小 时 )
结
Ls Ws
Ws
Wq
1
Lq Wq
Ls Lq
平均服务 时间
平均在忙的服务 台数/正在接受 服务的顾客数
20
服
4. 系统的忙期与闲期
务
强
度
系统处于空闲状态的概率: P0 1
系统处于繁忙状态的概率: P (n0)1P 0
第一讲 排队论
此外还有:
L
nP
n 0
n
Lq
(n s) P
ns
n
nP
n 0
sm
只要知道Pn(n=0,1,2…),则L或Lq就可由上式求得,从 而再由Little公式就能求得四项主要工作指标。
常见的服务排队模型
输入过程
定长输入:这是指顾客有规则地等距到达,每隔时 间到达一个顾客。此时相继顾客到达间隔的分布 函数F(t)为
基本概念与基本理论
基本概念与理论
排队论里把要求服务的对象统称为“顾客”, 而把提供服务的人或机构称为“服务台”或 “服务员”。不同的顾客与服务组成了各式各 样的服务系统。 顾客为了得到某种服务而到达系统、若不 能立即获得服务而又允许排队等待,则加入等 待队伍,待获得服务后离开系统。
例如
到达的顾客
服务机构
工作强度
用于服务顾客的时间
服务设施总的服务时间
1
用于服务顾客的时间
服务设施总的服务时间
与忙期对应的是系统的闲期,即系统连续保持空闲 的时间长度.
常用记号
N(t):时刻t系统中的顾客数(又称为系统的状 态),即队长; N q(t):时刻t系统中排队的顾客数,即排队 长; w(t):时刻t到达系统的顾客在系统中的逗留 时间; w q(t):时刻t到达系统的顾客在系统中的等 待时间。
排队论
闵超
内容概要
背景 基本概念与理论 常见的服务排队模型(如M/M/1系统) 排队系统的最优化模型
背景
背景
排队论起源于 1909 年丹麦电话工程师 A. K.爱尔朗的工作,他对电话通话拥挤问 题进行了研究。 1917年,爱尔朗发表了他的著名的文章—―自 动电话交换中的概率理论的几个问题的解 决” 。 已广泛应用于解决军事、运输、维修、生产、 服务、库存、医疗卫生、教育、水利灌溉之类 的排队系统的问题。
运筹08(第10章排队论)精品PPT课件
2020/11/30
7
排队系统类型3:
服务完成后离开
服务台1
顾客到达
服务完成后离开
服务台2
服务完成后离开
服务台s
S个服务台, S个队列的排队系统
2020/11/30
8
排队系统类型4:
顾客到达
服务台1
离开
服务台s
多服务台串联排队系统
2020/11/30
9
排队系统的描述 实际中的排队系统各不相同,但概括 起来都由三个基本部分组成: 1、输入过程; 2、排队及排队规则; 3、服务机构
2020/11/30
21
➢ 定长分布(D):每个顾客接受的服 务时间是一个确定的常数。
➢ 负指数分布(M):每个顾客接受的
服务时间相互独立,具有相同的负指
数分布: e- t t0
f(t)=
0
t<0
其中>0为一常数。
2020/11/30
22
➢ K阶爱尔朗分布(Ek):
f(t)=
k(kt)k-1 · e- kt
2
无形排队现象:如几个旅客同时打电话 订车票;如果有一人正在通话,其他人只 得在各自的电话机前等待,他们分散在不 同的地方,形成一个无形的队列在等待通 电话。
排队的不一定是人,也可以是物。如生 产线上的原材料,半成品等待加工;因故 障而停止运行的机器设备在等待修理;码 头上的船只等待装货或卸货;要下降的飞 机因跑道不空而在空中盘旋等。
理;出价高的顾客应优先考虑。
2020/11/30
20
❖ 3、服务机制
包括:服务员的数量及其连接方式(串联还是并联) 顾客是单个还是成批接受服务; 服务时间的分布
记某服务台的服务时间为V,其分布函数 为B(t),密度函数为b(t),则常见的分布 有:定长分布(D)
排队论(讲义)ppt课件
概率关系着对时间的数量分配。一个事件A的概率 P(A)是对应事件A要发生可能性 的数量分配。概率有很多不同的定义,常用的有三种:
(1)古个典数定。义:P(A)=NA/N 其中N是可能结果的总个数,NA是事件A在其中发生的结果的
例1. 求抛两个骰子并且决定和为7的概率p。
总共有36种可能的结果,所以N= 36
排队论 Queueing Theory
主讲:周在莹
;.
1
CONTENUNIT 1 排队模型
UNIT 2 排队网络模型
UNIT 3 应用之:QUICK PASS系统
结束语
;.
PREPARATION 概率论和随机过程
Part 1.概率论基础
1。 概率的定义
独立性: 如果P(AB)=P(A)P(B),事件A和B叫做相互独立的事件 独立性的概念可以推广到三个或多个事件。
;.
3 全概率公式和贝叶斯定理 全概率公式:给定一组互斥事件E1,E2,,…,En,这些事件的并集包括所有可能的
结果,同时给任一个任意事件A,那么全概率公式可以表示为: n
P(A)=∑P(A|Ei)P(Ei) i=1
在离散型随机变量中,只有几何分布具有无后效性。这两种分布可以分别用来描 绘离散等待时间和连续等待时间。
在排队理论中,指数分布是很重要的。
;.
6 k-爱尔朗分布 概率密度: f(x)= (λkx)n-1λke-λkx /(n-1)! x≥0,λ>0.
0 x<0 数字特征: E[X]=1/λ; Var[X]=1/(kλ2 )
;.
5 (负)指数分布
它是一种连续型的概率分布,它的概率密度为
f(x)= λe-λx x≥0
0
第5章 排队论ppt课件
❖ 1、队长——系统中的顾客数量
m
L S Pi i i0
队长
m
m
i P0 i P0 i i 1
i0
i1
P0
m i1
d d
(
i)
P0
d d
m
(
i1
i)
P0
d d
1 m 1
(
)
1
1
P0
1
(m
1) m (1 ) 2
m
m 1
1
LS
m 2
❖ 2、排队长——系统中等待的顾客数量
i-1个细菌
一、生灭过程定义
❖ 研讨系统内部形状变化的过程 形状i+1
一个事件
系统形状i
一个事件
形状i-1
在Δt时辰内发生两个或两个以上 事件的概率为O(Δt)
Δt→0, O(Δt)→0
系统具有0,1,2,……个形状。在任何时辰,假设 系统处于形状i,并且系统形状随时间变化的过 程满足以下条件,称为一个生灭过程:
M/M/1/∞/∞排队系统
系统容量无限、顾客源无限 最根本的排队系统 排队过程为生灭过程过程
λ
λ
λ
λ
λ
λ
λ
S0
S1
S2
…
Si-1
Si
Si+1
…
μ
μ
μ
μ
μ
μ
μ
P0
P1
P2
Pi
列形状转移方程组求各形状概率
P1 P0
P1
P0
P0
Pi ii1Pi1Pi1iP0
Pi 1
i0
( 1 23 i )P 0 1
排队论(讲稿)PPT课件
概况2
+ 您的内容打在这里,或者通过复制您的文本后。
概况3
+ 您的内容打在这里,或者通过复制您的文本后。
第12章 排队论
第1节 基本概念 第2节 到达间隔的分布和服务时间的分布 第3节 单服务台负指数分布排队系统的分析 第4节 多服务台负指数分布排队系统的分析 第5节 一般服务时间M/G/1模型 第6节 经济分析——系统的最优化 第7节 分析排队系统的随机模拟法
(1) 队长:系统中的顾客数,期望值记作Ls; 排队长:系统中排队等待服务的顾客数,期望值记作Lq;
系统 中 在队列中正 等在 待服务 顾客 数 服务的顾 的 客顾 数客数
(2) 逗留时间:顾客在系统中的停留时间,期望值记作Ws; 等待时间:顾客在系统中排队等待的时间,期望值记作Wq, [逗留时间]=[等待时间]+[服务时间]
在实际应用中,大多数系统会很快趋于稳态,而无需等到t→∞以 后。
❖ 求稳态概率Pn时,不需要求t→∞时Pn(t)的极限, 而只需令导数dPn(t)/dt=0即可。
19
清华大学出版社
第12章 排队论
第1节 基本概念 第2节 到达间隔的分布和服务时间的分布 第3节 单服务台负指数分布排队系统的分析 第4节 多服务台负指数分布排队系统的分析 第5节 一般服务时间M/G/1模型 第6节 经济分析——系统的最优化 第7节 分析排队系统的随机模拟法
服务机构
修理技工 发放修配零件的管理员 医生(或包括手术台) 交换台 打字员 仓库管理员 跑道 货码头(泊位) 水闸管理员 我方高射炮
6
清华大学出版社
1.2 排队系统的组成和特征
❖ 排队系统由三个基本部分组成:
①输入过程 ②排队规则 ③服务机构
+ 您的内容打在这里,或者通过复制您的文本后。
概况3
+ 您的内容打在这里,或者通过复制您的文本后。
第12章 排队论
第1节 基本概念 第2节 到达间隔的分布和服务时间的分布 第3节 单服务台负指数分布排队系统的分析 第4节 多服务台负指数分布排队系统的分析 第5节 一般服务时间M/G/1模型 第6节 经济分析——系统的最优化 第7节 分析排队系统的随机模拟法
(1) 队长:系统中的顾客数,期望值记作Ls; 排队长:系统中排队等待服务的顾客数,期望值记作Lq;
系统 中 在队列中正 等在 待服务 顾客 数 服务的顾 的 客顾 数客数
(2) 逗留时间:顾客在系统中的停留时间,期望值记作Ws; 等待时间:顾客在系统中排队等待的时间,期望值记作Wq, [逗留时间]=[等待时间]+[服务时间]
在实际应用中,大多数系统会很快趋于稳态,而无需等到t→∞以 后。
❖ 求稳态概率Pn时,不需要求t→∞时Pn(t)的极限, 而只需令导数dPn(t)/dt=0即可。
19
清华大学出版社
第12章 排队论
第1节 基本概念 第2节 到达间隔的分布和服务时间的分布 第3节 单服务台负指数分布排队系统的分析 第4节 多服务台负指数分布排队系统的分析 第5节 一般服务时间M/G/1模型 第6节 经济分析——系统的最优化 第7节 分析排队系统的随机模拟法
服务机构
修理技工 发放修配零件的管理员 医生(或包括手术台) 交换台 打字员 仓库管理员 跑道 货码头(泊位) 水闸管理员 我方高射炮
6
清华大学出版社
1.2 排队系统的组成和特征
❖ 排队系统由三个基本部分组成:
①输入过程 ②排队规则 ③服务机构
第10章 排队论 《运筹学》PPT课件全
WL
Wq
Lq
W
1
M/M/s 混 合 制 排 队 模 型
一、 单服务台混合制模型
M/M/1/K: 顾客的相继到达时间服从参数 为λ的负指数分布(即顾客的到达过程为 Poisson流),服务台个数为1,服务时间V 服从参数为μ的负指数分布,系统的空间 为K。
单
平稳状态下队长N的分布pn=P{N=n},n=0,1,2,…。
服
由于所考虑的排队系统中最多只能容纳K个顾 客(等待位置只有K-1个),因而有
务 台
n
0
n
n=0,1,2,...,K-1 n≥K n=1,2,...K
混 合
有
Cn
(
)n
n
n=0,1,2,...,K
0
n>K
制
故 pn n p0 n=1,2,…,K
模 型
1
其中,p0
1
1
K
n
1
K
1
1
n1
统
其分布函数为B(t),密度函数为b(t),则
的
常见的分布有: (1) 定长分布(D)
描
(2) 负指数分布(M)
述
(3) k阶爱尔朗分布(Ek):
排
排队系统的符号表示
队
“Kendall记号”,其一般形式为:X/Y/Z/A/B/C,其中 XX:顾客到达时间间隔的分布
系
YY:服务时间的分布
统
Z Z:服务台个数
的
A :系统容量 B B:顾客源数量
符
C C:服务规则
号
例 (M / M / 1 /
FCFS)表示:
表
到达间隔为负指数分布,服务时间也为负指数分 布,1个服务台,顾客源无限,系统容量也无限,
排队论讲义,讲的深入浅出的。挺好的。不看不知道。呵呵。精讲PPT101页
60、人民的幸福是至高无个的法。— —西塞 罗
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。的。 不看不知道。呵呵。精讲
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。的。 不看不知道。呵呵。精讲
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
排队论讲义,讲的深入浅出的。挺好的。不看不知道。呵呵。精讲101页PPT
排队论讲义,讲的深入浅出的。挺好的。 不看不知道。呵呵。精讲
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
ห้องสมุดไป่ตู้
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
ห้องสมุดไป่ตู้