固相微萃取

合集下载

固相微萃取技术

固相微萃取技术
• 纤维及其涂层的研制
作为样品预处理过程,SPME是靠纤维对分析物的吸 附、吸收和解吸来完成的,所以萃取头是SPME装置 的核心,他决定了整个方法的灵敏性、结果可信度和 分析范围。 国内外学者的研究成果主要体现在: ➢ 1、纤维 ➢ 2、涂层 ➢ 3、涂层技术
• 纤维固相微萃取应用后的后续分析仪器
态分析中的应用 ➢ 固相微萃取技术在其他方面的应用
固相微萃取技术的特点与不足
• 特点
• 不足
工艺举例
结语
谢谢!
➢ 1、纤维SPME-GC ➢ 2、纤维SPME-HPLC ➢ 3、SPME-光谱 ➢ 4、SPME-CE
纤维固体微萃取的应用
➢ 固相微萃取技术在环境分析领域中的应用 ➢ 固相微萃取技术在食品检测领域中的应用 ➢ 固相微萃取技术在医药卫生领域中的应用 ➢ 固相微萃取技术在化工领域中的应用 ➢ 固相微萃取技术在金属及准金属化合物形
目录
固相微萃取技术概况 纤维固相微萃取理论 纤维固相微萃取技术的发展现状 纤维固相微萃取的应用 固相微萃取技术的特点与不足 工艺举例 结语
固相微萃取技术概况
• 发展概况
• 装置
• 操作过程
纤维固相微萃取理论
• 基本原理
• 影响维固体微萃取技术的发展现状

固相微萃取

固相微萃取
的有机物。
利用特殊的固相对分析组分的吸 附作用,将组分从试样基质中萃 取出来,并逐渐富集,完成试样前 处理过程。
当萃取体系处于动态平衡状态时,待测物的富集量: n = kvfvsc0/(kvf+vs)
由于芯片上固定液的总体积(Vf)仅几十微升,远远地小 于水相的体积(Vs),而多数有机待测物的k值并不大,容 易满足Vf <<Vs的条件,因此简化为
(2)石英纤维表面固相涂层的性质
固相涂层的性质对分析灵敏度影响很大。根 据相似相熔原理, ❖ 非极性固相涂层(如聚二甲基硅氧烷)有利于 对非极性或极性小的有机物的分离; ❖ 极性固相涂层(如聚丙烯酸酯)对极性有机度的重要因素。 ① 在理想搅拌状态下,平衡时间主要由分析物在固
② 但是升温会使被分离物质的分配系数减小,在 固相的吸附量减小。因此在使用此方法时应该寻 找最佳的工作温度。
盐的作用和溶液酸度的影响
① 由于被分离物质在固相和液相之间的分配 系数受基体性质的影响,当基体变化时分配系 数也会改变。 ② 在水溶液中加入NaCl,Na2SO4等可增强水 溶液的离子强度,减少被分离有机物的溶解度, 使分配系数增大提高分析灵敏度。 ③ 控制溶液的酸度也可改变被分离物在水中的 溶解度。
固相微萃取技术
固相微萃取(Solid-phase microextraction,SPME)是两种从 各类复杂样品中提取净化微量待测组分的新技术,它们具有 分离速度快、操作简单、萃取效率高、无乳化等特点,在环 境分析、药物分析、形态分析等方面有广泛应用,尤其适用 色谱分析样品前处理。
1990年由加拿大 Waterloo大学的Arhturhe和 Pawliszyn首创
膜保护萃取
❖ 膜保护SPME的主要目的是为了在分析很脏的样品时 保护萃取固定相避免受到损伤。

固相微萃取的原理

固相微萃取的原理

固相微萃取的原理固相微萃取,是一种常见的富集分离技术。

其原理主要基于化学分配平衡的基础,利用固定于吸附材料上的萃取溶剂,对待分析物进行选择性吸附,实现分离富集的目的。

下面,我们将系统地介绍固相微萃取的原理及其相关知识点。

一、基本原理固相微萃取的基本原理是化学分配平衡条件下,利用吸附材料上的萃取液物质与样品中待分析物发生相互作用,使待分析物在吸附剂上发生富集,并去除杂质,达到提高检测灵敏度和准确性的作用。

二、吸附材料的选择在固相微萃取中,吸附材料的种类与性质非常重要。

常用的吸附材料主要有有机硅胶、壳聚糖、活性炭、分子筛等。

这些吸附材料可以按照待分析物的物理化学特性进行选择,使其能够对待分析物具有良好的选择性和吸附能力。

三、萃取溶剂的选择萃取溶剂是固相微萃取中一个非常重要的环节,它可以对样品的萃取效果产生直接影响。

合适的萃取溶剂需要具备良好的选择性、稳定性和良好的萃取能力等特点。

通常情况下,萃取溶剂主要分为两种,即极性萃取剂和非极性萃取剂。

极性萃取剂(如甲醇、乙酸乙酯等)常用于富集极性化合物,而非极性萃取剂(如正己烷、苯等)则常用于富集非极性化合物。

四、固相微萃取操作步骤固相微萃取主要分为样品准备和固相微萃取两大步骤。

其中样品准备主要包括取样和前处理步骤,而固相微萃取实际上是将准备好的样品溶液通过化合物分配平衡的原理,沿着一个预定方向通过萃取剂实现分离富集的过程。

五、几个需要注意的问题固相微萃取在实际操作中常常会出现一些问题,需要注意以下几点:1. 固相微萃取时间的长短会影响样品中的待分析物的富集程度,同时也会影响识别待分析物的基峰。

2. 固相微萃取温度的变化也会影响到样品中化合物的富集能力,通常情况下较高的温度可以加速富集的速度,但是也会带来不必要的扰动和不良后果。

3. 固相微萃取过程中,需要小心避免草率决定萃取液的浓度。

浓度选择不当或萃取时间过长或过短都有可能引起分析误差。

综上所述,固相微萃取是一种基于化学分配平衡原理的分离富集技术,其有效性和精度取决于吸附材料、萃取液的选择以及操作方法的正确使用。

固相微萃取

固相微萃取

四、SPME萃取步骤方法
固相微萃取主要有 4种基本萃取方式:直接萃取(direct immersion, DI)、顶空萃取 (headspace, HS)、膜保护萃取和衍生化法。
直接萃取法:是将涂有萃取固定相的石英纤维直接插入到样品基质中, 目标组分 直接从样品基质中转移到萃取固定相中; 方法适用于气体样品或洁净水样品中有 机化合物的测定。
顶空萃取法: 其模式分为两步: 一是被分析组分从液相中先扩散穿透到气相中, 二是被分析组分从气相转移到萃取固定相中。方法可避免萃取固定相受到某些样 品基质中高分子物质和不挥发性物质的污染; 方法适应脏水、 油脂、 血液、 污泥、 土壤的前处理。
膜保护萃取 :是通过一个选择性的高分子材料膜将试样与萃取头分离从而实现萃 取; 在分析很脏的样品时可使萃取固定相不受到污染; 方法对难挥发性物质组分的 萃取富集更为有利。 衍生化法 :根据 SPME 特点和衍生化反应发生的位置,衍生化萃取法分为在样 品基质中直接进行衍生化、 在萃取涂层纤维上进行衍生化( 即萃取的同时衍生化 或先萃取再进行衍生化) 、 在 GC 进样室中进行衍生化等 3 种方式。衍生化与 SPME 的结合为极性、 难挥发性有机物的分析提供了可能性。
二、SPME的萃取原理
固相微萃取主要针对有机物进行分析, 根据有机 物与溶剂之间“相似者相溶” 的原则, 利用石英纤维表 面的色谱固定相对分析组分的吸附作用, 将组分从试 样基质中萃取出来, 并逐渐富集, 完成试样前处理过 程。在进样过程中, 利用气相色谱进样室的高温将吸 附的组分从固定相中解吸下来由色谱仪进行分析。
五、固相微萃取的影响因素
表 1 典型的固相微萃取萃取头涂层及其应用
1. SPME 萃取涂层的选择原则 涂层的种类是影响分析灵敏度和选 择性的最重要因素。涂层的选择遵 循“相似者相溶” 这一规则, 表 1 列出了典型的 SPME 萃取头涂层及 其应用 。

固相萃取和固相微萃取

固相萃取和固相微萃取

固相萃取和固相微萃取一、概述固相萃取(SPE)和固相微萃取(SPME)是两种常见的样品前处理技术,它们可以用于分离和富集目标化合物。

SPE通常用于大样品量的分析,而SPME则适用于小样品量的分析。

二、固相萃取1. 原理固相萃取是一种样品前处理技术,通过将目标化合物从复杂的混合物中吸附到特定的固相材料上,然后再用洗脱剂将其洗脱出来。

这种技术可以有效地去除其他干扰物质,并提高目标化合物的浓度。

2. 步骤(1)选择适当的固相材料;(2)将样品加入到固相柱中;(3)用洗脱剂洗脱目标化合物;(4)将洗脱液收集并进行进一步分析。

3. 固相材料常见的固相材料包括C18、C8、Silica gel等。

不同的固相材料具有不同的亲水性和疏水性,因此可以选择适当的材料来富集不同类型的化合物。

4. 应用领域SPE广泛应用于环境、食品、药物等领域的样品前处理中。

例如,可以用SPE技术来富集水中的有机污染物、食品中的农药残留等。

三、固相微萃取1. 原理固相微萃取是一种无机溶剂的萃取技术,通过将特定的固相材料包裹在针头上,然后将其插入样品中进行吸附和富集目标化合物。

这种技术可以有效地去除其他干扰物质,并提高目标化合物的浓度。

2. 步骤(1)选择适当的固相材料;(2)将固相材料包裹在针头上;(3)将针头插入样品中进行吸附和富集目标化合物;(4)用洗脱剂洗脱目标化合物;(5)将洗脱液收集并进行进一步分析。

3. 固相材料常见的固相材料包括PDMS、CAR等。

不同的固相材料具有不同的亲水性和疏水性,因此可以选择适当的材料来富集不同类型的化合物。

4. 应用领域SPME广泛应用于环境、食品、药物等领域的样品前处理中。

例如,可以用SPME技术来富集水中的有机污染物、食品中的农药残留等。

四、比较1. 样品量SPE适用于大样品量的分析,而SPME则适用于小样品量的分析。

2. 富集效率SPE和SPME都可以有效地去除其他干扰物质,并提高目标化合物的浓度。

固相微萃取

固相微萃取

固相微萃取固相微萃取(Solid-Phase Microextraction,SPME)是在固相萃取基础上发展起来的,保留了其所有的优点,摒弃了其需要柱填充物和使用溶剂进行解吸的弊病,它只要一支类似进样器的固相微萃取装置即可完成全部前处理和进样工作。

该装置针头内有一伸缩杆,上连有一根熔融石英纤维,其表面涂有色谱固定相,一般情况下熔融石英纤维隐藏于针头内,需要时可推动进样器推杆使石英纤维从针头内伸出。

分析时先将试样放入带隔膜塞的固相微萃取专用容器中,如需要同时加入无机盐、衍生剂或对pH值进行调节,还可加热或磁力转子搅拌。

固相微萃取分为两步,第一步是萃取,将针头插入试样容器中,推出石英纤维对试样中的分析组分进行萃取;第二步是在进样过程中将针头插入色谱进样器,推出石英纤维中完成解吸、色谱分析等步骤。

固相微萃取的萃取方式有两种:一种是石英纤维直接插入试样中进行萃取,适用于气体与液体中的分析组分;另一种是顶空萃取,适用于所有基质的试样中挥发性、半挥发性分析组分。

1.原理固相微萃取主要针对有机物进行分析,根据有机物与溶剂之间“相似者相溶”的原则,利用石英纤维表面的色谱固定相对分析组分的吸附作用,将组分从试样基质中萃取出来,并逐渐富集,完成试样前处理过程。

在进样过程中,利用气相色谱进样器的高温,液相色谱、毛细管电泳的流动相将吸附的组分从固定相中解吸下来,由色谱仪进行分析。

2.固相微萃取技术条件的选择2.1.萃取效果影响因素的选择2.1.1.纤维表面固定相选用何种固定相应当综合考虑分析组分在各相中的分配系数、极性与沸点,根据“相似者相溶”的原则,选取最适合分析组分的固定相。

还需考虑石英纤维表面固定相的体积,即石英纤维长度和涂层膜厚,如非特殊定做,一般石英纤维长度为1 cm,膜的厚度通常在10~100 mm之间,小分子或挥发性物质常用厚膜,大分子或半挥发性物质常用薄膜,综合考虑试样的挥发性还可选择中等厚度。

具体选择可以查阅有关文献并需要结合试样情况进行摸索。

固相微萃取法

固相微萃取法

固相微萃取法固相微萃取法是一种新型的样品前处理技术,它将传统的液液萃取方法简化为一步操作,具有操作简便、时间短、灵敏度高、选择性好等优点。

本文将从以下几个方面详细介绍固相微萃取法。

一、固相微萃取法的基本原理固相微萃取法是利用固定在小柱或膜上的吸附剂对样品中的目标物进行富集和分离。

其基本原理是,将样品溶解于适当的溶剂中,通过注射器或自动进样器将样品进入吸附柱或吸附膜中,在适当条件下使目标物质被吸附在柱或膜上,然后用洗脱剂将目标物质洗出,并进行分析。

二、固相微萃取法的优点1. 操作简便:只需将样品加入到吸附柱或膜中即可完成富集和分离过程,省去了传统液液萃取方法复杂的步骤。

2. 时间短:整个富集和分离过程只需几分钟至几十分钟不等。

3. 灵敏度高:由于富集的目标物质被高度净化和富集,所以检测灵敏度得到大幅提高。

4. 选择性好:通过选择不同的吸附剂,可以实现对不同化合物的选择性富集和分离。

5. 可靠性高:固相微萃取法不受样品矩阵的影响,因此在复杂矩阵中也能实现目标物质的富集和分离。

三、固相微萃取法的应用1. 环境监测:固相微萃取法可用于水、土壤、空气等环境样品中有机污染物的富集和分离。

2. 食品安全:固相微萃取法可用于食品中农药、兽药、食品添加剂等有害物质的检测。

3. 药物分析:固相微萃取法可用于药物血浆、尿液等生物样品中药物代谢产物的富集和分离。

4. 化学分析:固相微萃取法可用于化学反应体系中产生的有机产物或催化剂残留等有害成分的富集和分离。

四、固相微萃取法与其他技术的比较1. 与传统液液萃取法相比,固相微萃取法操作简便、时间短、灵敏度高、选择性好。

2. 与固相萃取法相比,固相微萃取法使用的吸附剂量更少,富集时间更短,且不需要使用大量有机溶剂。

3. 与固相微萃取法相比,固相微萃取-气相色谱/质谱联用技术具有更高的灵敏度和更好的分离效果。

五、总结固相微萃取法作为一种新型的样品前处理技术,在环境监测、食品安全、药物分析、化学分析等领域得到了广泛应用。

固相微萃取

固相微萃取

有机氯农药
管内固相微萃取(in-细管的内表面,可采用气相色谱毛细管
优点:毛细管柱方便易得,使用寿命长,内径小涂层薄,样
品扩散快,平衡时间短。
In-tube-SPME-GC联用方式
热解析:用注射器将样品溶液注入毛细管柱,萃 取平衡后将水吹出,然后用石英压接头将萃取柱与分 析柱连接,放入气相色谱仪炉箱中热解吸。这种方法
盐的作用和溶液酸度的影响
① 由于被分离物质在固相和液相之间的分配 系数受基体性质的影响,当基体变化时分配系 数也会改变。
② 在水溶液中加入NaCl,Na2SO4等可增强水 溶液的离子强度,减少被分离有机物的溶解度, 使分配系数增大提高分析灵敏度。 ③ 控制溶液的酸度也可改变被分离物在水中的 溶解度。
与气相色谱或高效液相色谱仪联用样品前处理技术。
固相微萃取装置

最初的SPME是将高分 子材料均匀涂渍在硅 纤维上 ,形成圆柱形 的涂层,根据相似相溶 原理进行萃取的。
与SPE 相比SPME具有以下优点:
(1 ) 不使用有机溶剂萃取,降低了成本,避免了二次污 染; (2) 操作时间短,从萃取进样到分析结束不足1h; (3) 样品用量少,几mL—几十mL; (4) 操作简便,可减少待测组分的挥发损失 ; (5) 检测限达 μg/L—ng/L水平;
(6) 适于挥发性有机物、半挥发性有机物及不具挥发性
的有机物。
利用特殊的固相对分析组分的吸
附作用,将组分从试样基质中萃 取出来,并逐渐富集,完成试样前
处理过程。
当萃取体系处于动态平衡状态时,待测物的富集量: n = kvfvsc0/(kvf+vs) 由于芯片上固定液的总体积 (Vf) 仅几十微升,远远地 小于水相的体积 (Vs),而多数有机待测物的 k值并不大, 容易满足Vf <<Vs的条件,因此简化为 n = kvfc0

固相微萃取原理及使用

固相微萃取原理及使用

固相微萃取原理及使用固相微萃取(SPME,Solid-Phase Microextraction)是一种新型的样品前处理技术,通过固定在纤维上的固相吸附剂从气态、液态或固态样品中萃取目标分析物,并将其直接转移到气相色谱仪(GC)或液相色谱仪(LC)进行定性和定量分析。

固相微萃取的原理基于固相吸附剂对目标分析物的亲合性。

通常使用的固相吸附剂是聚二甲基硅氧烷(PDMS)或其他官能化的聚合物。

PDMS 纤维富含非极性表面,能够吸附疏水性的目标分析物。

在样品中,目标分析物与固相吸附剂表面发生吸附作用,达到平衡后,可以将纤维直接放入分析仪器进行进一步分析。

固相微萃取的使用步骤包括样品处理、纤维曝气和分析步骤。

样品处理通常涉及样品的预处理,如溶解、稀释、搅拌等,以便将目标分析物从样品基质中释放出来。

然后将固相吸附剂纤维插入样品中,使其与目标分析物接触,并允许吸附达到平衡。

曝气步骤是将纤维暴露在空气或惰性气体中,以去除吸附在纤维上的水分和挥发性杂质。

最后,将纤维放入色谱仪进行分析。

固相微萃取的优点包括简便、快速、高效、灵敏、环境友好以及无需有机溶剂等。

相比于传统的样品前处理方法,如液-液萃取和固相萃取,固相微萃取不需要大量的溶剂、操作步骤和设备,大大简化了样品前处理的流程。

此外,由于固相微萃取仅使用微量吸附剂,其分析结果更具可重复性和可比性。

同时,固相微萃取可以在不破坏或减少样品中目标分析物含量的情况下实现富集,避免了样品基质对分析结果的干扰。

固相微萃取在环境、食品、生物、医药等领域中得到了广泛应用。

例如,可以用于食品和饮料中残留农药和有害物质的分析,环境水样中的挥发性有机物的监测,空气中的挥发性有机物的测定,以及生物样品中药物或代谢物的分析等。

此外,固相微萃取还可以与其他技术结合,如气相色谱质谱联用、高效液相色谱质谱联用等,以实现更高的分析灵敏度和选择性。

总之,固相微萃取是一种新颖的样品前处理技术,具有简便、高效、灵敏且环境友好的特点,被广泛应用于各种样品的分析和监测,并为分析化学领域带来了极大的便利。

固相萃取的概念、步骤和操作

固相萃取的概念、步骤和操作

固相萃取的概念、步骤和操作概念:利用固体吸附剂将样品中的目标分析物吸附,与样品的基质和干扰物分离,然后再用有机溶剂或加热解吸附,达到分离、纯化及浓缩目标物的目的。

固相萃取(SPE)是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱,达到分离和富集的目的。

先使液体样品通过一装有吸附剂(固相)小柱,保留其中某些组分,再选用适当的溶剂冲洗杂质,然后用少量溶剂迅速洗脱,从而达到快速分离净化与浓缩的目的。

SPE可以用于所有类型样品的处理,但是液体样品是最容易处理的与液液萃取(LLE)相比,固相萃取具有如下优点:①回收率和富集倍数高;②有机溶剂消耗量低,减少对环境的污染;③更有效的将分析物与干扰组分分离;④无相分离操作过程,容易收集分析物;⑤能处理小体积试样;⑥操作简便、快速,费用低,易于实现自动化及与其他分析仪器联用。

固相萃取的基本原理:吸附剂上的活性部分对目标物和样品基质的分子作用力存在差异固相萃取保留或洗脱的机制取决于被分析物与吸附剂表面的活性基团,以及被分析物与液相之间的分子作用力。

洗脱模式:一种是目标化合物比干扰物与吸附剂之间的亲和力更强,因而被保留,洗脱时采用对目标化合物亲和力更强的溶剂;另一种是干扰物比目标化合物与吸附剂之间的亲和力更强,则目标化合物被直接的洗脱。

通常采用前一种洗脱方式。

一、固相萃取的分离模式:反相固相萃取、正相固相萃取、离子交换萃取、免疫亲和1、反相固相萃取:吸附剂(固定相)是非极性或弱极性的,如硅胶键合C18, C8, C4,C2,-苯基等。

流动相为极性(水溶液)或中等极性样品基质。

吸附剂的极性小于洗脱液的极性。

应用:可以从强极性的溶剂中(如水样)萃取非极性或弱极性的化合物。

作用机理:非极性-非极性相互作用(疏水作用),如范德华力或色散力。

例如水中PAHs,利用C18柱,甲醇洗脱剂洗脱。

2、正相固相萃取:(1)吸附剂:极性键合相,如硅胶键合氨基-NH2、氰基-CN,-Diol(二醇基);(2)极性吸附剂,如silica、Florisil、(A-,N-,B-)alumina、硅藻土等。

固相微萃取技术

固相微萃取技术

固相萃取的分类
• 按照操作的不同,固相萃取可分为离线萃 取和在线萃取。
• 离线萃取是指萃取过程完成后再使用一 些分析手段进行分析;在线萃取出现于 80年代,萃取和分析同步完成,可靠性、 重现性、以及操作性能和工作效率都得 到很大程度的提高。
四、固相萃取的操作步骤
• 典型的固相萃取一般分为四个基本步骤: 1、吸附剂的选择 • 目标物的最佳保留(即最佳吸附)取决于目标 物极性与吸附剂极性的相似程度,两者极性越 相似,则保留越好(即吸附越好)。 • 选择固相萃取中的固定相吸附剂时,要尽量选 择与目标物极性和样品溶剂极性相似的吸附剂。 • 当目标物极性适中时,正、反相固相萃取都可 使用。 • 吸附剂的选择还受样品溶剂洗脱强度的制约。
SPME 萃取头的选择依据
固定相的处理
• 固相微萃取中的关键部位是石英纤维固 定相, 靠它来对分析组分吸附和解吸, 如 果曾用过但上面的组分未被解吸掉则会 对以后的分析结果有干扰。每次使用前 必须将其插入气相色谱进样器, 在250℃ 左右置1h 以去除上面吸附的干扰物, 如 果曾分析过衍生化组分则需要放置更长 时间。
反相固相萃取
• 反相固相萃取所用的吸附剂和目标化合 物通常是非极性的或较弱极性的,反相 萃取过程中目标物质的碳氢键与吸附剂 表面官能团产生非极性作用(包括范德华 力或色散力),使得极性溶剂中的非极性 以及弱极性的物质在吸附剂表面吸附、 富集。
离子交换固相萃取
• 离子交换固相萃取又可分为强阳离子固 相萃取和强阴离子固相萃取两种,作用机 理都是目标物质的带电荷基团同吸附剂 表面的带电基团发生离子静电吸引,从而 实现吸附分离。
固相微萃取的装置
SPME装置略似进样器,典型的SPME装置见右图。特制 不锈钢穿透针A为中空结构,纤维固定针B和萃取纤维C 能在其中移动,熔融石英纤维C上面涂布用于萃取的固 定相,柱塞D控制固定针B的移动使纤维C伸出或退回穿 透针中。当纤维暴露在样品中时,涂层可从液态-气态 基质中吸附萃取待测物。吸附完毕后,萃取纤维C退回 到穿透针中被保护起来,己富集了待测物的纤维可直接 转移到仪器(气相色谱仪,液相色谱仪等)进样口,通过 仪器进样口的能量解吸附,然后进行分离分析。

固相萃取与固相微萃取应用之原理

固相萃取与固相微萃取应用之原理

固相萃取与固相微萃取应用之原理固相萃取(solid-phase extraction,简称SPE)和固相微萃取(solid-phase microextraction,简称SPME)是目前广泛应用于化学分析中的两种常用技术。

它们利用固定在固相材料上的吸附剂对样品中的目标分析物进行富集和分离,从而实现样品的前处理和富集分析。

固相萃取的原理是利用固相吸附剂对溶液中的目标分析物进行富集和分离。

通常,固相萃取分为两个步骤:样品的吸附和洗脱。

首先,样品与固相吸附剂接触,目标分析物被吸附到固相材料上,而其他干扰物质则被排除。

接着,通过洗脱溶剂将目标分析物从固相材料上洗脱出来,得到富集后的目标物。

固相材料常用的类型包括吸附树脂、吸附剂和固相薄膜等,选择合适的固相材料可以根据目标物的性质和样品矩阵的组成决定。

固相微萃取是一种在固定相微量化身上进行的全固相萃取技术。

它将固定在微量化身上的吸附剂直接暴露于样品中,通过吸附分析物质进行富集。

SPME的原理可分为两个步骤:样品的吸附和洗脱。

首先,将固相微萃取针(包含固相吸附剂)插入待分析的样品中,样品中的目标分析物质会通过扩散过程进入固相材料中,并被固相吸附剂吸附。

接着,将针引出,固相吸附剂直接进入气相色谱柱或液相色谱柱,通过洗脱溶剂将目标物洗脱,得到富集后的分析物。

这两种技术在分析化学领域有着广泛的应用。

其主要应用包括环境样品分析、食品安全检测、生物样品分析等。

例如,固相萃取可以用于提取土壤、水样中的有机物、无机物、金属离子等。

而固相微萃取则可以用于分析空气中的挥发性有机化合物、食品中的香味物质、生物样本中的代谢产物等。

这些富集后的分析物可进一步通过气相色谱-质谱联用或液相色谱-质谱联用等仪器进行进一步的定性和定量分析。

固相萃取和固相微萃取的优点在于操作简便、富集效率高、回收率高、能够实现对复杂样品基质的选择性富集等。

同时,它们还可以与各种分析仪器(如气相色谱仪、液相色谱仪、质谱仪)联用,提高分析的灵敏度和准确性。

固相微萃取原理与应用

固相微萃取原理与应用

固相微萃取原理与应用固相微萃取(SPME, solid-phase microextraction)是一种无溶剂、非破坏性的预处理技术,用于提取和浓缩分析样品中的目标化合物。

它采用了一种特殊的固相纤维,通常是聚二甲基硅氧烷(PDMS),将目标分析化合物从样品中以固相吸附的方式捕集起来。

其优点包括简便、快速、高效,可以应用于多种样品类型和化合物类别。

SPME的原理基于分配系数(partition coefficient)的概念。

分析目标物分布在气相、液相和固相之间,SPME纤维通过吸附和解吸过程在气相和固相之间平衡分配,实现了目标物从样品到纤维上的转移。

SPME的应用广泛涉及环境、食品、药物、生物、石油化工等领域。

例如在环境领域中,SPME可用于挥发性有机化合物(VOCs)和揮發性残留有机物(VROs)的分析。

在食品领域中,SPME被广泛应用于食品中的香气和风味分析,如葡萄酒、咖啡、奶制品等。

SPME的操作流程简单。

首先,选择合适的纤维类型和形式,比如直接插入纤维或通过样品瓶盖压合等方式使纤维与样品接触。

然后,通过吸附、温度控制、搅拌等条件,使目标化合物在固相纤维上固定。

最后,将纤维转移到分析设备中,如气相色谱(GC)、液相色谱(HPLC)等进行分析。

SPME的优点包括:1.无需溶剂:与传统的液液萃取相比,SPME不需使用有机溶剂,减少了对环境的污染。

2.非破坏性:SPME不需要破坏样品结构,适用于有限样品量或不可再生样品。

3.高灵敏度:SPME可实现对低浓度目标物的捕集和浓缩,提高了灵敏度。

4.快速:SPME操作简便,分析时间短。

5.可在线监测:SPME技术可以与其他分析方法(如气相色谱质谱联用)相结合,实现实时或在线分析。

然而,SPME技术也存在一些限制:1.纤维选择:选择合适的纤维类型和形式对于捕集目标物的选择性和灵敏度至关重要。

没有一种纤维可以适用于所有化合物。

2.矩阵效应:复杂样品基质中的共存物可能会影响分析结果,例如干扰分析目标物的捕集或解吸。

固相微萃取

固相微萃取

8.1.4.1 固相微萃取的原理固相微萃取(solid—phase microextraction,SPME)技术是20世纪90年代初期兴起的一项样品前处理与富集技术,它最先由加拿大Waterloo大学Pawliszyn教授的研究小组于1989年首次研制成功,属于非溶剂型选择性萃取法,是一种集采样、萃取、浓缩、进样于一体的分析技术。

SPME装置略似进样器,在特制注射器筒内的不锈钢细管顶端分别连接一根穿透针和纤维固定针,针头上连接一根熔融石英纤维,上面涂布一层多聚物固定相,注射器的柱塞控制纤维的进退。

当纤维暴露在样品中时,涂层可从液态/气态基质中吸附萃取待测物,经过一段时间后,已富集了待测物的纤维可直接转移到仪器(通常是气相色谱仪,即SPME—GC)中,通过一定的方式解吸附,然后进行分离分析。

典型的SPME装置如图8一12所示。

SPME熔融石英纤维涂布固定相与样品或其顶空充分接触,待测物在两相间分配达到平衡后,两相中待测物浓度关系如下式:N。

一KⅥV。

C。

/(KU+V。

) (8—2)式中,N。

为固定相中待测物的分子数;K为两相间待测物的分配系数;V。

为固定液体积;U为样品体积;c。

为样品中待测物浓度。

因为U》V。

,故式(8—2)可简化为:N。

=Ku%(8-3)由式(8-3)可知,固定液吸附待测物分子数与样品中待测物浓度呈线性关系,即样品中待测物浓度越高,SPME吸附萃取的分子数越多。

当样品中待测物浓度一定时,萃取分子数主要取决于固定液体积和分配系数。

同时,方法的灵敏度和线性范围的大小也取决于这两个参数。

固定液厚度越大(即y。

越大),萃取选择性越高(K越大),则方法的灵敏度越高。

由此可见,选择合适的固定液对于萃取结果是很重要的。

目前,SPME装置已实现商品化。

该装置主要由两部分组成:一部分是作为支撑用的微量注射器底座;另一部分是类似于注射针头形状的熔融石英纤维,其半径一般为15mm,上面涂布着固定体积(/g度为10~100ttm)的聚合物固定液。

固相微萃取技术及其应用

固相微萃取技术及其应用

固相微萃取技术及其应用一、引言固相微萃取技术是一种新型的样品前处理方法,其基本原理是利用微量有机溶剂在固相萃取柱中与水样中的目标分子进行反应,将目标分子从水样中萃取出来。

该技术具有操作简单、提取效率高、耗时短等优点,因此在环境监测、食品安全检测等领域得到了广泛应用。

二、固相微萃取技术原理1. 固相萃取柱固相微萃取技术的核心是固相萃取柱,其主要成分为聚合物吸附剂。

聚合物吸附剂具有较大的比表面积和良好的化学稳定性,能够有效地吸附分子。

因此,在样品前处理过程中,将待测样品通过固相萃取柱时,目标物质会被吸附在柱上。

2. 微量有机溶剂微量有机溶剂通常用于洗脱被吸附在固相萃取柱上的目标物质。

由于微量有机溶剂对目标物质具有较强的亲和力,因此可以有效地将目标物质从固相萃取柱上洗脱下来。

3. 水样处理水样处理是固相微萃取技术的关键步骤之一。

在水样处理过程中,通常需要将水样进行预处理,以便更好地提取目标物质。

例如,在环境监测中,可以通过调节水样pH值、添加盐酸等方法,使目标物质更容易被吸附在固相萃取柱上。

三、固相微萃取技术应用1. 环境监测固相微萃取技术在环境监测中得到了广泛应用。

例如,在地下水中检测有机污染物时,可以使用该技术对水样进行前处理,提高检测灵敏度和准确性。

2. 食品安全检测固相微萃取技术也可以用于食品安全检测。

例如,在葡萄酒中检测残留的农药时,可以使用该技术对葡萄酒进行前处理,提高检测灵敏度和准确性。

3. 药物分析固相微萃取技术也可以用于药物分析。

例如,在生物组织或体液中检测药物时,可以使用该技术对样品进行前处理,提高检测灵敏度和准确性。

四、固相微萃取技术优缺点1. 优点固相微萃取技术具有操作简单、提取效率高、耗时短等优点。

此外,该技术还可以对样品进行预处理,以提高检测灵敏度和准确性。

2. 缺点固相微萃取技术的缺点主要包括:样品处理量较小、柱寿命较短、柱的选择性有限等。

五、总结总之,固相微萃取技术是一种新型的样品前处理方法,具有操作简单、提取效率高等优点,在环境监测、食品安全检测等领域得到了广泛应用。

固相微萃取仪说明

固相微萃取仪说明

固相微萃取仪说明1. 固相微萃取工作原理固相微萃取(Solid Phase Micro Extration)简称SPME,是在固相萃取基础上发展起来的一种新的萃取分离技术。

与液-液萃取和固相萃取相比,具有操作时间短、样品量小、无须萃取溶剂、重现性好等优点,适于分析挥发性与非挥发性物质。

2. SPME装置结构SPME装置外形如一只微量进样器,由手柄和萃取头或纤维头两部分构成。

萃取头是一根1 cm长、涂有不同吸附剂的熔融纤维,接在不锈钢丝上,外套为细不锈钢管(保护石英纤维不被折断),纤维头在钢管内可伸缩或进出,细不锈钢管可穿透橡胶或塑料垫片进行取样或进样,手柄用于安装或固定萃取头。

手动操作如图1所示。

图1 固相微萃取装置示意图(a)固相微萃取装置(b)局部放大图1—手柄 2—活塞 3—外套 4—活塞固定杆 5—Z沟槽6—连接器观察窗口 7—可调节针头导轨8—不锈钢隔垫穿孔针头 9—不锈钢纤维套管10—带涂层的硅纤维/萃取头SPME的关键是石英纤维上的涂层(吸附剂),涂层只吸附目标化合物,不吸附干扰化合物和溶剂。

通常而言,涂层的极性应与目标物一致,即非极性涂层适用于吸附非极性的目标物,极性涂层适用于吸附极性的目标物。

目前已有的商品萃取头涂层及其应用列于表1中。

表1 已有的商品萃取头涂层及其应用注:PDMS—聚二甲基硅氧烷; PA—聚酰胺; DVB—二苯乙烯; PEG —聚乙二醇; Carboxen—碳分子筛;BTEX—苯系物; PCB—多氯联苯。

3. SPME的采样和进样SPME的采样方法是将针管(不锈钢套管)穿过样品瓶密封垫,插入样品瓶中,然后推出萃取头,将萃取头浸入样品(浸入方式)或置于样品上部空间(顶空方式),进行萃取,萃取时间以达到目标化合物吸附平衡为准,一般2~30min,最后缩回萃取头,将针管拔出,该萃取过程如图2。

图2 SPME的采样和进样操作过程示意图固相微萃取采样完成后,进一步利用色谱进行测定,可用于GC,也可用于HPLC,如图2-20所示。

固相微萃取

固相微萃取

固相萃取概述固相萃取是建立在传统的液液萃取基础上,填料为一般硅胶基键合固定相,基于spe 固体填料与样品中的目标化合物产生各种作用力,将目标物与样品基质分离,再用洗脱液洗脱,达到分离和富集目标化合物的目的。

固相萃取是一种纯化提取物,改善结果准确度和重现性的快速而经济的技术。

1.固相萃取分类及萃取柱填料选取根据分离模式不同,固相萃取可分为正相、反相、离子交换、混合机理分离模式。

(1)反相固相萃取填料硅胶表面的亲水硅醇基通过硅烷化学反应,键合非极性烷基或芳香基、聚合物等材料作为反相固定相,被测物的碳氢键与固定相表面官能团产生非极性的范德华力或色散力,使得极性溶剂中的非极性以及弱极性的物质保留在固定相上,达到净化、富集样品的目的。

反相固相萃取萃取柱填料一般有以下几种:C18、C8、C4、CN、Ph。

(2)正相固相萃取正相固相萃取利用被测物的极性官能团与填料表面的极性官能团通过氢键、π-π键间、偶极-偶极和偶极-诱导偶极相的相互作用力保留溶于非极性介质中的极性物质,常用极性溶剂作为洗脱液。

反相固相萃取萃取柱填料一般有以下几种:极性官能团键合硅胶(如 CN、NH2、二醇基)和极性吸附物质(Al2O3、硅、硅酸镁、活性炭等)(3)离子交换固相萃取根据被测物的带电荷基团与键合硅胶上的带电荷基团相互静电吸引实现吸附分离。

离子交换分为阴离子(WAX、SAX)和阳离子(WCX、SCX)交换,阳离子填料通常用硅胶上键合磺酸钠盐、碳酸钠盐等作为阳离子交换固定相,阴离子常用脂肪族季铵盐、氨基键合作为固定相,离子型化合物在柱中的保留与洗脱与其pH、离子强度和反离子强度有关,对于酸性分析物在离子交换柱中保留时,样品溶液pH要比其pKa大2个单位,并有低的离子强度,处于离子状态的目标物才能靠静电吸引到键合填料中,在洗脱该药物时,洗脱液pH应小于其pKa 2个单位或加入高离子强度溶液,分析物才能被洗脱。

碱性分析物则相反。

(4)混合型固相萃取随着固相萃取技术的发展,多种萃取模式相结合的固相萃取柱也渐渐被商品化,为了实现多残留同时检测,混合型固相萃取柱为多残留技术的研究提供了有利的工具。

固相微萃取

固相微萃取

固相微萃取一、概述固相微萃取(solid-phase microextraction, SPME)技术是20世纪90年代兴起的一项新颖的样品前处理与富集技术, 最先由加拿大Waterloo大学的Pawliszyn教授的研究小组于1989年首次进行开发研究,属于非溶剂型选择性萃取法,是一个基于待测物质在样品及萃取涂层中平衡的萃取过程。

它以固相萃取为基础,利用了固相萃取吸附的几何微区效应,其装置结构的超微化决定了它能避开经典固相萃取的许多弱点。

将纤维头浸入样品溶液中或顶空气体中一段时间,同时搅拌溶液以加速两相间达到平衡的速度,待平衡后将纤维头取出插入气相色谱汽化室,热解吸涂层上吸附的物质。

被萃取物在汽化室内解吸后,靠流动相将其导入色谱柱,完成提取、分离、浓缩的全过程。

由于聚合物涂层的种类很多,因而可对样品组分进行选择性富集和采集。

与固相萃取技术相比其特点:固相微萃取操作更筒单、携带更方便、操作费用也更加低廉,另外克服了固相萃取回收率低、吸附剂孔道易堵塞的缺点,因此成为目前所采用的试样预处理中应用最为广泛的方法之一。

SPME已开始应用于分析水、土壤、空气等环境样品的分析。

二、原理固相微萃取主要针对有机物进行分析,根据有机物与溶剂之间“相似者相溶”的原则,基于萃取涂层与样品之间的吸附/溶解-解吸平衡而建立起来的集进样、萃取、浓缩功能于一体的技术。

将组分从试样基质中萃取出来,并逐渐富集,完成试样前处理过程。

与固相萃取不同,固相微萃取不是将待测物全部萃取出来,其原理是建立在待测物在固定相和水相之间达成的平衡分配基础上。

设固定相所吸附的待测物的量为W S,因待测物总量在萃取前后不变,固得到:C0•V2=C1•V1+C2•V2(1)式中,C0是待测物在水样中的原始浓度;C1、C2分别为待测物达到平衡后在固定相和水相中的浓度;V1、V2分别为固定相液膜和水样的体积。

吸附达到平衡时,待测物在固定相与水样间的分配系数K有如下关系:K= C1 / C2(2)平衡时固相吸附待测物的量W S= C1•V1,固C1 = W S / V1由式(1)得:C2= (C0• V2–C1• V1)/ V2将C1、C2代入式(2)并整理后得:K= W S• V2/[V1• (C0• V2–C1• V1)]= W S• V2/(C0• V2• V1–C1 V12)(3)由于V1«V2,式3中C1• V12可忽略,整理后得:W S =K• C0• V1(4)由式(4):WS =K •C0 •V1 ,可知WS与C0呈线性关系,并与K和呈正比。

固相微萃取原理

固相微萃取原理

固相微萃取原理
固相微萃取(SPE)是一种用于样品前处理的技术,它在分析化学领域中得到
了广泛的应用。

固相微萃取的原理是利用固相萃取材料对目标化合物进行选择性吸附和脱附,从而实现对样品的富集和净化。

这种方法具有操作简便、富集效果好、消耗少量有机溶剂等优点,因此在环境监测、食品安全、药物分析等领域得到了广泛的应用。

固相微萃取的原理基于化学吸附和脱附过程。

在固相微萃取过程中,样品溶液
首先通过固相萃取柱,目标化合物会与固相材料发生化学吸附,而其他干扰物质则会被排除。

接着,通过改变溶剂的极性或pH 值等条件,使得目标化合物发生脱附,从而得到富集的目标化合物。

固相微萃取的原理主要包括亲合吸附、离子交换、疏水相互作用等。

亲合吸附
是指固相萃取材料与目标化合物之间存在化学亲和力,从而实现选择性吸附。

离子交换则是利用固相材料上的功能基团与溶液中的离子发生反应,实现目标离子的选择性吸附。

疏水相互作用则是通过固相材料的疏水性实现对目标化合物的富集。

固相微萃取的原理虽然简单,但在实际应用中需要根据样品的特性选择合适的
固相材料、溶剂和萃取条件。

固相微萃取技术的发展也在不断完善,例如固相萃取柱的材料不断更新,新型固相萃取材料的研发等,为该技术的应用提供了更多的选择。

总的来说,固相微萃取技术以其简便、高效、环保的特点,成为了样品前处理
中的重要手段。

通过对固相微萃取原理的深入理解,可以更好地应用该技术于实际分析中,为分析化学领域的发展提供更多可能性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Analytica Chimica Acta 817(2014)23–27Contents lists available at ScienceDirectAnalytica ChimicaActaj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /a caA new interface for coupling solid phase microextraction with liquid chromatographyYong Chen ∗,Leonard M.SidiskySupelco,595North Harrison Road,Bellefonte,PA 16823,USAh i g h l i g h t s•A new solid phase microextraction(SPME)–liquid chromatography (LC)interface.•Fiber desorption occurred off-line,but all desorption solvent could be conveniently injected into LC systems with the interface.•The new SPME–LC interface was robust and reliable for coupling SPME with LC for both qualitative and quan-titative analysis.g r a p h i c a la b s t r a cta r t i c l ei n f oArticle history:Received 3December 2013Received in revised form 15January 2014Accepted 26January 2014Available online 6February 2014Keywords:Solid phase microextraction (SPME)InterfaceLiquid chromatography (LC)Polycyclic aromatic hydrocarbons (PAHs)a b s t r a c tA modified Rheodyne 7520microsample injector was used as a new solid phase microextraction (SPME)–liquid chromatography (LC)interface.The modification was focused on the construction of a new sample rotor,which was built by gluing two sample rotors together.The new sample rotor was further reinforced with 3pieces of stainless steel tubing.The enlarged central flow passage in the new sample rotor was used as a desorption chamber.SPME fiber desorption occurred in static mode.But all desorption solvent in the desorption chamber was injected into LC system with the interface.The ana-lytical performance of the interface was evaluated by SPME–LC analysis of PAHs in water.At least 90%polycyclic aromatic hydrocarbons (PAHs)were desorbed from a polyacrylonitrile (PAN)/C18bonded fuse silica fiber in 30s.And injection was completed in 20s.About 10–20%total carryovers were found on the fiber and in the interface.The carryover in the interface was eliminated by flushing the desorption chamber with acetonitrile at 1mL min −1for 2min.The repeatability of the method was from 2%to 8%.The limit of detection (LOD)was in the mid pg mL −1range.The linear ranges were from 0.1to 100ng mL −1.The new SPME–LC interface was reliable for coupling SPME with LC for both qualitative and quantitative analysis.©2014Elsevier B.V.All rights reserved.1.IntroductionSolid phase microextraction (SPME)is a convenient and rapid sample preparation technique [1–3].It has being extensively cou-pled with gas chromatography (GC)for the analysis of volatile organic compounds (VOCs)and semi-VOCs [4,5].This unique technique integrates sampling,sample preparation,and sample∗Corresponding author.Tel.:+18143595914;fax:+18143595702.E-mail address:yong.chen@ (Y.Chen).introduction into a single step,and enables complete automatic SPME–GC analysis [6].SPME is also coupled with liquid chromatog-raphy (LC)for the analysis of semi-VOCs,non-volatile compounds,and thermal liable compounds [7].SPME–LC is different from SPME–GC in that the desorption in SPME–LC is solvent desorption while it is thermal desorption in SPME–GC.SPME–LC desorption can be done either off-line or on-line.Off-line desorption does not require special interfaces.A SPME fiber is immersed into a desorption solvent contained in a vial to desorb the extracted analytes.The desorption solvent containing the desorbed analytes is then injected into a LC system.Off-line0003-2670/$–see front matter ©2014Elsevier B.V.All rights reserved./10.1016/j.aca.2014.01.05624Y.Chen,L.M.Sidisky/Analytica Chimica Acta817(2014)23–27desorption is versatile.But one disadvantage is that not all the des-orbed analytes are injected into LC systems.Jinno et al.developed off-line SPME–LC interface and its improvement[8,9].These inter-faces facilitated the injection of a portion of desorbed analytes into LC system.On-line SPME–LC desorption has to be done in a special interface,which is similar to GC injection ports for SPME–GC thermal desorption.However,on-line SPME–LC coupling is much more challenging than SPME–GC coupling due to the nature of solvent desorption and the high pressure presented in LC systems.Chen and Pawliszyn developed thefirst SPME–LC on-line inter-face[10].The interface included a desorption chamber and a Rheodyne7161injection valve.The desorption chamber was a stainless steel tee joint.The side outlet and the bottom outlet of the tee joint were connected to the injection valve,and the upper outlet of the tee joint was used to introduce a SPMEfiber device.The seal of the SPME device was done by a piece of poly(ether ether ketone)(PEEK)tubing and a two-piecefinger-tight PEEK union.It was claimed that the seal could withstand pressure up to4500psi.When the injection valve was in“load”position,the tee joint was at ambient pressure so that SPME fibers could be introduced into or moved out of the inter-face.When the injection valve was in“injection”position,the mobile phaseflew through the tee joint and carried the des-orbed analytes to the LC column.The interface was evaluated with SPME–LC analysis of polyaromatic hydrocarbons(PAHs)in water,and the performance was validated with standard loop injec-tion.Boyd-Boland and Pawliszyn improved the above on-line SPME–LC interface[11].Thefirst modification they did was that a larger(0.75mm inner diameter(i.d.))desorption chamber was used to accommodate swollenfibers.The second modification was that a0.4mm i.d.GC ferrule and a connector replaced the PEEK tubing and the PEEK union to seal around the inner tubing of the SPMEfiber assembly.The new seal mechanism provided more reli-able seal and reduced the chance offiber damage.The interface was evaluated with the analysis of non-ionic surfactant Trion X-100in water.The performance of severalfiber coatings was compared.It was demonstrated that at least90%desorption efficiency could be achieved in1min.Rodrigues et al.developed a heated SPME–LC interface[12]. Although the interface was able to perform on-line desorption, the critical sealing mechanism was not discussed.It seemed that the improvement was only focused on the heat assisted desorption.All the above on-line interfaces suffer from leak andfiber coating damage.Lord reviewed state-of-the-art of interfacing SPME with LC [13].The challenges for on-line coupling SPME with LC were sum-marized as availability of commercialfibers,sealing mechanism, desorption optimization,and automation options.Recently,Chen and Sidisky improved the commercial SPME–LC interface[14].The commercial interface was based on Boyd-Boland and Pawliszyn’s design.Both SPMEfiber assembly and the desorp-tion chamber were modified to address the issues of leak andfiber coating damage.Thefirst modification was the use of polyacryloni-trile(PAN)/C18coating which does not swell in organic solvents. The second modification was the use of a solid innerfiber support with a much larger outer diameter(o.d.)than the o.d.of thefiber coating.The third modification was the enlargement of the hole of the ferrule to accommodate the innerfiber support.Another seal-ing mechanism by the use of a special designed PEEKfitting was also presented in the research.It was demonstrated that the prob-lems of leak andfiber coating damage were effectively eliminated with the improved interfaces.In this research,a new SPME–LC interface was developed and tested.The goal was to improve the applicability of SPME–LC anal-ysis.2.Experimental2.1.Chemicals and materialsPolycyclic aromatic hydrocarbon(PAH)525mixture(500␮g mL−1of acenaphthylene,fluorene,phenanthrene,anthracene, pyrene,benz[a]anthracene,chrysene,benzo[b]fluoranthene, benzo[k]fluoranthene,benzo[a]pyrene,dibenzo[ah]anthracene, indeno[l,2,3-cd]pyrene,and benzo[ghi]perylene prepared in methylene chloride),LC water,Acetonitrile(ACN),Epoxy glue, were obtained from Aldrich(Milwaukee,WI,USA).Rheodyne 7520Microsample injector,sample rotor for Rheodyne7520 Microsample injector,SPMEfibers,Fiber holders for automatic sampling,micro syringes,and2mL of vials were obtained from Supelco(Bellefonte,PA,USA).Gauge23TW and19TW Stainless steel tubings were purchased from Vita needle(Needham,MA, USA)2.2.SPME–LC interface deviceThe SPME–LC interface was a modified Rheodyne7520 Microsample injector(Fig.1).The major modification was done on the rotor.The largest i.d.of the sample chamber in the original rotor was about0.3mm,and the height of the rotor was7mm.The size of the sample chamber was considerably small to accommodate a standard commercial SPMEfiber.A new rotor was built by gluing two rotors together.The two holes on each outer side were enlarged to i.d.0.635mm.A piece of SS tubing(o.d.0.635mm,i.d.0.432mm, height12mm)was inserted into each of the holes.The two pieces of tubing were permanentlyfixed in the holes with epoxy glue.The central hole in the rotor was enlarged to i.d.1.07mm.A piece of SS tubing(o.d.1.07mm,i.d.0.812mm,height12mm)was inserted into the hole.The tubing was permanentlyfixed in the holes with epoxy glue.The new rotor replaced the original rotor.Fig.1shows the cut-away schematic view of valveflow path for the SPME–LC interface.2.3.SPME proceduresAutomatic SPME extraction was performed on a CTC Combi PAL autosampler(CTC Analytical,Zwingen,Switzerland).The SPME fibers were pre-conditioned in ACN for15min and air-dried for 30s prior to thefirst extraction.The standard solutions were prepared by diluting PAH525mixture with methanol.The con-centrations of the standard solutions ranged from0.1␮g mL−1 to100␮g mL−1.The working solutions were prepared by spiking the standard solutions into1.4mL water contained in2mL vials. Immersion SPME extraction was performed with the following parameters:incubation/extraction temperature:50◦C,incubation time:5min,extraction time:20min,agitation rate:500rpm.SPME fiber:PAN/C18fiber.The length of thefiber was7mm.After extraction,the SPMEfiber needle was introduced into the sample needle port in the interface.Then thefiber was exposed and immersed into the desorption solvent(ACN)(Fig.1A).After 30s desorption at room temperature,thefiber was withdrawn into the outer needle of thefiber assembly,and thefiber assembly was removed from the sample needle port.Immediately after the removal of thefiber assembly the knob of the interface was rotated 45◦to switch the interface from“LOAD”mode to“INJECT”mode (Fig.1B).The mobile phase from LC pumpflew through the desorp-tion chamber and carried the desorbed analytes in the desorption chamber to the LC column for separation.A Series III LC pump(LabAlliance,state college,PA,USA)was used to deliver solvent(ACN)into the desorption chamber for cleanup and desorption.Y.Chen,L.M.Sidisky/Analytica Chimica Acta817(2014)23–2725Fig.1.The SPME–LC interface in the(A)load and(B)inject mode.2.4.InstrumentationAgilent1200LC system with data acquisition Chemstation for LC3D systems(Rev.B03.02)was utilized for the analysis.The separation was carried out on an Ascentis Express C18column (2.7␮m,150mm×4.6mm)obtained from Supelco.The mixture of acetonitrile(ACN)and water(15/85,v/v)was used as mobile phase A.ACN was used as the mobile phase B.The chromatographic conditions were:the column was maintained at25◦C.From0to 0.5min,isocratic75%B,0.5mL min−1;0.5–4min,gradient75–90% B,0.5–1mL min−1;4–10min,gradient90–100%B,1mL min−1; 10–15min isocratic100%B,1mL min−1;15–15.01min,gradient 100–75%B,1mL min−1;15.01–19min,isocratic75%B,1mL min−1; 19–19.01min,isocratic75%B,1–0.5mL min−1;19.01–20min iso-cratic75%B,0.5mL min−1.The effluent was monitored by UV(Ultra Violet)detection at254nm.3.Results and discussion3.1.The interfaceThe volume of the desorption chamber in the rotor was esti-mated at about8␮L.it is about32times larger than the volume of thefiber coating and17times larger than the displacement volume of thefiber.The dimensions of the desorption chamber ensured that first,thefiber could freely move in and out the chamber without being damaged.Second,the volume of the desorption solvent was large enough to ensure efficientfiber desorption.In the meantime, it was not large enough to cause significant peak distortion.When thefiber was exposed into desorption solvent,the desorp-tion occurred in static mode.After desorption,thefiber was withdrawn into the outer needle prior to injection.Since thefiber was not exposed to the mobile phase at any time,the interface should be regarded as an off-line SPME–LC pare to other off-line SPME–LC interfaces[8,9],it is possible to inject all desorbed analytes into the LC column with this interface,in a similar fashion to on-line SPME–LC pare to on-line SPME–LC interfaces[10–12],SPMEfiber assemblies did not have to withstand high pressure with this interface,so that coating damage and the leak of mobile phase fromfiber assembly and from the seal around thefiber assembly at high pressure associated with on-line interfaces were avoided.Whenever the interface was in“load”or “inject”mode,it was the interface that was subjected to high pres-sure.Since the new rotor was built with two original rotors and reinforced with SS tubing,no leak was observed when the inter-face was subjected to the pressure test performed at350bar for 30min.The same interface had been used for more than300times and it was still leak-free.3.2.Evaluation of the interfacePAHs were selected as the test compounds to evaluate the ana-lytical performance of the interface.PAN/C18was thefiber coating used to extract PAHs from water samples.The coating had high affinity to PAHs,and it did not swell in most organic solvents at room temperatures[14].The SPME extraction parameters were the same as those reported in the reference[14],the only exception was that the extraction time was shorten to20min,which was the same as the LC run time.Since the volume of desorption solvent was small(about8␮L),fast chromatographic separation with satisfied peak shape and resolution was possible.LC parameters were opti-mized,and the separation of the PAHs wasfinished in10min.Fig.2 shows a typical chromatogram for the SPME–LC analysis of PAHs in water.Faster separation was possible but not explored,because the rate-limiting step was the SPME extraction.The interface was investigated for its specific function of desorp-tion and injection.The desorption of PAHs from PAN/C18fiber was discussed and investigated in the literature[14].For the specific interface,desorption time profiles were determined to investigate the pattern that the desorption efficiency changed with desorption time.Fig.3demonstrates that there was no increase in the amount of PAHs desorbed from the PAN/C18fiber after30s desorption.The results agreed with previous study that the desorption of PAHs from26Y.Chen,L.M.Sidisky /Analytica Chimica Acta 817(2014)23–27Fig. 2.A chromatogram obtained with SPME–LC analysis of 5ng mL −1PAHs in water.Peak identification:(1)fluorene,(2)phenanthrene,(3)anthracene,(4)pyrene,(5)benz[a ]anthracene and chrysene (6)benzo[b ]fluoranthene,(7)benzo[k ]fluoranthene,(8)benzo[a ]pyrene,(9)indeno[l,2,3-cd ]pyrene.PAN/C18fiber in ACN was a very fast process [14].After desorption,all the solution in the desorption chamber was injected into the LC system.The injection time profiles were determined and presented in Fig.3b,which demonstrates that there was no increase in the responses of PAHs after 20s injection.Thus,30s desorption time and 20s injection time were used for subsequent analysis.Though optimization of desorption and injection parameters resulted in maximum responses of PAHs,it did not guarantee com-plete recovery of extracted PAHs in the fiber coating.Investigation of the carryovers and mass conservation was complementary to the optimization of desorption and injection processes.For static(a)(b)20406080100120140300250200150100500P e a k A r e a (m A u )DesorpƟon Time (sec)20406080100120140300250200150100500P e a k A r e a (m A u )Injec Ɵon Time (sec )Fig.3.Optimization of desorption efficiency.(a)Desorption time profiles,(b)Injec-tion time profiles. :fluorene, :phenanthrene, :anthracene.Table 1Carryovers of PAHs.Carryover (%)In the interfaceOn the fiberFluorene8.1 4.9Phenanthrene 8.4 5.0Anthracene 8.3 5.0Pyrene9.4 6.3Benzo[b ]fluoranthene 11.27.9Benzo[k ]fluoranthene 11.68.1Benzo[a ]pyrene8.57.9Indeno[1,2,3-cd ]pyrene8.19.4Note :The UV responses of acenaphthylene,dibenzo[ah ]anthracene,and benzo[ghi ]perylene were too weak to be reliably quantified.Benz[a ]anthracene and chrysene could not be separated completely.So their results were not reported throughout the research.desorption,carryover in the fiber coating was almost unavoidabledue to partition of analytes between the desorption solvent and the fiber coating.This problem could be alleviated by the use of large volume of desorption solvent with strong affinity toward analytes.In this case,the desorption solvent was ACN,and its volume was 32times larger than the volume of the fiber coating.The carry-overs of PAHs in the fiber coating were determined by desorbing the fiber into 100␮L ACN for 30s immediately after the first desorp-tion and injecting the ACN into the LC for quantification.It was found that the carryovers of PAHs ranged from 5to 9%(Table 1).The carryovers found in this study were generally larger than the carryovers of PAHs in the fiber coating reported by the use of com-mercial desorption chamber.The reason was that the volume of ACN in the commercial desorption chamber was 75␮L,which was significantly larger than the volume of ACN in the modified Rheo-dyne 7520desorption chamber (8␮L).Increase of the volume of the desorption chamber would increase the volume of the desorp-tion solvent,which would reduce the carryovers of PAHs on the fiber.But the disadvantage of the use of large volume of desorp-tion solvent was that optimization of LC separation was much more challenging.To ensure that the fiber was clean for the next extrac-tion,the fiber was immersed into 100␮L ACN for 30s after the fiber had been desorbed in the interface.No carryover on the fiber was detected after the cleanup.Another source of carryover was the carryover in the interface,which was caused largely by incomplete transfer of desorbed ana-lytes onto LC column.Theoretically it only took about 1s to replace all the 8␮L desorption solvent with the mobile phase at a flow rate of 0.5mL min −1.Practically,it took much longer than 1s to replace all the desorption solvent due to the parabolic flow of the mobile phase in the desportion chamber and insufficient agitation of the desorption solvent located in the edge of the base of the desorption chamber.The carryovers of PAHs in the interface were determined with the following procedure.When the first desorp-tion and injection had been done,the cleanup of the interface was not performed.After the first separation had been done,the inter-face was subjected another injection with the continuous flow of the mobile phase through the desorption chamber to determine the carryovers of PAHs in the interface.It was found that the car-ryovers of PAHs ranged from 8to 12%.The carryovers of PAHs in the interface could be reduced with prolonged injection time.But it would cause tailing peaks and raised baseline.In addition,it was learned from the injection time profiles that the responses of PAHs did not change significantly with injection time.After optimization of desorption and investigation of the car-ryovers,mass conservation of PAHs during SPME extraction and desorption was checked.Phenanthrene was used as the exam-ple.Its total mass in the sample was 7ng.Its mass in the sample after SPME extraction was determined as 3.3ng.So the mass ofY.Chen,L.M.Sidisky/Analytica Chimica Acta817(2014)23–2727 Table2Summary of calibration results for the SPME–LC analysis of PAHs in water.LOD(ng mL−1)Repeatability(%,n=7)Linearitya b R2Linear range(ng mL−1)Fluorene0.020 1.8 2.73750.7130.99980.2–100Phenanthrene0.049 2.19.7905 2.04020.99990.2–100Anthracene0.033 1.820.71218.6780.99780.1–100Pyrene0.28 3.1 1.13920.021610.5–100Benzo[b]fluoranthene0.11 4.2 5.22220.79990.99680.2–20Benzo[k]fluoranthene0.18 4.9 4.3947−0.44190.98960.2–5Benzo[a]pyrene0.158.4 2.64720.11550.98970.2–10Indeno[1,2,3-cd]pyrene0.16 6.1 3.1834−0.58780.99440.2–5phenanthrene removed from the sample was3.7ng.The recovered mass of phenanthrene from the SPMEfiber was the sum of the mass from thefirstfiber desorption(3.1ng),the mass from the interface carryover(0.3ng),and the mass from thefiber carryover(0.18ng). So the recovered mass of phenanthrene was3.58ng,which was about96.8%of the mass of phenanthrene removed from the sample. This demonstrated that the analytical processes associated with extraction,desorption,injection,and separation were reliable.The analytical performance of SPME–LC analysis of PAHs by the use of the interface was evaluated.The repeatability was deter-mined by analyzing7PAHs aqueous solutions at a concentration of 5ng mL−1with the SPME–LC method.The relative standard devia-tion of PAHs peak areas ranged from2to9%.The limit of detection (LOD)was estimated as the concentration from which the result-ing chromatographic peak had signal-to-noise(S/N)ratio of3.The linearity of the method was estimated by SPME extraction of work-ing PAHs solutions with concentrations ranging from0.1ng mL−1 to100ng mL−1.The standard solutions were prepared in triplicate for each concentration.Table2summarizes LOD,repeatability,and linear range for each analyte.From the results it can be concluded that the SPME–LC interface was suitable for both qualitative and quantitative analysis of PAHs in water.Compare to the SPME–LC interface improved in the previous study[14],the SPME–LC interface developed in this research had some advantages and disadvantages.First,the solvent desorption of SPMEfiber in the SPME–LC interface was performed only in static mode,while it could be done in static and dynamic modes in the previous interface.Second,the volume of the desorption chamber in the SPME–LC interface was smaller than that in the previous interface.So it was easier to optimize the desorption and separa-tion parameters,and separation could be done in shorter time.In addition,high strength solvents could be used for desorption.The disadvantage was that the carryover in thefiber was more promi-nent with the small volume of the desorption solvent.Third,the SPME–LC interface was more robust than the previous one because the only consumable part in the interface was the sample rotor. The same sample rotor had been used for more than300times,and no leak was observed.In the meantime,the interface was easier to operate because the only operation with the interface was the rotation of the knob.Forth,there were more carryovers with the SPME–LC interface than those found in the previous interface.The more carryovers in the interface might be ascribed to that there was adsorption of PAHs on the inner surface of the desorption chamber of the SPME–LC interface.It was observed that the adsorption of PAHs on the inner surface of the desorption chamber was signifi-cantly reduced after the SS tubing was inserted in the desorption chamber.However,the whole desorption chamber surface could not be replace with SS material due to the requirement for seal. One improvement for the SPME–LC interface is that the rotor be made of PEEK(polyether ether ketone),so that the interface car-ryover would be reduced.The more carryovers in the SPMEfiber might be ascribed to that thefiber was only subjected to static desorption,while a brief dynamic desorption after static desorp-tion were used in the previous interface.Fifth,analytical validation by SPME–LC analysis of PAHs in water demonstrated that these two interfaces had comparable analytical performance in terms of desorption efficiency,carryover,recovery,repeatability,LOD,and linearity.4.ConclusionThe newly developed SPME–LC interface was capable of cou-pling SPME with LC by off-line desorption and on-line injection. 90%or more desorption efficiency was achieved for the desorption of PAHs from the PAN/C18fiber,and the desorption process was as short as30s.On-line injection allowed injection of all desorp-tion solvent,and the injection process was as short as20s.The total carryovers of PAHs on thefiber and in the interface were from 10%to20%.The carryover in the interface was eliminated by clean-ing the desorption chamber with ACN at1mL min−1for2min.The carryover on thefiber was eliminated by desorbing thefiber in 100␮L ACN for30s.Rapid LC separation of PAHs was achieved in 10min owing to the small volume of the desorption solvent.The SPME–LC analytical procedure for the analysis of PAHs in water with the SPME–LC interface was reproducible,and had low LOD and wide linear ranges.It was,therefore,demonstrated that the SPME–LC interface was suitable for coupling SPME with LC for both qualitative and quantitative analysis.References[1]C.L.Arthur,J.Pawliszyn,Anal.Chem.62(1990)2145.[2]H.Lord,J.Pawliszyn,J.Chromatogr.A885(2000)153.[3]J.Pawliszyn,Anal.Chem.75(2003)2543.[4]J.Pawliszyn,Solid Phase Microextraction–Theory and Practice,Wiley-VCH,New York,1997.[5]J.Pawliszyn(Ed.),Applications of Solid Phase Microextraction,RSC,Cornwall,UK,1999.[6]J.O’Reilly,Q.Wang,L.Setkova,J.P.Hutchinson,Y.Chen,H.L.Lord,C.M.Linton,J.Pawliszyn,J.Sep.Sci.28(2005)2010.[7]J.Pawliszyn(Ed.),Sampling and Sample Preparation for Field and Laboratory,Elsevier,Amsterdam,2002.[8]K.Jinno,T.Muramatsu,Y.Saito,Y.Kiso,S.Magdic,J.Pawliszyn,J.Chromatogr.A754(1996)137.[9]K.Jinno,M.Taniguchi,M.Hayashida,J.Pharm.Biomed.Anal17(1998)1081.[10]J.Chen,J.Pawliszyn,Anal.Chem67(1995)2530.[11]A.A.Boyd-Boland,J.B.Pawliszyn,Anal.Chem.68(1996)1521.[12]J.C.Rodrigues,o,C.Fernandes,C.Alves,A.S.Contadori,ncas,J.Chromatogr.A1105(2006)208.[13]H.L.Lord,J.Chromatogr.A1152(2007)2.[14]Y.Chen,L.Sidisky,Anal.Chim.Acta743(2012)61.。

相关文档
最新文档