平面向量的基本概念及线性运算 知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量

一、向量的相关概念

1、向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(3,0)

2、向量的表示方法:用有向线段来表示向量. 起点在前,终点在后。有向线段的长度表示向量的大小,用_____箭头所指的方向____表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示

(1) 模:向量的长度叫向量的模,记作|a |或|AB |.

(2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||

AB AB ±);

(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性。 (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:

∥,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一

定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点

A B C 、、共线⇔ AB AC 、

共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。零向量的相反向量时零向量。 二、向量的线性运算 1.向量的加法:

(1)定义:求两个向量和的运算,叫做向量的加法.

如图,已知向量a ,b ,在平面内任取一点A ,作AB =a ,BC =b ,则向量AC 叫做a

与b 的和,记作a+b ,即 a+b AB BC AC =+=。AB BC CD DE AE +++=

特殊情况:

a

b

a

b

a+b

b

a

a+b

(1)

平行四边形法则三角形法则

C

B

D

C

B

a

b

b

b

a +b

a +A

A

B

C C

)

2()

3(

对于零向量与任一向量a ,有 a 00+=+ a = a

(2)法则:____三角形法则_______,_____平行四边形法则______

(3)运算律:____ a+b=b+a;_______,____(a+b)+c=a+(b+c)._______

当a、b不共线时,

2.向量的减法:

(1)定义:求两个向量差的运算,叫做向量的减法.

已知向量a、b,求作向量

∵(a b) + b = a + (b) + b = a + 0 = a

减法的三角形法则作法:在平面内取一点O,

作OA= a, OB= b, 则BA= a b (指向被减数)

即a b可以表示为从向量b的终点指向向量a的终点的向量

注意:用“相反向量”定义法作差向量,a b = a +(-b) (b)

显然,此法作图较繁,但最后作图可统一

a∥b∥c a b = a + (b) a b

3.实数与向量的积:

(1)定义:实数λ与向量a的积是一个向量,记作λa,

规定:|λa|=|λ||a|.当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0,λa与a平行.

(2)运算律:λ(μa)=(λμ)a,(λ+μ)a=λa+μa,λ(a+b)=λa+λb.

特别提醒:

1)向量的加、减及其与实数的积的结果仍是向量。

2)向量共线定理:向量b与非零向量a共线的充要条件是有且仅有一个实数λ,使得b=λa,

即b∥a b=λa(a≠0).

3)如有侵权请联系告知删除,感谢你们的配合!

4)

5)

6)

相关文档
最新文档