(完整版)八年级上册数学第二章实数测试题

合集下载

(好题)初中数学八年级数学上册第二单元《实数》测试(答案解析)

(好题)初中数学八年级数学上册第二单元《实数》测试(答案解析)

一、选择题1.下列式子是最简二次根式的是( )A .2B .4C .12D .122.下列命题是真命题的是( )A .同位角相等B .算术平方根等于自身的数只有1C .直角三角形的两锐角互余D .如果22a b =,那么a b = 3.一个边长为bcm 的正方形的面积与一个长为8cm 、宽为5cm 的长方形的面积相等,则b 的值在( )A .3与4之间B .4与5之间C .5与6之间D .6与7之间 4.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .145.下列计算中,正确的是( )A .()()()22253532-=-= B .()3710101010+⨯=⨯= C .()()a b a c a bc +-=- D .()()3232321+-=-= 6.实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b 7.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7 B .1或-7 C .1或7 D .±1或7± 8.下列说法中不正确的是( )A .0是绝对值最小的实数B .()222-=C .3是9的一个平方根D .负数没有立方根9.如图,点A 表示的数可能是( )A 21B 6C 11D 1710.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④116的算术平方根为14.正确的是( ) A .①②③ B .①②④ C .①③④ D .②③④ 11.估计()122+432⨯的值应在( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间 12.下列说法中正确的是( )A .使式子3x +有意义的是x >﹣3B .使12n 是正整数的最小整数n 是3C .若正方形的边长为310cm ,则面积为30cm 2D .计算3÷3×13的结果是3二、填空题13.实数a 、b 在数轴上所对应的点如图所示,则|3﹣b |+|a +3|+2a 的值_____.14.若202120212a b -++=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.15.计算:12466-的结果是_____. 16.化简:()2223x x --=______17.对于有理数a ,b ,定义min{,}a b 的含义为:当a b <时,min{,}a b a =;当a b >时,min{,}a b b =.例如:min{1,22}-=-,min{3,1}1-=-.已知min{21,}21a =min{21,}b b =,且a 和b 是两个连续的正整数,则a+b =_____.18.已知b>032a b -=_____.19.已知223y x x =--,则xy 的值为__________.20.有一个正方体的集装箱,原体积为364m ,现准备将其扩容以盛放更多的货物,若要使其体积达到3125m ,则它的棱长需要增加__________m .三、解答题21.计算:(123234(2)12-3×13+38--(π+1)0×1()3- 22.计算: (1)|3﹣5|﹣16;(2)(2﹣3)0+(﹣12)﹣2﹣364. 23.张老师在与同学进行“蚂蚁怎样爬路程最短”的课题研究时设计了以下两个问题,请你根据下列所给的条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图①,正方体的棱长为5cm ,一只蚂蚁欲从正方体底面上的点A 处沿着正方体表面爬到点1C 处;(2)如图②,正四棱柱的底面边长为5cm ,棱长为6cm ,一只蚂蚁欲从正四棱柱底面上的点A 处沿着棱柱表面爬到1C 处.24.(1)求x 的值:29x =(222348(3)25.阅读材料:我们定义:如果一个数的平方等于1-,记作21i =-,那么这个i 就叫做虚数单位.虚数与我们学过的实数合在一起叫做复数.一个复数可以表示为a bi +(a ,b 均为实数)的形式,其中a 叫做它的实部,b 叫做它的虚部. 复数的加、减、乘的运算与我们学过的整式加、减、乘的运算类似.例如计算:()()()()62362382i i i i i ++-=++-=-.根据上述材料,解决下列问题:(1)填空:3i ______,6i =_________;(2)计算:2(32)i +;(3)将32i i+-化为a bi +(a ,b 均为实数)的形式(即化为分母中不含i 的形式). 26.已知3m -的平方根是6±,3343n +=,求m n +的算术平方根.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据最简二次根式的定义即可求出答案.【详解】解:A是最简二次根式,A正确,故符合题意;B=2不是最简二次根式,B错误,故不符合题意;C=C错误,故不符合题意;D不是最简二次根式,D错误,故不符合题意;2故选:A.【点睛】本题考查二次根式,解题的关键是正确理解最简二次根式的定义.2.C解析:C【分析】根据同位角的定义、算术平方根的意义、直角三角形的性质、等式的性质判断即可.【详解】解:A、同位角不一定相等,原命题是假命题;B、算术平方根等于自身的数有1和0,原命题是假命题;C、直角三角形两锐角互余,是真命题;D、如果a2=b2,那么a=b或a=-b,原命题是假命题;故选:C.【点睛】本题考查了命题的真假判断,包括同位角的定义、算术平方根的意义、直角三角形的性质、等式的性质,判断命题的真假关键是要熟悉课本中的性质定理,难度适中.3.D解析:D【分析】由于边长为bcm的正方形的面积与长、宽分别为8cm、5cm的长方形的面积相等,根据面积公式列出等量关系式,由此求出b的值,再估计b在哪两个整数之间即可解决问题.【详解】解:∵边长为bcm的正方形的面积与长、宽分别为8cm、5cm的长方形的面积相等,∴b2=5×8=40,,∵36<40<49,∴67.故选:D.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.D解析:D【分析】根据2ndf键是功能转换键列算式,然后解答即可.【详解】1==.4故选:D.【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf键的功能.5.D解析:D【分析】根据二次根式的性质逐一判断即可;【详解】222=-=-A错误;8=B错误;=a C错误;=-=,故D正确;321故答案选D.【点睛】本题主要考查了二次根式的性质,结合平方差公式和完全平方公式计算是解题的关键.6.A解析:A【分析】根据数轴得b<a<0,判断a+b<0,即可化简绝对值及二次根式,计算加减法即可得到答案.【详解】由数轴得b<a<0,∴a+b<0,∴a b+=-a-b+a=-b ,故选:A .【点睛】此题考查数轴与数的表示,利用数轴比较数的大小,化简绝对值,化简二次根式,依据数轴化简绝对值及二次根式是解题的关键.7.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.8.D解析:D【分析】根据实数,平方根和立方根的概念逐一判断即可.【详解】0的绝对值是0,负数的绝对值为正数,正数的绝对值为正数,正数大于0,故A 正确;2,故B 正确;9的平方根是3±,故C 正确;任何数都有立方根,故D 错误;故选D .【点睛】本题考查了实数的概念,求一个数的平方根或立方根,熟练掌握平方根和立方根的概念是本题的关键.9.C解析:C【分析】先确定点A 表示的数在3、4之间,再根据夹逼法逐项判断即得答案.【详解】解:点A 表示的数在3、4之间,A、因为12<<,所以213<<,故本选项不符合题意;B<<23<<,故本选项不符合题意;C<,所以34<<,故本选项符合题意;D<<,所以45<<,故本选项不符合题意;故选:C.【点睛】本题考查了实数与数轴以及无理数的估算,属于常见题型,正确理解题意、熟练掌握基本知识是解题的关键.10.D解析:D【分析】分别求出每个数的立方根、平方根和算术平方根,再判断即可.【详解】∵1的立方根为1,∴①错误;∵4的平方根为±2,∴②正确;∵−8的立方根是−2,∴③正确;∵1 16的算术平方根是14,∴④正确;正确的是②③④,故选:D.【点睛】本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义.第II卷(非选择题)请点击修改第II卷的文字说明11.C解析:C【分析】原式利用二次根式乘法运算法则计算得到结果,估算即可.【详解】解:(2+∵16<24<25,即42<2<52,∴4<<5,∴6<2+<7,∴(6和7之间.故选:C.【点睛】此题考查了估算无理数的大小,以及二次根式的混合运算,熟练掌握运算法则是解本题的关键.12.B解析:B【分析】直接利用二次根式有意义的条件以及二次根式的乘除运算法则分别计算得出答案.【详解】A有意义的是x≥﹣3,故此选项错误;B n是3,故此选项正确;C、若正方形的边长为cm,则面积为90cm2,故此选项错误;D、的结果是1,故此选项错误;故选:B.【点睛】本题考查了二次根式有意义的条件以及二次根式的乘除运算,正确掌握相关定义是解题的关键;二、填空题13.﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案【详解】解:由数轴可得:a<﹣0<b<故|﹣b|+|a+|+=﹣b﹣(a+)﹣a=﹣b ﹣a﹣﹣a=﹣2a﹣b故答案为:﹣2a﹣b【解析:﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a0<b,故﹣b|+|ab﹣(a)﹣ab﹣a﹣a=﹣2a﹣b.故答案为:﹣2a﹣b.【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.14.5【分析】由绝对值和算术平方根的非负性求出ab所有的可能值即可得到答案【详解】解:∵且均为整数又∵∴可分为以下几种情况:①解得:;②解得:或;③解得:或;∴符合题意的有序数对共由5组;故答案为:5【 解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2=,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0=解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.15.【分析】化简成最简二次根式后合并同类二次根式即可【详解】==2-=故答案为:【点睛】本题考查了最简二次根式同类二次根式熟练进行最简二次根式的化简是解题的关键.【分析】化简成最简二次根式,后合并同类二次根式即可.【详解】=6,故答案为.【点睛】本题考查了最简二次根式,同类二次根式,熟练进行最简二次根式的化简是解题的关键.16.-1【分析】根据二次根式有意义的条件求出的范围再根据二次根式的性质和绝对值的性质化简即可得到答案【详解】由可知故答案为:【点睛】本题考查了二次根式化简求值正确掌握二次根式有意义的条件二次根式的性质绝解析:-1【分析】根据二次根式有意义的条件,求出x的范围,再根据二次根式的性质和绝对值的性质化简,即可得到答案.【详解】20x-≥,∴2x≤,30x∴-<223x x-=---,∴()2323231x x x x x x---=---=--+=-故答案为:1-.【点睛】本题考查了二次根式化简求值,正确掌握二次根式有意义的条件,二次根式的性质,绝对值的性质是解题关键.17.9【分析】根据新定义得出ab的值再求和即可【详解】解:∵min{a}=min{b}=b∴<ab<又∵a和b为两个连续正整数∴a=5b=4则a+b=9故答案为:9【点睛】本题主要考查了算术平方根和实数解析:9【分析】根据新定义得出a,b的值,再求和即可.【详解】解:∵,b}=b,∴a,b又∵a和b为两个连续正整数,∴a=5,b=4,则a+b=9.故答案为:9.【点睛】本题主要考查了算术平方根和实数的大小比较,正确得出a,b的值是解题关键.18.【分析】先由二次根式的被开方数为非负数得出≥0结合已知条件b>0根据有理数乘法法则得出a≤0再利用积的算术平方根的性质进行化简即可【详解】解:∵≥0b>0∴a≤0故答案为:【点睛】本题主要考查了二次解析:-【分析】先由二次根式的被开方数为非负数得出32a b -≥0,结合已知条件b >0,根据有理数乘法法则得出a≤0,再利用积的算术平方根的性质进行化简即可.【详解】解:∵32a b -≥0,b >0,∴a≤0,a =⋅=-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,难度适中,得出a≤0是解题的关键.19.6【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:6【点睛】本题考查了二次根式有意义的条解析:6【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以236xy =⨯=.故答案为:6.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.20.1【分析】先根据正方体的体积得出其棱长再求出体积达到125m3时的棱长进而可得出结论【详解】解:设正方体集装箱的棱长为a ∵体积为64m3∴a==4m ;设体积达到125m3的棱长为b 则b==5m ∴b-解析:1【分析】先根据正方体的体积得出其棱长,再求出体积达到125m 3时的棱长,进而可得出结论.【详解】解:设正方体集装箱的棱长为a ,∵体积为64m 3,∴=4m ;设体积达到125m 3的棱长为b ,则,∴b-a=5-4=1(m ).故答案为:1.【点睛】本题考查的是立方根,熟知正方体的体积公式是解题的关键.三、解答题21.(1)1;(2)2-【分析】(1)先用平方差进行计算,再合并;(2)先化简各数再计算.【详解】解:(1-=2-3+2=1.(2-π+1)0×1-==-2.【点睛】本题考查了二次根式的计算和0指数与负指数,解题关键是明确0指数和负指数的意义,准确熟练的运用二次根式运算法则进行计算.22.(1)1--2) 1.【分析】(1)直接根据绝对值和算术平方根的性质分别化简即可得出答案;(2)直接根据0指数幂,负整数指数幂,立方根的性质分别化简即可得出答案.【详解】解:(1)|3341-=-(2)(2)0+(﹣12)﹣2=1+4-4=1. 【点睛】本题考查了实数的运算,0指数幂,负整数指数幂等知识,熟练掌握相关知识点是解题关键.23.(1);(2)【分析】(1)将正方体的右侧面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径,利用勾股定理求AC 1即可;(2)分两种情况讨论:①将正四棱柱的右面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径,利用勾股定理求AC 1,②将正四棱柱的上面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径,利用勾股定理求AC 1比较两种方法之下的AC 1,确最短的即可.【详解】(1)将正方体的右侧面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径, 如图所示,2211AC AC CC =+22(55)555(cm)=++=);(2)分两种情况讨论:①将正四棱柱的右面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径, 如答图所示,有222211106AC AC CC =+=+136(cm)=.②将正四棱柱的上面翻折,使它与前面在同一平面内,连结1AC ,两点之间线段最短, AC 1是最短路径,如答图所示222211511146(cm)AC AB BC =+=+=.146136>136cm ,即最短路程为34cm .【点睛】本题考查正方体中最短路径,底面是正方形的四棱柱最短路径,都应用两点之间线段最短,找出最短路径,用勾股定理来解决路径长,在进行实数大小比较是解题关键. 24.(1)3x =±;(2)5.【分析】(1)根据平方根的定义求解即可;(2)先计算算术平方根、立方根和平方,再计算加减即可.【详解】解:(1)29x = x=93x =±;(222348(3)=4-2+3=5.【点睛】此题主要考查了求一个数的平方根及实数的运算,解题的关键是熟练掌握平方根的定义以及算术平方根、立方根和平方性质.25.(1)i -,1-;(2)512i +;(3)1i +【分析】(1)根据21i =-,则i 3=i 2•i ,i 4=i 2•i 2,然后计算;(2)根据完全平方公式计算,出现i 2,化简为-1计算;(3)分子分母同乘以(2)i +后,把分母化为不含i 的数后计算.【详解】解:(1)∵21i =-,∴321i i i i i =⋅=-⋅=-,6222i i i i 1(1)(1)1=⋅⋅=-⋅-⋅-=-.故答案为:,1i --;(2)222(32)31249124512i i i i i +=++=+-=+;(3)223(3)(2)655512(2)(2)45i i i i i i i i i i i ++++++====+--+-. 【点睛】本题考查了实数的运算,以及完全平方公式的运用,能读懂题意是解此题的关键,解题步骤为:阅读理解,发现信息;提炼信息,发现规律;运用规律,联想迁移;类比推理,解答问题.26.m n +的算术平方根为【分析】根据算术平方根和立方根的定义列式求出m 、n 的值,然后代入代数式求出m +n 的值,再根据算术平方根的定义解答.【详解】解:∵3m -的平方根是6±,∴23(6)m -=±,∴39m =, ∵3=,∴3427n +=,∴6n =,∴m n +==.【点睛】本题考查了算术平方根和平方根、立方根的定义,是基础题,熟记概念并列式求出m 、n 的值是解题的关键.。

北师大版八年级数学上册《第二章实数》单元测试卷-附带答案

北师大版八年级数学上册《第二章实数》单元测试卷-附带答案

北师大版八年级数学上册《第二章实数》单元测试卷-附带答案一、单选题1.我国数学家赵爽用数形结合的方法,运用“弦图”,详细证明了勾股定理,在世界数学史上具有独特的贡献和地位.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若24ab=,大正方形的面积为129.则小正方形的边长为()A.7B.8C.9D.102.下列二次根式中属于最简二次根式的是()A14B48C 53D0.13.下列各二次根式中,为最简二次根式的是()A12B14C18D204.一个正方形的面积为32,则它的边长应在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间5.设N为正整数,如果N˂ 65˂N+1,那么N的值是()A.7B.8C.9D.不能确定6.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[ 3]=1,[-2.5]=-3.现对82进行如下操作:982=9=13823⎡⎤→→→⎢⎢⎢⎥⎣⎦⎣⎣第一次第二次第三次这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1B.2C.3D.4 7.已知a是有理数,b是无理数,下列算式的结果必定为无理数的是()A .a +bB .abC .a bD 22a b +8. 下列运算正确的是( )A .164-=B 3644-=C ()255-= D .3273=9.下列计算正确的是( )A 42=±B ()233-=- C .(255-= D .(233-=-10.210介于( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间二、填空题11.在 13- , 0 , π ,2 和 0.3245 这五个数中,无理数有 个.12.化简: ()213- = .13.使代数式12x -有意义的实数 x 的取值范围是 .14.对于任何实数a ,可用[]a 表示不超过a 的最大整数,如[4]=4,31=.现对72进行如下操作:72第一次[√72]=8第二次82⎡=⎣第三次21=,类似地,只需进行3次操作后变为1的所有正整数中,最大的是 .三、解答题15.已知x ,y 为实数,且1272273y x x =--,求xy 的平方根。

八年级数学上册第二章实数综合的测试题(有答案)

八年级数学上册第二章实数综合的测试题(有答案)

八年级数学上册第二章实数综合的测试题(有答案)八年级数学上册第二章实数综合的测试题(有答案)八年级数学上册第二章实数综合测试题(有答案)一、选择题1. 在以下数0.3, 0, , , 0.123456,0.1001001 001中,其中无理数的个数是( )A.2B.3C.4D.52. 化简的结果是( )A. 4B. -4C.4D.无意义3. 如果a是(-3)2的平方根,那么等于( )A.-3B.-C.3D. 或-4.下列说法中,正确的是( )A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数[C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,15. 下列各式中,无意义的是( )A. B. C. D.6. 若a2=(-5)2,b3=(-5)3,则a+b的值为( )A.0B.10C.0或10D.0或-107. 如果 + 有意义,那么代数式|x-1|+ 的值为( )A.8B.8C.与x的值无关D.无法确定8. 若x0,则等于( )A.xB.2xC.0D.-2x二、填空题9. 的算术平方根是______.10.如果一个数的平方根等于它本身,那么这个数是________.11.如果 =2,那么(x+3 )2=______.12. 若 + 有意义,则 =______.13. 若m0,则m的立方根是。

14. 若与|b+2|是互为相反数,则(a-b)2=______.三、解答题15.若,求的值。

16.若一个偶数的立方根比2大,平方根比4小,则这个数可能是多少?17.一个正方体木块的体积是125cm3,现在将它锯成8个同样大小的正方体小木块,求每个小正方体木块的表面积。

18.若与互为相反数,求的'值。

19. 若x、y都是实数,且y= + +8,求x+3y的立方根.20.观察下列各式及验证过程:验证:= 验证:验证:(1)按照上述三个等式及其验证过程的基本思路,猜想的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n(n2的自然数)表示的等式,并进行验证.参考答案:1.B2.A3.D4.D5.A6.D7.B8.D9. 10. 0, 1 11. 1612. 13. 14. 915. 解:由,知16. 10或12或1417. 解:小正方体的体积为 cm3,边长为 cm,所以每个小正方体木块的表面积为 cm2.18. 解:由与互为相反数,知,得19. 解:由题意知,,x+3y的立方根为3.20. (1) 验证略(2) 验证略。

(好题)初中数学八年级数学上册第二单元《实数》测试题(包含答案解析)

(好题)初中数学八年级数学上册第二单元《实数》测试题(包含答案解析)

一、选择题1.下列命题是真命题的是( ) A .同位角相等B .算术平方根等于自身的数只有1C .直角三角形的两锐角互余D .如果22a b =,那么a b =2 ) A .4 B .4± C .2± D .-2 3.一个数的相反数是最大的负整数,则这个数的平方根是( ) A .1- B .1 C .±1 D .0 4.81的平方根是( )A B .9-C .9D .9±5.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★abb;若a b <,则a ★bba.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b+<★ A .①B .②C .①②D .①②③ 6.下列各式计算正确的是( )A +=B .26=(C 4=D =7.已知||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7±8.下列计算正确的是( )A +=B =C 4=D 3=-9.下列说法正确的是( )A B .5C .2 3D 的点10.已知﹣1<a <0的结果为( ) A .2aB .﹣2aC .2a-D .2a11.最接近的整数是( ) A .9B .8C .7D .612.下列说法中正确的是( )A .81的平方根是9B 4 CD .64的立方根是4±二、填空题13.方程()2116x +=的根是__________. 14.已知3x -+|2x ﹣y |=0,那么x ﹣y =_____. 15.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______16.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,2,其中1a <-,且AB BC =,则a =_______.17.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.18.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是_____.若点B 表示 3.14-,则点B 在点A 的______边(填“左”或“右”).1913a 13b ,那么2(2)b a +-的值是________. 20.已知:15-=m m,则221m m -=_______.三、解答题21.设a 为正整数,对于一个四位正整数,若千位与百位的数字之和等于a ,十位与个位的数字之和等于1a -,则称这样的数为“a 级收缩数”.例如在正整数2634中,因为268+=,34781+==-,所以2634是“8级收缩数”,其中8a =.(1)直接写出最小的“6级收缩数”和最大“7级收缩数”;(2)若一个“6级收缩数”的千位数字与十位数字之积为6,求这个“6级收缩数”.22.25(326)(326)++-. 23.计算题: (112273⨯;(2;(3))()2331⨯-24.(1(2)计算:.25.已知(25|50x y -++-=.(1)求x ,y 的值; (2)求xy 的算术平方根.26.2++【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据同位角的定义、算术平方根的意义、直角三角形的性质、等式的性质判断即可. 【详解】解:A 、同位角不一定相等,原命题是假命题;B 、算术平方根等于自身的数有1和0,原命题是假命题;C 、直角三角形两锐角互余,是真命题;D 、如果a 2=b 2,那么a=b 或a=-b ,原命题是假命题; 故选:C . 【点睛】本题考查了命题的真假判断,包括同位角的定义、算术平方根的意义、直角三角形的性质、等式的性质,判断命题的真假关键是要熟悉课本中的性质定理,难度适中.2.C解析:C 【分析】先计算16的算术平方根a ,再计算a 的平方根即可. 【详解】 ∵4=,∴4的平方根为±2. 故选C. 【点睛】本题考查了实数的算术平方根,平方根,准确掌握这两个基本概念是解题的关键.3.C解析:C 【分析】由于最大的负整数是-1,本题即求-1的相反数,进而求其平方根. 【详解】解:最大的负整数是-1,根据概念,(-1的相反数)+(-1)=0, 则-1的相反数是1,则这个数是1,1的平方根是±1, 故选:C . 【点睛】本题考查了相反数、负整数的概念及求一个数的平方根,正确掌握相关定义是解题的关键.4.D解析:D 【分析】根据平方根的定义求解. 【详解】 ∵2(9)±=81, ∴81的平方根是9±, 故选:D . 【点睛】此题考查平方根的定义,熟记定义并掌握平方计算是解题的关键.5.A解析:A 【分析】①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立; ③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】 解:①a b ≥时, a a bb★,b a ab★, ∴=a b b a ★★;a b <时,a b b a ★, b b aa★, ∴=a b b a ★★; ∴①符合题意.②由①,可得:=a b b a ★★, 当a b ≥时,∴()()()()22a b b a a b a a a bb b ba b ====★★★★, ∴()()a b b a ★★不一定等于1,当a b <时,∴()()()()22a b b a a b b b b a a a aa b ====★★★★, ∴()()a b b a ★★不一定等于1,∴()()1a b b a =★★不一定成立, ∴②不符合题意.③当a b ≥时,0a >,0b>,∴1ab≥,∴(12a b a b a b b a ab ab ++===+=≥≥★★,当a b <时,∴(12a b a b a b ab ++====≥≥★★,∴12a b a b+<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A . 【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.6.D解析:D 【分析】根据二次根式的运算法则一一判断即可. 【详解】AB 、错误,212=(;C ==D ==故选:D . 【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.7.C解析:C 【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题. 【详解】 解||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-, 7a b ∴-=或1, 故选C . 【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.8.B解析:B 【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.9.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A错误;B、5的平方根是B错误;C∴23,故C正确;D D错误;故选:C.【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.10.A解析:A【分析】先把被开方数化为完全平方式的形式,再根据a的取值范围去根号再合并即可.【详解】===∵-1<a <0,∴2110a a a a--=>,10a a +<∴原式1111()2a a a a a a a a a⎡⎤=---+=-++=⎢⎥⎣⎦. 故选:A . 【点睛】本题考查了二次根式的化简,能够熟练运用完全平方公式对被开方数进行变形,是解答此题的关键.11.B解析:B 【分析】直接得出89<<,进而得出最接近的整数. 【详解】解:∵<<,∴89<<∵ 28.267.24=∴8.故选B . 【点睛】的取值范围是解题关键.12.C解析:C 【分析】根据平方根,立方根,算术平方根的定义解答即可. 【详解】A .81的平方根为9±,故选项错误;B 2,故选项错误; C,故选项正确; D .64的立方根是4,故选项错误; 故选:C . 【点睛】本题考查了平方根,立方根,算术平方根的定义,熟练掌握是解题关键.二、填空题13.或【分析】根据平方根的定义求解即可【详解】解:两边开方得或解得或【点睛】本题考查了平方根的意义解题关键是熟练运用平方根的意义准确进行计算解析:3x =或5x =-. 【分析】根据平方根的定义求解即可. 【详解】解:()2116x +=,两边开方得,14x +=或14x +=-, 解得,3x =或5x =-. 【点睛】本题考查了平方根的意义,解题关键是熟练运用平方根的意义,准确进行计算.14.﹣3【分析】先根据非负数的性质列出方程组求出xy 的值进而可求出x ﹣y 的值【详解】解:∵+|2x ﹣y|=0∴解得所以x ﹣y =3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3 【分析】先根据非负数的性质列出方程组,求出x 、y 的值,进而可求出x ﹣y 的值. 【详解】解:∵+|2x ﹣y |=0,∴3020x x y -=⎧⎨-=⎩,解得36x y =⎧⎨=⎩.所以x ﹣y =3﹣6=﹣3. 故答案为:-3 【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x 、y 的二元一次方程组,求出x 、y 的值是解题关键.15.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键 解析:20212022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可. 【详解】 解:原式=11111111202111223342021202220222022-+-+-++-=-=. 故答案为:20212022. 【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键.16.【分析】根据题意先求出BC 的长度然后求出a 的值即可得到答案【详解】解:根据题意∴∵∴∴∴;故答案为:【点睛】本题考查了数轴上两点之间的距离以及绝对值的意义解题的关键是掌握数轴的定义正确的求出a 的值解析:2+【分析】根据题意,先求出BC 的长度,然后求出a 的值,即可得到答案. 【详解】 解:根据题意,(1)1BC =-=,∴1AB BC ==,∵1AB a =--,∴11a --=,∴2a =-∴22a =-=;故答案为:2+ 【点睛】本题考查了数轴上两点之间的距离,以及绝对值的意义,解题的关键是掌握数轴的定义,正确的求出a 的值.17.4【分析】首先根据平方根的定义求出m 值再根据立方根的定义求出n 代入-n+2m 求出这个值的算术平方根即可【详解】解:∵一个正数的两个平方根分别是m+3和2m-15∴m+3+2m-15=0解得:m=4∵解析:4 【分析】首先根据平方根的定义,求出m 值,再根据立方根的定义求出n ,代入-n+2m ,求出这个值的算术平方根即可. 【详解】解:∵一个正数的两个平方根分别是m+3和2m-15,∴m+3+2m-15=0,解得:m=4,∵n的立方根是-2,∴n=-8,把m=4,n=-8代入-n+2m=8+8=16,所以-n+2m的算术平方根是4.故答案为:4.【点睛】本题考查了平方根、算术平方根、立方根.解题的关键是掌握平方根、算术平方根、立方根的定义,能够利用定义求出m、n值,然后再求-n+2m的算术平方根.18.-π右【分析】因为圆从原点沿数轴向左滚动一周可知OA=π再根据数轴的特点及π的值即可解答【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周∴OA之间的距离为圆的周长=πA点在原点的左边∴A解析:-π 右【分析】因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴OA之间的距离为圆的周长=π,A点在原点的左边.∴A点对应的数是-π.∵π>3.14,∴-π<-3.14.故A点表示的数是-π.若点B表示-3.14,则点B在点A的右边.故答案为:-π,右.【点睛】本题考查数轴、圆的周长公式、利用数轴比较数的大小.需记住两个负数比较大小,绝对值大的反而小.19.【分析】直接利用的取值范围得出ab的值进而求出答案【详解】解:故答案为:【点睛】本题主要考查了估算无理数的大小正确得出ab的值是解题关键解析:11-【分析】a、b的值,进而求出答案.【详解】<<,解:3134∴=,a3∴=-,3b()))22223231311b a ∴+-=+-=-=-故答案为:11-【点睛】本题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键.20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±【点睛】本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1)最小的“6级收缩数”为:1505,最大的“7级收缩数”为:7060;(2)这个“6级收缩数”为:2432、3323或6014【分析】(1)根据“a 级收缩数”的定义可写出所有的可能性,进而即可确定最小的“6级收缩数”以及最大的“7级收缩数”;(2)在第(1)问的基础上,结合条件“一个“6级收缩数”的千位数字与十位数字之积为6”将所拥有的可能性进行分类讨论,即可得到答案.【详解】解:(1)∵千位与百位的数字之和等于6,十位与个位的数字之和等于5∴千位与百位上的数字可能是0和6、1和5、2和4、3和3、4和2、5和1、6和0,十位与个位上的数字可能是0和5、1和4、2和3、3和2、4和1、5和0∴最小的“6级收缩数”为:1505;同理,∵千位与百位的数字之和等于7,十位与个位的数字之和等于6∴最大的“7级收缩数”为:7060.(2)设这个“6级收缩数”千位上的数字为x ,十位上的数字为y ,则这个“6级收缩数”百位上的数字为6x -,个位上的数字为615y y --=-∵09x ≤<,069x ≤-≤,09y ≤≤,059y ≤-≤∴06x ≤<,05y ≤≤∵6xy =∴当1x =时,6y =,不合题意舍去;当2x =时,3y =,符合题意,此时,百位是4,个位是2,为2432;当3x =时,2y =,符合题意,此时,百位是3,个位是3,为3323;当4x =时,32y =,不合题意舍去; 当5x =时,65y =,不合题意舍去; 当6x =时,1y =,符合题意,此时,百位是0,个位是4,为6014∴这个“6级收缩数”为:2432、3323或6014.【点睛】本题考查了新定义问题以及分类讨论的数学思想,认真审题是解题的关键.22.10-【分析】根据二次根式运算法则计算即可.【详解】解:原式=2253+-5924=+-1424=-10=-.【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运用算法则进行计算,注意:平方差公式的运用.23.(1)2)8+;(3)【分析】(1)先利用二次根式的性质进行化简,再利用二次根式的乘除法运算法则计算即可; (2)先利用二次根式的性质进行化简,再利用二次根式的运算法则计算即可;(3)先利用完全平方公式和平方差公式进行计算,再利用二次根式的加减运算法则计算即可.【详解】(1====(2=102=-+8=(3)23)(31)+--2(31)=--22223211⎡⎤=---+⎣⎦9531=--+=.【点睛】本题主要考查二次根式的混合运算,解题的关键是正确化简二次根式,熟练掌握二次根式的运算法则.24.(1)5;(2)1【分析】(1)将原式化为最简二次根式,在根据二次根式的加减法则运算即可(2)按平方差公式展开,利用二次根式的性质化简,再进行计算即可【详解】(15=(2)22-=65=-1=【点睛】本题考查了二次根式的混合计算,解题关键是熟练掌握运算法则,准确计算.25.(1)5x =5y =+2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.26【分析】先把二次根式化简、分母有理化、求立方根和乘方,再合并即可.【详解】解:原式32=--2332=+--=【点睛】本题考查了二次根式的运算、分母有理化、立方根,解题关键是明确分母有理化的方法,熟练进行二次根式化简与计算,会求立方根.。

北师大版八年级数学上册第二章 实数测试题题(含答案)

北师大版八年级数学上册第二章 实数测试题题(含答案)

北师大版八年级数学上册第二章实数测试题(含答案)一、选择题(共10小题,每小题3跟,共30分)1.下列式子正确的是()A.√9=±3B.√−19=−13C.√(−2)2=2D.√−93=﹣32.下列说法正确的是()A.1的平方根是1B.负数没有立方根C.√81的算术平方根是3D.(−3)2的平方根是−33.下列计算正确的是()A.√4=±2B.√36=6C.√(−6)2=﹣6D.﹣√−83=﹣24.下列四个实数中,是无理数的为()A.0B.√2C.﹣2D.。

125.下列根式中是最简二次根式的是()A.B.C.D.6.如图所示,在数轴上表示实数√10的点可能是()A.点M B.点N C.点P D.点Q 7.给出下列数-2.010010001…,0 ,3.14,237,π,0.333….其中无理数有()个A.1B.2C.3D.48.下列命题正确的是()A.同旁内角互补B.一组数据的方差越大,这组数据波动性越大C.若∠α=72°55′,则∠α的补角为107°45'D.对角线互相垂直的四边形是菱形9.下列运算正确的是()A.√10÷√2=5B.(t−3)2=t2−9C.(−2ab2)2=4a2b4D.x2⋅x=x210.下列运算正确的是()A .√4 =±2B .(−14)−2=﹣16C .x 6÷x 3=x 2D .(2x 2)3=8x 6二、填空题(共5小题,每小题3分,共15分)11.函数y =√2−x x−1的自变量x 的取值范围是 .12.如果 √a −1 有意义,那么a 的取值范围是 .13.一个正数的两个平方根分别是m −4和5,则m 的立方根是 . 14.请写出一个正整数m 的值使得√8m 也是整数,则m 的最小值是 . 15.49的平方根是 ;27的立方根是 .三、解答题(第16题10分,第17-18题每题7分,第19-21每题9分,第22-23每题12分,满分75分)16.在平面直角坐标系中,点P (- √3 ,-1)到原点的距离是多少?17.方老师想设计一个长方形纸片,已知长方形的长是 √140π cm ,宽是 √35π cm ,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.18.已知2a -1的平方根是±3,3a +b -9的立方根是2,c 是 √8 的整数部分,求a +b +c 的平方根. 19.有一道练习题:对于式子2a-√a 2−4a +4先化简,后求值,其中a=√2。

(好题)初中数学八年级数学上册第二单元《实数》测试(含答案解析)

(好题)初中数学八年级数学上册第二单元《实数》测试(含答案解析)

一、选择题1.下列算式中,运算错误的是( )A .632÷=B .3515⨯=C .7310+=D .2(3)-=32.已知数据:3,4,5-,2π,0.其中无理数出现的频率为( ) A .0.2B .0.4C .0.6D .0.8 3.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .144.81的平方根是( )A 81B .9-C .9D .9±5.下列选项中,属于无理数的是( )A .πB .227-C 4D .0 6.下列二次根式中,不能..3合并的是( ) A 12B 8 C 48 D 1087.下列各式计算正确的是( ) A 235+=B .236=() C 824= D 236= 8.1x -x 的取值范围是( )A .0x ≥B .1x ≤C .1x ≥-D .1≥x 9.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,42max -=.则方程{},34max x x x -=+的解为( )A .-1B .-2C .-1或-2D .1或2 10.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7 B .1或-7 C .1或7 D .±1或7± 11.下列计算正确的是( )A 3=3B 39 3C 235D .222 12.在代数式13x -中,字母x 的取值范围是( )A .x >1B .x ≥1C .x <1D .x 13≤ 二、填空题13.______.14.数轴上A 点表示的数是1-,点B ,C 分别位于点A 的两侧,且到A 的距离相等,若B表示的数是,则点C 表示的数是 ____________.15.计算:23-=______ =______.16.旧知回顾:在七年级学习“平方根”时,我们会直接开方解形如2810x -=的方程(解为129,9x x ==-).解题运用:方程(18)(1)170x x x -++=解为_________.17.已知3y =,则xy 的值为__________.18.10b +=,则20132014a b +=___________.19.已知,a b 为两个连续的整数,且 a b <<,则a b +=_______ 20.已知:15-=m m ,则221m m -=_______. 三、解答题21.计算:(1;(222.已知2a =2b =-a 2+b 2﹣3ab 的值.23.如果n x y =,那么我们记为:(),x y n =.例如239=,则()3,92=.(1)根据上述规定,填空:()2,8=___________,12,4⎛⎫= ⎪⎝⎭__________; (2)若()4,2a =,(),83b =,求(),b a 的值.24.计算:(101122-⎛⎫- ⎪⎝⎭25.计算:(1(8)2-÷;(2)2112(4)1223⎛⎫-÷--⨯- ⎪⎝⎭.26.计算:2016(2019)|52π-⎛⎫--- ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的加减法则,乘法,除法,乘方法则计算判断即可.【详解】解:∵=∴A选项不合题意;∵=∴B选项不合题意;∵∵C选项符合题意;∵﹣2(=3,正确,∴D选项不合题意;故选:C.【点睛】本题考查了二次根式的混合运算,熟记二次根式运算的基本法则是解题的关键. 2.C解析:C【分析】根据无理数的意义和频率意义求解.【详解】=π是无限不循环小数,解:∵2∴π是有理数,∴由30.6=可得无理数出现的频率为0.6,5故选C .【点睛】本题考查无理数和频率的综合应用,熟练掌握无理数和频率的意义是解题关键.3.D解析:D【分析】根据2ndf键是功能转换键列算式,然后解答即可.【详解】14==.故选:D.【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf键的功能.4.D解析:D【分析】根据平方根的定义求解.【详解】∵2(9)±=81,∴81的平方根是9±,故选:D.【点睛】此题考查平方根的定义,熟记定义并掌握平方计算是解题的关键.5.A解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数;B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.6.B解析:B【分析】并的二次根式.【详解】解:AB被开方数不相同,不是同类二次根式,不能进行合并,故本选项正确;C 被开方数相同,是同类二次根式,能进行合并,故本选项错误;D 故选B .【点睛】本题主要考查二次根式的化简,同类二次根式的定义,关键在于熟练掌握同类二次根式的定义,正确的对每一选项中的二次根式进行化简.7.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型. 8.D解析:D【分析】利用二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:D .【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 9.A解析:A【分析】利用题中的新定义化简已知方程,求解即可.【详解】①当0x >时,即x x >-,此时max }{34x x x x -==+,, 解得2x =-,不符合题意舍去.②当0x <时,即x x <-,此时max }{34x x x x -=-=+,, 解得1x =-且符合题意.故选:A .【点睛】此题考查了新定义下实数的运算以及解一元一次方程,运用分类讨论的思想是解答本题的关键. 10.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.11.D解析:D【分析】根据二次根式的化简、立方根的化简、二次根式的加减乘除法则进行判断即可;【详解】A3,故A 错误;B ,故B 错误;C 3=6 ,故C 错误;D 、 ,故D 正确;故选:D .【点睛】本题考查了二次根式的化简、立方根的化简、二次根式的加减乘除,熟练掌握计算法则是解题的关键;12.B解析:B【分析】根据二次根式有意义的条件求解即可;【详解】由题意得,x﹣1≥0,解得x≥1,故选:B.【点睛】本题考查了二次根式有意义的条件,正确掌握知识点是解题的关键;二、填空题13.【分析】直接利用相反数的定义得出答案【详解】解:的相反数是:故答案为【点睛】此题主要考查了相反数正确掌握相反数的定义是解题关键【分析】直接利用相反数的定义得出答案.【详解】解:.【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.14.【分析】根据数轴上两点的中点求法即两数和的一半直接求出即可【详解】解:设点C所表示的数为c则解得:故答案为:【点睛】此题主要考查了数轴上两点之间中点求法我们把数和点对应起来也就是把数和形结合起来二者解析:-2【分析】根据数轴上两点的中点求法,即两数和的一半,直接求出即可.【详解】解:设点C所表示的数为c,则1-=解得:2-+故答案为:2-【点睛】此题主要考查了数轴上两点之间中点求法,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.15.-94【分析】分别根据乘方和开方的意义即可求解【详解】解::-9故答案为:-9;4【点睛】本题考查了乘方和开方的意义理解乘方和开方的意义是解题关键注意在计算-32时底数为3解析:-9 4【分析】分别根据乘方和开方的意义即可求解.【详解】解::23-=-94=.故答案为:-9;4.【点睛】本题考查了乘方和开方的意义,理解乘方和开方的意义是解题关键,注意在计算-32时,底数为3.16.【分析】先将原方程化为即可类比题目中解方程的方法求解即可【详解】解:合并同类项得移项得解得故答案为:【点睛】本题考查了利用平方根解方程及整式的乘法运算掌握平方根的定义是解答此题的关键解析:1x =2x =-【分析】先将原方程化为2180x -=,即可类比题目中解方程的方法求解即可.【详解】解:(18)(1)170x x x -++=,21718170x x x --+=,合并同类项,得2180x -=,移项,得218x =,解得1x =,2x =-故答案为:1x =,2x =-.【点睛】本题考查了利用平方根解方程及整式的乘法运算,掌握平方根的定义是解答此题的关键. 17.6【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:6【点睛】本题考查了二次根式有意义的条解析:6【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以236xy =⨯=.故答案为:6.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.18.2【分析】先根据算术平方根的非负性绝对值的非负性求出ab 的值再代入计算有理数的乘方运算即可得【详解】由算术平方根的非负性绝对值的非负性得:解得则故答案为:2【点睛】本题考查了算术平方根的非负性绝对值 解析:2【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=,故答案为:2.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键. 19.7【分析】由无理数的估算先求出ab 的值再进行计算即可【详解】解:∵∴∵为两个连续的整数∴∴;故答案为:7【点睛】本题考查了无理数的估算解题的关键是正确求出ab 的值从而进行解题解析:7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵<< ∴34<<,∵a、b 为两个连续的整数,a b <<,∴3a =, 4b =,∴ 347a b +=+=;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a 、b 的值,从而进行解题. 20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m ∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±【点睛】本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1+;(21. 【分析】(1)先把二次根式化成最简二次根式,后根据混合运算的法则有序计算即可; (2)利用运算律,因式分解,二次根式乘法公式,有序计算即可.【详解】(1=2+;(2=1-2=1.【点睛】本题考查了二次根式的化简计算,熟练掌握化简的技巧,运算的技巧,运算的顺序是解题的关键.22.11【分析】利用二次根式的运算法则首先计算出a+b ,ab 的值,然后利用配方法对多项式进行变形整理,再代入,进行计算即可.【详解】解:∵2a =+2b =-∴a+b =4,(2431ab =+=-=,∴a 2+b 2﹣3ab =(a +b )2﹣5ab =42﹣5×1=11.【点睛】本题考查二次根式的混合运算,掌握运算顺序和计算法则并能灵活应用完全平方公式进行计算是解题关键.23.(1)3;-2;(2)4【分析】(1)理解题意,根据有理数乘方及负整数指数幂的计算求解;(2)根据题意,由有理数的乘方计算求得a 与b 的值,然后求解【详解】解:(1)∵328=∴()2,8=3 ∵-22112=24=∴12,4⎛⎫= ⎪⎝⎭-2 故答案为:3;-2(2)∵()4,2a =,2416=∴a=16∵(),83b =,328=∴b=2∴()(),=2,16b a又∵4216=∴(),b a 的值为4【点睛】此题主要考查了有理数的乘方及负整数指数幂的运算,正确将原式变形是解题关键.24.3--【分析】先分别计算负指数、二次根式化简、0指数和绝对值,再进行加减即可.【详解】解:原式(212=--- ,212=---+=3-【点睛】本题考查了负指数、二次根式化简、0指数和绝对值有关的实数计算,熟练按照法则进行计算是解题关键.25.(1)0;(2)1-【分析】(1)先进行开方运算,再进行除法运算,然后进行减法运算;(2)先进行乘方运算,再利用乘法的分配律进行计算,再计算除法,最后进行加减运算.【详解】解:(1)原式44=-=0;(2)原式114(4)121223=-÷--⨯+⨯ 14(4)126=-÷--⨯ 164=-+12=-1=-【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.26.2.【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:216(2019)|52π-⎛⎫--- ⎪⎝⎭=61|54+---154=+-2=-【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.。

八年级上册数学第二章实数测试题

八年级上册数学第二章实数测试题

八年级上册数学第二章实数测试题一、选择题1.下列各数:2π; 0 0.23·; 227;27; 1010010001.6;1理数个数为( )A .2 个B .3 个C .4 个D .5 个2.在实数032-;|-2|中;最小的是( ).A .-错误!B .C .0D .|-2|3.下列各数中是无理数的是( )A B C D 4.下列说法错误的是( )A .±2B 是无理数C 是有理数D 5.下列说法正确的是( )A .0)2(π是无理数B .33是有理数C .4是无理数D .38-是有理数6.下列说法正确的是( )A .a 一定是正数B .错误! 是有理数C .2;2是有理数D .平方根等于自身的数只有17.估计;20的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间8. (-2)2的算术平方根是( )A .2B . ±2C .-2D .29.下列各式中;正确的是( )A .3-B .3-C 3±D 3=±10.下列说法正确的是( )A .5是25的算术平方根B .±4是16的算术平方根C .-6是(-6)2的算术平方根D .0.01是0.1的算术平方根11.36的算术平方根是( )A .±6B .6C .±;6D . ;612.下列计算正确的是( )4=± B.1= 4= 2= 13.下列运算正确的是( )A .25=±5B .43-27=1C .18÷2=9D .24·错误!=614.下列计算正确的是( )A .=B .错误!=错误!-错误!=1C .(21-= D=15.如图:在数轴上表示实数;15的点可能是( )A .点PB .点QC .点MD .点N16.如图;矩形OABC 的边OA 长为2 ;边AB 长为1;OA 在数轴上;以原点O 为圆心;对角线OB 的长为半径画弧;交正半轴于一点;则这个点表示的实数是A .2.5B .2;2C .;3D .;517.下列计算正确的是( ).A .2234-=4-3=1B .)25()4(-⨯-=4-2)×(-5)=10C .22511+=11+5=16D .32=36 18.已知n -12是正整数;则实数n 的最大值为( )A .12B .11C .8D .319.2)9(-的平方根是x ; 64的立方根是y ;则x +y 的值为( )A .3B .7C .3或7D .1或720.若||4x =9;且||x y x y -=-;则x y +的值为( )A .5或13B .-5或13C .-5或-13D .5或-13二、填空题1.实数27的立方根是2.若一个正数的两个平方根分别是2a -2和a -4;则a 的值是 .3.-;6的绝对值是___________.4.估计;7的整数部分是5.比较下列实数的大小(在 填上>、<或=)①-2; ②215- 21;③5。

八年级数学上册《第二章实数》单元测试题(含答案)

八年级数学上册《第二章实数》单元测试题(含答案)

第二章实数测试题一、选择题(每题3分,共30分)1.有一组数如下:-π,13,|-2|,4,7,39,0.808008…(相邻两个8之间0的个数逐次加1).其中无理数有( )A .4个B .5个C .6个D .7个2.下列说法中,正确说法的个数是( ) ①-64的立方根是-4; ②49的算术平方根是±7; ③127的立方根是13; ④116的平方根是14. A .1 B .2 C .3 D .43.下列各组数中,互为相反数的一组是( )A .-3与3-27B .-3与(-3)2 C .-3与-13D .||-3与34.下列各式计算正确的是( )A .2+3=5B .43-33=1C .23×33=63D .27÷3=35.下列各式中,无论x 为任何数都没有意义的是( )A .-7xB .-1999x 3C .-0.1x 2-1D .3-6x 2-56.若a =15,则实数a 在数轴上的对应点P 的大致位置是( )图17.如图2是一数值转换机,若输出的结果为-32,则输入的x的值为( )图2A.-4B.4C.±4D.±58.若a,b均为正整数,且a>7,b>320,则a+b的最小值是( )A.6 B.5 C.4 D.39.实数a,b在数轴上所对应的点的位置如图3所示,且||a>||b,则化简a2-||a+b 的结果为( )图3A.2a+b B.-2a+bC.b D.2a-b10.已知x=2-3,则代数式(7+4 3)x2+(2+3)x+3的值是( )A.2+3B.2-3C.0 D.7+4 3请将选择题答案填入下表:第Ⅱ卷 (非选择题 共70分)二、填空题(每题3分,共18分) 11.计算:252-242=________.图412.如图4,正方形ODBC 中,OC =1,OA =OB ,则数轴上点A 表示的数是________. 13.用计算器计算并比较大小:39________7.(填“>”“=”或“<”) 14.若|x -y|+y -2=0,则xy -3的值是________.15.若规定一种运算为a ★b =2(b -a),如3★5=2×(5-3)=22,则2★3=________.16.设a ,b 为非零实数,则a |a|+b 2b 所有可能的值为________.三、解答题(共52分)17.(6分)实数a ,b 在数轴上所对应的点的位置如图5所示,试化简:a 2-b 2-(a -b )2.图518.(6分)计算:(1)()-62-25+(-3)2;(2)50×8-6×32;(3)(3+2-1)(3-2+1).19.(6分)已知a ,b 互为相反数,c ,d 互为倒数,x 是2的平方根,求5(a +b )a 2+b 2-2cd +x 的值.20.(6分)如果a 是100的算术平方根,b 是125的立方根,求a 2+4b +1的平方根.21.(6分)某中学要在操场的一块长方形土地上进行绿化,已知这块长方形土地的长为510m ,宽为415m .(1)求该长方形土地的面积(精确到0.1 m 2);(2)如果绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金约为多少元?22.(6分)如图6所示,某地有一地下工程,其底面是正方形,面积为405 m2,四个角是面积为5 m2的小正方形渗水坑,根据这些条件如何求a的值?与你的同伴进行交流.图6下面是小康提供的解题方案,根据解题方案请你完成本题的解答过程:①设大正方形的边长为x m,小正方形的边长为y m,那么根据题意可列出关于x的方程为__________,关于y的方程为__________;②利用平方根的意义,可求得x=________(取正值,结果保留根号),y=________(取正值,结果保留根号);③所以a=x-2y=____________=__________(结果保留根号);④答:________________________.23.(8分)如图7,在Rt△OA1A2中,∠A1=90°,OA1=A1A2=1,以OA2为直角边向外作直角三角形,…,使A1A2=A2A3=A3A4=…=A n-1A n=1.(1)计算OA2和OA3的长;(2)猜想OA75的长(结果化到最简);(3)请你用类似的思路和方法在数轴上画出表示-3和10的点.图724.(8分)先阅读材料,再回答问题:因为(2-1)(2+1)=1,所以12+1=2-1;因为(3-2)(3+2)=1,所以13+2=3-2;因为(4-3)(4+3)=1,所以14+3=4- 3.依次类推,你会发现什么规律?请用你发现的规律计算式子12+1+13+2+…+1100+99的值.答案1.A 2.B 3.B 4.D 5.C 6.B 7.C 8.A 9.C 10.A 11.7 12.- 213.< 14.12 15.6-216.±2,017.解:由数轴易知a <0,b >0,|a |<|b |, 所以原式=-a -b -(b -a )=-2b . 18.解:(1)原式=6-5+3=4.(2)原式=5 2×2 2-3 22=20-3=17.(3)(3+2-1)(3-2+1)=[]3+(2-1)[]3-(2-1) =3-(2-1)2=3-3+2 2 =2 2.19.解:由题意知a +b =0,cd =1,x =± 2. 当x =2时,原式=-2+2=0; 当x =-2时,原式=-2-2=-2 2, 故原式的值为0或-2 2.20.[解析] 先根据算术平方根、立方根的定义求得a ,b 的值,再代入所求代数式即可计算.解:因为a 是100的算术平方根,b 是125的立方根, 所以a =10,b =5,所以a2+4b+1=121,所以a2+4b+11=11,所以a2+4b+11的平方根为±11.21.[解析] (1)根据这块长方形土地的长为5 10 m,宽为415 m,直接得出面积即可;(2)利用绿化该长方形土地每平方米的造价为180元,即可求出绿化该长方形土地所需资金.解:(1)该长方形土地的面积为510×415=100 6≈244.9(m2).(2)因为绿化该长方形土地每平方米的造价为180元,所以180×244.9=44082(元).答:绿化该长方形土地所需资金约为44082元.22.解:①x2=405 y2=5②9 5 5③9 5-2 5 7 5④a的值为7 523.解:(1)OA2=12+12=2,OA3=()22+12= 3.(2)OA75=75=5 3.(3)如图所示:24.解:规律:当n是正整数时,1n+1+n=n+1-n,故12+1+13+2+…+1100+99=(2-1)+(3-2)+…+(100-99)=100-1=9.。

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。

(典型题)初中数学八年级数学上册第二单元《实数》检测题(包含答案解析)

(典型题)初中数学八年级数学上册第二单元《实数》检测题(包含答案解析)

一、选择题1.下列算式中,运算错误的是( )A .632÷=B .3515⨯=C .7310+=D .2(3)-=32.如图,长方形ABCD 中,43,4AB BC ==,点E 是DC 边上的动点,现将BCE 沿直线BE 折叠,使点C 落在点F 处,则点D 到点F 的最短距离为( )A .5B .4C .3D .2 3.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7 B .1或-7 C .1或7 D .±1或7± 4.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01;③3323)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( )A .1个B .2个C .3个D .4个5.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④116的算术平方根为14.正确的是( ) A .①②③B .①②④C .①③④D .②③④ 6.已知21a -与2a -+是一个正数的平方根,则这个正数的值是( ) A .9B .3C .1D .81 7.下列说法正确的是( ) A 5B .55C .25 3D 5的点 8.在下列数中,是无理数的是( )A .2.1313313331…(两个1之间依次多一个3)B .0.101001-C .227D 364-9.已知x 5,则代数式x 2﹣x ﹣2的值为( )A .9+55B .9+35C .5+55D .5+35 10.下列各计算正确的是( )A .382-=B .842=C .235+=D .236⨯= 11.下列说法中正确的是( )A .使式子3x +有意义的是x >﹣3B .使12n 是正整数的最小整数n 是3C .若正方形的边长为310cm ,则面积为30cm 2D .计算3÷3×13的结果是3 12.实数227,2-,21+,2π,()333,3-中,无理数的个数是( )个. A .2 B .3 C .4 D .5二、填空题13.已知21a -的平方根是3±,31a b --的算术平方根是4,那么2a b -的平方根是__________.14.实数a 、b 在数轴上所对应的点如图所示,则|3﹣b |+|a +3|+2a 的值_____.15.如图,设AB 是已知线段,经过点B 作BD AB ⊥,使12BD AB =,连接DA ,在DA 上截取DE DB =;在AB 上截取AC AE =.点C 就是线段AB 的黄金分割点.已知线段AB 的长为80cm ,则线段AC 的长为____cm .16.以下几种说法:①正数、负数和零统称为有理数;②近似数1.70所表示的准确数a 的范围是1.695 1.705a <;164±;④立方根是它本身的数是0和1;其中正确的说法有:_____.(请填写序号)17.在实数π,8754,0中,无理数的个数是________个. 18.若代数式2x x+有意义,则实数x 的取值范围是_________. 19.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________.20.=_______.三、解答题212111211-====--=2232===--(1;用含有n(n是正整)的等式表示上述变化规律;(2)利用上述变化规律计算:...+++的值.22.规定一种新运算a bad bcc d=-,如213(2)23218=⨯-⨯-=-.(1)若1xy=-,则2363xy-=________;(2)当1x=-时,求223213222x xx x-++--+--的值.23.(1(2)计算:.24.已知;a=b=(1)ab;(2)223a ab b-+;25.在数轴上点A为原点,点B表示的数为b,点C表示的数c,且已知b、c满足b1+=0,(1)直接写出b、c的值:b=______,c=_______;(2)若BC的中点为D,则点D表示的数为________;(3)若B、C两点同时以每秒1个单位长度的速度向左移动,则运动几秒时,恰好有AB=AC?26.计算下列各题:(1(2)()(3)(2【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的加减法则,乘法,除法,乘方法则计算判断即可.【详解】÷=,正确,解:∵632∴A选项不合题意;∵3515⨯=,正确,∴B选项不合题意;∵73+,无法计算,∵C选项符合题意;∵﹣2(3)-=3,正确,∴D选项不合题意;故选:C.【点睛】本题考查了二次根式的混合运算,熟记二次根式运算的基本法则是解题的关键.2.B解析:B【分析】连接DB,DF,根据三角形三边关系可得DF+BF>DB,得到当F在线段DB上时,点D到点F的距离最短,根据勾股定理计算即可.【详解】解:连接DB,DF,在△FDB中,DF+BF>DB,由折叠的性质可知,FB=CB=4,∴当F在线段DB上时,点D到点F的距离最短,在Rt △DCB 中,8BD =,此时DF=8-4=4,故选:B .【点睛】 本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 3.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.4.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;③=17322+=,故错误; ④如果点P (3-2n ,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D .【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.5.D解析:D【分析】分别求出每个数的立方根、平方根和算术平方根,再判断即可.【详解】∵1的立方根为1,∴①错误;∵4的平方根为±2,∴②正确;∵−8的立方根是−2,∴③正确; ∵116的算术平方根是14,∴④正确; 正确的是②③④,故选:D .【点睛】 本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义.第II 卷(非选择题)请点击修改第II 卷的文字说明6.A解析:A【分析】首先根据正数有两个平方根,它们互为相反数可得2120a a --+=,解方程可得1a =-,然后再求出这个正数即可.【详解】解:由题意得:2120a a --+=,解得:1a =-,213a -=-,23a -+=,则这个正数为9.故选:A .【点睛】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数. 7.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D 错误;故选:C .【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.8.A解析:A【分析】根据无理数的定义判断即可.【详解】解:A. 2.1313313331…(两个1之间依次多一个3)是无理数,符合题意;B. 0.101001-是有限小数,不是无理数,不符合题意;C. 227是分数,不是无理数,不符合题意;D. 4=-,是整数,不是无理数,不符合题意;故选:A.【点睛】本题考查了无理数的定义,解题关键是熟记无理数是无限不循环小数.9.D解析:D【分析】把已知条件变形得到x2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可.【详解】∵x,∴x﹣2∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x时,原式=3)﹣1=.故选:D.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.10.D解析:D【分析】分别计算即可.【详解】解:2=-,原式错误,不符合题意;B. 2=≠D. =故选:D .【点睛】本题考查了二次根式和立方根的运算,解题关键是熟练掌握二次根式和立方根的运算法则,准确进行计算.11.B解析:B【分析】直接利用二次根式有意义的条件以及二次根式的乘除运算法则分别计算得出答案.【详解】A 有意义的是x≥﹣3,故此选项错误;B n 是3,故此选项正确;C 、若正方形的边长为cm ,则面积为90cm 2,故此选项错误;D 、的结果是1,故此选项错误;故选:B .【点睛】本题考查了二次根式有意义的条件以及二次根式的乘除运算,正确掌握相关定义是解题的关键; 12.B解析:B【分析】根据实数分类、无理数的性质,对各个实数逐个分析,即可得到答案.【详解】实数227,1,2π,3,3-中,无理数为:1、2π,共3个;故答案为:B .【点睛】 本题考查了实数分类的知识;解题的关键是熟练掌握实数分类、无理数的性质,从而完成求解.二、填空题13.±1【分析】首先根据2a-1的平方根是±3可得:2a-1=9据此求出a的值是多少;然后根据3a+b-1的算术平方根是4可得:3a+b-1=16据此求出b的值是多少进而求出a-2b的平方根是多少即可【解析:±1【分析】首先根据2a-1的平方根是±3,可得:2a-1=9,据此求出a的值是多少;然后根据3a+b-1的算术平方根是4,可得:3a+b-1=16,据此求出b的值是多少,进而求出a-2b的平方根是多少即可.【详解】解:∵2a-1的平方根是±3,∴2a-1=9,解得a=5;∵3a+b-1的算术平方根是4,∴3a+b-1=16,∴3×5+b-1=16,解得b=2,∴a-2b=5-2×2=1,∴a-2b的平方根是:=±.1故答案为:±1.【点睛】此题主要考查了平方根、算术平方根的性质和应用.要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.14.﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案【详解】解:由数轴可得:a<﹣0<b<故|﹣b|+|a+|+=﹣b﹣(a+)﹣a=﹣b ﹣a﹣﹣a=﹣2a﹣b故答案为:﹣2a﹣b【解析:﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a0<b,故﹣b|+|ab﹣(a)﹣ab﹣a﹣a=﹣2a﹣b.故答案为:﹣2a﹣b.【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.15.【分析】根据通过勾股定理计算得AD ;结合计算得AE 从而得到AC 的值即可得到答案【详解】∵∴∵的长为80cm ∴cm ∴cm ∵∴cm ∴cm ∴cm 故答案为:【点睛】本题考查了勾股定理二次根式线段和与差的知识解析:)401 【分析】 根据BD AB ⊥、12BD AB =,通过勾股定理计算得AD ;结合DE DB =,计算得AE ,从而得到AC 的值,即可得到答案.【详解】∵BD AB ⊥ ∴90ABD ∠= ∵12BD AB =,AB 的长为80cm ∴40BD =cm∴AD ==cm∵DE DB =∴40DE =cm∴)401AE AD DE =-=cm∴)401AC AE ==cm故答案为:)401. 【点睛】本题考查了勾股定理、二次根式、线段和与差的知识;解题的关键是熟练掌握勾股定理和二次根式的性质,从而完成求解. 16.②【分析】根据有理数近似数字平方根立方根等概念即可判断【详解】解:①正有理数负有理数和零统称为有理数故原说法错误;②根据四舍五入可知近似数170所表示的准确数的范围是说法正确;③的平方根是原说法错误 解析:②【分析】根据有理数、近似数字、平方根、立方根等概念即可判断.【详解】解:①正有理数、负有理数和零统称为有理数,故原说法错误;②根据四舍五入可知,近似数1.70所表示的准确数a 的范围是1.695 1.705a <,说法正确;4=的平方根是2±,原说法错误;④立方根是它本身的数是0和±1,原说法错误;故答案为:②.【点睛】本题考查学生对概念的理解,解题的关键是正确理解有理数、近似数字、平方根、立方根等概念,本题属于基础题型.17.【分析】无理数就是无限不循环小数理解无理数的概念一定要同时理解有理数的概念有理数是整数与分数的统称即有限小数和无限循环小数是有理数而无限不循环小数是无理数由此即可判定选择项【详解】由无理数的定义可知 解析:2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】由无理数的定义可知,π故答案为:2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.且【分析】根据二次根式中的被开方数是非负数分式分母不为0列出不等式解不等式得到答案【详解】解:由题意得x+2≥0x≠0解得x≥-2且x≠0故答案为:x≥-2且x≠0【点睛】本题考查了二次根式有意义的解析:2x ≥-且0x ≠【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x≠0,故答案为:x≥-2且x≠0.【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.19.12或【分析】根据平方和立方的意义求出a 与b 的值然后代入原式即可求出答案【详解】解:∵a2=64b3=64∴a=±8b=4∴当a=8b=4时∴a+b=8+4=12当a=-8b=4时∴a+b=-8+4-解析:12或4【分析】根据平方和立方的意义求出a与b的值,然后代入原式即可求出答案.【详解】解:∵a2=64,b3=64,∴a=±8,b=4,∴当a=8,b=4时,∴a+b=8+4=12,当a=-8,b=4时,∴a+b=-8+4=-4,故答案为:12或-4【点睛】本题考查有理数,解题的关键是熟练运用有理数的运算法则,本题属于基础题型.20.【分析】设将等式的两边平方然后根据完全平方公式和二次根式的性质化简即可得出结论【详解】解:设由算术平方根的非负性可得t≥0则故答案为:【点睛】此题考查的是二次根式的化简掌握完全平方公式和二次根式的性【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+88=+=+81)=+62=1)∴=.t1.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.三、解答题21.(1)212)9【分析】(1)按照题中给出的形式直接求解即可;(2)结合(1)中总结出的规律,逐项化简,再求和即可.【详解】解:(12243===-,=22-=--故答案为:21-(2)原式1)...=++++11019==-=【点睛】本题主要考查二次根式分母有理化,能够根据题目所给出的方法进行二次根式的分母有理化是解题关键.22.(1)12;(2)7-【分析】(1)利用新定义的运算得到618xy+,将xy的值代入即可求解(2)先将x的值代入求解,再利用新定义的运算求解即可【详解】(1)2363xy-=618xy+1xy=-∴原式=()618611812xy+=⨯-+=(2)当1x=-时,223321222x xx x--++--+-=4352----=()()()()42357-⨯---⨯-=-【点睛】本题考查了新定义的计算,解题关键是能熟练运用新定义中的计算规律结合实数的运算法则求解.23.(1)5;(2)1【分析】(1)将原式化为最简二次根式,在根据二次根式的加减法则运算即可(2)按平方差公式展开,利用二次根式的性质化简,再进行计算即可【详解】(15=(2)22-=65=-1=【点睛】本题考查了二次根式的混合计算,解题关键是熟练掌握运算法则,准确计算. 24.(1)2;(2)10.【分析】(1)根据二次根式的乘法法则求出ab 即可;(2)根据二次根式的减法法则求出-a b ,根据二次根式的乘法法则求出ab ,把原式化简,把a b ab -、代入计算即可.【详解】解:5a =+b =532ab ∴==-=,a b -==∴ (1)ab =2(2)()(22223210a ab b a b ab -+=--=-=. 【点睛】本题是一道求代数式值的问题,考查了的是二次根式的减法和乘法和整式的完全平方公式,掌握二次根式的减法法则、乘法法则是解题的关键.25.(1)-1;7;(2)3;(3)运动3秒时,恰好有AB=AC .【分析】(1)根据非负数的和为零,可知绝对值和根号下的式子同时为零,可得答案; (2)根据中点坐标公式,可得答案;(3)设第x 秒时,AB=AC ,可得关于x 的方程,解方程,可得答案. 【详解】解:(1)b 1+=0,∴b+1=0,c−7=0,∴b=−1,c=7,故答案为:−1,7.(2)由中点坐标公式,得173 2-+=,∴D点表示的数为3,故答案为:3.(3)设第x秒时,AB=AC,由题意,得x+1=7−x,解得x=3,∴第3秒时,恰好有AB=AC.【点睛】本题主要考查实数与数轴,难度一般,熟练掌握绝对值和二次根式的非负性以及数轴的基础知识是解题的关键.26.(1)0;(2)【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(1=2+(﹣5)+3=0;(2)()(3)(2=32)2﹣2=9﹣﹣2=【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.。

2024八年级数学上册第二章实数测素质二次根式及其运算习题课件新版北师大版

2024八年级数学上册第二章实数测素质二次根式及其运算习题课件新版北师大版
值范围是(
D
)
A. x >2
B. x <2
C. x ≤2
D. x ≥2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
3. 下列二次根式中,是最简二次根式的是(
1


2
)
B. +
A.
C.
B
D. .
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
D
4. [2024大连月考]下列计算正确的是(
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
14. [2023西安长安区校级月考]小明做数学题时,发现


− =






=4



− =2

2
3
4


− =3


;…;按此规律,若

b 为正整数),则 a + b =
1



5
6
7
8
9






(a,

− =a
73 .

10
北师版 八年级上
第二章 实数
测素质 二次根式及其运算

(好题)初中数学八年级数学上册第二单元《实数》检测卷(有答案解析)

(好题)初中数学八年级数学上册第二单元《实数》检测卷(有答案解析)

一、选择题1.下列二次根式中,最简二次根式是( )A B C D2. )A B C .4 D .23.下列是最简二次根式的是( )A B CD 4.下列选项中,属于无理数的是( )A .πB .227-CD .05.下列各数中,介于6和7之间的数是( )A 2+B C 2 D 6.一个正方形的面积为29,则它的边长应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间7.计算))2020202022⨯的结果为( ) A .-1 B .0 C .1 D .±18.x 的取值范围是( ) A .0x ≥ B .1x ≤ C .1x ≥-D .1≥x 9.下列说法中不正确的是( )A .0是绝对值最小的实数B 2=C .3是9的一个平方根D .负数没有立方根10.在实数3.14,227-, 1.70,-π中,无理数有( ) A .2个 B .3个 C .4个 D .5个11.已知x ,则代数式x 2﹣x ﹣2的值为( )A .B .C .D .12.中,字母x 的取值范围是( ) A .x >1 B .x ≥1 C .x <1 D .x 13≤ 二、填空题13..(填“>”、“=”或“<”号)14.如果2|3|0a b ++-=,那么b a =________. 15.若最简二次根式41a -和135a b -+可以合并,则b a -=______. 16.在实数π,87,5,4,0中,无理数的个数是________个. 17.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.18.计算:188-=_____.19.如果一个数的平方根和它的立方根相等,则这个数是______.20.化简4102541025-++++=_______.三、解答题21.定义:若两个二次根式a 、b 满足a b c ⋅=,且c 是有理数,则称a 与b 是关于c 的共轭二次根式.(1)若a 与2是关于4的共轭二次根式,则a = ;(2)若23+与43m +是关于2的共轭二次根式,求m 的值.22.已知2x +3的算术平方根是5,5x +y +2的立方根是3,求x ﹣2y +10的平方根. 23.(1)计算:23(3)|21|8--+-;(2)计算:0119(3)()|13|3π-+----;(3)求下列x 的值:22516x =.24.计算与求值(1)计算:)()(0215510π-+-+-; (2)求)(2316x +=中x 的值.25.如图,一只蚂蚁从点A 沿数轴向右爬22个单位长度后到达点B ,点A 表示的数是2-,设点B 所表示的数为m .(1)求m 的值;(2)求2222m m -+26.计算:11|(2)2π-⎛⎫--+ ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据最简二次根式的概念判断即可.【详解】解:A,是最简二次根式;B3,故不是最简二次根式;C=,故不是最简二次根式;D,故不是最简二次根式;故选:A.【点睛】本题考查了最简二次根式的定义,熟记定义,并能灵活进行化简,判断是解题的关键. 2.D解析:D【分析】=(a≥0,b>0)进行计算即可.【详解】=2,故选:D.【点睛】此题主要考查了二次根式的除法,关键是注意结果要化成最简二次根式.3.A解析:A【分析】根据最简二次根式的定义逐项分析即可.【详解】,是最简二次根式;=2,故不是最简二次根式,不符合题意;5=,故不是最简二次根式,不符合题意;D.=,故不是最简二次根式,不符合题意; 故选A.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.4.A解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数; B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.5.B解析:B【分析】根据夹逼法逐项判断即得答案.【详解】解:A 、47<<425∴<<,故本选项不符合题意;B 、∵<<67∴<<,故本选项符合题意;C 、36<425∴<<,故本选项不符合题意;D 、25<<56∴<<,故本选项不符合题意.故选:B .【点睛】本题考查了无理数的估算,属于常考题型,掌握夹逼法解答的方法是关键.6.C【分析】一个正方形的面积为29“夹逼法”的近似值,从而解决问题.【详解】解:∵正方形的面积为29,∴,5<6.故选:C .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.7.C解析:C【分析】利用二次根式的运算法则进行计算,即可得出结论.【详解】解:))2020202022⨯ 202022)⎡⎤⎦⎣=2020222⎡⎤=-⎣⎦ 2020(1)=-1=.故选:C .【点睛】本题考查了二次根式的运算,熟练掌握二次根式的运算法则,并能结合乘法公式进行简便运算是解答此题的关键.8.D解析:D【分析】利用二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.9.D解析:D【分析】根据实数,平方根和立方根的概念逐一判断即可.【详解】0的绝对值是0,负数的绝对值为正数,正数的绝对值为正数,正数大于0,故A正确;2,故B正确;9的平方根是3±,故C正确;任何数都有立方根,故D错误;故选D.【点睛】本题考查了实数的概念,求一个数的平方根或立方根,熟练掌握平方根和立方根的概念是本题的关键.10.A解析:A【分析】由于无理数就是无限不循环小数,利用无理数的定义即可判断得出答案.【详解】=-,3∴3.14,22-,- 1.7,0都是有理数,7-π是无理数,共2个,故选:A.【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.11.D解析:D【分析】把已知条件变形得到x2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可.【详解】∵x,∴x﹣2∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x时,原式=3)﹣1=.故选:D.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.12.B解析:B【分析】根据二次根式有意义的条件求解即可;【详解】由题意得,x﹣1≥0,解得x≥1,故选:B.【点睛】本题考查了二次根式有意义的条件,正确掌握知识点是解题的关键;二、填空题13.【分析】估算的大小与3比较即可【详解】解:∵4<5<9∴2<<3则<3故答案为:<【点睛】本题考查了实数大小比较熟练掌握运算法则是解本题的关键解析:<【分析】3比较即可.【详解】解:∵4<5<9,∴23,,故答案为:<.【点睛】本题考查了实数大小比较,熟练掌握运算法则是解本题的关键.14.【分析】因为一个数的算术平方根为非负数一个数的绝对值为非负数由几个非负数的和为零要求每一项都为零即=0∣b-3∣=0由此求出ab即可解答【详解】解:∵∴=0∣b-3∣=0∴∴故答案为:-8【点睛】本-解析:8因为一个数的算术平方根为非负数,一个数的绝对值为非负数,由几个非负数的和为零,=0,∣b -3∣=0,由此求出a 、b 即可解答.【详解】解:∵|3|0b -=, ∴=0,∣b -3∣=0,∴2a =-,3b =, ∴()328b a =-=-.故答案为:-8.【点睛】本题考查了算术平方根和绝对值的非负性,整数指数幂,求出a ,b 的值是解题关键. 15.【分析】由最简二次根式的定义以及同类二次根式的定义先求出ab 的值然后进行计算即可得到答案【详解】解:∵最简二次根式和可以合并∴和是同类二次根式∴∴∴;故答案为:【点睛】本题考查了最简二次根式的定义以 解析:19【分析】由最简二次根式的定义,以及同类二次根式的定义,先求出a 、b 的值,然后进行计算,即可得到答案.【详解】解:∵和 ∴和∴124135a a b -=⎧⎨-=+⎩, ∴32a b =⎧⎨=⎩, ∴2139b a --==; 故答案为:19. 【点睛】 本题考查了最简二次根式的定义,以及同类二次根式的定义,解题的关键是熟记所学的定义,正确求出a 、b 的值.16.【分析】无理数就是无限不循环小数理解无理数的概念一定要同时理解有理数的概念有理数是整数与分数的统称即有限小数和无限循环小数是有理数而无限不循环小数是无理数由此即可判定选择项【详解】由无理数的定义可知【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】由无理数的定义可知,π故答案为:2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.17.①④⑤【分析】根据题意表示大于x 的最小整数结合各项进行判断即可得出答案【详解】解:①根据表示大于x 的最小整数故正确;②应该等于故错误;③当x=05时故错误;④根据定义可知但不会超过x+1所以成立故正 解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键. 18.【分析】先化简二次根式再合并同类二次根式即可【详解】故答案为:【点睛】本题主要考查二次根式的化简以及同类二次根式的合并掌握二次根式的化简以及同类二次根式的合并方法是解题关键【分析】先化简二次根式,再合并同类二次根式即可.【点睛】本题主要考查二次根式的化简以及同类二次根式的合并,掌握二次根式的化简以及同类二次根式的合并方法是解题关键.19.0【解析】试题解析:0【解析】试题平方根和它的立方根相等的数是0.20.【分析】设将等式的两边平方然后根据完全平方公式和二次根式的性质化简即可得出结论【详解】解:设由算术平方根的非负性可得t≥0则故答案为:【点睛】此题考查的是二次根式的化简掌握完全平方公式和二次根式的性【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+8=+=+8=+81)=+62=1)∴=.t1.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.三、解答题m=-21.(1)2)2【分析】(1)根据共轭二次根式的定义列等式可得a 的值;(2)根据共轭二次根式的定义列等式可得m 的值.【详解】解:(1)a 2是关于4的共轭二次根式,4=,a ∴==(2)23+与4+是关于2的共轭二次根式,(2)2∴++=,4∴+==4=-2m ∴=-.【点睛】本题考查了新定义共轭二次根式的理解和应用,并会用二次根据的性质进行计算. 22.±9【分析】根据立方根与算术平方根的定义得到5x +y +2=27,2x +3=25,则可计算出x =11,y =﹣30,然后计算x ﹣2y +10后利用平方根的定义求解.【详解】解:因为2x +3的算术平方根是5,5x +y +2的立方根是3,∴23255227x x y +=⎧⎨++=⎩解得:1130x y =⎧⎨=-⎩, ∴x ﹣2y +10=81,∴x ﹣2y +10的平方根为:9=±.【点睛】本题主要考查了算术平方根,平方根与立方根,熟记相关定义是解答本题的关键.23.(1)2-2)2;(3)45x =±【分析】(1)本题涉及二次根式化简、绝对值、立方根3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)本题涉及算术平方根、零指数幂、负整数指数幂、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(3)系数化为1,再开平方求解即可.【详解】解:(1)21|-=)()31+2--=32-=2-(2011)()|13π---3131=+-+-2=-(3)系数化为1得:21625x =, 解得:45x =±. 【点睛】本题主要考查了二次根式、零指数幂、负整数指数幂、立方根等知识点,解决此类题目的关键是熟练掌握负整数指数幂、二次根式、立方根等考点的运算.24.(15;(2)1x =或7x =-【分析】(1)先进行绝对值、开方、0指数运算,再相加即可;(1)先开方,再解一元一次方程即可.【详解】解:(1))01π+1515=++= (2))(2316x +=开方得,34x +=±, 343-4x x +=+=或,解得,1x =或7x =-.【点睛】本题考查了绝对值、平方根和0指数,掌握基本知识点,熟练运用绝对值法则、0指数的意义和开平方运算是解题关键.25.(1;(2)【分析】(1)根据题意得出B 表示的数,确定出m 的值即可;(2)把m 的值代入,然后根据绝对值的性质进行计算即可得解.【详解】(1)根据题意得:m ==∴m;(2)当m =2m m -+=+===【点睛】 本题考查了数轴,绝对值的性质,二次根式的加减,理解数轴上的数向右移动加是解题的关键.26.1.【分析】利用二次根式的性质、绝对值的性质和负整数指数幂、零指数幂逐项计算即可求解.【详解】101|(2)2π-⎛⎫--+ ⎪⎝⎭12=+-+1=.【点睛】本题考查实数的混合运算,掌握二次根式的性质、绝对值的性质和负整数指数幂是解题的关键.。

(好题)初中数学八年级数学上册第二单元《实数》检测卷(答案解析)

(好题)初中数学八年级数学上册第二单元《实数》检测卷(答案解析)

一、选择题1.下列式子是最简二次根式的是( )A .2B .4C .12D .122.下面是一个按某种规律排列的数表,那么第7行的第2个数是:( ) 第1行1 第2行2 3 2 第3行5 6 7 22 3 第4行10 11 23 13 14 15 4 … …A .37B .38C .39D .210 3.实数316,027,40.10.31331333142π-⋯,,,,(每两个1之间依次增加一个3),其中无理数共有( ) A .2个 B .3个C .4个D .5个 4.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .65.如图,长方形的长为3,宽为2,对角线为OB ,且OA OB =,则下列各数中与点A 表示的数最接近的是( )A .-3.5B .-3.6C .-3.7D .-3.8 6.下列运算中正确的是( ) A 623=B .233363+=C .826-=D .(21)(21)3+-=7.一个正方体的水晶砖,体积为380cm ,它的棱长大约在( )A .45cm cm -之间B .67cm cm -之间C .78cm cm -之间D .89cm cm -之间 8.化简58得( ) A .58 B .104 C .5 D .5229.下列数中,比3大的实数是( )A .﹣5B .0C .3D .210.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近﹣10的是( )A .点MB .点NC .点PD .点Q11.给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是±2.其中,正确的是( ) A .①② B .①②③ C .②③ D .③12.下列说法中正确的是( ) A .81的平方根是9 B 164C 3a -3aD .64的立方根是4±二、填空题13.已知a ﹣1=20202+2021223a -=__.14.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______15.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.16.已知223y x x =--,则xy 的值为__________.17.26a +与33-a 可以等于___________.(写出一个即可)18.2x +有意义,则实数x 的取值范围是_________. 19.定义运算“@”的运算法则为:xy 4+,则2@6 =____.20.有一个正方体的集装箱,原体积为364m ,现准备将其扩容以盛放更多的货物,若要使其体积达到3125m ,则它的棱长需要增加__________m .三、解答题21.(123-+.(2)先化简,再求值:()()()2212352x y x y x y y x ⎛⎫⎡⎤+-+--÷- ⎪⎣⎦⎝⎭,其中4x =,2y =.22.(2-.23.(3++-.24.(1)计算:﹣20201(2)求x 的值:23x ﹣10=6.25.计算:(1)()222--(2)()()2215105x y xy xy -÷-(3)()()()2321x x x -+--26.(1;(2)计算:【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据最简二次根式的定义即可求出答案.【详解】解:A 是最简二次根式,A 正确,故符合题意;B =2不是最简二次根式,B 错误,故不符合题意;C =C 错误,故不符合题意;D 2不是最简二次根式,D 错误,故不符合题意; 故选:A .【点睛】本题考查二次根式,解题的关键是正确理解最简二次根式的定义.2.B解析:B【分析】根据观察,可得规律(n-1)最后一个数是(n-1),可得第n 行的第二个数的算术平方根【详解】……第n第7行的第2故答案为:B .【点睛】本题是通过算术平方根的变化探究数字变化规律,观察得出规律是解题关键. 3.A解析:A 【分析】无限不循环小数是无理数,根据定义解答.【详解】符合无理数定义的有:0.3133133314π-⋯, ,故选:A .【点睛】此题考查无理数定义,熟记定义是解题的关键. 4.A解析:A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误;实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 5.B解析:B【分析】先根据勾股定理求得A 点坐标,再利用二分法估算即可得出比较接近-3.6.【详解】解:∵长方形的长为3,宽为2,∴OA OB ==∴A 所表示的数为∵23.612.9613=<,23.713.6913=>, ∴-3.6和-3.7之间,∵23.6513.322513=>, ∴-3.6,故选:B .【点睛】本题考查勾股定理,算术平方根的估算.掌握二分法估算是解题关键.6.A解析:A【分析】根据二次根式的除法法则对A 进行判断;根据二次根式的加减法对B 、C 进行判断;利用二次根式的乘法法则对D 进行判断.【详解】A =B 、=C ==D 、221)11=-=,原计算错误,不符合题意;故选:A .【点睛】本题考查了二次根式的加减乘除运算,解题的关键是熟悉二次根式的四则运算方法.7.A解析:A【分析】【详解】80cm,解:∵正方体的水晶砖,体积为3∴3,∵<<∴<<,45故选:A.【点睛】本题考查了立方根的估算,找到两个连续整数的立方,一个大于80,一个小于80是解题关键.8.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】===,4故选:B.【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.9.C解析:C【详解】≈,A,B,D选项都比1.732小,只有1.732故选C.10.B解析:B【分析】根据无理数的估值方法进行判断即可;【详解】∵-3.16,∴点N最接近故选:B .【点睛】本题考查了实数与数轴,无理数的估算,熟练掌握知识点是解题的关键;11.D解析:D【分析】分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可.【详解】解:①∵(±1)2=1,∴一个数的平方等于1,那么这个数就是1,故①错误; ②∵42=16,∴4是16的算术平方根,故②错误,③平方根等于它本身的数只有0,故③正确,④8的立方根是2,故④错误.故选:D .【点睛】本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键.12.C解析:C【分析】根据平方根,立方根,算术平方根的定义解答即可.【详解】A .81的平方根为9±,故选项错误;B 2,故选项错误;C ,故选项正确;D .64的立方根是4,故选项错误;故选:C .【点睛】本题考查了平方根,立方根,算术平方根的定义,熟练掌握是解题关键.二、填空题13.4041【分析】把代入得到根据完全平方公式得到原式==再根据完全平方公式和二次根式的性质化简即可求解【详解】解:∵∴=======4041故答案为:4041【点睛】本题考查完全平方公式和二次根式解题解析:4041【分析】把22120202021a -=+得到原式据完全平方公式和二次根式的性质化简即可求解.【详解】解:∵22120202021a -=+,∴=======4041,故答案为:4041.【点睛】本题考查完全平方公式和二次根式,解题的关键是用整体代入的思想进行化简.14.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键 解析:20212022 【分析】 根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可.【详解】解:原式=11111111202111223342021202220222022-+-+-++-=-=. 故答案为:20212022. 【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键. 15.4【分析】首先根据平方根的定义求出m 值再根据立方根的定义求出n 代入-n+2m 求出这个值的算术平方根即可【详解】解:∵一个正数的两个平方根分别是m+3和2m-15∴m+3+2m-15=0解得:m=4∵【分析】首先根据平方根的定义,求出m值,再根据立方根的定义求出n,代入-n+2m,求出这个值的算术平方根即可.【详解】解:∵一个正数的两个平方根分别是m+3和2m-15,∴m+3+2m-15=0,解得:m=4,∵n的立方根是-2,∴n=-8,把m=4,n=-8代入-n+2m=8+8=16,所以-n+2m的算术平方根是4.故答案为:4.【点睛】本题考查了平方根、算术平方根、立方根.解题的关键是掌握平方根、算术平方根、立方根的定义,能够利用定义求出m、n值,然后再求-n+2m的算术平方根.16.6【分析】根据二次根式有意义的条件可得关于x的不等式组进而可求出xy 然后把xy的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:6【点睛】本题考查了二次根式有意义的条解析:6【分析】根据二次根式有意义的条件可得关于x的不等式组,进而可求出x、y,然后把x、y的值代入所求式子计算即可.【详解】由题意得:2020xx-≥⎧⎨-≥⎩,所以x=2,当x=2时,y=3,所以236xy=⨯=.故答案为:6.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.17.3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可【详解】解:∵二次根式与是同类二次根式∴可设则∴解得故答案为:3(答案不唯一)【点睛】本题考查的是同类二次根式的概念把几个二次根式化为最简二解析:3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可.解:∵与-∴==∴2612a +=,解得3a =,故答案为:3(答案不唯一).【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.18.且【分析】根据二次根式中的被开方数是非负数分式分母不为0列出不等式解不等式得到答案【详解】解:由题意得x+2≥0x≠0解得x≥-2且x≠0故答案为:x≥-2且x≠0【点睛】本题考查了二次根式有意义的解析:2x ≥-且0x ≠【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x≠0,故答案为:x≥-2且x≠0.【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.19.4【分析】把x=2y=6代入x@y=中计算即可【详解】解:∵x@y=∴2@6==4故答案为4【点睛】本题考查了有理数的运算能力注意能由代数式转化成有理数计算的式子解析:4【分析】把x=2,y=6代入中计算即可.【详解】解:∵,∴=,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子.20.1【分析】先根据正方体的体积得出其棱长再求出体积达到125m3时的棱长进而可得出结论【详解】解:设正方体集装箱的棱长为a ∵体积为64m3∴a==4m ;设体积达到125m3的棱长为b 则b==5m ∴b-解析:1【分析】先根据正方体的体积得出其棱长,再求出体积达到125m 3时的棱长,进而可得出结论.【详解】解:设正方体集装箱的棱长为a ,∵体积为64m 3,∴=4m ;设体积达到125m 3的棱长为b ,则,∴b-a=5-4=1(m ).故答案为:1.【点睛】本题考查的是立方根,熟知正方体的体积公式是解题的关键.三、解答题21.(1)1-+;(2)44x y -,8.【分析】(1)先计算算术平方根和立方根,在加减即可;(2)先按整式运算法则化简,再代入求值.【详解】解:(1)原式233(32)=-+-+1=-+(2)原式()222221443352x xy y x xy xy y y x =++--+--⎛⎫⎡⎤ ⎪⎣⎦⎝÷⎭-()222221443252x xy y x xy y y x ⎛⎫=++--+-÷- ⎪⎝⎭()2122442x xy x x y ⎛⎫=-+÷-=- ⎪⎝⎭把4x =代入,原式44428=⨯-⨯=.【点睛】本题考查了立方根和算术平方根,整式的化简求值,解题关键是熟练运用二次根式和整式运算法则进行计算.22.1-.【分析】二次根式的混合运算,先算乘除,然后算加减.(2-+(45)=-3545=--+1=-.【点睛】本题考查二次根式的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 23.10-【分析】根据二次根式运算法则计算即可.【详解】解:原式=2253+-5924=+-1424=-10=-.【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运用算法则进行计算,注意:平方差公式的运用.24.(1)2)x=2.【分析】(1)根据实数的混合运算的基本顺序依次计算即可;(2)根据立方根的定义求解即可.【详解】(1)原式(2)∵23x ﹣10=6,∴23x =16,∴3x =8,∴x=2.【点睛】本台考查了实数的混合运算和立方根的定义,熟练掌握混合运算的基本顺序和立方根的定义是解题的关键.25.(13;(2)32x y -+;(3)7x -【分析】(1)同时计算乘方、绝对值、算术平方根及开立方,再计算加减法;(2)用多项式除以单项式法则计算;(3)先根据多项式乘以多项式及完全平方公式计算,再合并同类项即可.(1)解:原式4232=--3=;(2)解:原式32x y =-+(3)解:原式2223621x x x x x =+---+-7x =-.【点睛】此题考查实数的混合运算及整式的混合运算,掌握实数的乘方、绝对值、算术平方根及开立方、加减法运算,整式的多项式乘以多项式及完全平方公式、多项式除以单项式法则是解题的关键.26.(1)6;(2【分析】(1)根据二次根式的乘法法则计算;(2)先化简二次根式,根据二次根式的减法法则计算.【详解】解:(1)原式23=⨯,236=⨯=;(2)原式==【点睛】此题考查二次根式的计算,掌握二次根式的乘法计算法则、减法计算法则是解题的关键.。

2024~2025学年八年级数学上册第二章实数单元检测[含答案]

2024~2025学年八年级数学上册第二章实数单元检测[含答案]

1的结果是( )A .2BC .D .2.有一个数值转换器,原理如图所示.当输入的x 为-512时,输出的y 是 ( )A .-2B .C .D .3.如图,实数3在数轴上的大致位置是( )A .点AB .点BC .点CD .点D4a 的取值为( )A .0B .12-C .﹣1D .15用不等号连接起来为( )A B C D 6.已知有理数a 、b 、c 在数轴上的位置如图所示,试化简:2a a c b a b c -++--+-.( )A .-2bB .-bC .-2aD .a 7.最简二次根式与是同类二次根式,则a 为( )A .6B .2C .3或2D .18.下列关于实数a 说法正确的是( )A .a 的相反数是-aB .a 的倒数是-aC .a 的绝对值是±aD.a的平方是正数9.下列说法:①5是25的算术平方根;②56是2536的一个平方根;③2(4)-的平方根是4-;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图为张小亮的答卷,他的得分应是()姓名张小亮得分?填空(每小题20分,共100分)①1-的绝对值是1 .②2的倒数是2-.③2-的相反数是2 .④1的立方根是1 .⑤1-和7的平均数是3 .A.100分B.80分C.60分D.40分11=.12.计算:2-=.13=x满足14.若0x-=,则1y x+的值为.15.如图,从一个大正方形中截去面积分别为8和18的两个小正方形,则图中阴影部分面积为.16.如图,已知Rt△ABC中,BC=1,以点A为圆心,AC长为半径画弧,交数轴于点D,则点D表示的数为.17.对于任意不相等的两个实数a 、b ,定义一种运算如下:a ⊗,如图3⊗8⊗5= .18.观察下列各式:2225(23)+=++=++=,2228(17)121(1+=++=++´=,…….请运用以上的方法化简= .19.计算:(2)(3)+)21.20.已知A =-B =,12C =-A 、B 、C 是可以合并的最简二次根式,求a 、b 及A B C +-的值.21.秦九韶(1208年~1268年),字道古,南宋著名数学家.与李冶、杨辉、朱世杰并称宋元数学四大家,他精研星象、音律、算术、诗词、弓剑、营造之学,他于1247年完成的著作《数学九章》中关于三角形的面积公式与古希腊几何学家海伦的成果并称“海伦−秦九韶公式”,它的主要内容是,如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,S 为三角形的面积,那么S =.(1)如图在ABC V 中,5BC =,6AC =,7AB =,请用上面的公式计算ABC V 的面积;(2)一个三角形的三边长分别为a ,b ,c ,15s p ==,10a =,求bc 的值,22.问题探究:因为21)3=-1,=因为21)3=+1,=因为2(27=-2=请你根据以上规律,结合你的经验化简下列各式:;23.[材料一]两个含有二次根式且非零的代数式相乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式.2=1)1)2+´-=,11互为有理化因式.(1的有理化因式是______(写出一个即可),2_______(写出一个即可);[材料二]如果一个代数式的分母中含有二次根式,通常可将分子、分母同乘分母的有理化因式,使分母中不含根号,这种变形叫做分母有理化.(2+[材料三]与分母有理化类似,将代数式分子、分母同乘分子的有理化因式,从而消去分子中的根式,这种变形叫做分子有理化.=(31.C故选C.2.D【分析】把-512按给出的程序逐步计算即可.【详解】由题中所给的程序可知:把-512取立方根,结果为-8,因为-8是有理数,所以再取立方根为-2,因为-2是有理数,所以再取立方根为因为.故选d.【点睛】本题考查了立方根,此类题目比较简单,解答此类题目的关键是弄清题目中所给的运算程序.3.C【详解】分析:根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质,可得答案.详解:由3<4,得﹣4<﹣<﹣3,﹣1<3﹣<0,故选C.点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出的范围是解题关键.4.B【详解】分析:二次根式一定是非负数,则最小值即为0,列方程求解即可.详解:0³,=时为最小值.即:210a+=,∴12 a=-.故选B.点睛:本题考查了二次根式有意义的条件.5.D【详解】≈1.414=1.380,1.380<1.414<1.442,故选D.6.A【详解】根据数轴上点的位置得:a<b<0<c,且|b|<|c|<|a|,∴-a>0,a+c<0,b−2a>0,b−c<0,则原式=-a-( a+c)-( b−2a)-(b−c)=-a-a-c-b+2a-b+c=-2b,故选A.7.B【详解】由题意可得a2+3=5a−3,解得a=2或a=3;当a=3时,a2+3=5a−3=12不是最简根式,因此a=3不合题意,舍去;因此a=2.故选B.8.A【详解】A.a的相反数是−a,故A正确;B.a的倒数是1a,故B错误;C.|a|是非负数,故C错误;D.a的平方是非负数,故D错误;故选A.9.C【分析】根据平方根和算术平方根、立方根的意义,逐一判断即可.【详解】①5是25的算术平方根,正确;②56是2536的一个平方根,正确;③()24-的平方根是4±,不正确;④立方根和算术平方根都等于自身的数是0和1,正确.故选C.【点睛】此题主要考查了平方根、算术平方根、立方根的意义,熟练掌握概念是解题关键. 10.B【分析】根据绝对值、倒数、相反数、立方根以及平均数进行计算即可.【详解】解:−1的绝对值是1,2的倒数是12,−2的相反数是2,1的立方根为1,−1和7的平均数是3,答对了4题,故小亮得了80分,故选B .【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.11= =【点睛】本题主要考查二次根式的分母有理化,利用平方差公式进行分母有理化计算是解题关键.12【分析】先将2化成,再运用平方差公式计算,从而可得解.【详解】解:2==22éù-ëû【点睛】此题主要考查了二次根式的混合运算,熟练运用乘法公式是解答此题的关键.13.2≤x<3【分析】因为二次根式的除法法则)0,0a b =³>,=:20,30-³->x x ,解得:23x £<.=,根据二次根式除法法则可得:2030x x -³ìí->î,解得:23x £<.故答案为:23x £<.【点睛】本题主要考查二次根式的除法法则,解决本题的关键是要熟练掌握二次根式除法法则.14.12-【详解】∵,∴x−y=0,y+2=0,解得:x=-2,y=-2.∴x y+1=(-2)-2+1=12-.故答案为12-.15.24【分析】此题考查了二次根式的应用,利用二次根式化简求出两个小正方形的边长,得到大正方形的边长,求出大正方形的面积,即可得到阴影面积,正确掌握二次根式的化简是解题的关键.==,∴大正方形的边长为=,∴大正方形的面积为(250=,∴图中阴影部分面积为5081824--=故答案为24.16.【详解】根据勾股定理可知D 点的坐标为故答案为点睛:此题主要考查了实数与数轴的对应关系,解题关键是先根据勾股定理求出AC=AD,.17【详解】根据新定义得:8⊗=.18+【分析】本题考查了复合二次根式的化简,完全平方公式的应用;按照题中提供的方法进行化简即可.===+.19.(2)6(3)1+(4)4【分析】本题主要考查了二次根式的混合计算:(1)先化简二次根式,再根据二次根式的加减计算法则求解即可;(2)根据二次根式的乘除混合计算法则求解即可;(3)先计算二次根式乘除法,再计算加减法即可;(4)先计算二次根式乘法,再计算加减法即可.【详解】(1==(2)解:==6=;(3)解:22=-32=-+1=+(4)2113=-31=-4=.20.1a =,45b =-,A B C +-=【分析】由A 、B 、C 是可以合并的最简二次根式可得A 、B 、C 的被开方数相等,由此可得关于a 、b 的方程,解出a 、b 的值后,即可求出A B C +-的值.【详解】解:∵A =-,B =C =A 、B 、C 是可以合并的最简二次根式,∴ 131a a +=-.∴1a =,则A =-B ,且()1012b +=.∴45b =-,则C =故A B C +-=-=【点睛】本题考查了最简二次根式和同类二次根式的定义以及合并同类二次根式的法则,正确理解题意,得出关于a 、b 的方程是求解的关键.21.(1)(2)78bc =【分析】本题考查二次根式的应用,解答本题的关键是明确题意,熟悉掌握海伦-秦九韶公式求三角形的面积.(1)根据题意,了解海伦-秦九昭公式,根据具体的数字先计算p 的值,然后再代入公式,计算三角形的面积即可;(2)根据2a b c p ++=得以得到20b c +=,再根据面积可以得到3002253bc -+=,计算即可.【详解】(1)由题意,18922BC AC AB p ++===,∴S ===.即ABC V 的面积为;(2)由题意,101522a b c b c p ++++===,∴20b c +=,∵S p ==,∴15S ==∴()()15153b c --=.∴()152253bc b c -++=,即3002253bc -+=∴78bc =.22.12+【分析】(1)因为22523=+=+,且2=为完全平方式,进一步因式分解,化简得出答案即可;(2)因为229112442æö=+=+ç÷èø122=´方式,进一步因式分解,化简得出答案即可.【详解】(112.【点睛】此题考查活用完全平方公式,把数分解成完全平方式,进一步利用二次根式的性质化简,注意在整数分解时参考后面的二次根号里面的数值.23.(1,2;(2)1;(3>【分析】本题考查分母有理化,估算无理数的大小及规律探索问题,熟练掌握分母有理化的步骤及方法是解题的关键.(1)根据有理化因式的定义即可求得答案;(2)根据所得规律计算即可;(3==【详解】(1)解:5=,;∵((22431´=-=,∴2的有理化因式是2+;,2;(2+1=-K1=-1=1=;(3>.理由如下:====,<<,>。

八年级数学(上)第二章《实数》测试题

八年级数学(上)第二章《实数》测试题

八年级数学(上)第二章《实数》复习题1、3的平方根是 ;16的算术平方根是 ;8的立方根是 ;327-= 。

2、9的算术平方根是 ;–1的立方根是 ,271的立方根是 , 9的立方根是 。

3、2的相反数是 ,倒数是 , -36的绝对值是 。

4、37-的相反数是 ;绝对值等于3的数是 ;3的倒数是 。

5、比较大小:;310。

-2; 215- 21;112 53。

6、=-2)4( ;=-33)6( ; 2)196(= 。

7、估计60的大小约等于 或 (误差小于1)。

8、若03)2(12=-+-+-z y x ,则z y x ++= 。

9、化简:=-2)3(π 。

若1<x <4,则化简()()2214---x x = ; 10、如图,在网格图中的小正方形边长为1,则图中的ABC ∆的面积等于 。

11、如图,图中的线段AE 的长度为 。

12、如上图,小正方形边长为1,线段=AB ,=CD ,EF = 。

13、 已知a 、b 为两个连续的整数,且a b <,则a b += .14、一个正数的平方根为m -2与63+m ,则=m ,这个正数是 .15、要使式子2-x 有意义,则x 的取值范围是。

16、已知:若1.9106.042≈,±≈ .17、有一个数值转换器,原理如图所示:当输入的x =64时,输出的y 等于( )A .2B .8C .D .18、下列无理数中,在-2与1之间的是( )A .-B .-C .D .19、满足53<<-x 的整数x 是( )A 、3,2,1,0,1,2--B 、3,2,1,0,1-C 、3,2,1,0,1,2--D 、2,1,0,1-215-20、下列计算结果正确的是( )A 、066.043.0≈ B 、30895≈ C 、4.602536≈ D 、969003≈21、下列各式中,正确的是( )A 、2)2(2-=- B 、9)3(2=- C 、 393-=- D 、39±=± 22、求下列各式的值:①44.1; ②3027.0-; ③610-; ④25241+; ⑤327102---.23、化简: ①12 ②3221 ③81 ④23 ⑤346 ⑥5.424、计算:①5312-⨯ ②2)352(- ③2)75)(75(++-⑤8145032-- ⑥)31)(21(-+ ⑦0)31(33122-++⑧862⨯-82734⨯+ ⑨21418122-+- ⑩284)23()21(01--+-⨯-25、解方程:①2542=x ②27)1(32=-x ; ③01258133=+x26、已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值。

(典型题)初中数学八年级数学上册第二单元《实数》测试(包含答案解析)

(典型题)初中数学八年级数学上册第二单元《实数》测试(包含答案解析)

一、选择题1.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .14 2.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .6 3.已知实数x 、y 满足|x -4|+8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 4.下列实数227,3π,3.14159,9-,39,-0.1010010001…….(每两个1之间依次多1个0)中无理数有( )A .1个B .2个C .3个D .4个5.如x 为实数,在“(31)-□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A .31-B .31+C .33D .13-6.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 7.下列说法中正确的是( ) A .25的值是±5B .两个无理数的和仍是无理数C .-3没有立方根.D .22-a b 是最简二次根式.8.实数a 、b 在数轴上的位置如图所示,那么()2a b a b -++的结果是( )A .2aB .2bC .2a -D .2b - 9.下列说法正确的是( )A 5B .55C .2<5<3D .数轴上不存在表示5的点10.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近﹣10的是( )A .点MB .点NC .点PD .点Q11.已知x 5,则代数式x 2﹣x ﹣2的值为( ) A .5B .5 C .5D .512.下列运算正确的是( )A .(x +y )2=x 2+y 2B .(﹣12x 2)3=﹣16x 6C .215-=125D 2(5)-=5二、填空题13.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.14.3x -+|2x ﹣y |=0,那么x ﹣y =_____.15.一个数的算术平方根是6,则这个数是_______,它的另一个平方根是_________. 16.计算((2323⨯+的结果是_____.17.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.18.已知b>032a b -=_____.19.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.20.已知:15-=m m,则221m m -=_______. 三、解答题 21.计算.(121483230(223)5; (2)22021021(1)(2)(4)362π-⎛⎫---⨯- ⎪⎝⎭22.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.23.计算:21()|12-24.计算:(1))11(2142⎛⎫⨯-- ⎪⎝⎭25.计算:(1(2)2|1(2)+--26.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据2ndf 键是功能转换键列算式,然后解答即可.【详解】14==. 故选:D .【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf 键的功能. 2.A解析:A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 3.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x 与y 的值.由于没有说明x 与y 是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B .【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.4.C解析:C【分析】根据无理数的概念即可判断.【详解】解:,无理数有:3π,-0.1010010001…….(每两个1之间依次多1个0),共有3个. 故选:C .【点睛】 本题考查了无理数.解题的关键是熟练掌握无理数的概念.5.C解析:C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意.故选:C .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键. 6.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.7.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.8.D解析:D【分析】由数轴可得到0b a <<a b =+和绝对值的性质,即可得到答案.【详解】解:根据题意,则 0b a <<,∴0a b ->,0a b +<,∴a b -=a b a b -++=a b a b ---=2b -;故选:D .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是掌握所学的知识,正确得到0b a <<.9.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D错误;故选:C.【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.10.B解析:B【分析】根据无理数的估值方法进行判断即可;【详解】∵-3.16,∴点N最接近故选:B.【点睛】本题考查了实数与数轴,无理数的估算,熟练掌握知识点是解题的关键;11.D解析:D【分析】把已知条件变形得到x2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可.【详解】∵x,∴x﹣2∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x时,原式=3)﹣1=.故选:D.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.12.D解析:D【分析】直接利用积的乘方运算法则以及负整数指数幂的性质和二次根式的性质、完全平方公式分别判断得出答案.【详解】解:A 、(x +y )2=x 2+2xy +y 2,故此选项错误;B 、(﹣12x 2)3=﹣18x 6,故此选项错误; C 、215-=25,故此选项错误;D 5,故此选项正确;故选:D .【点睛】本题考查了积的乘方、负整数指数幂、二次根式的性质、完全平方公式,解题关键是熟知这些性质,并能准确应用.二、填空题13.5【分析】由绝对值和算术平方根的非负性求出ab 所有的可能值即可得到答案【详解】解:∵且均为整数又∵∴可分为以下几种情况:①解得:;②解得:或;③解得:或;∴符合题意的有序数对共由5组;故答案为:5【 解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2=,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0=解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.14.﹣3【分析】先根据非负数的性质列出方程组求出xy 的值进而可求出x ﹣y 的值【详解】解:∵+|2x ﹣y|=0∴解得所以x ﹣y =3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x、y的值,进而可求出x﹣y的值.【详解】解:∵+|2x﹣y|=0,∴3020xx y-=⎧⎨-=⎩,解得36 xy=⎧⎨=⎩.所以x﹣y=3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x、y的二元一次方程组,求出x、y的值是解题关键.15.-6【分析】根据正数的平方根有两个它们互为相反数进行解答【详解】解:∵∴这个数是36∵一个正数的两个平方根互为相反数这个数的算术平方根为6∴它的另一个平方根是6的相反数即-6故答案为:36-6【点睛解析:-6【分析】根据正数的平方根有两个,它们互为相反数进行解答.【详解】解:∵26=36,∴这个数是36∵一个正数的两个平方根互为相反数,这个数的算术平方根为6,∴它的另一个平方根是6的相反数,即-6.故答案为:36,-6.【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.16.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431-=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.17.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴ 解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.18.【分析】先由二次根式的被开方数为非负数得出≥0结合已知条件b >0根据有理数乘法法则得出a≤0再利用积的算术平方根的性质进行化简即可【详解】解:∵≥0b >0∴a≤0故答案为:【点睛】本题主要考查了二次解析:-【分析】先由二次根式的被开方数为非负数得出32a b -≥0,结合已知条件b >0,根据有理数乘法法则得出a≤0,再利用积的算术平方根的性质进行化简即可.【详解】解:∵32a b -≥0,b >0,∴a≤0,a =⋅=-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,难度适中,得出a≤0是解题的关键. 19.①④⑤【分析】根据题意表示大于x 的最小整数结合各项进行判断即可得出答案【详解】解:①根据表示大于x 的最小整数故正确;②应该等于故错误;③当x=05时故错误;④根据定义可知但不会超过x+1所以成立故正 解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键. 20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1)-7;(2)-5【分析】(1)先算二次根式的乘方,乘除,再算加减法,即可求解;(2)先算乘方,算术平方根,再算加减法,即可求解.【详解】(1)原式-3-7;(2)原式=4(164)1--⨯--=4416+--=-5.【点睛】本题主要考查二次根式的混合运算以及实数的混合运算,掌握二次根数的混合运算法则以及实数的混合运算法则,是解题的关键.22.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;23.14【分析】先计算平方、立方根、绝对值,再加减即可.【详解】解:21()|12-+ =12|13|4+-- =1224+- =14【点睛】本题考查了实数的计算,解题关键是准确的计算立方根、算术平方根和乘方,明确绝对值的意义.24.(1)2;(3)-3【分析】(1)根据平方差公式计算即可;(2)根据实数混合运算法则计算即可.【详解】解:(1)原式221=-31=-2=(2)原式()223=+--3=-.【点睛】本题主要考查了实数的运算以及平方差公式,解题的关键是熟练掌握平方差公式以及实数混合运算法则.25.(1)13;(2)3 【分析】(1)直接利用算术平方根的性质、二次根式的性质、立方根的性质分别化简在计算得出答(2)直接利用绝对值的性质、平方的的性质计算得出答案.【详解】解:(1=1-2+4=1-23+ 1=3(2)2|1(2)+--14+=3【点睛】此题主要考查了实数运算,正确化简各数是解题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。

北师大版八年级数学上册《第二章实数》单元测试卷带答案

北师大版八年级数学上册《第二章实数》单元测试卷带答案

北师大版八年级数学上册《第二章实数》单元测试卷带答案一、单选题1.下列根式中,最简二次根式是( )A .4B .12C 8D .22.下列说法错误的是( )A .3±是9的平方根B 164±C .25的平方根为5±D .负数没有平方根3.下列运算正确的是( )A .222()a b a b +=+B .a 6a2=a 3(a ≠0)C 2a a =D .326()a a =4.根据表中的信息判断,下列判断中正确的是( )x 16 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17 2x 256 259.21262.44265.69268.96272.25275.56278.89282.24285.61289A 27.889 1.67=B .265的算术平方根比16.3大C .若一个正方形的边长为16.2,那么这个正方形的面积是262.44D .只有3个正整数n 满足16.416.5n <<5.下列式子正确的是( )A 3320212021-=B .164=C .93=±D .√(−2022)2=−20226.下列说法错误的是( )A .1的平方根是±1B .-1的立方根是-1C 2是2的平方根D .-3是2(3)-7.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 3和﹣1,则点C 所对应的实数是( )A .3B .3C .3﹣1D .3+18.已知正实数m ,n 满足222m mn n =mn 的最大值为( )A .13B .23C 3D .239. 已知x ,x 2,x}表示取三个数中最小的那个数,例如:当x =9,x ,x 2,x}=992,9}=3.当x ,x 2,x}=116时,则x 的值为( ) A .116B .18C .14D .1210.观察下列二次根式的化简1221111111212S =++=+- S 2=√1+112+122+√1+122+132=(1+11−12)+(1+12−13) S 3=√1+112+122+√1+122+132+√1+132+142=(1+11−12)+(1+12−13)+(1+13−14),则20232023S =( ). A .12022B .20222021C .20242023D .20252024二、填空题11.下列各数:0.5 2π 1.264850349 02270.2121121112…(相邻两个2之间1的个数逐次加1),其中有理数有 个.12.实数16 03π 3.14159 2279- 0.010010001……(相邻两个1之间依次多一个0),其中,无理数有 个.13.数轴上有两个点A 和B ,点A 31,点B 与点A 相距3个单位长度,则点B 所表示的实数是 .14.一个正数x 的平方根是2a ﹣3与5﹣a ,则a = . 15.35 22,则这个三角形的面积为16.如图,在矩形ABCD 中4,6AB AD ==,点,E F 分别是边BC ,CD 上的动点,连接,AE AF ,将矩形沿,AE AF 折叠,使,AB AD 的对应边,AB AD ''落在同一直线上,若点F 为CD 的中点,则AE = .17.如图所示,数轴上点A 表示的数是-1,0是原点以AO 为边作正方形AOBC ,以A 为圆心、AB 线段长为半径画半圆交数轴于12P P 、两点,则点1P 表示的数是 ,点2P 表示的数是 .三、解答题18.计算:(1)15202(262324319.已知21a +的算术平方根是5,103b +的平方根是4,c ±1932a b c -+的平方根.20.已知6x -和314x +分别是a 的两个平方根,22y +是a 的立方根.(1)求a ,x ,y 的值;(2)求14x -的平方根和算术平方根.21.已知 (253530x y -++--= .(1)求 x , y 的值; (2)求 xy 的算术平方根.22.把一个长、宽、高分别为50cm ,8cm ,20cm 的长方体锻造成一个立方体铁块,问锻造的立方体铁块的棱长是多少 cm?23.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m.(1)m = ______.(2)求11m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有26c +4d -互为相反数,求23c d +的平方跟.24.阅读以下信息,完成下列小题材料一:对数是高中数学必修一中的一个重要知识点,是高中运算的基础.材料二:对数的基本运算法则:对数公式是数学中的一种常见公式,如果x a N =(0a >,且1a ≠),则x 叫做以a 为底N 的对数,记做log a x N =,其中a 要写于log 右下.其中a 叫做对数的底,N 叫做真数.通常以10为底的对数叫做常用对数,记作lg;以e为底的对数称为自然对数,记作ln.(1)请把下列算式写成对数的形式:328=3101000=2416=(2)平方运算是对数运算的基础.完成下列运算:33=99=1212=(3)对数和我们在初中阶段学习的平方根的运算也有相似之处.请完成有关平方根的知识点的填空.平方根,又叫二次方根,表示为〔〕,其中属于的平方根称之为算术平方根(arithmetic square root),是一种方根.一个正数有个实平方根,它们互为,负数在范围内没有平方根,0的平方根是0参考答案1.【答案】D2.【答案】B3.【答案】D4.【答案】C5.【答案】A6.【答案】D7.【答案】D8.【答案】B9.【答案】C10.【答案】D11.【答案】412.【答案】313.343214.【答案】﹣215.1516.【答案】517.【答案】12-;12-18.【答案】(1)2 5+2(2)4219.【答案】6±20.【答案】(1)64a = 2x =- 1y =;(2)3± 3.21.【答案】(1)(2530x -≥ 530y -≥ (253530x y -++--=530x ∴-= 530y --=解得: 53x =- 53y =+; (2)(535325322xy =+=-=xy ∴ 的算术平方根为22.22.【答案】解:35082020()cm ⨯⨯=答:立方体铁块的棱长是20cm.23.【答案】(1)2+2(2)2 (3)624.【答案】(1)2log 83= lg10003= 4log 162=(2)918log + 1215log + 27 (3)aa 两,相反数,实数。

八年级数学上册 第二章 实数 单元测试卷(北师版 2024年秋)

八年级数学上册 第二章 实数 单元测试卷(北师版 2024年秋)

八年级数学上册第二章实数单元测试卷(北师版2024年秋)八年级数学上(BS版)时间:90分钟满分:120分一、选择题(每题3分,共30分)1.下列实数中,是无理数的是()A.23B.-14C.0D.-1.010101 2.(2023潍坊)在实数1,-1,0,2中,最大的数是()A.1B.-1C.0 D.23.利用科学计算器求值时,小明的按键顺序为■4=S⇔D,则计算器面板显示的结果为()A.-2B.2C.±2D.44.要使x+1在实数范围内有意义,则x的取值范围是()A.x≤1B.x≥-1C.x<-1D.x>15.下列根式中,是最简二次根式的是()A.19B.4C.a2D.a+b6.下列各选项的两个数互为相反数的是()A.22和(-2)2B.-327和3-27 C.64和-364 D.37和3-77.(2023徐州)2023的值介于()A.25与30之间B.30与35之间C.35与40之间D.40与45之间8.(新考法分类讨论法)若2m-4与3m-1是同一个正数的平方根,则m的值为()A.-3B.1C.-1D.-3或1 9.下列计算正确的是()A.(-3)2=-3 B.12=23C.3-1=1D .(2+1)(2-1)=310.(教材P 43习题T 4变式)如图,每个小正方形的边长都为1,点A ,B 都在格点上,若BC =2133,则AC 的长为()A.13B.4133C .213D .313二、填空题(每题3分,共24分)11.(2023吉林)计算:|-5|=________.12.3-2的相反数是________,绝对值是________.13.(新趋势跨学科)已知当鸡蛋落地时的速度大于1.2m/s 时鸡蛋会被摔碎.若鸡蛋从高处自由下落,其落地时的速度v(m/s)与开始下落时离地面的高度h (m)满足关系v 2=20h ,现有一鸡蛋从0.15m 处自由下落,则鸡蛋________摔碎.(填“会”或“不会”,提示:3≈1.73)14.(教材P 50复习题T 10变式)如图,四边形ODBC 是正方形,以点O 为圆心,OB 的长为半径画弧交数轴的负半轴于点A ,则点A 表示的数是________.15.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是________.16.(教材P 31随堂练习T 2变式)若一个正方体的棱长是5cm ,再做一个体积是它的两倍的正方体,则所做正方体的棱长约是____________(用计算器计算,结果精确到0.1cm).17.实数a ,b ,c 在数轴上对应点的位置如图所示,化简(b -a )2-(a +c )2+(c -1)2=________.18.(新视角规律探究题)如图,正方形ABCD的边长为1,以AC为边作第2个正方形ACEF,再以CF为边作第3个正方形FCGH,…,按照这样的规律作下去,第6个正方形的边长为________.三、解答题(19,23,24题每题12分,其余每题10分,共66分)19.计算下列各题:(1)9-20240+2-1;(2)(2+5)(2-5)+(2-1)2;-12-1+6÷2-|2-3|+(π-3)0-12.20.求下列各式中x的值:(1)9(3x+2)2-64=0;(2)-(x-3)3=125.21.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.22.在4×4的方格中,每个小正方形的边长均为1.(1)图①中正方形ABCD的面积为________,边长为________;(2)如图②,若点A在数轴上表示的数是-1,以A为圆心、AD长为半径画圆弧与数轴的正半轴交于点E,求点E表示的数.23.(2024石家庄裕华区期末)某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来400m2的正方形场地改建成315m2的长方形场地,且其长、宽的比为5 3.(1)求原来正方形场地的周长;(2)如果把原来正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.24.(新考法分类讨论法)对于不同的实数p,q,我们用符号max{p,q}表示p,q两数中较大的数,如max{1,2}=2,(1)请直接写出max{-2,-3}的值;(2)我们知道,当m2=1时,m=±1,利用这种方法解决下面问题:若max{(x-1)2,x2}=4,求x的值.答案一、1.B 2.D 3.B 4.B5.D6.D7.D8.D9.B10.B点拨:由勾股定理得AB 2=62+42=52,所以AB =213.所以AC =AB -BC =213-2133=4133.二、11.512.2-3;2-313.会14.-2215.316.6.3cm 17.b +118.42点拨:根据勾股定理得出正方形的对角线是边长的2倍,第1个正方形的边长为1,其对角线长为2;第2个正方形的边长为2,其对角线长为(2)2;第3个正方形的边长为(2)2,其对角线长为(2)3;…;第n 个正方形的边长为(2)n -1.所以第6个正方形的边长为(2)5=4 2.三、19.解:(1)原式=3-1+12=52.(2)原式=(2)2-(5)2+(2-22+1)=2-5+3-22=-2 2.(3)原式=-2+3-(2-3)+1-23=-2+3-2+3+1-23=-3.20.解:(1)原方程可化为(3x +2)2=649.由平方根的定义,得3x +2=±83,解得x =29或x =-149.(2)原方程可化为(x -3)3=-125.由立方根的定义,得x -3=-5,解得x =-2.21.解:由题意可知2a -1=9,3a +b -1=16,所以a =5,b =2.所以a +2b =5+2×2=9.22.解:(1)10;10点拨:因为正方形ABCD 的面积是4×4-4×12×1×3=10,所以正方形ABCD 的边长为10.(2)因为正方形ABCD 的边长为10,所以AE =AD =10,所以点E 表示的数比-1大10,即点E 表示的数为-1+10.23.解:(1)400=20(m),4×20=80(m),所以原来正方形场地的周长为80m.(2)这些铁栅栏够用,理由如下:设这个长方形场地的宽为3a m ,则长为5a m.由题意得3a ×5a =315,解得a =±21,因为a >0,所以a =21,所以3a =321,5a =521.所以这个长方形场地的周长为2(321+521)=1621(m),因为80=16×5=16×25>1621,所以这些铁栅栏够用.24.解:(1)max {-2,-3}的值为- 2.(2)分以下两种情况讨论:①当(x -1)2<x 2时,max {(x -1)2,x 2}=x 2=4,所以x =±2,当x =-2时,(-2-1)2>(-2)2.所以x =-2不符合题意,舍去.故x =2.②当(x -1)2>x 2时,max {(x -1)2,x 2}=(x -1)2=4,所以x -1=±2,解得x =3或x =-1,当x =3时,(3-1)2<32,所以x =3不符合题意,舍去.故x=-1.综上所述,x=2或-1.。

(典型题)初中数学八年级数学上册第二单元《实数》测试题(含答案解析)

(典型题)初中数学八年级数学上册第二单元《实数》测试题(含答案解析)

一、选择题1.下列计算正确的是( )A +=B =C 6=-D 1-= 2.与数轴上的点一—对应的数是( )A .分数或整数B .无理数C .有理数D .有理数或无理数 3.一个正方形的面积为29,则它的边长应在( ) A .3到4之间 B .4到5之间 C .5到6之间 D .6到7之间 4.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,42max -=.则方程{},34max x x x -=+的解为( )A .-1B .-2C .-1或-2D .1或25.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3=6. )A .8 B .4C D 7.下列计算正确的是( ). A .()()22a b a b b a +-=- B .224x y xy +=C .()235a a -=-D .=8.已知||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 9.已知一个表面积为212dm 的正方体,这个正方体的棱长为( )A .2dmB CD .3dm10( )A .1与2之间B .2与3之间C .3与4之间D .5与6之间 11.已知21a -与2a -+是一个正数的平方根,则这个正数的值是( ) A .9 B .3 C .1D .81 12.下列对于二次根式的计算正确的是( )A =B .2C .2=D .=二、填空题13.a b -=________.14.对于任意非零实数a ,b ,定义运算“※”如下:“a b ※”a b ab-=,则12233420202021++++※※※※的值为__________.15.已知6y x =+,当x 分别取1,2,3,…,2021时,所对应y 值的总和是__.16.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______ 17.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 18.请你写出一个比3大且比4小的无理数,该无理数可以是:____.19.已知2a =+,2b =,则227a b ++的算术平方根是_____.20.已知2x =,2y =+x 2+y 2﹣2xy 的值为_____.三、解答题21.计算:(1)(π﹣2020)0﹣.(2.22.(3++-.23.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.24.已知某正数的两个平方根是314a -和2a +,14b -的立方根为-2,求+a b 的算术平方根.25.计算下列各题:(1(2)()(3)(226.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A选项错误;===B选项正确;=-=,所以C选项错误;321与D选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.2.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D.【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.3.C解析:C一个正方形的面积为29“夹逼法”的近似值,从而解决问题.【详解】解:∵正方形的面积为29,∴,5<6.故选:C .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.A解析:A【分析】利用题中的新定义化简已知方程,求解即可.【详解】①当0x >时,即x x >-,此时max }{34x x x x -==+,, 解得2x =-,不符合题意舍去. ②当0x <时,即x x <-,此时max }{34x x x x -=-=+,, 解得1x =-且符合题意.故选:A .【点睛】此题考查了新定义下实数的运算以及解一元一次方程,运用分类讨论的思想是解答本题的关键. 5.D解析:D【分析】根据二次根式的性质化简判断.【详解】A 、3=±,故该项不符合题意;B 3=,故该项不符合题意;C 3=,故该项不符合题意;D 3=,故该项符合题意;【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.6.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】=== 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.7.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a 2−b 2,故A 错误;B.2x 与2y 不是同类项,不能合并,故B 错误;C.原式=a 6,故C 错误;D.原式=D 正确;故选:D .【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.8.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.9.B解析:B【分析】先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可.【详解】设正方形的棱长为a ,∵正方体有6个面且每个面都相等,∴正方体的一个面的面积为2,∴22a =,解得:a =∴dm .故选:B .【点睛】本题主要考查了算术平方根的定义,求得正方形的一个面的面积是解题的关键. 10.C解析:C【分析】【详解】解:<34∴<<,故选:C .【点睛】本题考查无理数的估算,掌握几个非负整数的算术平方根的大小比较方法是解决问题的关键.11.A解析:A【分析】首先根据正数有两个平方根,它们互为相反数可得2120a a --+=,解方程可得1a =-,然后再求出这个正数即可.【详解】解:由题意得:2120a a --+=,解得:1a =-,213a -=-,23a -+=,则这个正数为9.故选:A .【点睛】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数. 12.C解析:C【分析】利用二次根式的加减和乘除运算法则进行计算即可.【详解】解:=B.=C.2=,故原题计算正确;D.10=,故原题计算错误.故选:C【点睛】此题主要考查了二次根式的混合运算,掌握二次根式的运算法则是解答此题的关键.二、填空题13.2【分析】根据最简二次根式同类二次根式的性质计算即可得到a 和b 的值;再将a 和b 的值代入到代数式通过计算即可得到答案【详解】根据题意得:∴∵最简二次根式与是同类最简二次根式∴∴∴故答案为:2【点睛】本 解析:2【分析】根据最简二次根式、同类二次根式的性质计算,即可得到a 和b 的值;再将a 和b 的值代入到代数式,通过计算即可得到答案.【详解】根据题意得:12a -=∴3a =∵与∴252b b +=-∴1b =∴312a b -=-=故答案为:2.【点睛】本题考查了二次根式的知识;解题的关键是熟练掌握最简二次根式、同类二次根式、代数式的性质,从而完成求解.14.【分析】根据已知将原式变形进而计算得出答案【详解】解:根据题意∵∴……∴=====故答案为:【点睛】此题主要考查了实数运算正确将原式变形是解题关键 解析:20202021-【分析】根据已知将原式变形进而计算得出答案.【详解】解:根据题意, ∵“a b ※”a b ab-=, ∴12※121(1)122-==--⨯,231123()2323-==--⨯※,……, ∴12233420202021++++※※※※ =122320202021122320202021---+++⨯⨯⨯ =11111(1)()()22320202021------- =111111(1)223320202021--+-+-+- =1(1)2021-- =20202021-. 故答案为:20202021-. 【点睛】此题主要考查了实数运算,正确将原式变形是解题关键.15.4054【分析】先化简二次根式求出y 的表达式再将x 的取值依次代入然后求和即可得【详解】解:当时当时则所求的总和为故答案为:【点睛】本题考查了二次根式的化简求值绝对值运算等知识点掌握二次根式的化简方法 解析:4054【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】解:646y x x x =+=--+当4x <时,46102y x x x =--+=-当4x ≥时,462y x x =--+=则所求的总和为(1021)(1022)(1023)222-⨯+-⨯+-⨯++++86422018=+++⨯4054=故答案为:4054.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.16.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键 解析:20212022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可.【详解】解:原式=11111111202111223342021202220222022-+-+-++-=-=. 故答案为:20212022. 【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键. 17.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=,∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】 本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.18.答案不唯一如:【分析】无限不循环小数是无理数根据无理数的三种形式解答即可【详解】设该无理数是x 由题意得∴x=10或11或12或13或14或15该无理数可以是:答案不唯一如:故答案为:答案不唯一如:【解析:【分析】无限不循环小数是无理数,根据无理数的三种形式解答即可.【详解】设该无理数是x x <<∴x=10或11或12或13或14或15,【点睛】此题考查无理数的定义,熟记定义并掌握无理数的三种形式是解题的关键.19.5【分析】根据完全平方公式和算术平方根即可求解【详解】解:因为所以=(+2)2+(-2)2+7=9+2+9-2+7=25所以a2+b2+7的算术平方根是5故答案为:5【点睛】本题考查了完全平方公式算解析:5【分析】根据完全平方公式和算术平方根即可求解.【详解】解:因为2a =,2b =,,所以227a b ++=)2+)2+7=25.所以a 2+b 2+7的算术平方根是5.故答案为:5.【点睛】本题考查了完全平方公式、算术平方根,解决本题的关键是掌握完全平方公式、算术平方根.20.【分析】根据二次根式的减法法则求出利用完全平方公式把原式化简代入计算即可【详解】解:则故答案为:12【点睛】本题考查的是二次根式的化简求值掌握完全平方公式二次根式的加减法法则是解题的关键解析:【分析】根据二次根式的减法法则求出x y -,利用完全平方公式把原式化简,代入计算即可.【详解】解:2x =-2y =+ 23x y, 则22222()(23)12x y xy x y , 故答案为:12.【点睛】本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的加减法法则是解题的关键.三、解答题21.(1)-2;(2)4【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可.【详解】解:(1)原式=()12212-⨯+-+=121+ =2-;(2)原式()32-=231+-=4.【点睛】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键. 22.10-【分析】根据二次根式运算法则计算即可.【详解】解:原式=2253+-5924=+-1424=-10=-.【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运用算法则进行计算,注意:平方差公式的运用.23.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=0+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;24.3【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据算术平方根的定义求出a+b 的算术平方根.【详解】解:由题意得,31420a a -++=,148b -=-,解得:3a =,6b =,∴9a b +=,∴+a b 的算术平方根是3.【点睛】本题考查的是平方根、立方根和算术平方根的定义,正数的平方根有两个,且互为相反数;正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.25.(1)0;(2)【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(1=2+(﹣5)+3=0;(2)()(3)(2=32)2﹣2=9﹣﹣2=【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级数学上册第二章实数测试题(1)一、选择题1.下列各数:2π, 0·, 227,27, 1010010001.6,1中无理数个数为() A .2 个 B .3 个 C .4 个 D .5 个2.在实数032-,|-2|中,最小的是( ).A .-23B .C .0D .|-2| 3.下列各数中是无理数的是( )A .B C D .4.下列说法错误的是( )A .±2B 是无理数CD .2是分数 5.下列说法正确的是( )A .0)2(π是无理数B .33是有理数C .4是无理数D .38-是有理数6.下列说法正确的是( )A .a 一定是正数B .20163 是有理数 C .22是有理数 D .平方根等于自身的数只有17.估计20的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间8. (-2)2的算术平方根是( )A .2B . ±2C .-2D .29.下列各式中,正确的是( )A .3-B .3-C 3=±D 3=±10.下列说法正确的是( )A .5是25的算术平方根B .±4是16的算术平方根C .-6是(-6)2的算术平方根D .0.01是0.1的算术平方根11.36的算术平方根是( )A .±6B .6C .±6D . 612.下列计算正确的是( )4=± B.1= 4= 2=13.下列运算正确的是( )A .25=±5B .43-27=1C .18÷2=9D .24·32=6 14.下列计算正确的是( )A .822-=B .27-123=9-4=1C .(25)(25)1-+=D .62322-= 15.如图:在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N16.如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是A .2.5B .2 2C . 3D . 517.下列计算正确的是( ).A .2234-=4-3=1B .)25()4(-⨯-=4-×25-2)×(-5)=10C .22511+=11+5=16D .32=36 18.已知n -12是正整数,则实数n 的最大值为( )A .12B .11C .8D .319.2)9(-的平方根是x , 64的立方根是y ,则x +y 的值为( )A .3B .7C .3或7D .1或720.若||4x =29y =,且||x y x y -=-,则x y +的值为( )A .5或13B .-5或13C .-5或-13D .5或-13二、填空题1.实数27的立方根是2.若一个正数的两个平方根分别是2a -2和a -4,则a 的值是 .3.-6的绝对值是___________.4.估计7的整数部分是5.比较下列实数的大小(在 填上>、<或=) ①3- 2-; ②215- 21;③112 53。

6.6425的算术平方根是 7.化简:123-= .8.若,x y 为实数,且230x y ++-=,则2016()x y +的值为___________.9.如图,在网格图中的小正方形边长为1,则图中的△ABC 的面积等于 。

10.如图,图中的线段AE 的长度为 。

三、解答题: 1.)212(8-⨯ 2.4271233012|32|(2π)++-4.8+(-1)2016-|-2|5308(π2)12-- 6.|-3|+(π-1)0-627.78(52)(52)⋅ 8326273四、综合题1.已知:=0,求实数a ,b 的值.2、计算(1)(21)-1-2--121-+(-1-2)2;(2)(-2)3+21(2004-3)0-|-21|;3.已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值。

4、甲同学用如下图所示的方法作出了C 点,表示数13,在△OAB 中,∠OAB =90°,OA =2,AB =3,且点O ,A ,C 在同一数轴上,OB =OC.(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点F.5、化简:(1)请用不同的方法化简25+3: (2)化简:13+1+15+3+17+5+…+199+97.答案:第二章实数检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共30分)1.下列无理数中,在-2与1之间的是()A.-B.-C.D.2.(2014·南京中考)8的平方根是()A.4 B.±4C. 2D.3. 若a,b为实数,且满足|a-2|+2b-=0,则b-a的值为()A.2 B.0 C.-2 D.以上都不对4. 下列说法错误的是()A.5是25的算术平方根B.1是1的一个平方根C.(-4)2的平方根是-4 D.0的平方根与算术平方根都是0 5. 要使式子有意义,则x的取值范围是()A.x>0 B.x≥-2 C.x≥2 D.x≤26. 若a,b均为正整数,且a>7,b>32,则a+b的最小值是()A.3B.4C.5D.67. 在实数,,,-3.14,中,无理数有()A.1个B.2个C.3个D.4个8. 已知3a=-1,b=1,212c⎛⎫-⎪⎝⎭=0,则abc的值为()A.0 B.-1 C.-12D.129.若(m-1)2+2n+=0,则m+n的值是()A.-1 B.0 C.1 D.210. 有一个数值转换器,原理如图所示:当输入的x=64时,输出的y等于()A.2 B.8 C.32D.22二、填空题(每小题3分,共24分)11. 已知:若 3.65≈1.910,36.5≈6.042,则365000≈,±0.000365≈.12. 绝对值小于π的整数有 .13. 0.003 6的平方根是 ,81的算术平方根是 . 14. 已知|a -5|+3b +=0,那么a -b = .15. 已知a ,b 为两个连续的整数,且a >28>b ,则a +b = . 16.计算:(2+1)(2-1)=________.17.使式子1+x 有意义的x 的取值范围是________. 18.)计算:﹣=_________.三、解答题(共46分)19.(6分)已知,求的值.20.(6分)若5+7的小数部分是a ,5-7的小数部分是b ,求ab +5b 的值. 21.(6分)先阅读下面的解题过程,然后再解答:形如n m 2±的化简,只要我们找到两个数a ,b ,使m b a =+,n ab =,即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+.解:首先把347+化为1227+,这里7=m ,12=n , 因为,,即7)3()4(22=+,1234=⨯, 所以347+1227+32)34(2+=+.根据上述方法化简:42213-.22.(6分)比较大小,并说明理由:(1)与6;(2)与.23.(6分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部写出来,于是小平用-1来表示的小数部分,你同意小平的表示方法吗? 事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分. 请解答:已知:5+的小数部分是,5-的整数部分是b ,求+b 的值.24.(8分)计算:(1)862⨯-82734⨯+; (2))62)(31(-+-2)132(-. 25.(8分)阅读下面计算过程:12)12)(12()12(1121-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)nn ++11(n 为正整数)的值.(3122334989999100++⋅⋅⋅++++++的值.第二章 实数检测题参考答案一、选择题1.B 954,即-35<-2431,即-231134,即13<2459253,所以选B.2.D 解析:88=±2.点拨:注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 3.C 解析:∵ |a -2|2b -0,∴ a=2,b=0,∴b-a=0-2=-2.故选C.4.C 解析:A.因为25=5,所以A项正确;B.因为±1=±1,所以1是1的一个平方根说法正确;C.因为±()24-=±16=±4,所以C项错误;D.因为±0=0,0=0,所以D项正确.故选C.5.D 解析:∵二次根式的被开方数为非负数,∴ 2-x≥0,解得x≤2.6.C 解析:∵a,b均为正整数,且a>7,b>32,∴a的最小值是3,b的最小值是2,则a+b的最小值是5.故选C.7.A 解析:因为4=2,所以在实数23-,0,3,-3.14,4中,有理数有:23-,0,-3.14,4,只有3是无理数.8.C 解析:∵3a=-1,b=1,212c⎛⎫-⎪⎝⎭=0,∴a=-1,b=1,c=12,∴abc=-12.故选C.9.A 解析:根据偶次方、算术平方根的非负性,由(m-1)2+2n+=0,得m-1=0,n+2=0,解得m=1,n=-2,∴m+n=1+(-2)=-1.10.D 解析:由图得64的算术平方根是8,8的算术平方根是22.故选D.二、填空题11.604.2 ±0.019 1 解析:436500036.510=⨯≈604.2;±0.000365=±43.6510-⨯≈±0.019 1.12.±3,±2,±1,0 解析:π≈3.14,大于-π的负整数有:-3,-2,-1,小于π的正整数有:3,2,1,0的绝对值也小于π.13.±0.06 3 解析:0.0036=0.0681=9±±,,9的算术平方根是3,所以81的算术平方根是3.14.8 解析:由|a-5|+3b+=0,得a=5,b=-3,所以a-b=5-(-3) =8.15.11 解析:∵a>28>b,a,b为两个连续的整数,又25<28<36,∴a=6,b=5,∴a+b=11.16.1 解析:根据平方差公式进行计算,(2+1)(2-1)=()22-12=2-1=1.17.x≥0 解析:根据二次根式的被开方数必须是非负数,要使1+x有意义,必须满足x≥0.18.332解析:12-343333=23222==三、解答题19.解:因为,,即,所以.故,从而,所以,所以.20.解:∵ 2<7<3,∴ 7<5+7<8,∴a=7-2.又可得2<5-7<3,∴b=3-7.将a=7-2,b=3-7代入ab+5b中,得ab+5b=(7-2)(3-7)+5(3-7)=37-7-6+27+15-57=2.21.解:根据题意,可知,因为,所以.22.分析:(1)可把6转化成带根号的形式,再比较它们的被开方数,即可比较大小;(2)可采用近似求值的方法来比较大小.解:(1)∵ 6=36,35<36,∴35<6.(2)∵-5+1≈-2.236+1=-1.236,-22≈-0.707,1.236>0.707,∴-5+1<-22.23. 解:∵ 4<5<9,∴ 2<<3,∴ 7<5+<8,∴=-2.又∵-2>->-3,∴ 5-2>5->5-3,∴ 2<5-<3,∴b=2,∴+b=-2+2=.24. 解:(1)62333223(2()266321343-623663=432213.=1362323-. 11(76)25.17 6.76(76)(76)⨯-==-++-解:()(2)11(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-.(3)11111122334989999100+++⋅⋅⋅+++++++=-11001+10=9.。

相关文档
最新文档