第九章---spss的回归分析
第9章spss回归.
经15次迭代,相邻两次迭代残差平方和几
34
乎为0,即得到参数最优解,迭代终止。
参数估计表
由表可得非线性回归方程为 Saels=12.904-11.268exp(-0.496advert)
35
参数估计相关系数表 方差分析表
全部变异
与因变量均值的变异
由表中可决系数R2 =0.909,说明模
36
型可以解释因变量的90.9%的变异。
回归分析中是否 包含常数项
8
【结果形式】
H0: b1=…=bn=0
可决系数-自变量可解释 因变量的比例
模型的方差分析
9
H0:a=0 H0:bi=0
模型中常数项与回归系数的检验 回归方程为time=-1.955+3.457diam
10
【实例】为研究某公司职工当前工资水平(salary), 收集了影响因素6个,即开始工资(salbegin $)、受 教育时间(educ)、来公司工作时间(jobtime)、工 种(jobcat)、来前工作经验(prevexp)及是否少数 民族(minority),试用多元线性回归对该公司当前工 资水平建立恰当回归模型。 【数据准备】见下页
21
Curve Estimation中提供了11种本质线性模型:
22
【实例】某产品零售商已知产品的广告投入和销售 额的数据,试找出适当的回归方程。
【作散点图预分析】 Graphs-scatter/dot
简单散点图,用 于一对变量
矩阵散点图,用 单点散点图,用
于多对变量
于单个变量
重叠散点图,用 于多对变量
18
随自变量的加入,线性
H0:b1=…=b5=0
模型都有显著效果
SPSS回归分析
SPSS回归分析SPSS(统计包统计软件,Statistical Package for the Social Sciences)是一种强大的统计分析软件,广泛应用于各个领域的数据分析。
在SPSS中,回归分析是最常用的方法之一,用于研究和预测变量之间的关系。
接下来,我将详细介绍SPSS回归分析的步骤和意义。
一、回归分析的定义和意义回归分析是一种对于因变量和自变量之间关系的统计方法,通过建立一个回归方程,可以对未来的数据进行预测和预估。
在实际应用中,回归分析广泛应用于经济学、社会科学、医学、市场营销等领域,帮助研究人员发现变量之间的关联、预测和解释未来的趋势。
二、SPSS回归分析的步骤1. 导入数据:首先,需要将需要进行回归分析的数据导入SPSS软件中。
数据可以以Excel、CSV等格式准备好,然后使用SPSS的数据导入功能将数据导入软件。
2. 变量选择:选择需要作为自变量和因变量的变量。
自变量是被用来预测或解释因变量的变量,而因变量是我们希望研究或预测的变量。
可以通过点击"Variable View"选项卡来定义变量的属性。
3. 回归分析:选择菜单栏中的"Analyze" -> "Regression" -> "Linear"。
然后将因变量和自变量添加到正确的框中。
4.回归模型选择:选择回归方法和模型。
SPSS提供了多种回归方法,通常使用最小二乘法进行回归分析。
然后,选择要放入回归模型的自变量。
可以进行逐步回归或者全模型回归。
6.残差分析:通过检查残差(因变量和回归方程预测值之间的差异)来评估回归模型的拟合程度。
可以使用SPSS的统计模块来生成残差,并进行残差分析。
7.结果解释:最后,对回归结果进行解释,并提出对于研究问题的结论。
要注意的是,回归分析只能描述变量之间的关系,不能说明因果关系。
因此,在解释回归结果时要慎重。
第九章 SPSS的线性回归分析
第九章 SPSS的线性回归分析线性回归分析是一种常用的统计方法,用于探索自变量与因变量之间的线性关系。
在SPSS中,进行线性回归分析可以帮助研究者了解变量之间的关系,并预测因变量的数值。
本文将介绍如何在SPSS中进行线性回归分析,并解释如何解释结果。
一、数据准备。
在进行线性回归分析之前,首先需要准备好数据。
在SPSS中,数据通常以数据集的形式存在,可以通过导入外部文件或手动输入数据来创建数据集。
确保数据集中包含自变量和因变量的数值,并且数据的质量良好,没有缺失值或异常值。
二、进行线性回归分析。
在SPSS中进行线性回归分析非常简单。
首先打开SPSS软件,然后打开已经准备好的数据集。
接下来,依次点击“分析”-“回归”-“线性”,将自变量和因变量添加到相应的框中。
在“统计”选项中,可以选择输出各种统计信息,如残差分析、离群值检测等。
点击“确定”按钮后,SPSS会自动进行线性回归分析,并生成相应的结果报告。
三、解释结果。
线性回归分析的结果报告包括了各种统计信息和图表,需要仔细解释和分析。
以下是一些常见的统计信息和图表:1. 相关系数,线性回归分析的结果报告中通常包括了自变量和因变量之间的相关系数,用来衡量两个变量之间的线性关系强度。
相关系数的取值范围为-1到1,接近1表示两个变量呈正相关,接近-1表示呈负相关,接近0表示无相关。
2. 回归系数,回归系数用来衡量自变量对因变量的影响程度。
回归系数的符号表示自变量对因变量的影响方向,系数的大小表示影响程度。
在结果报告中,通常包括了回归系数的估计值、标准误、t值和显著性水平。
3. 残差分析,残差是因变量的观测值与回归方程预测值之间的差异,残差分析可以用来检验回归模型的拟合程度。
在结果报告中,通常包括了残差的分布图和正态概率图,用来检验残差是否符合正态分布。
4. 变量间关系图,在SPSS中,可以生成自变量和因变量之间的散点图和回归直线图,用来直观展示变量之间的线性关系。
如何使用统计软件SPSS进行回归分析
如何使用统计软件SPSS进行回归分析如何使用统计软件SPSS进行回归分析引言:回归分析是一种广泛应用于统计学和数据分析领域的方法,用于研究变量之间的关系和预测未来的趋势。
SPSS作为一款功能强大的统计软件,在进行回归分析方面提供了很多便捷的工具和功能。
本文将介绍如何使用SPSS进行回归分析,包括数据准备、模型建立和结果解释等方面的内容。
一、数据准备在进行回归分析前,首先需要准备好需要分析的数据。
将数据保存为SPSS支持的格式(.sav),然后打开SPSS软件。
1. 导入数据:在SPSS软件中选择“文件”-“导入”-“数据”命令,找到数据文件并选择打开。
此时数据文件将被导入到SPSS的数据编辑器中。
2. 数据清洗:在进行回归分析之前,需要对数据进行清洗,包括处理缺失值、异常值和离群值等。
可以使用SPSS中的“转换”-“计算变量”功能来对数据进行处理。
3. 变量选择:根据回归分析的目的,选择合适的自变量和因变量。
可以使用SPSS的“变量视图”或“数据视图”来查看和选择变量。
二、模型建立在进行回归分析时,需要建立合适的模型来描述变量之间的关系。
1. 确定回归模型类型:根据研究目的和数据类型,选择适合的回归模型,如线性回归、多项式回归、对数回归等。
2. 自变量的选择:根据自变量与因变量的相关性和理论基础,选择合适的自变量。
可以使用SPSS的“逐步回归”功能来进行自动选择变量。
3. 建立回归模型:在SPSS软件中选择“回归”-“线性”命令,然后将因变量和自变量添加到相应的框中。
点击“确定”即可建立回归模型。
三、结果解释在进行回归分析后,需要对结果进行解释和验证。
1. 检验模型拟合度:可以使用SPSS的“模型拟合度”命令来检验模型的拟合度,包括R方值、调整R方值和显著性水平等指标。
2. 检验回归系数:回归系数表示自变量对因变量的影响程度。
通过检验回归系数的显著性,可以判断自变量是否对因变量有统计上显著的影响。
第九章 spss的回归分析
第九章spss的回归分析1、利用习题二第4题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS 提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩做散点图步骤:图形→旧对话框→散点图→简单散点图→定义→将phy导入X轴、将fore导入Y 轴,将sex导入设置标记→确定图标剪辑器内点击元素菜单→选择总计拟合线→选择线性→确定→再次选择元素菜单→点击子组拟合线→选择线性→确定分析:如上图所示,通过散点图,被解释变量y与fore有一定的线性相关关系。
2、线性回归分析与相关性回归分析的关系是怎样的?线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或者减少。
3、为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?线性回归方程能够较好地反映被解释变量和解释变量之间的统计关系的前提是被解释变量和解释变量之间确实存在显著的线性关系。
回归方程的显著性检验正是要检验被解释变量和解释变量之间的线性关系是否显著,用线性模型来描述他们之间的关系是否恰当。
一般包括回归系数的检验,残差分析等。
4、SPSS多元线性回归分析中提供了哪几种解释变量筛选策略?包括向前筛选策略、向后筛选策略和逐步筛选策略。
5、先收集到若干年粮食总产量以及播种面积、使用化肥量、农业劳动人数等数据,请利用建立多元线性回归方程,分析影响粮食总产量的主要因素。
数据文件名为“粮食总产量.sav”。
步骤:分析→回归→线性→粮食总产量导入因变量、其余变量导入自变量→确定结果如图:Variables Entered/Removed bModel Variables Entered Variables Removed Method1 农业劳动者人数(百万人),总播种面积(万公顷), 风灾面积比例(%), 粮食播种面积(万公顷), 施用化肥量(kg/公顷), 年份a. Entera. All requested variables entered.b. Dependent Variable: 粮食总产量(y万吨)ANOVA bModel Sum of Squares df Mean Square F Sig.1 Regression 2.025E9 6 3.375E8 414.944 .000aResidual 2.278E7 28 813478.405Total 2.048E9 34a. Predictors: (Constant), 农业劳动者人数(百万人), 总播种面积(万公顷), 风灾面积比例(%),粮食播种面积(万公顷), 施用化肥量(kg/公顷), 年份b. Dependent Variable: 粮食总产量(y万吨)Coefficients aModel UnstandardizedCoefficients StandardizedCoefficientst Sig.B Std. Error Beta1 (Constant) -613605.817 230903.867 -2.657 .013年份304.688 119.427 .402 2.551 .016粮食播种面积(万公顷) .736 .782 .053 .942 .354总播种面积(万公顷) 1.939 .650 .111 2.984 .006施用化肥量(kg/公顷) 141.077 11.186 .755 12.612 .000风灾面积比例(%) -307.209 51.870 -.174 -5.923 .000-5.121 22.286 -.038 -.230 .820 农业劳动者人数(百万人)a. Dependent Variable: 粮食总产量(y万吨)分析:如以上4个表所示,影响程度来由大到小依次是风灾面积、使用化肥量、总播种面积和年份。
如何使用统计软件SPSS进行回归分析
如何使用统计软件SPSS进行回归分析一、本文概述在当今的数据分析领域,回归分析已成为了一种重要的统计方法,广泛应用于社会科学、商业、医学等多个领域。
SPSS作为一款功能强大的统计软件,为用户提供了进行回归分析的便捷工具。
本文将详细介绍如何使用SPSS进行回归分析,包括回归分析的基本原理、SPSS 中回归分析的操作步骤、结果解读以及常见问题的解决方法。
通过本文的学习,读者将能够熟练掌握SPSS进行回归分析的方法和技巧,提高数据分析的能力,更好地应用回归分析解决实际问题。
二、SPSS软件基础SPSS(Statistical Package for the Social Sciences,社会科学统计软件包)是一款广泛应用于社会科学领域的数据分析软件,具有强大的数据处理、统计分析、图表制作等功能。
对于回归分析,SPSS 提供了多种方法,如线性回归、曲线估计、逻辑回归等,可以满足用户的不同需求。
在使用SPSS进行回归分析之前,用户需要对其基本操作有一定的了解。
打开SPSS软件后,用户需要熟悉其界面布局,包括菜单栏、工具栏、数据视图和变量视图等。
在数据视图中,用户可以输入或导入需要分析的数据,而在变量视图中,用户可以定义和编辑变量的属性,如变量名、变量类型、测量级别等。
在SPSS中进行回归分析的基本步骤如下:用户需要选择“分析”菜单中的“回归”选项,然后选择适当的回归类型,如线性回归。
接下来,用户需要指定自变量和因变量,可以选择一个或多个自变量,并将它们添加到回归模型中。
在指定变量后,用户还可以设置其他选项,如选择回归模型的类型、设置显著性水平等。
完成这些设置后,用户可以点击“确定”按钮开始回归分析。
SPSS将自动计算回归模型的系数、标准误、显著性水平等统计量,并生成相应的输出表格和图表。
用户可以根据这些结果来评估回归模型的拟合优度、预测能力以及各自变量的贡献程度。
除了基本的回归分析功能外,SPSS还提供了许多高级选项和工具,如模型诊断、变量筛选、多重共线性检测等,以帮助用户更深入地理解和分析回归模型。
《统计分析和SPSS的应用(第五版)》课后练习答案与解析(第9章)
《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第9章SPSS的线性回归分析1、利用第2章第9题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS 提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩体系散点图步骤:图形旧对话框散点图简单散点图定义将fore导入Y轴,将phy导入X轴,将sex导入设置标记确定。
接下来在SPSS输出查看器中,双击上图,打开图表编辑在图表编辑器中,选择“元素”菜单选择总计拟合线选择线性应用再选择元素菜单点击子组拟合线选择线性应用。
分析:如上图所示,通过散点图,被解释变量y(即:fore)与解释变量phy有一定的线性关系。
但回归直线的拟合效果都不是很好。
2、请说明线性回归分析与相关分析的关系是怎样的?相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。
相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。
如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。
与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。
线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或减少。
3、请说明为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?检验其可信程度并找出哪些变量的影响显著、哪些不显著。
SPSS 线性回归分析
整理课件
二、多元线性方程回归系数的检验
26
需要对回归系数是否为零逐一进行检验。
原假设H0:βi=0 ,即:第i个偏回归系数与0无显 著差异
利用t检验统计量(略) 若与t统计量的概率伴随p <a,则拒绝H0
多元线性回归中回归系数的检验与整体回归方程 的检验不能相互替代。
第9章 SPSS的线性回归分析
1
9.1 回归分析概述 9.2 线性回归分析和线性回归模型 9.3 回归方程的统计检验 9.4 多元回归分析中的其他问题 9.5 线性回归分析的基本操作 9.6 线性回归分析的应用举例
整理课件
学习的内容与目标
2
掌握线性回归分析的主要指标,了解最小二乘法 的基本思想
熟练掌握线性回归分析的具体操作,读懂分析结 果;掌握计算结果之间的数量关系,写出回归方 程,对回归方程进行各种统计检验
(ordinary least square estimation ,OLSE)
11
估计思想:
使每个样本点(xi , yi)与回归线上的对应点( xi , E (yi ))在垂直方向上偏差距离的二次方总和达 到最小的原则来估计参数 即,∑( yi - E(yi ))2 =最小
b b b b c ˆ ˆ y ˆ ˆ n
19
用于检验被解释变量与所有解释变量之间的线 性关系是否显著,用线性模型来描述它们之间的
关系是否恰当,即检验模型对总体的近似程度。
➢ SST =回归平方和 SSA + 剩余平方和SSE
➢ 回归方程的显著性检验中采用方差分析的方法,研究在 SST中SSA相对于SSE来说是否占有较大比例。如果比例较 大,表明y与x全体的线性关系明显,则利用线性模型反映 y与x的关系是恰当的;反之,不恰当。
9.3-spss多元回归分析教案
n
n
(yˆi y)2
(yi yˆ)2
R2
i1 n
ห้องสมุดไป่ตู้
1
i1 n
(yi y)2
(yi y)2
i1
i1
说明:R2体现了回归方程所能解释的因变量变差的比例;1-R2则体现了因
变量总变差中,回归方程所无法解释的比例。R2越接近于1,则说明回
归平方和占了因变量总变差平方和的绝大部分比例,因变量的变差主要
由自变量的不同取值造成,回归方程对样本数据点拟合得好。Spss中
1、多重共线性分析(仅多元回归分析检验)
多重共线性是指解释变量之间存在线性相关关系的现象,该现象的 存在会导致:有可能回归方程的F统计量高度显著,而每个t统计量不显 著,严重影响回归效果。测度多重共线性一般有以下方式:
(spass操作:分析-回归-线性-在统计量对话框中选共线性分析) 1、容差越大则与方程中其他自变量的共线性越低,应进入方程. 具有太小容
分布在对角线上,可以判断残差服从正态分布。
2、检验残差的独立性(DW检验)。
n
(et et1)2
DW检验用来检验残差的自相关。 DW t2 n
2(1)
检验统计量为:
et2
t2
◇判断:DW=2表示无自相关,在0-2之间说明存在正自相关,在2-4之
间说明存在负的自相关。一般情况下,DW值在1.5-2.5之间即可说明
残差是指由回归方程计算得到的预测值与实际样本值之间的差距,定
义为: e i y i y ˆ i y i ( 0 1 x 1 2 x 2 . .p x . p )
对于线性回归分析来讲,如果方程能够较好的反映被解释变量的特征 和规律性,那么残差序列中应不包含明显的规律性。
用SPSS做回归分析
用SPSS做回归分析回归分析是一种统计方法,用于研究两个或多个变量之间的关系,并预测一个或多个因变量如何随着一个或多个自变量的变化而变化。
SPSS(统计软件包的统计产品与服务)是一种流行的统计分析软件,广泛应用于研究、教育和业务领域。
要进行回归分析,首先需要确定研究中的因变量和自变量。
因变量是被研究者感兴趣的目标变量,而自变量是可能影响因变量的变量。
例如,在研究投资回报率时,投资回报率可能是因变量,而投资额、行业类型和利率可能是自变量。
在SPSS中进行回归分析的步骤如下:1.打开SPSS软件,并导入数据:首先打开SPSS软件,然后点击“打开文件”按钮导入数据文件。
确保数据文件包含因变量和自变量的值。
2.选择回归分析方法:在SPSS中,有多种类型的回归分析可供选择。
最常见的是简单线性回归和多元回归。
简单线性回归适用于只有一个自变量的情况,而多元回归适用于有多个自变量的情况。
3.设置因变量和自变量:SPSS中的回归分析工具要求用户指定因变量和自变量。
选择适当的变量,并将其移动到正确的框中。
4.运行回归分析:点击“运行”按钮开始进行回归分析。
SPSS将计算适当的统计结果,包括回归方程、相关系数、误差项等。
这些结果可以帮助解释自变量如何影响因变量。
5.解释结果:在完成回归分析后,需要解释得到的统计结果。
回归方程表示因变量与自变量之间的关系。
相关系数表示自变量和因变量之间的相关性。
误差项表示回归方程无法解释的变异。
6.进行模型诊断:完成回归分析后,还应进行模型诊断。
模型诊断包括检查模型的假设、残差的正态性、残差的方差齐性等。
SPSS提供了多种图形和统计工具,可用于评估回归模型的质量。
回归分析是一种强大的统计分析方法,可用于解释变量之间的关系,并预测因变量的值。
SPSS作为一种广泛使用的统计软件,可用于执行回归分析,并提供了丰富的功能和工具,可帮助研究者更好地理解和解释数据。
通过了解回归分析的步骤和SPSS的基本操作,可以更好地利用这种方法来分析数据。
SPSS数据分析教程 ——回归分析课件
回归和相关分析
• 回归分析是在相关分析的基础上,确定了变量之间的相互影响关 系之后,准确的确定出这种关系的数量方法。因此,一般情况下, 相关分析要先于回归分析进行,确定出变量间的关系是线性还是 非线性,然后应用相关的回归分析方法。在应用回归分析之前, 散点图分析是常用的探索变量之间相关性的方法。
SPSS数据分析教程 ——回归分析
• Y = ¯0 +¯1 X +² • 其中变量X为预测变量,它是可以观测和控制的;Y为因变量或响应变量,
它为随机变量; ²为随机误差。 • 通常假设²~N(0,¾2),且假设与X无关。
SPSS数据分析教程 ——回归分析
回归模型的主要问题
• 进行一元线性回归主要讨论如下问题:
(1) 利用样本数据对参数¯0, ¯1和¾2,和进行点估计,得到经验回归方程 (2) 检验模型的拟合程度,验证Y与X之间的线性相关的确存在,而不是由
用回归方程预测
• 在一定范围内,对任意给定的预测变量取值,可以利用求得的拟 合回归方程进行预测。其预测值为:
ˆ0 ˆ0ˆ1x0PSS数据分析教程 ——回归分析
简单线性回归举例
• 一家计算机服务公司需要了解其用电话进行客户服务修复的计算 机零部件的个数和其电话用的时间的关系。经过相关分析,认为 二者之间有显著的线性关系。下面我们用线性回归找到这两个变 量之间的数量关系。
• F检验的 被拒绝,H 0并不能说明所有的自变量都对因变量Y有显著 影响,我们希望从回归方程中剔除那些统计上不显著的自变量, 重新建立更为简单的线性回归方程,这就需要对每个回归系数做 显著性检验。
• 即使所有的回归系数单独检验统计上都不显著,而F检验有可能 显著,这时我们不能够说模型不显著。这时候,尤其需要仔细对 数据进行分析,可能分析的数据有问题,譬如共线性等。
spss-09生物统计回归研究报告
416703. 023 74190. 155
599428. 778 70913. 206
F 9.064
5.685
5.617
8.453
逐步回归方程的方差分析表
Sig. .017a
.034b
.035c
.014d
生物统计
Coefficients a
Unstandardized Coef f icients
生物统计
例9.3 随机抽测10名女中学生的体重(x1)、胸围(x2)、胸围呼吸差(x3)、 肺活量(y),数据如表。试做 y 对诸 xi 的多元线性回归分析。
学生 号
x1
x2
x3
y
1 35 69 0. 7 1600
2 40 74 2. 5 2600
3 40 64 2. 0 2100
4 42 74 3. 0 2650
生物统计
第九章 回归
生物统计
【例9.1】在四川白鹅的生产性能研究中, 得到如下一组关于雏鹅重(g)与70日龄重(g) 的数据,试建立70日龄重(y)与雏鹅重(x)的 直线回归方程。
生物统计
表9-1 四川白鹅雏鹅重与70日龄重测定结果 (单位:g)
生物统计
生物统计
利用SPSS实现直线回归:
SPSS操作步骤: Analyze Regression Linear
新样本数据如上表所示。再作新数据散点图见右上图,已呈现直线关
联, 作直线回归分析得:
Y= 19. 7451 + 7. 7771 X 经检验该直线回归方程有意义。做反变换得曲线回归方程:
y= 19. 7451 + 7. 7771 lnx
9-3(回归分析)—SPSS之回归分析课件PPT
4、S形曲线
y
a
1 bex
y
b>1 b=1
b<1
x
a>0 b>0
y
O
x
步骤
1、调入数据。 2、由graphs=>scatter做散点图观察数据满足何种曲线。 3、依次选取菜单:
Analyze=>regression=>curve estimation 4、将自变量选入independent框中,因变量选入
第2节 曲线回归
应用回归分析
一、可ห้องสมุดไป่ตู้性化的曲线有很多,例如以下几种:
1、 2、 3、 4、 5、 6、
二、以下几种常用的曲线:
1、双曲线 y a b x
y
y
x
a>0 b<0
应用回归分析
a>0 b>0
x
2、指数曲线 y=aebx
应用回归分析
y
b<0
y
b>0
x
x
3、幂函数曲线 y=axb
应用回归分析
dependent框中。 5、在models框中选择合适的曲线。 6、Plot Models :绘制回归线;
Display ANOVA table:输出各个模型的方差分析表和 各回归系数显著性检验结果
步骤
7. save:保存变量. Save Variables:保存预测值,残差,预测区间 Predict Cases:预测个案 Predict from estimation period through last case: 通过最后一个个案预测周期 Predict through:预测条件
实例分析
例1: 教育支出的相关因素分析
(1)画教育支出和年人均消费性支出的关系 (2)利用二次,三次,复合,幂函数模型进行分
第9章_SPSS的线性回归分析
第9章_SPSS的线性回归分析线性回归是一种用于建立两个或更多变量之间关系的统计方法,它能够预测一个因变量(因变量)与一个或多个自变量之间的线性关系。
SPSS是一种功能强大的数据分析软件,可用于执行线性回归分析。
一、线性回归的基本概念在开始进行线性回归分析之前,我们需要了解一些基本概念。
1.因变量(Y):被预测或感兴趣的变量,也称为被解释变量。
2.自变量(X):用于预测因变量的变量,也称为解释变量。
3.回归系数:描述因变量与自变量之间关系的数值。
4.截距:在自变量为0时,因变量的期望值。
5.残差:观测值与回归线之间的差异,用于衡量模型的拟合程度。
SPSS提供了执行线性回归分析的功能。
下面是执行线性回归分析的步骤。
步骤1:打开SPSS软件并导入数据。
你可以使用菜单栏中的“文件”选项来导入数据。
步骤2:选择“回归”选项。
在菜单栏中选择“分析”>“回归”>“线性”。
步骤3:指定因变量和自变量。
将因变量和自变量从可用变量列表中移动到相应的框中。
步骤4:设置模型选项。
在“模型”选项卡中,你可以选择不同的分析方法,例如,输入法或后退法,并设置显著性水平。
步骤5:点击“确定”按钮运行分析。
SPSS将执行线性回归分析,并在输出窗口中显示结果。
三、解释SPSS输出结果SPSS的线性回归分析结果通常由多个表格组成。
下面是一些常见的结果和如何解释它们的示例。
1.相关系数矩阵:显示因变量和自变量之间的关系。
相关系数的值范围从-1到1,接近1表示强正相关,接近-1表示强负相关。
2.模型概括:显示回归方程的参数估计值、标准误差和显著性。
3.回归系数表:显示每个自变量的回归系数、标准误差、t值和显著性。
4.显著性检验:显示自变量是否对因变量有显著影响的统计检验结果。
5.拟合优度统计量:显示模型适合数据的程度。
常用的拟合优度统计量有R平方值和调整的R平方值。
R平方值介于0和1之间,值越接近1表示模型拟合得越好。
四、解释回归方程回归方程用于预测因变量的值。
2018-2019-spss第九章练习题答案word版本 (9页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==spss第九章练习题答案篇一:第九章spss的回归分析第九章spss的回归分析1、利用习题二第4题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩做散点图步骤:图形→旧对话框→散点图→简单散点图→定义→将phy导入X轴、将fore导入Y轴,将sex导入设置标记→确定图标剪辑器内点击元素菜单→选择总计拟合线→选择线性→确定→再次选择元素菜单→点击子组拟合线→选择线性→确定分析:如上图所示,通过散点图,被解释变量y与fore有一定的线性相关关系。
2、线性回归分析与相关性回归分析的关系是怎样的?线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或者减少。
3、为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?线性回归方程能够较好地反映被解释变量和解释变量之间的统计关系的前提是被解释变量和解释变量之间确实存在显著的线性关系。
回归方程的显著性检验正是要检验被解释变量和解释变量之间的线性关系是否显著,用线性模型来描述他们之间的关系是否恰当。
一般包括回归系数的检验,残差分析等。
4、SPSS多元线性回归分析中提供了哪几种解释变量筛选策略?包括向前筛选策略、向后筛选策略和逐步筛选策略。
5、先收集到若干年粮食总产量以及播种面积、使用化肥量、农业劳动人数等数据,请利用建立多元线性回归方程,分析影响粮食总产量的主要因素。
数据文件名为“粮食总产量.sav”。
步骤:分析→回归→线性→粮食总产量导入因变量、其余变量导入自变量→确定分析:如以上4个表所示,影响程度来由大到小依次是风灾面积、使用化肥量、总播种面积和年份。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章spss的回归分析
1、利用习题二第4题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS 提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩做散点图
步骤:图形→旧对话框→散点图→简单散点图→定义→将phy导入X轴、将fore导入Y 轴,将sex导入设置标记→确定
图标剪辑器内点击元素菜单→选择总计拟合线→选择线性→确定→再次选择元素菜单→点击子组拟合线→选择线性→确定
分析:如上图所示,通过散点图,被解释变量y与fore有一定的线性相关关系。
2、线性回归分析与相关性回归分析的关系是怎样的?
线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或者减少。
3、为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?
线性回归方程能够较好地反映被解释变量和解释变量之间的统计关系的前提是被解释变量和解释变量之间确实存在显著的线性关系。
回归方程的显著性检验正是要检验被解释变量和解释变量之间的线性关系是否显著,用线性模型来描述他们之间的关系是否恰当。
一般包括回归系数的检验,残差分析等。
4、SPSS多元线性回归分析中提供了哪几种解释变量筛选策略?
包括向前筛选策略、向后筛选策略和逐步筛选策略。
5、先收集到若干年粮食总产量以及播种面积、使用化肥量、农业劳动人数等数据,请利用建立多元线性回归方程,分析影响粮食总产量的主要因素。
数据文件名为“粮食总产量.sav”。
步骤:分析→回归→线性→粮食总产量导入因变量、其余变量导入自变量→确定
结果如图:
Variables Entered/Removed b
Model Variables Entered Variables Removed Method
1 农业劳动者人数(百万人),
总播种面积(万公顷), 风灾
面积比例(%), 粮食播种面
积(万公顷), 施用化肥量
(kg/公顷), 年份a
. Enter
a. All requested variables entered.
b. Dependent Variable: 粮食总产量(y万吨)
ANOVA b
Model Sum of Squares df Mean Square F Sig.
1 Regression 2.025E9 6 3.375E8 414.944 .000a
Residual 2.278E7 28 813478.405
Total 2.048E9 34
a. Predictors: (Constant), 农业劳动者人数(百万人), 总播种面积(万公顷), 风灾面积比例(%),
粮食播种面积(万公顷), 施用化肥量(kg/公顷), 年份
b. Dependent Variable: 粮食总产量(y万吨)
Coefficients a
Model Unstandardized
Coefficients Standardized
Coefficients
t Sig.
B Std. Error Beta
1 (Constant) -613605.817 230903.867 -2.657 .013
年份304.688 119.427 .402 2.551 .016
粮食播种面积(万公顷) .736 .782 .053 .942 .354
总播种面积(万公顷) 1.939 .650 .111 2.984 .006
施用化肥量(kg/公顷) 141.077 11.186 .755 12.612 .000
风灾面积比例(%) -307.209 51.870 -.174 -5.923 .000
-5.121 22.286 -.038 -.230 .820 农业劳动者人数(百万
人)
a. Dependent Variable: 粮食总产量(y万吨)
分析:如以上4个表所示,影响程度来由大到小依次是风灾面积、使用化肥量、总播种面积和年份。
(排除农业劳动者人数和粮食播种面积对粮食产量的影响)粮食总产量回归方程:Y=-7.893X1+15.68X2+7.126X3+7.268X4-7.456
6、一家产品销售公司在30个地区设有销售分公司。
为研究产品销售量(y)与该公司的销售价格(x1)、各地区的年人均收入(x2)、广告费用(x3)之间的关系,搜集到30个地区的有关数据。
进行多元线性回归分析所得的部分分析结果如下:
1)将第一张表中的所缺数值补齐。
2)写出销售量与销售价格、年人均收入、广告费用的多元线性回归方程,并解释各回归系数的意义。
3)检验回归方程的线性关系是否显著?
4)检验各回归系数是否显著?
5)计算判定系数,并解释它的实际意义。
6)计算回归方程的估计标准误差,并解释它的实际意义。
1)略
2)各回归表示不同的变量对总体销售量的影响程度。
销售量Y=-3.6958X1+5.4586X2+3.9814X3+3.1039
3)在对回归进行检验中,其P值为8.88341E-13,其小于0.05,所以可以认为检验回归方程的线性关系显著。
4)在对回归进行检验中,各解释变量解释解释变量中的P值均小于0.05,所以认为其线性关系显著。
5)、6)略
7、试根据“粮食总产量.sav”数据,利用SPSS曲线估计方法选择恰当模型,对样本期外的粮食总产量进行外推预测,并对平均预测误差进行估计。
步骤:图形→旧对话框→线形→简单→个案值→定义→将粮食总产量导入线的表征→确定
结果如下图:
步骤:分析→相关→曲线估计→粮食总产量导入因变量、年份导入变量,点击年份→在模型中选择二次项、立方→点击保存选择保存预测值→继续→确定
模型汇总
R R 方调整 R 方估计值的标准误
.978 .957 .955 1651.679
ANOVA
平方和df 均方 F Sig.
回归 1.961E9 2 9.804E8 359.372 .000
残差8.730E7 32 2728042.572
总计 2.048E9 34
分析:如上表所示,粮食总产量总体呈现上升趋势,在对回归进行检验时,sig值为0<0.05,故拒绝原假设,即认为回归方程个解释变量与被解释变量间显著。