自动控制原理第三章3

合集下载

自动控制原理3第三节典型环节的频率特性

自动控制原理3第三节典型环节的频率特性

左图是不同阻尼系数情况下的 对数幅频特性和对数相频特性 图。上图是不同阻尼系数情况 下的对数幅频特性实际曲线与 渐近线之间的误差曲线。
1 2T 1 T 2 T 5 T 10 T
1 5T
Saturday, November 05, 2016
15
微分环节的频率特性
⒌ 微分环节的频率特性: 微分环节有三种:纯微分、一阶微分和二阶微分。传递函 数分别为: G( s) s
05, 2016
12
振荡环节的波德图
2 T ( ) tg 相频特性: 1 T 2 2
1
几个特征点: 0, ( ) 0;
1 , ( ) ; , ( ) 。 T 2
由图可见:
K 10, T 1, 0.3 10 G ( j ) 2 s 0.6s 1 1 o T
1
幅频特性为: 相频特性为:
A( )
(1 T 2 2 )2 (2T )2 2 T ( ) tg 1 1 T 2 2
L( ) 20 log A( ) 20 log (1 T 2 2 ) 2 (2 T ) 2 对数幅频特性为:
低频段渐近线: T 1时,L( ) 0 高频段渐近线: T 1时, L( ) 20 log (T 2 2 ) 2 40 log T 1 两渐进线的交点 o 称为转折频率。斜率为-40dB/Dec。 T Saturday, November
1 2
T
时,无谐振峰值。当
M p A( p )

1 2
1 0.707时, p 0 。 2
时,有谐振峰值。
1 2 1 2
1 当 0 , A(0 ) , 。 L ( ) 20 lg 2 0 2

《自动控制原理》课件第三章

《自动控制原理》课件第三章

h(t) 1
ent sin(
1 2
1 2nt arccos ) 1
1
1
2
e t
sin(dt
)
(3-13)
2) 无阻尼(ζ=0)二阶系统的单位阶跃响应
系统有两个共轭纯虚根s1=jωn,s2=-jωn 由式(3-10)可知系统的单位阶跃响应为
h(t)=1-cosωnt
(3-14)
这是一条平均值为1的正弦或余弦形式的等幅振荡,其振荡
2. 动态性能与稳态性能 稳定是控制系统能够运行的首要条件,因此只有当动态 过程收敛时,研究系统的动态性能才有意义。 1) 动态性能 通常在阶跃函数作用下,测定或计算系统的动态性能。 一般认为,阶跃输入对系统来说是最严峻的工作状态。如果 系统在阶跃函数作用下的动态性能满足要求,那么系统在其 他形式函数的作用下,其动态性能也是令人满意的。 描述稳定的系统在单位阶跃函数作用下,动态过程随时 间t的变化状况的指标称为动态性能指标。为了便于分析和 比较,假定系统在单位阶跃输入信号作用前处于静止状态, 而且输出量及其各阶导数均为零。

T1
n (
1
2
, 1)
T2
n (
1
2
1)
由式(3-12)可得此时二阶系统的单位阶跃响应为
h(t) 1 et T1 et T2 T2 T1 1 T1 T2 1
(3-15)
以上四种情况的单位阶跃响应曲线如图3-5所示,其横 坐标为无因次时间ωnt。由图3-5可见,在过阻尼和临界阻尼 响应曲线中,临界阻尼响应具有最短的上升时间,响应速度 最快; 在欠阻尼响应曲线中,阻尼比越小,超调量越大, 上升时间越短,通常取ζ=0.4~0.8为宜,此时超调量适度, 调节时间较短; 若二阶系统具有相同的ζ和不同的ωn,则其 振荡特性相同,但响应速度不同,ωn越大,响应速度越快。

自动控制原理第三章

自动控制原理第三章

➢ 0 1 特征根: s1,2 n jn 1 2
Xc (s)
1 s
s2
n2 2ns n2
1 s
s2
s 2n 2ns n2
1
s 2n
s (s n )2 (n 1 2 )2
其阶跃输入下的暂态响应:
xc (t) 1
e nt
1 2
sin(n
1 2 t ) , arctan
WB (s)
X c (s) X r (s)
(1
1 K)s
1
1 Ts 1
式中:T 1 k , 称为时间常数。
3.2.2 单位阶跃响应函数:
X r (s) 1 s
11
Xc
(s)
Ts
1
s
,
xc (t)
L1[ 1 Ts 1
1] s
L1[ 1 s
s
1
1
]
1
t
eT
T
xc (t ) xss xtt
2
1.8
1.6
1.4
1.2
1
0.8
0.6 0.4 0.2
0 0
246
nt
8 10 12
⒊ 当 1时,特征方程有一对相等的负实根,称为临界阻尼
系统,系统的阶跃响应为非振荡过程。
➢当 1 时,
阶跃响应曲线为:
xc
(s)
1 s
s2
n2 2n s
n2
n2 s(s n )2
1 1 n s s n (s n )2
1 )( s
T1
1 T2
)
式中
T1
1 a
n (
1
2
1)

自动控制原理——第3章

自动控制原理——第3章

第三章 时域分析法
系统的特征方程
Js + Fs + K = 0
2
F 称为实际阻尼系数。 称为实际阻尼系数。 当
F = 4JK
2
特征方程有一对相等的负实根, 时 , 特征方程有一对相等的负实根 , 系统 处于临界阻尼状态。 处于临界阻尼状态。 为临界阻尼系数, 令Fc为临界阻尼系数,则
Fc = 2 JK
解: (1) 由结构图写出闭环传递函数
100 / s 10 C ( s) Φ( s ) = = = R( s ) 1 + 100 × 0.1 0.1s + 1 s
自动控制原理
第三章 时域分析法
的分母多项式看出时间常数T=0.1 s, 从Φ(s)的分母多项式看出时间常数 的分母多项式看出时间常数 , 故调节时间 ts = 3T = 3 × 0.1 s = 0.3 s (2) 计算 s=0.1 s的反馈系数值 计算t 的反馈系数值 设反馈系数为Kh,则系统闭环传递函数 设反馈系数为
1/K h 100 / s Φ( s ) = = 100 0.01 1+ s +1 × Kh s Kh 0.01 T= Kh

自动控制原理
第三章 时域分析法
调节时间
0.03 ts =3T = Kh
要求t 要求 s=0.1 s,代入上式得 ,
0.03 0.1= Kh
所以
K h =0.3
自动控制原理
第三章 时域分析法
实际阻尼系数 临界阻尼系数
ξ=
F F = = Fc 2 JK
闭环传递函数写成如下一般形式
2 ωn Φ( s ) = 2 2 s + 2ξωn s + ωn

自动控制原理第3章

自动控制原理第3章

arctan 9 3
1.25rad
则响应为 y(t) 1 2 e 3t 0.95e j1.25e (1 j)t 0.95e j1.25e (1 j)t 5
1 2 e 3t 0.95e t e j(t1.25) e j(t1.25) 5 1 2 e 3t 1.9e t cos(t 1.25)
平衡位置:力学系统中,当系统外的作 D
用力为零时,位移保持不变的位置。
此时位移对时间的各阶导数为零。 A点和D点是平衡位置, B点和C点不是平衡位置。
O
B
C
A
稳定的平衡位置:若在外力作用下,系统偏离了平衡位置,但 当外力去掉后,系统仍能回到原来的平衡位置,则称这一个平 衡位置是稳定的平衡位置。
所以A点是稳定的平衡位置,而D点不是稳定的平衡位置。
注意:输入信号为非单位阶跃信号时,依齐次性,响应 只是沿纵轴拉伸或压缩,基本形状不变。所以ts 、 tr、 tp 、 σ并不发生变化。
当t < ts时,称系统处于动态;当t > ts时,称系统处于稳态。
3.2 一阶系统的单位阶跃响应
一阶系统(惯性环节)
G(s) 1 Ts 1
单位阶跃响应为
t
y(t) 1 e T
设零初始状态,y(0)=0 r (t)=1(t)时,y(t)的响应曲线为
y(t)
1.05 y(∞)
ym
y(∞)
0.95 y(∞)
tr tp
ts
ym:单位阶跃响应的最大偏离量。 y(∞):单位阶跃响应的稳态值。并非期望值。 ts:调节时间。y(t)进入0.5*y(∞)或0.2* y(∞)构成的误差带 后不再超出的时间。 tr:上升时间。 y(t) 第一次达到 y(∞)的时间。

自动控制原理第三章

自动控制原理第三章
5
3-2 一阶系统的时域分析
用一阶微分方程描述的控制系统
3-2-1 一阶系统数学描述 RC电路 其微分方程为: 电路, 例如 RC电路,其微分方程为:
R + r(t) _ I
1 Cs
+ C c(t) _ C(s)
ɺ T c+c = r
其中:c(t) 为电路输出电压, 其中: 为电路输出电压, R(s) UR r(t) 为电路输入电压, 为电路输入电压, T=RC为时间常数 为时间常数 由原理图得系统结构图。 由原理图得系统结构图。 R(s) 当初始条件为零时,其传递函数为: 当初始条件为零时,其传递函数为 C ( s) 1 = Φ ( s) = 一阶惯性环节 R(s) Ts + 1
t − 1 2 c (t ) = t − Tt + T 2 1 − e T 2
误差: 误差:

(t ≥ 0)

t − e (t ) = r (t ) − c (t ) = Tt − T 1 − e T 2
(t ≥ 0)
跟踪误差随时间推移而增大,直至无限大。 跟踪误差随时间推移而增大,直至无限大。 因此,一阶系统不能跟踪加速度输入。 因此,一阶系统不能跟踪加速度输入。
1 R
-
1 Ts
C(s)
6
3-2-2 一阶系统单位阶跃响应 系统输入: 系统输入:R(s ) = 1 系统输出: 系统输出:C ( s ) = Φ ( s ) R( s ) = 1 ⋅ 1 Ts + 1 s 1 T = − s Ts + 1 变换, Λ−1变换,得:h( t ) = 1 − e ,t ≥ 0 阶跃响应的特点: 阶跃响应的特点: 1 1) 在 t=0 时的斜率最大,为: 时的斜率最大,

[工学]自动控制原理第3章

[工学]自动控制原理第3章
25
三、劳斯判据 系统特征方程的标准形式: ■ 系统稳定的必要条件: 特征方程所有系数均为正,则系统可能稳定,可 ■ 用劳斯判据判稳。 ■ 系统稳定的充分条件: 特征方程所有系数组成劳斯表,其第一列元素必须
为正。 ■ 列劳斯表:
26
例 四阶系统特征方程式: 试判别系统的稳定性,并说明特征根中具有正部根 的个数。 列劳斯表:
(1)用
代入特征方程;
(2)将z看作新坐标, 用劳斯判据再次判稳。
30
3.6 稳态误差分析及计算
一、误差及稳态误差概念定义
1.误差: (2种定义) 输入端定义 输出端定义 两者之间的关系
31
32
2.稳态误差: 稳定系统误差的终值。 3.稳态误差的计算公式: 终值定理 二、稳态误差计算 1.在给定输入信号作用下的分析: 令
28
四、劳斯判据的其它应用 1.分析系统参数对稳定性的影响 例 系统如图所示,求使系统稳定的K值的 范围。解 : 系统闭环特征方程为 列劳斯表
系统稳定必须满足 所以
29
2.确定系统的相对稳定性
稳定裕量: 系统离稳定的边界有多少余量。也就是实部最大的特 征根与虚轴的距离。
若要求系统有 的稳定裕量, 则
18
例 有一位置随动系统,结构图如下图所示,其中K=4 。 求该系统的自然振荡角频率和阻尼比; 求该系统的超调量和调节时间; 若要阻尼比等于0.707,应怎样改变系统 放大倍数K ?
解(1)系统的闭环传递函数为
写成标准形式
可知
19
(2)超调量和调节时间
(3)要求
时,
四、提高二阶系统动态性能的方法 1.比例——微分(PD)串联校 正
将其代入超调量公式得
, 叫 峰值时间。

自动控制原理(3)

自动控制原理(3)

# 3—3 一阶系统分析 四、一阶系统的单位脉冲响应 R(s)=1 C(s)=[1/(Ts+1)]*1 -1 Ct(t)=L [1/(Ts+1)] --t/T K(t)=(1/T)*e (t > 0) 响应初始斜率: 响应初始斜率: 1/T dk(t)/dt|t=0 --t/T 2 = --(1/T )*e 1/2T 2 = --1/T
# 3—3 一阶系统分析 3— 3、性能指标 、 1)暂态性能 ) 由于一阶系统的阶跃响应没有超调量, 由于一阶系统的阶跃响应没有超调量, 所以性能指标主要 是调节时间ts,它表征 系统过渡过程的快慢。由于t=3T时,输 系统过渡过程的快慢。由于 时 出响应可达稳定值的95%;t=4T时,输 出响应可达稳定值的 ; 时 出响应可达稳定值的98%,故一般取: 出响应可达稳定值的 ,故一般取: ts=3T(s)(对应误差带为 ) )(对应误差带为 ( )(对应误差带为5%) ts=4T(s)(对应误差带为 ) )(对应误差带为 ( )(对应误差带为2%) 显然,系统的时间常数T越小,调节 显然,系统的时间常数 越小, 越小 就越小,响应过程的快速性也好。 时间ts就越小,响应过程的快速性也好。
0 T 2T 3T 4T 3/2T
# 3—3 一阶系统分析 五、三种响应之间的关系 Ct(t) = ∫ = ∫ (1-e )dt (t > 0 ) 0 --t/T = t – T+Te
超调 量 0.9 0.5 0.1 tr 峰值 tp ts td
误差带
# 3—3 一阶系统分析 3—
由一阶微分方程描述的系统即 为一阶系统,一些控制元、 为一阶系统,一些控制元、部件 及简单系统如R——C网络,发 网络, 及简单系统如 网络 电机,空气加热器, 电机,空气加热器,液面控制系 统等。 统等。

《自动控制原理》第三章-3-5-稳态误差计算

《自动控制原理》第三章-3-5-稳态误差计算

伺服电动机
R(s)
E(s)
1
C(s)
-
s(s 1)
K 1, 1
r(t) 1(t),k p , ess 0
r(t) t, kv 1, ess 1
r(t)
1 2
t2, ka
0, ess
位置随动系统
能源与动力学院 第三章 线性系统的时域分析法
14
4.扰动作用下稳态误差
R(s)
-
E(s)
R(s) E(s) 20
s4
N (s)
+
2
C(s)
s(s 2)
能源与动力学院 第三章 线性系统的时域分析法
28
3-20
R
-
K1
U
K2 S(T1S 1)
C
G(s)
K1K 2
B
s(T1s 1)(T2s 1)
1 T2S 1
(s)
C(s) R(s)
T1T2 s 3
K1K2 (T2s 1) (T1 T2 )s2 s
1
能源与动力学院 第三章 线性系统的时域分析法
7
3.输入作用下稳态误差计算
(1)阶跃作用下的稳态误差
r(t) R 1(t), R(s) R s
ess
Lim sR(s) s0 1 G(s)H (s)
Lim s1R(s)
s0
K Lim s
s0
1
R LimG(s)H (s)
Lim s R
s0
K Lim s
27
参考答案: Kp= ,kv=5,ka=0,essr=0.4,essn=-0.2
四、控制系统如图, r(t) 1 2t, n(t) 1(t), 试计算

自动控制原理第三章

自动控制原理第三章
0 l i m c (t ) t
T
(t 0 )
特 征 方 程 Ts 1 0 特 征 根 s 2 . c(t ) 2c(t ) 5 c (t ) r(t ), r(t ) δ (t ) C (s ) 1 R (s ) (s 1 )2 2 2 C (s ) 1
参考答案:0<k<16 参考答案:不稳定。 右2,左2,虚轴2。
s 6 4 s5 4 s4 4 s3 7 s2 8 s 1 0 0
4、已知单位负反馈系统开环传递函数如下所示,判系统的稳定性及根的分布。
G(s ) 46
4 2 s (s 2 s3 2 4 s 4 8 s 2 3 )
定义:给定值变化测量值具有跟踪给定值的能力;干扰 作用破坏系统的平衡,但具有抗拒干扰重新回到平衡状 态的能力。

无条件稳定(大范围稳定) 条件稳定(局部稳定) 线性系统若稳定,则为大范围稳定系统
大范围稳定特征
稳定性与初始条件无关; 与输入信号无关。
F(t) 大范围稳定
局部稳定
系统产生运动的原因:扰动(外力);初始状态(偏离平衡点)
c2 a0
代数稳定判据
稳定的必要条件:特征方程所有项系数同号且不为0。 稳定的充分条件:Routh表中第一列元素均大于零。 S5 S4 S3 a5 a4
a a a5a 2 b1 4 3 a4
b a a 4b 2 c1 1 2 b1 c b c 2b1 d1 1 2 c1
第三章 时域分析法
控制系统的典型输入信号 和系统性能指标
一、系统性能分析的思路
人为破坏系统的平衡状态(施加扰动),考查系统是否具有重新恢 复平衡状态的能力及水平。

自动控制原理:3-3 控制系统的稳态误差

自动控制原理:3-3  控制系统的稳态误差

ans=
2.0000
-2.0000
-0.0000+1.0000i
-0.0000-1.0000i -0.5000+0.8660i -0.5000-0.8660i
由于有1个正实部根的特征根, 所以,系统不稳定。
《自动控制原理》国家精品课程 浙江工业大学自动化研究所 14
3.4.2 MATLAB求控制系统的单位阶跃响应
有差系统 无差系统
准确跟踪 系统
§3-3 控制系统的稳态误差
2.单位斜坡输入 xr (t) t
Xr
(s)
1 s2
e lim s0
sE
(s)
lim
s0
s 1
Xr (s)
WK s
lim
s0
1
s WK
s
1 s2
1
lim
s0
sWK
s
若令
Kv
lim
s0
sWK
s
则 e 1
Kv
速度 误差系数
0型系统 Ⅰ型系统 Ⅱ型以上系统
当输入r(t) 为单位加速度信号时,为使系统的 静态误差为零,试确定前馈环节的参数a 和b 。
lim
s0
sN1X r s
sN K
稳态误差取决于Kk与N,而N越高稳态精度(准 确性)越高,稳定性越差。
二、典型输入情况下系统的给定稳态误差及误差系数
1.单位阶跃输入
xr
t
1 0
t0 t0
1 X r (s) s
§3-3 控制系统的稳态误差
e
lim
s0
sE
(s)
lim
s0
s 1
Xr (s)
WK s

自动控制原理第三章3_劳斯公式

自动控制原理第三章3_劳斯公式

替 s 3 行,可继续排列劳斯阵如下:
ai 0, (i 0 ~ 5)
的根。求解如下:
3 s 因为 行全为零,所以特征方程必有特殊
s 2 12 23 s1 10 0 s 0 23 0
令Q( s) 0, 有( s 2 23)(s 2 1) 0, s1, 2 j 23, s3, 4 j1
由于有特征根为共轭虚数,所以系统不稳 定
(s p)(s 4 24s 2 23) 0 ,整理得: 设剩余的一个根为-p。则:
s5 ps4 24s3 24 ps2 23s 23p 0
比较系数得:-p= -2 极点分布如下:

j 23
注意: 劳斯判据实际上只能判断代数方 程的根是在s平面左半闭平面还是 在右半开平面。对于虚轴上的根 要用辅助方程求出。
利用实部最大的特征方程的根 p(若稳定的话,它离虚轴最 近)和虚轴的距离 表示系统稳定裕量。 若p处于虚轴上,则 0 ,表示稳定裕量为0。 作 s 的垂线,若系统的极点都在该线的左边,则称该 越大,稳定程度越高。可用 系统具有 的稳定裕度。一般说, s z 代入特征方程,得以z为变量的新的特征方程,用劳斯胡尔维茨判据进行判稳。若稳定,则称系统具有 的稳定裕度。
s 5 1 24 23 s 4 2 48 46 s3 0 0 0
s5 1 s4 1 s3 1 24 23 24 23 12 0 0 0 0
s 3 行全为零。由前一行系数构成辅助方程得:
Q(s) 2s 4 48s 2 46 或 Q(s) s 4 24s 2 23 (s) 4s3 48s 将 4,48 或 1,12 代 Q 其导数为:
充要条件说明

朱玉华自动控制原理第3章 时域分析3-1,2,3

朱玉华自动控制原理第3章 时域分析3-1,2,3

1
1
ቤተ መጻሕፍቲ ባይዱ
s4 3s3 s2 3s 1 0 s3 3 3
试判别该系统的稳定性。 s2 0 1
当 0时,3 3 0,
s1 3 3 0
s0
1
有2个特征根在s平面第右3章边控. 制系系统统的是时域不分析稳定的
10 0 0
(2) 劳斯表中某一行的元素全为零。
——这时系统在s平面上存在一些大小相等符号相反的
61
s0 6
劳斯表中第一列元素大于零,所以该系统是稳定的。 这时,系统所有的特征根均处于s平面的左半平面。
第3章 控制系统的时域分析
课程回顾(1)
1、 稳态性能指标 2、 动态性能指标
ess
lim[r(t)
t
cr (t)]
(1)延迟时间td (2)上升时间tr
(3)峰值时间tp
(4)调整时间ts
负可化为全为正) (2)劳斯表中第一列所有元素均大于零。
第3章 控制系统的时域分析
例3-1 已知三阶系统特征方程为 a0s3 a1s2 a2s a3 0
试写出系统稳定的充要条件
解:列写劳斯表 s3
a0
a2
0
s2
a1
a3
0
s1 a1a2 a0a3 0
a1
s0
a3
0
故得出三阶系统稳定的充要条件为:
0
9
s0 5
s1 32
0
s0 5
所得结论不变
第3章 控制系统的时域分析
2、劳斯稳定判据的特殊情况
(1) 劳斯表中某一行的第一个元素(系数)为零,而该 行其它元不为零。
——计算下一行第一个元素时将出现无穷大,以至劳斯 表的计算无法进行。

自动控制原理 第三章第3

自动控制原理  第三章第3

n
等效阻尼系数
(s)
C(S) R(S)
S2
n2 2nS
n2
注意:比例-微分(PD)控制是二阶系统增加了一个闭 环零点,前面给出的动态性能指标计算指标不再适用。
7
Amplitude
K A 1500时
n 86.2rad / s 0.2 % 52.7%
1.6
1.4
1.2
1
0.8
0.6
0.4
3) 实用中PD控制器组成相对简单,成本低,而测速反馈
组成复杂,成本高。
4) ζd、ζt相等条件下,误差PD控制系统的超调量要大于输
出量速度反馈系统的超调量,这是因为闭环零点有消弱阻尼的 作用而引起的。
16
第四节 高阶系统的时域分析
通常把三阶或三阶以上的系统就称为高阶系统 。
P114 例3-6 设三阶系统闭环传递函数为
0.2
0
0
0.2
0.4
0.6
R(s) +-
5KA
C(s)
S(S 34.5)
在保持大的开环增益下,想 办法增大阻尼比!
Step Response
0.8
1
1.2
1.4
1.6
1.8
2
8
Time (sec)
R(s)
+-
1 Td S
d
1 2
Td n
0.7
0.2
1 2
Td
86.2
2 n
S (S 2 n )
一对共轭的复数根s1,2=-0.45±j0.89,和一个实数根s3=1/α。 MATLAB程序
sys1=zpk([ ],[-0.45+0.89*j -0.45-0.89*j -1/2.5], 1/2.5); %α=2.5 sys2=zpk([ ],[-0.45+0.89*j -0.45-0.89*j -1/0.9], 1/0.9); %α=0.9 sys3=zpk([ ],[-0.45+0.89*j -0.45-0.89*j -1/0.5], 1/0.5); %α=0.5 sys4=zpk([ ],[-0.45+0.89*j -0.45-0.89*j -1/0.05], 1/0.05); %α=0.05 step(sys1,’b’,sys2,’g’,sys3,’r’,sys4,’b-’); grid

自动控制原理(第三版)(章 (3)

自动控制原理(第三版)(章 (3)
s1,2 jn
此时, s1, s2如图3-7(d)所示。
第三章 线性系统的时域分析法
3.3.2 二阶系统的单位阶跃响应
令r(t)=1(t), 则有R(s)=1/s。所以, 由式(3.15)可得二 阶系统在单位阶跃函数作用下输出信号的拉氏变换为
C(s)
n2
1
s2 2ns n2 s
(3.19)
应曲线如图3-2所示。图中 c() lim c(t) t
为输出的稳态值。
第三章 线性系统的时域分析法 图 3-2 动态性能指标
第三章 线性系统的时域分析法
动态性能指标通常有以下几种:
延迟时间td:指响应曲线第一次达到稳态值的一半所需的时 间。
上升时间tr:若阶跃响应不超过稳态值, 上升时间指响应曲 线从稳态值的10%上升到90%所需的时间;对于有振荡的系统, 上升 时间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
调量σp可由下式确定:
p
c(tp ) c() c()
100 %
(3.8)
振荡次数N:在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞) 次数的一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时 间tr评价系统的响应速度;σp评价系统的运行平稳性或阻尼程度; ts是同时反映响应速度和阻尼程度的综合性指标。应当指出, 除简 单的一、二阶系统外, 要精确给出这些指标的解析表达式是很困难 的。
第三章 线性系统的时域分析法
3.2.2 一阶系统的单位脉冲响应 如果输入信号为理想单位脉冲函数 r(t)=δ(t), R(s)=1
输出量的拉氏变换与系统的传递函数相同, 即
C(s) 1 Ts 1

自动控制原理课后答案第三章

自动控制原理课后答案第三章
4 G(s) 4 2s 3 + 10s 2 + 13s + 1 = = Φ(s) = 4 1 + G(s) 1 + 2s 3 + 10s 2 + 13s + 5 2s 3 + 10s 2 + 13s + 1 ).特征方程 特征方程2 (1).特征方程2s 3 + 10s 2 + 13s + 5 = 0, 系数均大于零, ∴ 系统稳定. 系数均大于零,且10 × 13 > 2 × 5, 系统稳定.
环传递函数, 已知单位反馈系统的开 环传递函数, 的稳定性. 试用劳思判据判断系统 的稳定性. 50 ; G(s) = s(s + 1)(s + 5)
若要求右半s 若要求右半s平面闭环 极点数,则列Routh表 极点数,则列Routh表 : Routh 1 5 s3 6 50 s2 6 × 5 − 1× 50 1 <0 0 s 6 0 s 50 首列元素反号两次, 首列元素反号两次, 故 右半s 右半s平面闭环极点数 为2.
第三章重点
进行时域分析的基本方法:重点是二阶系统的时域响应、 进行时域分析的基本方法:重点是二阶系统的时域响应、劳斯稳定判据 及稳态误差分析。 及稳态误差分析。 基本概念,稳定性和动态性能、主导极点、稳态误差、串联校正、 基本概念,稳定性和动态性能、主导极点、稳态误差、串联校正、反馈 校正等。 校正等。 Routh判据的应用;建立系统稳定(绝对稳定和相对稳定)的概念;稳 判据的应用; 判据的应用 建立系统稳定(绝对稳定和相对稳定)的概念; 定和闭环极点的关系 二阶系统的典型输入及性能指标; )(3-27)( )(3-28) 二阶系统的典型输入及性能指标;式(3-26)( )( )( ) )(3-31)和(3-32)为参数与指标间的数学描述 (3-30)( )( ) ) 高阶系统重点建立主导极点概念, 高阶系统重点建立主导极点概念,非主导极点及开环小时间常数影响 根据稳态误差定义推导出稳态误差与系统结构参数以及输入信号形式大 小的关系,引出静态误差系数。( 。(0、 、 型系统 型系统? 小的关系,引出静态误差系数。( 、I、II型系统?)

自动控制原理(第二版)(赵四化)章 (3)

自动控制原理(第二版)(赵四化)章 (3)

(s) C(s) 1
R(s) Ts 1
(3-13)
第3章 时域分析法 图3-5 一阶系统的动态结构图
第3章 时域分析法
3.2.1 一阶系统的单位阶跃响应
设输入
R(s) 1 s
则输出量的拉氏变换为
C(s) (s) 1 1 1 1 1
s Ts 1 s s s 1/T
单位阶跃响应为
1t
C(s)
(s)R(s)
s2
n2 2ns
n2
1 s
其中, 由
s2 2 ns n2 0
可求得两个特征根
s1,2 n n 2 1
(3-22)
第3章 时域分析法
1) ξ>1, 过阻尼
ξ>1

, 2 1 s1,2=-ξωn±ωn
为两个不相等的负实数根, 即有
C(s)
n2
A1 A2 A3
(s)
C(s) R(s)
s2
n2 2ns
n2
(3-21)
其中, ξ为阻尼比, ωn为无阻尼自然振荡频率, 它们 均为系统参数。
第3章 时域分析法
由式(3-21)可以看出, 二阶系统的动态特性 可以用ξ和ωn这两个参数的形式加以描述。 如果0<ξ<1, 则闭环极点为共轭复数, 并且位于左半s平面, 这时系统 叫做欠阻尼系统, 其瞬态响应是振荡的。 如果ξ=1, 那 么就叫做临界阻尼系统。 而当ξ>1时, 就叫做过阻尼系 统。 临界阻尼系统和过阻尼系统的瞬态响应都不振荡。 如果ξ=0, 那么瞬态响应变为等幅振荡。
此时系统输出响应的拉氏变换为
C(s)
1 Ts 1
1 s2
1 s2
T s
T2 Ts 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

② ξ = 1时,(临界阻尼) S1 ,S2 为一对相等的负实数根。
h(t) ? 1? e??nt (1? ? nt)
ts ? 4.75T1
响应是没有超调,具有没有超调中最快的响应速度;
2
课程回顾( 3)
③ 0<ξ<1时,(欠阻尼) S1 ,S2 为一对具有负实部的共轭复
根。
h(t) ? 1 ?
e ? ?ωn t
要使二阶系统具有满意的动态性能,必须选取合适的阻尼 比和无阻尼自振荡率。通常可根据系统对超调量的限制要求 选定 ξ ,然后在根据其它要求来确定 ω n 。
??阻尼比: ?不变;固有频率 ? n ??
?
?? % ?
? ?
t
s
?
tr
?
tp
?
?
?固有频率 ?
??
n不变;阻尼比
?
??
?? % ?
??t s ? t p ?
令dh(t) dt
? 0,得
t?tp
? ?sin(ωdt ?β)? 1? ? 2 cos(ωdt ?β)? 0
tan(ωdt ?β)? 1? ? 2 /? ? tanβ
? ωdtp ? nπ (n ? 0,1,2,3?) 按定义取 n=1得:
tp
?
π ωd
? ωn
π
1? ? 2
6
?3. 超调量 ? %:
?例3-3设位置随动系统,其结构图如图所示,当给 定输入为 单位阶跃时,试计算放大器增益 KA=200, 1500,13.5时,输出位置响应特性的性能指标:峰 值时间tp,调节时间 ts和超调量 ?? ,并分析比较之。
e sine( ) (由0σ﹤%ξ=h≤(0t.)h8=()t ph1)(-∞-t)sh(?∞√?3)?1.1%5-n0ξ21(0取5%S得1,误2-σ=ξ%ω差n-t=带ξω)n
ts ?
±j
-πξ
ωn
1?
√1-ξ2
? 2 100%
ωd t+ β
4.5 (取2%误差10 带)
?? n
三、二阶系统举例
j
j
h(t) ? 1?
1
?1t
e T1 ?
1
?1t
e T2 ,( t ? 0)
T2 / T1 ? 1
T1 / T2 ? 1
S1 S2
0
ts ~ f (T1 )
T1
T2
0
t
T1/T2 ? 4( ? ? 1.25), ts ? 3.3T1
T1/T2 ? 4( ? ? 1.25), ts ? 3T1
响应与一阶系统相似,没有超调,但调节速度慢;
5
h(t) ? 1? 1 e?ζ
?2. 峰1值?ζ时2 间
tωntps:in(ωd
t
?β),t
?
0
dhd(t峰t) 值? ?时1间?1ζt2p:?(?为ζωc(n )t?)e?ζ ωntsin(ωdt ?β)?ωde?ζ ωntcos(ωdt ?β)?
? ? dhd根(t第t)据一? 极?次ω值n出1e定??ζ现ζω理2n峰t 有?值ζ:s时in间(ω。dt ?β)? 1?ζ2 cos(ωdt ?β)
? 1 ? e??? /
π ?β) 1 ?ζ2
1?
?
2
?
%?
h(t
p) ?
h(?
) ? 100%
?
e? ??
/
1? ? 2
? 100%
h(? )
即σ%完全由 ?决定,? ? ,σ%出调节时间的表达式相当困难。在分析设计系统 十,经常采用下列近似公式。
当阻尼比 0 ? ? ? 0.8时
将峰值时间 tp ? ? / ? d 代入下式
h(t) ? 1?
1
1? ?
2
e? ?? nt
sin(?
dt
?
arccos?
)
得: h(t )max ?
?
所以:
shi(?nthhp(((t)ttπp)p?)??1?ω?1π?1?βd?e??1)ω?11?1???ζ1n?/ζ2π?1?12?e??2se?ζζ2?iζ2ωsnω nitnnsβ?ωi(n?nπ(1??ζω?2 ?saditrnc?(1cβωo?s)d??ω)n2
4
欠阻尼二阶系统 单位阶跃响应性能指标
?1. 上升时间 tr :令 h(tr ) ? 1,则
1?
1
1? ?2
e? ?? nt
sin(?
dt
?
arccos? )
?
1
所以: ? ωdtr ? arccos? ?π
tr
π- arccos ?
?
ωd
π- ?
?
ωn 1? ? 2
由上式可见,如欲减小tr ,当ζ一定时,需增大ω n,反之, 若ω n一定时,则需减小ζ。
1? ? 2
sin(ω
dt ? β)
虽然响应有超调,但上升速度较快,调节时间也较短。合理选 择?的取值,使系统具有满意的响应快速性和平稳性。 ④ 当ξ=0时,(无阻尼,零阻尼) S1 ,S2 为一对幅值相等的 虚根。
h(t) ? 1? cosωnt
响应曲线是等幅振荡;
3
课程小结(4)
⑤ 当ξ<0时,(负阻尼) S1 ,S2 为一对不等的负实数根。
(0 ? ? ? 0.8)
实际设计中,一般取ξ = 0.4 ~ 0.8。其中以ξ = 0.707 时为 最佳阻尼。
9
欠阻尼二阶系统动态性能分析与计算
e sin( ) 令令 取-hξh其hω(((βtωntt)解)=)n一1=中0ωj取阶的1d其导=-最解数ω小√n中1√=值-10ξ-的ξ21,,2 最小值Φ-ξ0ω(,snt<)=得ξ得<st12pωt+=时r=d2tξωω:+πωdβnπ2nωs-+dβω n2
响应是发散的,系统不能正常工作;
小结: ⅰ) 二阶系统正常工作的基本条件是 ξ>0 ;而ξ<0系统不稳定; ⅱ) 当ξ ≥1时,其阶跃响应曲线是单调上升的(即非周期性的);
※ⅲ)当0<ξ<1时,其阶跃响应曲线是振荡衰减的(即具周期性)。
工程上有时把阻尼比?=0.707称为最佳阻尼比。实际设计 中,一般取ξ = 0.4~0.8的欠阻尼状态下。此时,系统在具 有适度振荡特性的情况下,能有较短的过渡过程时间。
ts
?
3.5
?? n
(取5%误差带)
ts
?
4.5
?? n
(取2%误差带)
8
除了一些不允许产生振荡的系统外,通常希望二阶系统工 作在ξ=0.4~0.8的欠阻尼状态下。此时,系统在具有适度振
荡特性的情况下,能有较短的过渡过程时间,因此有关性能 指标的定义和定量关系的推导,主要是针对二阶系统的欠阻 尼工作状态进行的。
课程回顾( 1)
§3-2-2二阶系统的数学模型及单位阶跃响应
Φ(s)?
T2s2
?
1
2?Ts? 1 ?
s2
?
ωn2
2?ωns ? ωn2
式中,ωn
?
1, T
特征方程
s2
?
2??
ns
?
?
2 n
?
0
特征方程的两个根(闭环极点) S1,2 ? ???n ? ? n ? 2 ? 1
1
课程回顾( 2)
① ξ>1时,(过阻尼) S1 ,S2 为一对不等的负实数根。
相关文档
最新文档