幂的运算复习课
七年级数学下册:第八章 幂的运算复习课 (共12张PPT)
你知道吗?
1、同底数幂的乘法:同底数幂相乘,底数不变,指数相加。 am· an=am+n . (m n为正整数) 2、幂的乘方,底数不变,指数相乘。 (an)m=amn. (m n为正整数) 3、积的乘方,等于把积中每一个因式分别乘方,再把所得 的幂相乘。 (ab)n=anbn . (m n为正整数) 4、同底数幂的除法:同底数幂相除,底数不变,指数相减。 am÷an=am-n.(a≠0,m n为正整数)) 5、a0=1(a≠0),a-n=(1/a)n=1/an( 0 , n 为正整数)时,要特别注意各式子成立的条件 .
1 n a
◆注意上述各式的逆向应用.如计算,可先逆用同底数幂的乘法法 则将写成,再逆用积的乘方法则计算,由此不难得到结果为1.
●在运用 a m a n a m n ( m 、 n 为正整数) , a m a n a mn ( a 0 , m 、 n 为正整数且 m > n ) , (a m ) n a mn ( m 、 n 为 正整数) , (ab) a b ( n 为正整数) , a 1(a 0) , a
练一练: 计算: 3 2 (1)x x x 3 2 (2)( x) x ( x) 2 10 (3) (a b) (a b) (b a) 2 n1 3 n 2 5 n 4 (4) y y y y 2 y y 解:(1)x6 (2)-x6 (3)(b-a)13 (4)0
本章需关注的几个问题
●在运用 a m a n a m n ( m 、 n 为正整数) , a m a n a mn ( a 0 , m 、 n 为正整数且 m > n ) , (a m ) n a mn ( m 、 n 为 正整数) , (ab) a b ( n 为正整数) , a 1(a 0) , a
七年级数学《幂的运算》复习课件人教新课标版.pptx
例3:计算
(1)计算位上的数字是几? (3)5811 、 7318的个位上的数字分别 是几?
例4:
(1)下列算式中,①a3·a3=2a3;②10×109=1019; ③(xy2)3=xy6;④a3n÷an=a3.其中错误的是( ) A、1个 B、2个 C、3个 D、4个
地球上海洋总面积约3.6×108km2,海洋 总面积是地球表面积的百分之几?
按海洋的海水平均深度3.7×103m计算, 求地球上海水的体积(用科学记数法表示).
例2:计算
(1)4×22×84;(2)0.24×0.44×12.54;
(3)( 1 )100 3101
3
(4)2.110 34
0.311 710
第八章 小结与思考
回顾:
• 1、同底数幂的乘法:同底数幂相乘,底数 不变,指数相加。am·an=am+n
• 2、幂的乘方:幂的乘方,底数不变,指数 相乘。(an)m=amn
• 3、积的乘方:积的乘方,等于把积中每一 个因式分别乘方,再把所得的幂相乘。 (ab)n=anbn
• 4、同底数幂的除法:同底数幂相除,底数 不变,指数相减。am÷an=am-n.(a≠0)
求ab的值。
解:∵210=a2 ∴(25)2=a2 即a=25=32
又∵210=4b ∴(22)5=45=4b 即b=5
∴ab=325
本节课你学到了什么? 小结
布置作业:
课本52页复习题8.3 1、2
补充习题28页 小结与思考
(2)在xm-1·( ) =x2m+1中,括号内应填写的代 数式是( ) A、x2m B、x2m+1 C、x2m+2 D、xm+2
(3)(- 3)100 ×(- 3)101
幂的运算复习课
1 2
1 22 1 23
为
。
图(1)
(2)请你利用图(2),再设计一个能求 1 1 1 1 2 3 n 的值的几何图形。
2 2 2 2
(2)
(3)请仿照上述方法计算下列式子:
2 2 2 2 3 3 3 3
2 n 3
已知a、b为有理数,且ab=1, 求a 、b
(2)求整数的位数
求N=212×58是几位整数.
(3)确定幂的末尾数字
求7100-1的末尾数字.
(4)比较实数的大小
比较750与4825的大小.
ቤተ መጻሕፍቲ ባይዱ
(5)求代数式的值 已知10m=4,10n=5. 求103m-2n+1的值.
(6)求参数 1、已知162×43×26=22a-1, (102)b=1012,求a+b的值。
;
5 -8a (7) (-2 a = ; (8) 2×2m+1÷2m = 4 ;
)3
÷a-2
科学记数法表示: 5 1.26 × 10 (9) 126000 = ; (10) 0.00000126 = 1.26×10-6;
(1) 下列命题( C )是假命题. A. (a-1)0 = 1 a≠1 B. (-a )n = - an n是奇数 C. n是偶数 , (- an )3 = a3n D. 若a≠0 ,p为正整数, 则ap =1/a-p (2) [(-x ) 3 ] -2 · [(-x ) -2 ] 3 的结果是( C ) A. x-10 B. - x-10 C. x-12 D. - x-12
(3) 1纳米 = 0.000000001 m ,则2.5纳 米用科学记数法表示为( B )米. A. 2.5×10-8 B. 2.5×10-9 C. 2.5×108 D. 2.5×109 (4) am = 3 , an = 2, 则am-n 的值是 (A ) A. 1.5 B. 6 C. 9 D. 1
幂的运算复习教案
幂的运算复习教案一、教学目标1.知识目标:复习幂的概念和运算方法,包括幂的乘法、幂的除法、幂的乘方和幂的负指数。
2.能力目标:能够灵活运用幂的运算法则进行计算,并能解决与幂相关的实际问题。
3.情感目标:培养学生对数学的兴趣和好奇心,促进学生的思维发展和逻辑思维能力。
二、教学重点1.幂的乘法运算和除法运算。
2.幂的乘方运算。
三、教学难点1.幂的负指数,并结合实际问题进行思考和解答。
2.将实际问题转化为幂的运算。
四、教学过程1.复习幂的概念和符号表示。
通过问答和示范板书复习幂的概念和符号表示,引导学生回顾相关知识点。
2.幂的乘法运算和除法运算2.1幂的乘法运算通过例题展示幂的乘法运算法则,引导学生进行讨论和总结,确保学生理解该法则。
例题1:计算并化简:2²×2³。
例题2:计算并化简:(3×10⁴)×(4×10²)。
2.2幂的除法运算通过例题展示幂的除法运算法则,引导学生进行讨论和总结,确保学生理解该法则。
例题3:计算并化简:16⁴÷16²。
例题4:计算并化简:(2²×3³)÷(2³×3²)。
3.幂的乘方运算3.1幂的乘方法则通过例题展示幂的乘方运算法则,引导学生进行讨论和总结,确保学生理解该法则。
例题5:计算并化简:(5⁴)²。
例题6:计算并化简:(10⁵)⁴。
3.2幂的乘方与乘法的关系通过例题展示幂的乘方与乘法的关系,引导学生进行讨论,确保学生理解该关系。
例题7:计算并化简:3⁴×3⁵。
例题8:计算并化简:5⁸÷5³。
4.幂的负指数通过例题展示幂的负指数运算法则,引导学生进行讨论和总结,确保学生理解该法则。
例题9:计算并化简:2⁻³。
例题10:计算并化简:(5⁻²)²。
5.综合练习通过一些综合性的练习题,引导学生运用所学知识解决实际问题。
幂的运算复习课
幂的运算复习课学习目标1. 能说出同底数幂的乘(除)法、幂的乘方、积的乘方运算性质;知道它们的联系和区别,并能运用它们熟练进行有关计算。
2.熟练掌握零指数幂、负整数指数幂的意义, 能与幂的运算法则一起进行运算,并能解决有关问题。
学习重点 :运用幂的运算性质进行计算.一.复习提问, 知识聚会:1.幂的运算性质有哪些?用字母如何表示?2.零指数幂和负整指数幂是怎样规定的?用字母如何表示?二.数学“诊所”,寻找“病原”考眼力,辨真伪:(1)a 3+a 3=a 6; ( )(2)a 3·a 2=a 6; ( )(3)(x 4)4=x 8; ( )(4)a ·a 3·a 2=a 5 ( )(5)(ab 2)5=ab 10 ( )(6)(-a 2)3=a 6 ( )(7)x 2n+1÷x n ÷x n =x 2n+1÷1=x 2n+1 ( )(8)-2-2=4; ( )三.知识练习,快速作答1.抢答: (1)x 3·x ·x 2 (2)[(x +y )4]5 (3)(-a 5b 2)32.计算: (1)22·(-2)3·(-2)4 (2)(-x 3)2·(x 2)4忽视指数“1”所致符号混淆所致 法则混淆导致 违背运算顺序所致 忽视指数幂的意义所致(3)(x4)3÷(-x3)2÷(-x3)2 (4)(m-n)9· (n-m)8÷(m-n)2(5)(-x)8÷x5+(-2x)·(-x)2 (6)y2y n-1+y3y n+2-2y5y n四.巧用性质,融会贯通1.填空:若a m=3,a n=2,则a m+n的值等于a12=( )2=( )3=( )4 若x2n=2,则x6n=(-0.25)2010×42011= 若23×82=2n ,则n=2.求值:(1)已知10m=4,10m=5,求103m+2n的值.3. 计算:(-2)2010+(-2) 20094.比较大小:(1)2100与375 (2)355、444与533(3)已知:4m= a,8n = b求:①22m+3n的值;②24m-6n的值.课堂反馈:一.填空:1.―y2·y5=; (-2 a ) 3÷a-2=;2×2m+1÷2m =.2. a12=( )2=( )3=( )4;若x2n=2,则x6n=.3. 若a=355,b=444,c=533,请用“<”连接a、b、c.4. 把-2360000用科学计数法表示;1纳米= 0.000000001 m,则2.5纳米用科学记数法表示为m. 二.选择:1. 若a m=3,a n=2,则a m+n的值等于()A.5B.6C.8D.92. -x n与(-x)n的正确关系是()A.相等B.当n为奇数时它们互为相反数,当n为偶数时相等C.互为相反数D.当n为奇数时相等,当n为偶数时互为相反数3.如果a=(-99)0,b=(-0.1)-1,c=(-)-2,那么a、b、c三数的大小为()A. a>b>cB. c>a>bC. a>c>bD. c>b>a 三.计算:(1)(-a3)2 · (-a2)3 (2)-t3·(-t)4·(-t)5(3) (p-q)4÷(q-p)3 · (p -q)2(4)(-3a)3-(-a)· (-3a)2 (5)4-(-2)-2-32÷(3.14—π)0四.解答:1.已知a x=3,a y=2,分别求①a2x+3y的值②a3x-2y的值2.已知3×9m×27m=316,求m的值.3.已知x3=m,x5=n用含有m、n的代数式表示x14.思维体操:①若x=2m+1,y=3+4m,请用x的代数式表示y.。
新华师大版八年级数学上册《幂的运算复习》公开课课件
基础练习:
1.填空:⑴ x2 4 ______⑵ 2x2 y 3 ______
⑶ a2 3 a3 ______
2.填上适当的指数:
⑴ a2 a a5⑵ a5 a a2⑶ a3 a9
3.填上适当的代数式:⑴ x3 x4 x8
⑵x
y5 y x4
5.a0 =1 (a≠0)
6.a-n=
1 an
=( 1 )n a
a≠o,
n是整数
1.同底数幂的乘法法则: 文字叙述:同底数幂相乘,底不变,指数相加 公式表示: 2.幂的乘方法则: 文字叙述:底数不变,指数相乘 公式表示: 3.积的乘方法则: 文字叙述: 积的乘方等于乘方的积 公式表示: 4.同底数幂的除法法则: 文字叙述:同底数幂相除,底不变,指数相减 公式表示:
2、(2)3 ( 2009)0 ( 1)2
2
填空
① 已已知知::aa mm 22,,aann33,则,则aa2m2m3n3n_____________
② (2)2008 (0.5)2009 _______________
③ 当n ______时,3n 1 27
判断
① 102 106 10 108
1 )2005 2
3.已知x3 ·xn ·x2n+1=x31,求n的值.
4.已知xm =3,xn =4,求xm+n及x3m+2n的值。
随堂练习三
(1)3×27×9×3m= 3m+6
(2) (x-2y)4·(2y-x) 5·(x-
2y)6=
(2y-x)15
二、精选例题
例1.计算
1、(xy 2 z 3 ) 2 (x 2 y)3
2555 25 111 32111 3333 33 111 27111 5222 52 111 25111
【数学课件】幂的运算复习课
(6) (x5)5
x25
(8)(y3)2·(y2)3
= y 6 ·y 6 = y 12
练习一 2. 计算:
①10m·10m-1·100= 102m+1 ②3×27×9×3m= 3m+6 ③(m-n)4·(m-n) 5·(n-m)6 = (m-n)15 ④ (x-2y)4·(2y-x) 5·(x-2y)6 = (2y-x)15
积的乘方
试猜想:
(ab)n=? 其中 n是正整数
证明:
(ab)n= (ab) (ab) (ab)
n个( )
=(a a a)( • b b b)
n个
n个
= a nbn ∴(ab)n = a nbn (n为正整数)
语言叙述:积的乘方,等于各因数Байду номын сангаас方的积。
-8x3
2.计算:
页 练
(1)(3a)2 =32a2=9a2
习
(2)(-3a)3 =(-3)3a3=-27a3
(3)(ab2)2 =a2(b2)2=a2b4
(4)(-2×103)3 =(-2)3×(103)3=-8×109
(2)(-
(1)24×44×0.1254
4)2005×(0.25)2005
逆 = (2×4×0.125)4
同底数幂相乘
am·an=am+n
指数相加 底数不变 指数相乘
(a ) =a 其中m , n都是
m n mn
正整数
幂的乘方
练习一 1. 计算:( 口答)
(1) 105×106 1011
(3) a7 ·a3 a10
(5) x5 ·x5
x10 (7) x5 ·x ·x3
《幂的运算复习》课件
幂的除法运算:a^m/a^n=a^(m-n)
幂的除法运算:a^m/a^n=a^(m-n)
乘方运算
概念:乘方运算是一种特殊的乘法运算,表示一个数自乘若干次
符号:乘方运算的符号为“^”,如2^3表示2的3次方
运算规则:a^m * a^n = a^(m+n),如2^3 * 2^2 = 2^5
幂的运算方法:包括加法、减法、乘法、除法、乘方、开方等
《幂的运算复习》PPT课件
单击添加副标题
Ppt
汇报人:PPT
目录
01
单击添加目录项标题
03
幂的运算方法
05
幂的运算注意事项
02
幂的定义与性质
04
幂的运算应用
06
幂的运算易错点分析
07
幂的运算练习题与答案解析
添加章节标题
01
幂的定义与性质
02
幂的定义
幂是指一个数自乘若干次
幂的表示方法:a^n,其中a是底数,n是指数
幂的运算分配律:a^m*(b+c)=a^mb+a^mc
幂的运算结合律:a^m*a^n=a^(m+n)
幂的运算优先级:乘方>乘除>加减
底数与指数的符号问题
底数与指数的符号对幂的运算结果有重要影响
底数为负数时,幂的运算结果也为负数
指数为负数时,幂的运算结果也为负数
底数为正数时,指数为正数或负数,幂的运算结果都为正数
指数方程的解法:利用指数函数的性质和指数方程的性质进行求解
指数方程的性质:指数函数的单调性、奇偶性、周期性等
指数方程的求解步骤:确定指数方程的类型、利用指数函数的性质进行求解、验证解的正确性
幂函数的性质与图像
《幂的运算》复习课课件讲课
幂的乘方
总结词
幂的乘方,底数不变,指数相乘。
详细描述
当一个幂再次被取幂时,可以将它们的指数相乘,底数保持不变。例如,$(a^m)^n = a^{m times n}$。
积的乘方
总结词
积的乘方等于各因式乘方的积。
详细描述
当几个项的乘积被取幂时,可以将每个项分别取幂后再相乘。例如,$(ab)^n = a^n times b^n$。
《幂的运算》复习课课件讲课
汇报人: 202X-12-28
目录
• 幂的定义与性质 • 幂的运算规则 • 幂运算的应用 • 幂运算的注意事项 • 幂运算的练习题与解析
01
幂的定义与性质
Chapter
幂的定义
总结词
幂是乘方运算的结果,表示一个 数连续与一个相同的数相乘的次 数。
详细描述
幂运算是一种数学运算,表示一 个数连续与一个相同的数相乘的 次数。例如,2的3次幂表示2乘 以自己2次,即2×2×2=8。
幂的性质
总结词
幂的性质包括同底数幂相乘、同底数 幂相除、幂的乘方和积的乘方等。
详细描述
同底数幂相乘时,指数相加;同底数 幂相除时,指数相减;幂的乘方时, 底数不变,指数相乘;积的乘方时, 将每个因式分别乘方,然后相乘。
幂的性质的推导过程
总结词
通过实例和证明,理解幂的性质的推导过程。
详细描述
通过具体的实例和证明,深入理解幂的性质的推导过程。例如,对于同底数幂 相乘的性质,可以设两个同底数幂为a^m和a^n,则它们的乘积为a^(m+n), 从而证明了同底数幂相乘时,指数相加的性质。
03
幂运算的应用
Chapter
02
幂的运算规则
十四章幂的运算性质(复习课)
幂的运算性质复习课学习目标:知识与技能:1、进一步理解同底数幂的乘法法则、幂的乘方意义及积的乘方的运算法则。
2、运用幂的运算性质与法则解决一些的实际问题。
过程与方法:1、在进一步体会幂的意义时,发展推理能力和有条理的表达能力。
2、通过幂的各种运算,提高解决问题的能力。
情感、态度与价值观:在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的信心,提高自己勇于探究的能力。
学习重点:会进行幂的各种运算。
学习难点:灵活的运用幂的三种运算学习过程:一、知识梳理1.知识要点(填空)(1)同底数幂相乘,底数不变,指数 ,即 =⋅nm a a .( m 、n 是正整数) (2)幂的乘方,底数不变,指数 ,即()=n m a . ( m 、n 是正整数) (3)积的乘方,等于 分别乘方,即()=nab . (n 是正整数) 2.快速写出答案:(1)=-⋅-42)()(x x =⋅3x x a =-⋅-43)()(x x =-⋅-42)(x x (2)()=23a ()=a x 3 =++23)()(m n n m =--23)()(m n n m(3)()=32y x ()=-3b a y x =-22)21(b a ()2322003231⎪⎭⎫ ⎝⎛-∙-y x = 二、精讲精练:1、幂运算中“—”号的巧处理:(1)依据上面2题中每小题的最后一道小题,小组内共同总结:幂运算中的各种“负号”的如何处理。
(2)在前几节课学习中,你遇到过因为负号的处理不正确而导致答案错误的题吗?列出来与同学们共同纠正。
2、幂运算中互逆运算对照练习:(用幂的形式表示结果,完成后与小组内总结交流做法)(1)()838232-2⨯⨯⨯ ()20142013-2+-2()(2)()3510-- 553比较: ○44 4(3)()35310-⨯ ()202120201-8-7-0.125)-)7⨯⨯⨯()((3、利用幂的运算知识求字母值:(1)已知3,4,m n m n b b b +==求的值。
数学:幂的运算复习课
a0 1(a 0)
a p 1 p (a 0) a
a m a n a mn
环节1:师友回顾
注意幂的运算公式逆用
a
m n
mn
= a a (a≠0,m、n为正整数),
a
a (a ) n n n a b (ab) mn m
环节1:师友归纳
•这节课我学会(懂得)了。。。 •这节课我想对师傅(学友)说。。。
友情提示:从知识学法方面和师友互助方面 进行总结
环节2:教师梳理 1、同底数幂的乘法:同底数幂 m n m n a a a 相乘底数不变,指数相加. 2、幂的乘方:幂的乘方,底数 不变,指数相乘. 3、积的乘方:积的乘方, 等于 积中每一个因式乘方的积 . 4、同底数幂的除法:同底数幂 相除底数不变,指数相减.
比一比,哪对师友讲得更好!
环节2:教师点拨
a3 a (4a 2 )2 a 4 16a 4 15a 4
1、当出现加 减法时,要注 意是否能合并 同类项
2 3 5
4 2 3 3 3
3 2 2
2 5 23
2、巧妙逆用 公式,简便运 算
(2 5) 2 3
m n
a a
m
n
n
环节2:教师检查
题目
[( a b ) [( 2) ]] ( 2 ) ( 3) a a ( b ) b b a 2
Байду номын сангаас
1 3 2 2 23 3 3 m 2 3 4 m 2 ( ) 2 3
1 36 7 6 2 m 6 m 2 (a b ) b 2 a a b 9
幂的运算复习课最新版ppt课件
逆 = (2×4×0.125)4
(-4×0.25)2005
用 法 则
= =1 (3)-82000×(-0.125)=2001
-1
进
行 = -82000×(-0.125)2000× (-0.125)
计
算 = -82000×0.1252000× (-0.125)
= -(8×0.125)2000× (-0.125)
解(1)(2b)3
=23b3 =8b3
(2)(2×a3)2 =22×(a3)2 =4a6
(3)(-a)3 (4)(-3x)4
=(-1)3 •a3 = -a3
=(-3)4 • x4 = 81 x4
13
75
1.判断下列计算是否正确,并说明理由:
课 本
(1)(xy3)2=xy6
x3y6
第 (2)(-2x)3=-2x3
(A)0
(B) -2×310
(C)2×310
(D) -2×37
8
思考题:
动脑筋!
1、若 am = 2, 则a3m =__8___. 2、若 mx = 2, my = 3 ,
则 mx+y =__6__, m3x+2y =__7_2___.
9
积的乘方
(1)(ab)2 = (ab) • (ab) = (aa) • (bb) = a (2 )b(2 ) (2)(ab)3=___(a_b_)_•__(a_b_)_•_(_a_b_)___________
4
同底数幂相乘
am·an=am+n
指数相加 底数不变 指数相乘
(a ) =a 其中m , n都是
m n mn
正整数
幂的乘方
5
苏科版数学七年级下册第八章《幂的运算》复习 教学课件(共20张PPT)
考考你
a8 ÷a3 (½ )5÷(½ )3 (-s)7÷(-s)2
a3 ÷a8 (a≠0) (-3)2÷(-3)4 (-99)8 ÷(-99)8
换个方式考考你哦!
a8 .a()=a 12
a .an .a()=a n+5
(p-q)5 .(q-p)2
82=2( )=22.2( )
找错误并改正
(1) a3 .a3=2a6 (2) (a3)2=a5 (3) (xy2)3=xy6
考考你
(-0.003)0 (3x)0 (x≠0) 20170
4-2 (-4)-2 (0.1)-3
你还记得吗?
5.同底数幂的除法法则
文字叙述:同底数幂相除,底数不变,指数相减 字母表示:am÷an=am-n (a≠0 m,n是正整数 m>n) 扩展: am÷an=am-n (a≠0 m,n是整数)
(-bm)7 (m是正整数) [(-a)2 ]3 .(a4)2 -[(m-n)3]7
你还记得吗?
3.积的乘方法则
文字叙述:积的乘方,把积的每一个因式分别 乘方,再把所得的幂相乘
字母表示:(ab)n=anbn (n是正整数) 扩展: (abc)n=anbncn (n是正整数)
注意它的逆运算
考考你
(5a)8 (-xy3)3 (-2a3b6c2)3
-b6.b6 (-a)2 .(-a) .(-a)3 (m+n)3.(m+n)7
你还记得吗?
2.幂的乘方法则
文字叙述:幂的乘方,底数不变,指数相乘 字母表示: (an)m=amn (m,n是正整数) 扩展: ((an)m)p=amnp (m,n,p是正整数)
考你
(a5)4 -(a8)2 [(-2)3]10
幂的运算复习课件
(2)(- (1)24×44×0.1254
逆 用 法 则 进 行 计 算
4)2005×(0.25)2005 4 (-4×0.25)2005 = (2×4×0.125) = -1 = 1 2000×(-0.125)= 2001 (3)-8 = -82000×(-0.125)2000× (-0.125)
128 8, 2 16, 则 2 x y _____
y
能力挑战:
1.比较大小:
(-2) ×(-2)2× (-2)3×…× (-2)9× (-2)10 < 0. 2.已知,数a=2×103 , b=3×104 , c=5×105. 那么a· c的值中,整数部分有 b·
14 位.
.
3.若10n×10m×10=1000,则n+m= 2
c.积的乘方法则 积的乘方,等于把积的每一个因式分别乘方,再把所得 的幂相乘. 即(ab)n= anbn (n为正整数)
积的乘方
(1)(ab)2 = (ab) • (ab) = (aa) • (bb) = a (2 )b( 2 ) (ab) • (ab) • (ab) (2)(ab)3=__________________________
(aaa) • (bbb) =__________________________ = a ( 3 )b( 3 ) (ab) • (ab) • (ab) • (ab) (3)(ab)4=__________________________
= y 6 · 6 = y 12 y
练习一
2. 计算:
①10m· m-1· 10 100= 102m+1 ②3×27×9×3m= 3m+6 ③(m-n)4· (m-n) 5· (n-m)6
幂的运算复习课
a0=1(a≠0),
a -n
=
1 an
(a≠0)
6、科学计数法:
一个正数利用科学记数法可以写成a×10n的 形式,其中1≤a<10,n是整数。
填空:
x2 4 ____.
2x2 y
3
___ .
a2
3 a3 ____.
x3 x4 x8 x y5 y x4 9
看
我有哪些收获呢?
, 我
与大家共分享!
想
说
…
(3)已知 8 22m1 23m 217 ,求 m 的值。
(4)已知 amn 2,amn 3 ,求 a2m 的值。
比较2100与375的大小.
已知a=8131,b=2741,c=961,则( )
A、a>b>c
B、a>c>b
C、a<b<c
D、b>c>a
用科学记数法表示下列各数: (1)360000000=_________; (2)0.00000012=_________; (3)-0.00000000901=_________; (4)0.00007008=_______.
其中错误的是( ) A、1个 B、2个 C、3个 D、4个 (2)在等式xm-1·( ) =x2m+1中,括号内填写( ) A、x2m B、x2m+1 C、x2m+2 D、xm+2
(3)(-2)2013+(-2)2014等于( )
A、2
B、-2 C、-22013 D、22013
(4)若a、b互为相反数,且ab≠0,n为正整数,则下列 各对数中,互为相反数的是( )
幂的运算复习完整ppt课件
(2)(ab)3 = a 3 b 3
(3)(ab)4 可编辑课件
=
a4 b 4
19
练习八、 计算:
(1)(2b)3
=23b3 =8b3
(2)(2a)3 =22×(a3)2 =4a6
(3)(-a)3
(4)(-3x)4
=(-1)3 •a3 = -a3
=(-3)4 • x4 = 81 x4
可编辑课件
20
第八章 幂的运算
可编辑课件
1
复习目标
1、掌握幂的运算性质。 2、会用语言和公式表述幂的运 算的性质。 3、灵活运用幂的运算性质求值。
可编辑课件
2
算幂 的 运
同底数幂的乘法 幂的乘方 积的乘方 同底数幂的除法
可编辑课件
3
学习指导一
同底数幂的乘法法则: 字母表示:
am·an=am+n 其中m,n都是正整数
指数相加 底数不变 指数相乘
其中m,n都是 (am)n=amn
正整数
幂的乘方
可编辑课件
7
练习一、计算( 口答)
(1) 105×106= 1011
(2) a7 ·a3 a10 =(3) x5 ·x5 =x10
(4) x5 ·x ·x3 x9
可编105)6= 1030
= -(8×0.125)2000× (-0.125) (2)(-4)2005×(0.25)2005 = -1× (-0.125) = 0.125
= (-4×0.25)2005
= -1
可编辑课件
23
学习指导四
同底数幂的除法
字母表示
am ÷ an =am-n
m 、n为正整数,m>n且a≠0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)(- 3)100 ×(- 3)101
例5:比较550与2425的大小。
解:∵550=(52)25=2525 2425<2525
∴550>2425
例6:已知210=a2=4b(其中a,b为正整数),
(3)( 1 )100 3101
3
(4)2.110 34
0.311 710
例3:计算
(1)计算:15,25,35,45, …,195;
(2)1275的个位上的数字是几? (3)5811 、 7318的个位上的数字分别 是几?
例4:
(1)下列算式中,①a3·a3=2a3;②10×109=1019; ③(xy2)3=xy6;④a3n÷an=a3.其中错误的是( ) A、1个 B、2个 C、3个 D、4个
(2)地球可以近似地看成球体,半径约为 6.37×103km,地球的体积大约为多少?
地球上海洋总面积约3.6×108km2,海洋 总面积是地球表面积的百分之几?
按海洋的海水平均深度3.7×103m计算, 求地球上海水的体积(用科学记数法表示).
例2:计算
(1)4×22×84;(2)0.24×0.44×12.54;
求ab的值。
解:∵210=a2 ∴(25)2=a2 即a=25=32
又∵210=4b ∴(22)5=45=4b 即b=5
∴ab=325
本节课你的收获是什么?
布置作业:
课本52页复习题8.3 1、2
补充习题28页 小结与思考
谢谢观赏!
建湖县实验初中
பைடு நூலகம்
❖ 4、同底数幂的除法:同底数幂相除,底数 不变,指数相减。am÷an=am-n.(a≠0)
❖ 5、a0=1(a≠0), a-n = a1n(a≠0)
例1 (1)地球可以近似地看成球体,半径约
为6.37×103km,地球的体积大约为多少?
你会计算地球的表面积吗? 请你查阅资料,找出计算球体表面积的公 式,再进行计算。
初中数学七年级下册 (苏科版)
第八章 期中复习
沭阳如东实验学校数学组
回顾:
❖ 1、同底数幂的乘法:同底数幂相乘,底数 不变,指数相加。am·an=am+n
❖ 2、幂的乘方:幂的乘方,底数不变,指数 相乘。(an)m=amn
❖ 3、积的乘方:积的乘方,等于把积中每一 个因式分别乘方,再把所得的幂相乘。 (ab)n=anbn