2018-2019学年度重庆一中高一(下)期末考试数学试题含答案

合集下载

2018-2019学年重庆市区县高一下学期期末数学试题(解析版)

2018-2019学年重庆市区县高一下学期期末数学试题(解析版)

2018-2019学年重庆市区县高一下学期期末数学试题一、单选题1.已知向量(2,3)a =r,(,4)b m =r ,若a r ,b r 共线,则实数m =( )A .6-B .83-C .83D .6【答案】C【解析】利用向量平行的性质直接求解. 【详解】Q 向量(2,3)a =r ,(,4)b m =r ,,a b rr 共线,∴423m =, 解得实数83m =.故选:C . 【点睛】本题主要考查向量平行的性质等基础知识,考查运算求解能力,是基础题.2.已知,a b ∈R ,若关于x 的不等式20x ax b ++<的解集为()1,3,则a b +=( ) A .7- B .1-C .1D .7【答案】B【解析】由韦达定理列方程求出a ,b 即可得解. 【详解】由已知及韦达定理可得,13a -=+,13b =⨯, 即4a =-,3b =, 所以1a b +=-. 故选:B . 【点睛】本题考查一元二次方程和一元二次不等式的关系、韦达定理的应用等,属于一般基础题. 3.已知等差数列{}n a 的前n 项和为n S ,且24S =,416S =,则56a a +=( ) A .11 B .16C .20D .28【答案】C【解析】可利用等差数列的性质2S ,42S S -,64S S -仍然成等差数列来解决.【详解】{}n a Q 为等差数列,前n 项和为n S ,2S ∴,42S S -,64S S -成等差数列,422642()()S S S S S ∴-=+-,又24S =,416S =,64562444S S a a ∴=+-=++,5620a a ∴+=. 故选:C . 【点睛】本题考查等差数列的性质,关键在于掌握“等差数列中n S ,2n n S S -,32n n S S -⋯仍成等差数列”这一性质,属于基础题.4.某高中三个年级共有3000名学生,现采用分层抽样的方法从高一、高二、高三年级的全体学生中抽取一个容量为30的样本进行视力健康检查,若抽到的高一年级学生人数与高二年级学生人数之比为3∶2,抽到高三年级学生10人,则该校高二年级学生人数为( ) A .600 B .800C .1000D .1200【答案】B【解析】根据题意可设抽到高一和高二年级学生人数分别为3k 和2k ,则321030k k ++=,继而算出抽到的各年级人数,再根据分层抽样的原理可以推得该校高二年级的人数. 【详解】根据题意可设抽到高一和高二年级学生人数分别为3k 和2k ,则321030k k ++=,即4k =,所以高一年级和高二年级抽到的人数分别是12人和8人, 则该校高二年级学生人数为8300080030⨯=人. 故选:B . 【点睛】本题考查分层抽样的方法,属于容易题. 5.已知变量x ,y 的取值如下表:由散点图分析可知y 与x 线性相关,且求得回归直线的方程为$3y bx=-$,据此可预测:当8x =时,y 的值约为( ) A .63 B .74C .85D .96【答案】C【解析】由已知求得样本点的中心的坐标,代入线性回归方程求得ˆb ,取8x =求得y 值即可. 【详解】 由题得1234535x ++++==,1015304550305y ++++==. 故样本点的中心的坐标为(3,30), 代入ˆˆ3ybx =-,得303ˆ113b +==. ∴ˆ113yx =-,取8x =,得ˆ118385y =⨯-=. 故选:C . 【点睛】本题考查线性回归方程的求法,明确线性回归方程恒过样本点的中心是关键,是基础题. 6.已知非零实数a ,b 满足a b >,则下列不等关系一定成立的是( ) A .11a b< B .ab a b >+ C .22a b >D .3223a ab a b b +>+【答案】D【解析】根据不等式的基本性质,一一进行判断即可得出正确结果. 【详解】 A.11a b<,取11a b =>=-,显然不成立,所以该选项错误; B. ab a b >+,取1,1a b ==-,显然不成立,所以该选项错误; C. 22a b >,取2,3a b ==-,显然不成立,所以该选项错误;D. 3223a ab a b b +>+,由已知220a b +>且a b >,所以2222()()a a b b a b +>+, 即3223a ab a b b +>+.所以该选项正确. 故选:D . 【点睛】本题考查不等式的基本性质,属于容易题.7.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若4A π=,5a =,4c =,则满足条件的ABC ∆的个数为( ) A .0 B .1C .2D .无数多个【答案】B【解析】直接由正弦定理分析判断得解. 【详解】4,sinC sin ,sin 2A C AC =∴==∴<, 所以C 只有一解,所以三角形只有一解. 故选:B 【点睛】本题主要考查正弦定理的应用,意在考查学生对这些知识的理解掌握水平. 8.已知等比数列{}n a 的前n 项和为n S ,若33S =,621S =-,则1a =( ) A .2- B .1-C .1D .2【答案】C【解析】利用等比数列{}n a 的前n 项和公式列出方程组,能求出首项. 【详解】Q 等比数列{}n a 的前n 项和为n S ,33S =,621S =-,∴313616(1)31(1)211a q S q a q S q ⎧-==⎪-⎪⎨-⎪==-⎪-⎩, 解得11a =,2q =-. 故选:C . 【点睛】本题考查等比数列的首项的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.9.某校统计了1000名学生的数学期末考试成绩,已知这1000名学生的成绩均在50分到150分之间,其频率分布直方图如图所示,则这1000名学生中成绩在130分以上的人数为( )A .10B .20C .40D .60【答案】C【解析】由频率分布直方图求出这1000名学生中成绩在130分以上的频率,由此能求出这1000名学生中成绩在130分以上的人数. 【详解】由频率分布直方图得这1000名学生中成绩在130分以上的频率为: 1(0.0060.0140.020.008)200.04-+++⨯=,则这1000名学生中成绩在130分以上的人数为10000.0440⨯=人. 故选:C . 【点睛】本题考查频数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.10.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若22cos a b c B =+,则C =( ) A .2π B .3π C .4π D .6π 【答案】B【解析】由题意和余弦定理可得222a b c ab +-=,再由余弦定理可得cos C ,可得角C 的值.【详解】Q 在ABC ∆中,2cos 2c B a b =-,∴由余弦定理可得222222a c b c a b ac+-⨯=-,222a b c ab ∴+-=,2221cos 22a b c C ab +-∴==,又(0,)C π∈,3C π∴=.故选:B . 【点睛】本题考查利用余弦定理解三角形,考查了转化思想,属基础题. 11.已知1a >-,0b >,21a b +=,则121a b++的最小值为( ) A .72B .92C .7D .9【答案】B【解析】根据条件可知10a +>,0b >,122a b ++=,从而得出121222(1)2()(12)()149111b a a b a b a b a b ++=+++=++++++…,这样便可得出121a b++的最小值. 【详解】1a >-Q ;10a ∴+>,且0b >,21a b +=;122a b ∴++=;∴121222(1)2()(12)()1459111b a a b a b a b a b ++=+++=++++=+++…,当且仅当213a b +==时等号成立; ∴12912a b ++…; ∴121a b ++的最小值为92. 故选:B . 【点睛】考查基本不等式在求最值中的应用,注意应用基本不等式所满足的条件及等号成立的条件.12.已知,R λμ∈,ABC ∆所在平面内一点P 满足||||||||AB BC AC CB AP AB AC AB BC AC CB λμ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r ,则||||BP CP =u u u ru u u r ( ) A .sin2sin2BC B .cos 2cos2BC C .sin 2sin 2C BD .cos2cos2C B 【答案】D【解析】由平面向量基本定理及单位向量可得点P 在ABC ∠的外角平分线上,且点P 在ACB ∠的外角平分线上,2BPBC π-∠=,2CPCB π-∠=,在PBC ∆中,由正弦定理得cos||sin 2sin ||cos 2C BP PCB B PBC CP ∠==∠u u u r u u u r 得解.【详解】因为||||||||AB BC AC CB AP AB AC AB BC AC CB λμ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u ru u u r u u u r u u u r u u u r u u u r u u u r u u u r 所以,||||||||AB BC AC CB BP CP AB BC AC CB λμ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u ru u u r u u u r u u ur u u u r u u u r u u u r , 因为||||AB BC AB BC +u u u r u u u r u u ur u u u r 方向为ABC ∠外角平分线方向, 所以点P 在ABC ∠的外角平分线上, 同理,点P 在ACB ∠的外角平分线上,2BPBC π-∠=,2CPCB π-∠=,在PBC ∆中,由正弦定理得cos||sin 2sin ||cos 2C BP PCB BPBC CP ∠==∠u u u r u u u r , 故选:D . 【点睛】本题考查了平面向量基本定理及单位向量,考查向量的应用,意在考查学生对这些知识的理解掌握水平.二、填空题13.不等式210x x+>的解集为_________. 【答案】1,(0,)2⎛⎫-∞-⋃+∞ ⎪⎝⎭【解析】利用两个数的商是正数等价于两个数同号;将已知的分式不等式转化为整式不等式,求出解集. 【详解】210x x+>同解于(21)0x x +> 解得21x <-或0x >故答案为:1(,)(0,)2-∞-+∞U【点睛】本题考查解分式不等式,利用等价变形转化为整式不等式是解题的关键.14.甲、乙两人要到某地参加活动,他们都随机从火车、汽车、飞机三种交通工具中选择一种,则他们选择相同交通工具的概率为_________. 【答案】13【解析】利用古典概型的概率求解. 【详解】甲、乙两人选择交通工具总的选择有339⨯=种,他们选择相同交通工具有3种情况, 所以他们选择相同交通工具的概率为3193=. 故答案为:13. 【点睛】本题考查古典概型,要用计数原理进行计数,属于基础题.15.当实数a 变化时,点()2,1P --到直线():1120l a x y a -++-=的距离的最大值为_______.【答案】【解析】由已知直线方程求得直线所过定点,再由两点间的距离公式求解. 【详解】由直线:(1)120l a x y a -++-=,得(2)10a x x y --++=,联立2010x x y -=⎧⎨-++=⎩,解得21x y =⎧⎨=⎩.∴直线l 恒过定点(2,1),P ∴到直线l 的最大距离d =故答案为: 【点睛】本题考查点到直线距离最值的求法,考查直线的定点问题,是基础题.16.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若ABC ∆cos A ,则cos sin B C +的最大值为________.【解析】先求得A 的值,再利用两角和差的三角公式和正弦函数的最大值,求得cos sin B C +的最大值.【详解】ABC ∆中,若ABC ∆1cos sin 2A bc A =g ,tan 3A ∴=,6A π∴=.11cos sin cos sin()cos sin()cos cos sin )622B C B A B B B B B B B B π+=++=++=++)3B π=+…当且仅当6B π=时,取等号,故cos sin B C +【点睛】本题主要两角和差的三角公式的应用和正弦函数的最大值,属于基础题.三、解答题17.学生会有A B C D E F 、、、、、共6名同学,其中4名男生2名女生,现从中随机选出2名代表发言.求:()1A 同学被选中的概率;()2至少有1名女同学被选中的概率.【答案】(1)13(2)35【解析】(1)用列举法列出所有基本事件,得到基本事件的总数和A 同学被选中的,然后用古典概型概率公式可求得;(2)利用对立事件的概率公式即可求得. 【详解】解:() 1选两名代表发言一共有()()()(),,,,,,,A B A C A D A E ,()()(),,,,,A F B C B D ,()()()(),,,,,,,,B E B F C D C E ()()()(),,,,,,,C F D E D F E F 共15种情况,其中.A 被选中的情况是()()()()(),,,,,,,,,A B A C A D A E A F 共5种. 所以A 被选中的概本为51153=. ()2不妨设, , , A B C D 四位同学为男同学,则没有女同学被选中的情况是:()()(),,,,,,A B A C A D ()()(),,,,,B C B D C D 共6种,则至少有一名女同学被选中的概率为631155-=. 【点睛】本题考查了古典概型的概率公式和对立事件的概率公式,属基础题. 18.设等差数列{}n a 的前n 项和为n S ,77S =,2128a a +=. (1)求n a ;(2)设2n an b =,求数列{}n b 的前n 项和.【答案】(1)3n a n =-(2)2124n n T -=-【解析】(1)在等差数列{}n a 中根据77S =,2128a a +=,可求得其首项与公差,从而可求得n a ;(2)可证明{}n b 为等比数列,利用等比数列的求和公式计算即可. 【详解】(1)172127784772a a a a a S ++=⇒===Q g 711216a a a d -∴=-∴== 213n a n n ∴=-+-=-;(2)3n a n =-Q ,2n an b =32n n b -∴= 所以()2112142124n n n T --==--. 【点睛】本题考查等比数列的前n 项和,着重考查等差数列的性质与通项公式及等比数列的前n 项和公式,属于基础题.19.近年来,某地大力发展文化旅游创意产业,创意维护一处古寨,几年来,经统计,古寨的使用年限x (年)和所支出的维护费用y (万元)的相关数据如图所示,根据以往资料显示y 对x 呈线性相关关系.(1)求出y 关于x 的回归直线方程y bx a =+$$$;(2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过10万元?参考公式:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归方程y bx a =+$$$的斜率和截距的最小二乘估计分别为$1221,n ii i x y nx b ay bx x ynx =--==--∑∑$$. 【答案】(1)ˆ0.70.35yx =+(2)使用年限至少为14年时,维护费用将超过10万元 【解析】(1)由已知图形中的数据求得ˆb 与ˆa 的值,则线性回归方程可求;(2)直接由ˆ0.70.3510yx =+>求得x 的范围得答案. 【详解】(1)3456 4.54x +++==, 2.534 4.5 3.54y +++==, 222223 2.543546 4.54 4.5 3.5ˆ0.73456445b ⨯+⨯+⨯+⨯-⨯⨯==+++-⨯g , ˆ 3.50.7 4.50.35a=-⨯=. 故线性回归方程为ˆ0.70.35yx =+;(2)由ˆ0.70.3510y x =+>,解得111314x >. 故使用年限至少为14年时,维护费用将超过10万元.【点睛】本题考查线性回归方程的求法,考查计算能力,是基础题.20.如图,在ABC ∆中,90ABC ∠=︒,D 为AC 延长线上一点,且23AD =,6BD =,1in 3s ADB ∠=.(1)求AB 的长度;(2)求ABC ∆的面积. 【答案】(1)2AB =(22 【解析】(1)求得cos D ,在ABD ∆中运用余弦定理可得所求值;(2)在ABD ∆中,求得cos A ,sin A ,AC ,再由三角形的面积公式,可得所求值.【详解】(1)由题意可得222cos 13D sin D =-=, 在ABD ∆中,由余弦定理可得2222cos AB AD BD AD BD D =+-g2212622362=+-⨯=,则2AB =(2)在ABD ∆中,2226cos 22223AB AD BD A AB AD +-==g g , 23sin 1A cos A -,3cos AB AC A==, ABC ∆的面积为1132sin 23222S AB AC A ===g g g g. 【点睛】本题考查三角形的余弦定理和正弦定理、面积公式的运用,考查方程思想和运算能力.21.在平面直角坐标系中,ABC ∆的顶点()1,3A -、()3,4B -,边AC 上的高线所在的直线方程为2360x y ++=,边BC 上的中线所在的直线方程为2370x y +-=. (1)求点B 到直线AC 的距离;(2)求ABC ∆的面积.【答案】(1)2)13【解析】(1)由题意求得AC 所在直线的斜率再由直线方程点斜式求AC 的方程,然后利用点到直线的距离公式求解;(2)设C 的坐标,由题意列式求得C 的坐标,再求出||AC ,代入三角形面积公式求解.【详解】(1)由题意,32AC k =,直线AC 的方程为33(1)2y x -=+,即3290x y -+=. 点B 到直线AC的距离d ==(2)设(,)C m n ,则BC 的中点坐标为34(,)22m n +-, 则329034237022m n m n -+=⎧⎪⎨+-⨯+⨯-=⎪⎩,解得16m n =⎧⎨=⎩,即C(1,6),||AC ∴=ABC ∆∴的面积1||132S AC d ==g .【点睛】本题考查点到直线的距离公式的应用,考查点关于直线的对称点的求法,是基础题. 22.已知数列{}n a 的前n 项和为n S ,115a =,123n n n n a a a +=+. (1)证明:数列13n n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2)证明:n S <【答案】(1)证明见解析(2)证明见解析【解析】(1)将已知递推式取倒数得1123n n na a +=+,,再结合等比数列的定义,即可得证;(2)由(1)得132n n na =+,再利用基本不等式以及放缩法和等比数列的求和公式,结合不等式的性质,即可得证.【详解】(1)115a =,123n n n n a a a +=+, 可得1123n n na a +=+, 即有111132(3)n n n na a ++-=-, 可得数列1{3}n na -为公比为2,首项为2的等比数列; (2)由(1)可得132n n na -=, 即132n n n a =+,由基本不等式可得32n n n +>,n a <,即有12112211n n S a a a =++⋯+<<=- 【点睛】本题考查等比数列的定义和通项公式、求和公式、考查构造数列法以及放缩法的运用,考查化简运算能力和推理能力,属于中档题.。

【高一数学试题精选】2018年重庆一中高一数学下学期期末试卷(附答案)

【高一数学试题精选】2018年重庆一中高一数学下学期期末试卷(附答案)

2018年重庆一中高一数学下学期期末试卷(附答案)
5 密★启用前
4-3=0;
(Ⅱ)由题意,直线斜率存在且不为0,设其方程是=(x-1),则圆心到直线的距离d= ,
,此时=1或=7,
所以所求直线方程是或
(19)解(Ⅰ)根据频率分布直方图,成绩不低于60分的频率为
1-10×(0005+001)=085由于该校高一年级共有学生640名,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为640×085=544
(Ⅱ)成绩在[40,50)分数段内的人数为40×005=2,成绩在[90,100]分数段内的人数为40×01=4,则记在[40,50)分数段的两名同学为A1,A2,在[90,100]分数段内的同学为B1,B2,B3,B4 若从这6名学生中随机抽取2人,则总的取法共有15种.
如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10;如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10
则所取2名学生的数学成绩之差的绝对值不大于10的取法有(A1,A2),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4)共7种取法,所以所求概率为P=715
(20)解(Ⅰ)解
(Ⅱ)证明,
其前n项和Tn=24+342+…+n+14n,
14Tn=242+343+…+n4n+n+14n+1,。

重庆市南岸区2018-2019学年高一数学下学期期末考试试题(含解析)

重庆市南岸区2018-2019学年高一数学下学期期末考试试题(含解析)

f (2x 1) f (1) 0 f (2x 1) f (1)
又因为
3 ,即
3,
2x 1 1 1 2x 1 1
1 x 2
所以
3 ,即 3
3 ,求得 3
3 ,故选 A.
【点睛】本题主要考查了函数的单调性和奇偶性的应用,其中根据函数的奇偶性和函数的单
2x 1 1
调性,把不等式转化为
3 求解是解答的关键,着重考查了分析问题和解答问题的能
定理得 (2c)2 (4a)2 (2a)2 2(4a)(2a) cos120 c2 7a2 e 7
考点:双曲线定义
【思路点睛】(1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定
义中要求|PF1|+|PF2|>|F1F2|,双曲线的定义中要求||PF1|-|PF2||<|F1F2|,抛物线上的 点到焦点的距离与准线的距离相等的转化.(2)注意数形结合,画出合理草图.
5.已知定义在
R
上的函数
f
x 是奇函数且满足,
f
3 2
x
f
(x) ,f
(2)
3
,数列
an
满足
a1
1 ,且
Sn
2an
n ,(其中
Sn

an
的前
n
项和).则
f a5 f a6 ()
A. 3
B. 2
C. 3
D. 2
【答案】A
【解析】
由奇函数满足
f
3 2
x
f
x
可知该函数是周期为 T
3 的奇函数,
则:
2bc
2bc 2 ,
由于:0<A<π,
故:A 3 .

2019学年重庆一中高一下期末数学试卷【含答案及解析】

2019学年重庆一中高一下期末数学试卷【含答案及解析】

2019学年重庆一中高一下期末数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 已知集合,,则()(A)___________________________________ (B)(C)______________________________ (D)2. 设a=,b=(3,1),若a b,则实数k的值等于()(A)-_________________________________ (B)-___________________________________ (C)___________________________________ (D)3. 设等差数列{a n }的前n项和为S n ,若a 5 +a 14 =10,则S 18 等于()( A)20____________________ (B)60____________________________ (C)90________________________ (D)1004. 圆与圆的位置关系为()(A)内切____________________________ (B)相交______________________________ (C)外切________________________ (D)相离5. 已知变量x,y满足约束条件,则z=3x+y的最大值为()(A)12____________________________ (B)11________________________ (C)3____________________________ (D)- 16. 已知等比数列{a n }中,a 1 =1,q=2,则T n =++…+的结果可化为()(A)1-____________________ (B)1-______________________________ (C)(1-)______________ (D)(1-)7. “m=1”是“直线与直线平行”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件8. 阅读右面的程序框图,运行相应的程序,输出S的值为()(A)15 (B)105______________ (C)245 (D)9459. 现有两组卡片,第一组卡片上分别写有数字“2,3,4” ,第二组卡片上分别写有数字“3,4,5” ,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为()(A)________________________ ( B)_________________________________ (C)________________________ ( D)10. 在平行四边形ABCD中,AD=2,∠BAD=60°,E为CD的中点,若=1,则AB的长为()(A)______________ (B)4______________________________ (C)5____________________ (D)611. 已知函数,且对于任意实数关于的方程都有四个不相等的实根,则的取值范围是()(A)_________________________( B )( C )____________________________( D )12. 已知集合,,若,则的最小值()(A)(B)______________________________________ (C)(6-2 )(D)二、填空题13. 某学校高一、高二、高三年级的学生人数之比为,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高一年级抽取___________ 名学生.14. 在中,角所对边长分别为,若,则b=___________.15. 已知点P,Q为圆C:x 2 +y 2 =25上的任意两点,且|PQ|<6,若PQ中点组成的区域为M,在圆C内任取一点,则该点落在区域M上的概率为__________ .16. 点C是线段 AB上任意一点,O是直线AB外一点,,不等式对满足条件的x,y恒成立,则实数k的取值范围____.三、解答题17. 已知的面积是 3 ,角所对边长分别为,.(Ⅰ )求;(Ⅱ )若,求的值.18. 已知圆:,直线l过定点.(Ⅰ )若l与圆相切,求直线l的方程;(Ⅱ )若l与圆相交于、两点,且,求直线l的方程.19. 某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(Ⅰ)若该校高一年级共有学生640名,试估计该校高一年级期中考试数学成绩不低于60分的人数;(Ⅱ)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.20. 已知数列{a n }满足(其中).(Ⅰ )求数列{a n }的通项公式;(Ⅱ )设,其前n项和是T n ,求证:T n <.21. 已知动点满足方程.(Ⅰ )求动点P到直线距离的最小值;(Ⅱ )设定点,若点之间的最短距离为 , 求满足条件的实数的取值.22. 已知函数为奇函数,且.(Ⅰ )求实数a与b的值;(Ⅱ )若函数,设为正项数列,且当时,,(其中),的前项和为,,若恒成立,求的最小值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第5题【答案】第6题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】。

2018-2019学年第二学期高一下学期期末考试数学试卷及答案解析

2018-2019学年第二学期高一下学期期末考试数学试卷及答案解析

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………2018-2019学年第二学期高一下学期期末考试数学试卷评卷人 得分一、选择题1、已知为角的终边上的一点,且,则的值为( )A .B .C .D .2、在等差数列中,,则( )A .B .C .D .3、若,则一定有( )A .B .C .D .4、已知等差数列的前项和为,若且,则当最大时的值是( )A .B .C .D .5、若,则的值为( )A .B .C .D .6、在中,已知,则的面积等于( )A .B .C .D .7、各项均为正数的等比数列的前项和为,若,则( ) A .B .C .D .……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………8、若变量满足约束条件,且的最大值为,最小值为,则的值是( ) A . B .C .D .9、在中,角所对的边分别为,且,若,则的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 10、当甲船位于处时获悉,在其正东方向相距海里的处,有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西相距海里处的乙船,乙船立即朝北偏东角的方向沿直线前往处营救,则的值为( )A .B .C .D .11、已知是内的一点,且,若和的面积分别为,则的最小值是( )A .B .C .D . 12、已知数列满足,则( ) A .B .C .D .评卷人 得分二、填空题13、已知,且,则__________。

2018-2019学年高一数学下学期期末考试试题(含解析)_24

2018-2019学年高一数学下学期期末考试试题(含解析)_24

2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是( )A. B=A∩CB. B∪C=CC. A CD. A=B=C【答案】B【解析】【分析】由集合A,B,C,求出B与C的并集,判断A与C的包含关系,以及A,B,C三者之间的关系即可.【详解】由题B A,∵A={第一象限角},B={锐角},C={小于90°的角},∴B∪C={小于90°的角}=C,即B C,则B不一定等于A∩C,A不一定是C的真子集,三集合不一定相等,故选B.【点睛】此题考查了集合间的基本关系及运算,熟练掌握象限角,锐角,以及小于90°的角表示的意义是解本题的关键,是易错题2.已知角的终边经过点,则A. B. C. D.【答案】A【解析】【分析】根据三角函数的定义,求出,即可得到的值.【详解】因为,,所以.故选:A.【点睛】本题主要考查已知角终边上一点,利用三角函数定义求三角函数值,属于基础题.3.的值为()A. B. C. D.【答案】C【解析】试题分析:.考点:诱导公式4.已知中,,,为边上的中点,则( )A. 0B. 25C. 50D. 100【答案】C【解析】【分析】三角形为直角三角形,CM为斜边上的中线,故可知其长度,由向量运算法则,对式子进行因式分解,由平行四边形法则,求出向量,由长度计算向量积.【详解】由勾股定理逆定理可知三角形为直角三角形,CM为斜边上的中线,所以,原式=.故选C.【点睛】本题考查向量的线性运算及数量积,数量积问题一般要将两个向量转化为已知边长和夹角的两向量,但本题经化简能得到共线的两向量所以直接根据模的大小计算即可.5.在四边形中,,且·=0,则四边形是()A. 菱形B. 矩形C. 直角梯形D. 等腰梯形【答案】A【解析】【分析】由可得四边形为平行四边形,由·=0得四边形的对角线垂直,故可得四边形为菱形.【详解】∵,∴与平行且相等,∴四边形为平行四边形.又,∴,即平行四边形的对角线互相垂直,∴平行四边形为菱形.故选A.【点睛】本题考查向量相等和向量数量积的的应用,解题的关键是正确理解有关的概念,属于基础题.6.已知非零向量、且,,,则一定共线三点是()A. B. C. D.【答案】B【解析】【分析】根据向量共线定理,即可判断.【详解】因为,所以三点一定共线.故选:B.【点睛】本题主要考查利用平面向量共线定理判断三点是否共线,涉及向量的线性运算,属于基础题.7.已知向量,,则向量的夹角的余弦值为()A. B. C. D.【答案】C【解析】【分析】先求出向量,再根据向量的数量积求出夹角的余弦值.【详解】∵,∴.设向量的夹角为,则.故选C.【点睛】本题考查向量的线性运算和向量夹角的求法,解题的关键是求出向量的坐标,然后根据数量积的定义求解,注意计算的准确性,属于基础题.8.已知,则( )A. B. C. D.【答案】C【解析】分析】利用诱导公式和同角三角函数的商数关系,得,再利用化弦为切的方法,即可求得答案.【详解】由已知则故选C.【点睛】本题考查利用三角函数的诱导公式、同角三角函数的基本关系化简求值,属于三角函数求值问题中的“给值求值”问题,解题的关键是正确掌握诱导公式中符号与函数名称的变换规律和化弦为切方法.9.已知函数图象的一条对称轴是,则的值为()A. 5B.C. 3D.【答案】D【解析】【分析】化简函数f(x)=acosx+sinx为一个角的一个三角函数的形式,利用图象关于直线对称,就是时,函数取得最值,求出a即可.详解】函数f(x)=acosx+sinx sin(x+θ),其中tanθ=a,,其图象关于直线对称,所以θ,θ,所以tanθ=a ,故答案为D【点睛】本题考查正弦函数的对称性,考查计算能力,逻辑思维能力,是基础题.10.函数()的部分图象如图所示,其中是图象的最高点,是图象与轴的交点,则()A. B. C. D.【答案】D【解析】函数的周期为,四分之一周期为,而函数的最大值为,故,由余弦定理得,故.11.在中,角的对边分别为,已知,则的大小是()A. B. C. D.【答案】C【解析】∵,∴,又,∴,又为三角形的内角,所以,故.选C.12.半圆的直径,为圆心,是半圆上不同于的任意一点,若为半径上的动点,则的最小值是()A. 2 B. 0 C. -2 D. 4【答案】C【解析】【分析】将转化为,利用向量数量积运算化简,然后利用基本不等式求得表达式的最小值.【详解】画出图像如下图所示,,等号在,即为的中点时成立.故选C.【点睛】本小题主要考查平面向量加法运算,考查平面向量的数量积运算,考查利用基本不等式求最值,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.13.已知函数,,若直线与函数的图象有四个不同的交点,则实数k的取值范围是_____.【答案】(0,1)【解析】【分析】画出函数f(x)在以及直线y=k的图象,数形结合可得k的取值范围.【详解】解:画出函数y=cosx+2|cosx|=,以及直线y=k的图象,如图所示;由f(x)的图象与直线y=k有且仅有四个不同的交点,可得0<k<1.故答案为:(0,1).【点睛】本题主要考查利用分段函数及三角函数的性质求参数,数形结合是解题的关键.14.已知,,,若,则__________.【答案】-3【解析】由可知,解得,15.若为锐角,,则__________.【答案】【解析】因为为锐角,,所以,.16.函数的定义域为__________;【答案】【解析】【分析】根据偶次被开方数大于等于零,分母不为零,列出不等式组,解出即可.【详解】依题意可得,,解得即,故函数的定义域为.故答案为:.【点睛】本题主要考查函数定义域的求法,涉及三角不等式的解法,属于基础题.17.已知,则 __________.【答案】【解析】18.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,再将所得函数图象整体向左平移个单位,可得函数的图象;③函数有三个零点;④函数在上单调递减,在上单调递增.其中正确的是__________.(填上所有正确说法的序号)【答案】②③④【解析】【分析】根据向量,函数零点,函数的导数,以及三角函数有关知识,对各个命题逐个判断即可.【详解】对①,若与的夹角为钝角,则且与不共线,即,解得且,所以①错误;对②,先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,得函数的图象,再将图象整体向左平移个单位,可得函数的图象,②正确;对③,函数的零点个数,即解的个数,亦即函数与的图象的交点个数,作出两函数的图象,如图所示:由图可知,③正确;对④,,当时,,当时,,故函数在上单调递减,在上单调递增,④正确.故答案为:②③④.【点睛】本题主要考查命题的真假判断,涉及向量数量积,三角函数图像变换,函数零点个数的求法,以及函数单调性的判断等知识的应用,属于中档题.三、解答题:本大题共4小题,共60分.解答应写出文字说明、证明过程或演算步骤.19.已知.(1)若三点共线,求的关系;(2)若,求点的坐标.【答案】(1)a+b=2;(2)(5,-3).【解析】【分析】(1)求出和的坐标,然后根据两向量共线的等价条件可得所求关系式.(2)求出的坐标,根据得到关于的方程组,解方程组可得所求点的坐标.【详解】由题意知,,.(1)∵三点共线,∴∥,∴,∴.(2)∵,∴,∴,解得,∴点的坐标为.【点睛】本题考查向量共线的应用,解题的关键是把共线表示为向量的坐标的形式,进而转化为数的运算的问题,属于基础题.20.已知函数.(1)求函数的最小正周期;(2)求函数的单调区间.【答案】(1) 的最小正周期为 (2) 的单调增区间为【解析】试题分析:(1)化简函数的解析式得,根据周期公式求得函数的周期;(2)由求得的取值范围即为函数的单调增区间,由求得取值范围即为函数的单调减区间.试题解析:(Ⅰ)∴的最小正周期为.(Ⅱ)由,得∴的单调增区间为由得∴的单调减区间为21.设向量.(Ⅰ)若与垂直,求值;(Ⅱ)求的最小值.【答案】(Ⅰ)2;(Ⅱ).【解析】试题分析:(Ⅰ)先由条件得到的坐标,根据与垂直可得,整理得,从而得到.(Ⅱ)由得到,故当时,取得最小值为.试题解析:(Ⅰ)由条件可得,因为与垂直,所以,即,所以,所以.(Ⅱ)由得,所以当时,取得最小值,所以的最小值为.22.已知函数f(x)=sin ωx·cosωx+cos2ωx-(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为 .(Ⅰ)求f(x)的表达式;(Ⅱ)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.【答案】(1)f(x)=sin.(2)【解析】试题分析:(1)先利用二倍角公式和辅助角公式化简,再利用周期公式即可求得正解;(2)根据图像变换求出的表达式,再利用符合函数法求得递减区间.试题解析:(1)f(x)=sin 2ωx+×-=sin 2ωx+cos 2ωx=sin,由题意知,最小正周期T=2×=,T===,所以ω=2,∴f(x)=sin.(2)将f(x)的图象向右平移个单位长度后,得到y=sin的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y=sin的图象.所以g(x)=sin.由,得所以所求的单调减区间为2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是( )A. B=A∩CB. B∪C=CC. A CD. A=B=C【答案】B【解析】【分析】由集合A,B,C,求出B与C的并集,判断A与C的包含关系,以及A,B,C三者之间的关系即可.【详解】由题B A,∵A={第一象限角},B={锐角},C={小于90°的角},∴B∪C={小于90°的角}=C,即B C,则B不一定等于A∩C,A不一定是C的真子集,三集合不一定相等,故选B.【点睛】此题考查了集合间的基本关系及运算,熟练掌握象限角,锐角,以及小于90°的角表示的意义是解本题的关键,是易错题2.已知角的终边经过点,则A. B. C. D.【答案】A【解析】【分析】根据三角函数的定义,求出,即可得到的值.【详解】因为,,所以.故选:A.【点睛】本题主要考查已知角终边上一点,利用三角函数定义求三角函数值,属于基础题.3.的值为()A. B. C. D.【答案】C【解析】试题分析:.考点:诱导公式4.已知中,,,为边上的中点,则( )A. 0B. 25C. 50D. 100【答案】C【解析】【分析】三角形为直角三角形,CM为斜边上的中线,故可知其长度,由向量运算法则,对式子进行因式分解,由平行四边形法则,求出向量,由长度计算向量积.【详解】由勾股定理逆定理可知三角形为直角三角形,CM为斜边上的中线,所以,原式=.故选C.【点睛】本题考查向量的线性运算及数量积,数量积问题一般要将两个向量转化为已知边长和夹角的两向量,但本题经化简能得到共线的两向量所以直接根据模的大小计算即可.5.在四边形中,,且·=0,则四边形是()A. 菱形B. 矩形C. 直角梯形D. 等腰梯形【答案】A【解析】【分析】由可得四边形为平行四边形,由·=0得四边形的对角线垂直,故可得四边形为菱形.【详解】∵,∴与平行且相等,∴四边形为平行四边形.又,∴,即平行四边形的对角线互相垂直,∴平行四边形为菱形.故选A.【点睛】本题考查向量相等和向量数量积的的应用,解题的关键是正确理解有关的概念,属于基础题.6.已知非零向量、且,,,则一定共线三点是()A. B. C. D.【答案】B【解析】【分析】根据向量共线定理,即可判断.【详解】因为,所以三点一定共线.故选:B.【点睛】本题主要考查利用平面向量共线定理判断三点是否共线,涉及向量的线性运算,属于基础题.7.已知向量,,则向量的夹角的余弦值为()A. B. C. D.【答案】C【解析】【分析】先求出向量,再根据向量的数量积求出夹角的余弦值.【详解】∵,∴.设向量的夹角为,则.故选C.【点睛】本题考查向量的线性运算和向量夹角的求法,解题的关键是求出向量的坐标,然后根据数量积的定义求解,注意计算的准确性,属于基础题.8.已知,则( )A. B. C. D.【答案】C【解析】分析】利用诱导公式和同角三角函数的商数关系,得,再利用化弦为切的方法,即可求得答案.【详解】由已知则故选C.【点睛】本题考查利用三角函数的诱导公式、同角三角函数的基本关系化简求值,属于三角函数求值问题中的“给值求值”问题,解题的关键是正确掌握诱导公式中符号与函数名称的变换规律和化弦为切方法.9.已知函数图象的一条对称轴是,则的值为()A. 5B.C. 3D.【答案】D【解析】【分析】化简函数f(x)=acosx+sinx为一个角的一个三角函数的形式,利用图象关于直线对称,就是时,函数取得最值,求出a即可.详解】函数f(x)=acosx+sinx sin(x+θ),其中tanθ=a,,其图象关于直线对称,所以θ,θ,所以tanθ=a,故答案为D【点睛】本题考查正弦函数的对称性,考查计算能力,逻辑思维能力,是基础题.10.函数()的部分图象如图所示,其中是图象的最高点,是图象与轴的交点,则()A. B. C. D.【答案】D【解析】函数的周期为,四分之一周期为,而函数的最大值为,故,由余弦定理得,故.11.在中,角的对边分别为,已知,则的大小是()A. B. C. D.【答案】C【解析】∵,∴,又,∴,又为三角形的内角,所以,故.选C.12.半圆的直径,为圆心,是半圆上不同于的任意一点,若为半径上的动点,则的最小值是()A. 2B. 0C. -2D. 4【答案】C【解析】【分析】将转化为,利用向量数量积运算化简,然后利用基本不等式求得表达式的最小值.【详解】画出图像如下图所示,,等号在,即为的中点时成立.故选C.【点睛】本小题主要考查平面向量加法运算,考查平面向量的数量积运算,考查利用基本不等式求最值,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.13.已知函数,,若直线与函数的图象有四个不同的交点,则实数k的取值范围是_____.【答案】(0,1)【解析】【分析】画出函数f(x)在以及直线y=k的图象,数形结合可得k的取值范围.【详解】解:画出函数y=cosx+2|cosx|=,以及直线y=k的图象,如图所示;由f(x)的图象与直线y=k有且仅有四个不同的交点,可得0<k<1.故答案为:(0,1).【点睛】本题主要考查利用分段函数及三角函数的性质求参数,数形结合是解题的关键.14.已知,,,若,则__________.【答案】-3【解析】由可知,解得,15.若为锐角,,则__________.【答案】【解析】因为为锐角,,所以,.16.函数的定义域为__________;【答案】【解析】【分析】根据偶次被开方数大于等于零,分母不为零,列出不等式组,解出即可.【详解】依题意可得,,解得即,故函数的定义域为.故答案为:.【点睛】本题主要考查函数定义域的求法,涉及三角不等式的解法,属于基础题.17.已知,则 __________.【答案】【解析】18.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,再将所得函数图象整体向左平移个单位,可得函数的图象;③函数有三个零点;④函数在上单调递减,在上单调递增.其中正确的是__________.(填上所有正确说法的序号)【答案】②③④【解析】【分析】根据向量,函数零点,函数的导数,以及三角函数有关知识,对各个命题逐个判断即可.【详解】对①,若与的夹角为钝角,则且与不共线,即,解得且,所以①错误;对②,先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,得函数的图象,再将图象整体向左平移个单位,可得函数的图象,②正确;对③,函数的零点个数,即解的个数,亦即函数与的图象的交点个数,作出两函数的图象,如图所示:由图可知,③正确;对④,,当时,,当时,,故函数在上单调递减,在上单调递增,④正确.故答案为:②③④.【点睛】本题主要考查命题的真假判断,涉及向量数量积,三角函数图像变换,函数零点个数的求法,以及函数单调性的判断等知识的应用,属于中档题.三、解答题:本大题共4小题,共60分.解答应写出文字说明、证明过程或演算步骤.19.已知.(1)若三点共线,求的关系;(2)若,求点的坐标.【答案】(1)a+b=2;(2)(5,-3).【解析】【分析】(1)求出和的坐标,然后根据两向量共线的等价条件可得所求关系式.(2)求出的坐标,根据得到关于的方程组,解方程组可得所求点的坐标.【详解】由题意知,,.(1)∵三点共线,∴∥,∴,∴.(2)∵,∴,∴,解得,∴点的坐标为.【点睛】本题考查向量共线的应用,解题的关键是把共线表示为向量的坐标的形式,进而转化为数的运算的问题,属于基础题.20.已知函数.(1)求函数的最小正周期;(2)求函数的单调区间.【答案】(1) 的最小正周期为 (2) 的单调增区间为【解析】试题分析:(1)化简函数的解析式得,根据周期公式求得函数的周期;(2)由求得的取值范围即为函数的单调增区间,由求得取值范围即为函数的单调减区间.试题解析:(Ⅰ)∴的最小正周期为.(Ⅱ)由,得∴的单调增区间为由得∴的单调减区间为21.设向量.(Ⅰ)若与垂直,求值;(Ⅱ)求的最小值.【答案】(Ⅰ)2;(Ⅱ).【解析】试题分析:(Ⅰ)先由条件得到的坐标,根据与垂直可得,整理得,从而得到.(Ⅱ)由得到,故当时,取得最小值为.试题解析:(Ⅰ)由条件可得,因为与垂直,所以,即,所以,所以.(Ⅱ)由得,所以当时,取得最小值,所以的最小值为.22.已知函数f(x)=sin ωx·cosωx+cos2ωx-(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为 .(Ⅰ)求f(x)的表达式;(Ⅱ)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.【答案】(1)f(x)=sin.(2)【解析】试题分析:(1)先利用二倍角公式和辅助角公式化简,再利用周期公式即可求得正解;(2)根据图像变换求出的表达式,再利用符合函数法求得递减区间.试题解析:(1)f(x)=sin 2ωx+×-=sin 2ωx+cos 2ωx=sin,由题意知,最小正周期T=2×=,T===,所以ω=2,∴f(x)=sin.(2)将f(x)的图象向右平移个单位长度后,得到y=sin的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y=sin的图象.所以g(x)=sin.由,得所以所求的单调减区间为。

重庆市区县2018-2019学年高一下学期期末考试 数学 Word版含答案

重庆市区县2018-2019学年高一下学期期末考试 数学 Word版含答案

2019年春高一(下)期末测试卷数学本试卷共22题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I 卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其它答案标号框。

写在本试卷上无效。

3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个备选项中,只有一项是符合题目要求的。

1.己知向量(2,3),(,4)a b m ==,若,a b 共线,则实数m=A.-6B.83- C. 83D6 2.己知a,b R ∈,若关于x 的不等式2x ax b 0++<的解集为(1,3),则a +b=A.-7B.-1C. 1D.73.己知等差数列{a n }的前n 项和为S n ,且S 2=4,S 4=16,则a 5+a 6=A.11B.16C. 20D.284.某高中三个年级共有3000名学生,现采用分层抽样的方法从高一、高二、高三年级的全体学生中抽取一个容量为30的样本进行视力健康检查,若抽到的高一年级学生人数与高二年级学生人数之比为3:2,抽到高三年级学生10人,则该校高二年级学生人数为A. 600 B .800 C. 1000 D. 12005.己知变量x ,y 的取值如下表:由散点图分析可知y 与x 线性相关,且求得回归直线的方程为ˆˆ3ybx =-,据此可预测:当x=8时,y 的值约为A. 63 B .74 C. 85 D. 966.己知非零实数a ,b 满足a>b ,则下列不等关系一定成立的是 A.11a b< B.ab a b >+ C.22a b > D.3223a ab a b b +>+ 7.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若,5,44A a c π===,则满足条件的△ABC 的个数为A. 0 B .1 C. 2 D. 无数多个 8.己知等比数列{a n }的前n 项和为S n ,若363,21S S ==-,则1a =A.-2B.-1C. 1D. 29.某校统计了1000名学生的数学期末考试成绩,己知这1000名学生的成绩均在50分到150分之间,其频率分布直方图如图所示,则这1000名学生中成绩在130分以上的人数为A. l0B. 20C. 40D. 6010.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若2a=b +2ccosB ,则C= A.2π B.3π C.4π D.6π 11.已知a>-1,b>0,a +2b =1,则12a b b++的最小值为 A.72 B.92 C.7 D.9 12.已知,,R ABC λμ∈∆所在平面内一点P 满足 ()()ABBCACCB AP AB AC AB BC AC CB λμ=++=++,则BP CP = A.sin2sin 2B C B.cos 2cos 2B C C.sin 2sin 2C B D.cos 2cos 2C B二、填空题:本大题共4小题,每小题5分,共20分。

2018-2019学年重庆市区县高一(下)期末数学试卷

2018-2019学年重庆市区县高一(下)期末数学试卷

2018-2019学年重庆市区县高一(下)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知向量(2,3)a =r,(,4)b m =r ,若,a b r r 共线,则实数(m = )A .6-B .83-C .83D .62.(5分)已知a ,b R ∈,若关于x 的不等式20x ax b ++<的解集为(1,3),则(a b += )A .7-B .1-C .1D .73.(5分)已知等差数列{}n a 的前n 项和为n S ,且24S =,416S =,则56(a a += ) A .11B .16C .20D .284.(5分)某高中三个年级共有3000名学生,现采用分层抽样的方法从高一、高二、高三年级的全体学生中抽取一个容量为30的样本进行视力健康检查,若抽到的高一年级学生人数与高二年级学生人数之比为3:2,抽到高三年级学生10人,则该校高二年级学生人数为( )A .600B .800C .1000D .12005.(5分)已知变量x ,y 的取值如表:由散点图分析可知y 与x 线性相关,且求得回归直线的方程为ˆˆ3y bx =-,据此可预测:当8x =时,y 的值约为( )A .63B .74C .85D .966.(5分)已知非零实数a ,b 满足a b >,则下列不等关系一定成立的是( ) A .11a b< B .ab a b >+ C .22a b >D .3223a ab a b b +>+7.(5分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若4A π=,5a =,4c =,则满足条件的ABC ∆的个数为( ) A .0B .1C .2D .无数多个8.(5分)已知等比数列{}n a 的前n 项和为n S ,若33S =,621S =-,则1(a = ) A .2-B .1-C .1D .29.(5分)某校统计了1000名学生的数学期末考试成绩,已知这1000名学生的成绩均在50分到150分之间,其频率分布直方图如图所示,则这1000名学生中成绩在130分以上的人数为( )A .10B .20C .40D .6010.(5分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,已知22cos a b c B -=,则角C 的大小为( ) A .6πB .3π C .23π D .56π 11.(5分)已知1a >-,0b >,21a b +=,则121a b ++的最小值为( ) A .72B .92C .7D .912.(5分)已知λ,R μ∈,ABC ∆所在平面内一点P 满足()()ABBCACCBAP AB AC AB BC AC CBλμ=++=++,则||(||BP CP =u u u r u u u r ) A .sin 2sin2BC B .cos 2cos2B C C .sin 2sin2C BD .cos2cos2C B 二、填空题:本大题共4小题,每小题5分,共20分 13.(5分)关于x 的不等式210x x+>的解集为 . 14.(5分)甲、乙两人要到某地参加活动,他们都随机从火车、汽车、飞机三种交通工具中选择一种,则他们选择相同交通工具的概率为 .15.(5分)当实数a 变化时,点(2,1)P --到直线:(1)120l a x y a -++-=的距离的最大值为16.(5分)在ABC ∆中,角A ,B ,C 所对的边分别为,b ,c ,若ABC ∆的面积为3cos bc A ,则cos sin B C +的最大值为三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)学生会6名同学,其中4名男同学2名女同学.现要从中随机选出2名代表发言.求:(1)A 同学被选中的概率是多少?(2)至少有1名女同学被选中的概率是多少?18.(12分)设等差数列{}n a 的前n 项和为n S ,77S =,2128a a +=. (1)求n a ;(2)设2n a n b =,求数列{}n b 的前n 项和n T .19.(12分)近年来,某地大力发展文化旅游创意产业创意维护一处古寨,几年来,经统计,古寨的使用年限x (年)和所支出的维护费用y (万元)的相关数据如图所示,根据以往资料显示y 对x 呈线性相关关系(1)求出y 关于x 的回归直线方程ˆˆˆybx a =+; (2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过10万元?参考公式:对于一组数据1(x ,1)y ,2(x ,2)y ,⋯,(n x ,)n y ,其回归方程ˆˆˆybx a =+的斜率和截距的最小二乘估计分别为1221ˆˆˆ,ni ii nii x ynxy bay bx xnx ==-==--∑∑. 20.(12分)如图,在ABC ∆中,90ABC ∠=︒,D 为AC 延长线上一点,且23AD =6BD =,1sin 3ADB ∠=. (1)求AB 的长度; (2)求ABC ∆的面积.21.(12分)在平面直角坐标系中,ABC ∆的顶点(1,3)A -、(3,4)B -,边AC 上的高线所在的直线方程为2360x y ++=,边BC 上的中线所在的直线方程为2370x y +-=. (1)求点B 到直线AC 的距离; (2)求ABC ∆的面积.22.(12分)已知数列{}n a 的前n 项和为n S ,115a =,123n n n n a a a +=+.(1)证明:数列1{3}n na -为等比数列; (2)证明:2(61)n S <-.2018-2019学年重庆市区县高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知向量(2,3)a =r,(,4)b m =r ,若,a b r r 共线,则实数(m = )A .6-B .83-C .83D .6【解答】解:Q 向量(2,3)a =r,(,4)b m =r ,,a b r r 共线, ∴423m =, 解得实数83m =.故选:C .2.(5分)已知a ,b R ∈,若关于x 的不等式20x ax b ++<的解集为(1,3),则(a b += )A .7-B .1-C .1D .7【解答】解:由已知及韦达定理可得,13a -=+,13b =⨯, 即4a =-,3b =, 所以1a b +=-. 故选:B .3.(5分)已知等差数列{}n a 的前n 项和为n S ,且24S =,416S =,则56(a a += ) A .11B .16C .20D .28【解答】解:{}n a Q 为等差数列,前n 项和为n S ,2S ∴,42S S -,64S S -成等差数列,422642()()S S S S S ∴-=+-,又24S =,416S =,64562444S S a a ∴=+-=++,5620a a ∴+=. 故选:C .4.(5分)某高中三个年级共有3000名学生,现采用分层抽样的方法从高一、高二、高三年级的全体学生中抽取一个容量为30的样本进行视力健康检查,若抽到的高一年级学生人数与高二年级学生人数之比为3:2,抽到高三年级学生10人,则该校高二年级学生人数为()A .600B .800C .1000D .1200【解答】解:根据题意可设抽到高一和高二年级学生人数分别为3k 和2k ,则 321030k k ++=,即4k =,所以高一年级和高二年级抽到的人数分别是12人和8人, 则该校高二年级学生人数为8300080030⨯=人. 故选:B .5.(5分)已知变量x ,y 的取值如表:由散点图分析可知y 与x 线性相关,且求得回归直线的方程为ˆˆ3y bx =-,据此可预测:当8x =时,y 的值约为( )A .63B .74C .85D .96【解答】解:1234535x ++++==,1015304550305y ++++==.故样本点的中心的坐标为(3,30), 代入ˆˆ3ybx =-,得303ˆ113b +==. ∴ˆ113yx =-,取8x =,得ˆ118385y =⨯-=. 故选:C .6.(5分)已知非零实数a ,b 满足a b >,则下列不等关系一定成立的是( ) A .11a b< B .ab a b >+ C .22a b >D .3223a ab a b b +>+【解答】解:由已知220a b +>且a b >, 所以2222()()a a b b a b +>+, 即3223a ab a b b +>+. 故选:D .7.(5分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若4A π=,5a =,4c =,则满足条件的ABC ∆的个数为( ) A .0B .1C .2D .无数多个【解答】解:4A π=Q,5a =,4c =,∴由余弦定理2222cos a b c bc A =+-,可得:22251624b b =+-⨯⨯⨯,可得:24290b b --=,(*)∴由△24680b ac =-=>,且两根之和为正、两根之积为负数,∴方程(*)有两个不相等的实数根,且只有一个正实数根,即有一个边b 满足题中的条件,由此可得满足条件的ABC ∆有一个解. 故选:B .8.(5分)已知等比数列{}n a 的前n 项和为n S ,若33S =,621S =-,则1(a = ) A .2-B .1-C .1D .2【解答】解:Q 等比数列{}n a 的前n 项和为n S ,33S =,621S =-, ∴313616(1)31(1)211a q S q a q S q ⎧-==⎪-⎪⎨-⎪==-⎪-⎩, 解得11a =,2q =-. 故选:C .9.(5分)某校统计了1000名学生的数学期末考试成绩,已知这1000名学生的成绩均在50分到150分之间,其频率分布直方图如图所示,则这1000名学生中成绩在130分以上的人数为( )A .10B .20C .40D .60【解答】解:由频率分布直方图得:这1000名学生中成绩在130分以上的频率为: 1(0.0060.0140.020.008)200.04-+++⨯=,则这1000名学生中成绩在130分以上的人数为10000.0440⨯=人. 故选:C .10.(5分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,已知22cos a b c B -=,则角C 的大小为( ) A .6πB .3π C .23π D .56π 【解答】解:Q 在ABC ∆中,2cos 2c B a b =-,∴由余弦定理可得:222222a c b c a b ac +-⨯=-,222a b c ab ∴+-=,2221cos 22a b c C ab +-∴==,又(0,)C π∈,3C π∴=.故选:B .11.(5分)已知1a >-,0b >,21a b +=,则121a b ++的最小值为( ) A .72B .92C .7D .9【解答】解:1a >-Q ;10a ∴+>,且0b >,21a b +=; 122a b ∴++=;∴121222(1)2()(12)()1459111b a a b a b a b a b ++=+++=++++=+++…,当且仅当213a b +==时等号成立; ∴12912a b ++…; ∴121a b ++的最小值为92. 故选:B .12.(5分)已知λ,R μ∈,ABC ∆所在平面内一点P 满足()()AB BC AC CBAP AB AC AB BC AC CBλμ=++=++,则||(||BP CP =u u u r u u u r ) A .sin 2sin2BC B .cos 2cos2B C C .sin 2sin2C BD .cos2cos2C B 【解答】解:由||||AB BC AB BC +u u u r u u u r u u ur u u u r 方向为ABC ∠外角平分线方向, 所以点P 在ABC ∠的外角平分线上, 同理,点P 在ACB ∠的外角平分线上,2BPBC π-∠=,2CPCB π-∠=,在PBC ∆中,由正弦定理得: cos||sin 2sin ||cos 2C BP PCB BPBC CP ∠==∠u u u r u u u r , 故选:D .二、填空题:本大题共4小题,每小题5分,共20分 13.(5分)关于x 的不等式210x x +>的解集为 1(,)(0,)2-∞-+∞U . 【解答】解:210x x+>同解于 2100x x +>⎧⎨>⎩或2100x x +<⎧⎨<⎩解得12x <-或0x >故答案为:1(,)(0,)2-∞-+∞U14.(5分)甲、乙两人要到某地参加活动,他们都随机从火车、汽车、飞机三种交通工具中选择一种,则他们选择相同交通工具的概率为13. 【解答】解:甲、乙两人选择交通工具总的选择有339⨯=种,他们选择相同交通工具有3种情况,所以他们选择相同交通工具的概率为3193=.故答案为:13.15.(5分)当实数a 变化时,点(2,1)P --到直线:(1)120l a x y a -++-=的距离的最大值为【解答】解:由直线:(1)120l a x y a -++-=,得(2)10a x x y --++=, 联立2010x x y -=⎧⎨-++=⎩,解得21x y =⎧⎨=⎩.∴直线l 恒过定点(2,1),P ∴到直线l的最大距离d ==故答案为:16.(5分)在ABC ∆中,角A ,B ,C 所对的边分别为,b ,c ,若ABC ∆cos A ,则cos sin B C +【解答】解:ABC ∆中,若ABC ∆1cos sin 2A bc A =g ,tan A ∴=,6A π∴=.则11cos sin cos sin()cos sin()cos cos sin ))6223B C B A B B B B B B B B B ππ+=++=++=+++…,当且仅当6B π=时,取等号,故cos sin B C +三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)学生会6名同学,其中4名男同学2名女同学.现要从中随机选出2名代表发言.求:(1)A 同学被选中的概率是多少?(2)至少有1名女同学被选中的概率是多少?【解答】解:(1)所有的选法有26C 种,A 同学被选中的方法有1115C C 种,故A 同学被选中的概率是 152613C P C ==.(2)所有的选法有26C 种,至少有1名女同学包括两种情况:1个男同学与1个女同学,2个女同学,这两种情况分别有1142C C 和22C 种选法, 故至少有1名女同学被选中的概率是1124222635C C C P C +==. 18.(12分)设等差数列{}n a 的前n 项和为n S ,77S =,2128a a +=.(1)求n a ;(2)设2n a n b =,求数列{}n b 的前n 项和n T .【解答】解:(1)172127784772a a a a a S ++=⇒===Q g 711216a a a d -∴=-∴== 213n a n n ∴=-+-=-;(2)3n a n =-Q ,2n a n b =32n n b -∴=则111(12)14(21)124n n n T ---==--. 19.(12分)近年来,某地大力发展文化旅游创意产业创意维护一处古寨,几年来,经统计,古寨的使用年限x (年)和所支出的维护费用y (万元)的相关数据如图所示,根据以往资料显示y 对x 呈线性相关关系(1)求出y 关于x 的回归直线方程ˆˆˆybx a =+; (2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过10万元?参考公式:对于一组数据1(x ,1)y ,2(x ,2)y ,⋯,(n x ,)n y ,其回归方程ˆˆˆybx a =+的斜率和截距的最小二乘估计分别为1221ˆˆˆ,n i ii n ii x y nxyb a y bx x nx ==-==--∑∑. 【解答】解:(1)3456 4.54x +++==, 2.534 4.5 3.54y +++==, 222223 2.543546 4.54 4.5 3.5ˆ0.73456445b ⨯+⨯+⨯+⨯-⨯⨯==+++-⨯g , ˆ 3.50.7 4.50.35a=-⨯=. 故线性回归方程为ˆ0.70.35yx =+; (2)由ˆ0.70.3510y x =+>,解得111314x >. 故使用年限至少为14年时,维护费用将超过10万元. 20.(12分)如图,在ABC ∆中,90ABC ∠=︒,D 为AC 延长线上一点,且23AD =,6BD =,1sin 3ADB ∠=. (1)求AB 的长度;(2)求ABC ∆的面积.【解答】解:(1)由题意可得222cos 1D sin D =-= 在ABD ∆中,由余弦定理可得2222cos AB AD BD AD BD D =+-g 2212622362=+-⨯=,则2AB = (2)在ABD ∆中,2226cos 22223AB AD BD A AB AD +-===g g , 23sin 1A cos A =-=3cos AB AC A == ABC ∆的面积为1132sin 2322S AB AC A ===g g g g 21.(12分)在平面直角坐标系中,ABC ∆的顶点(1,3)A -、(3,4)B -,边AC 上的高线所在的直线方程为2360x y ++=,边BC 上的中线所在的直线方程为2370x y +-=.(1)求点B 到直线AC 的距离;(2)求ABC ∆的面积.【解答】解:(1)由题意,32AC k =,直线AC 的方程为33(1)2y x -=+,即3290x y -+=. 点B 到直线AC的距离d == (2)设(,)C m n ,则BC 的中点坐标为34(,)22m n +-, 则329034237022m n m n -+=⎧⎪⎨+-⨯+⨯-=⎪⎩,解得16m n =⎧⎨=⎩,即(1,6)C ,||AC ∴= ABCd ∴∆的面积1||132S AC d ==g . 22.(12分)已知数列{}n a 的前n 项和为n S ,115a =,123n n n n a a a +=+. (1)证明:数列1{3}n n a -为等比数列; (2)证明:n S <. 【解答】证明:(1)115a =,123n n n n a a a +=+, 可得1123n n n a a +=+, 即有111132(3)n n n na a ++-=-, 可得数列1{3}n na -为公比为2,首项为2的等比数列; (2)由(1)可得132n n n a -=, 即132n n na =+,由基本不等式可得32n n n +>,n a <,即有12112211n n S a a a =++⋯+<<=--.。

2018~2019学年度高一下学期数学期末试卷(含答案)

2018~2019学年度高一下学期数学期末试卷(含答案)

2018~2019学年度高一下学期数学期末试卷(含答案)一、选择题(本大题共12小题,共60分)1.若角α的终边经过点(1,−√3),则sinα=()A. −12B. −√32C. 12D. √322.已知a⃗=(1,x)和b⃗ =(2x+3,−3),若a⃗⊥b⃗ ,则|a⃗+b⃗ |=()A. 10B. 8C. √10D. 643.已知sin(α+π6)=2√55,则cos(π3−α)=()A. √55B. −√55C. 2√55D. −2√554.函数f(x)=sin(2x+φ)的图象向右平移π6个单位后所得的图象关于原点对称,则φ可以是()A. π6B. π3C. π4D. 2π35.已知直线3x−y+1=0的倾斜角为α,则12sin2α+cos2α=()A. 25B. −15C. 14D. −1206.某班统计一次数学测验的平均分与方差,计算完毕以后才发现有位同学的卷子还未登分,只好重算一次.已知原平均分和原方差分别为x−、s2,新平均分和新方差分别为x1−、s12,若此同学的得分恰好为x−,则()A. x−=x1−,s2=s12B. x−=x1−,s2<s12C. x−=x1−,s2>s12D. ,s2=s127.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成,现从这些运动员中抽取1个容量为n的样本,若分别采用系统抽样和分层抽样,则都不用剔除个体;当样本容量为n+1个时,若采用系统抽样,则需要剔除1个个体,那么样本容量n为()A. 5B. 6C. 12D. 188.执行如图的程序框图.若输入A=3,则输出i的值为()A. 3B. 4C. 5D. 69. 已知△ABC 满足AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ ,则△ABC 是( )A. 等边三角形B. 锐角三角形C. 直角三角形D. 钝角三角形10. “勾股定理”在西方被称为“华达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为4的大正方形,若直角三角形中较小的锐角α=15°,现在向该大正方形区域内随机地投掷一枚飞镖,飞镖落在图中区域1或区域2内的概率是( )A. 12B. 58C. 34D. 7811. 函数f(x)=Asin(ωx +φ)(A >0,ω>0,0<ϕ<π2)的部分图象如图所示,则f(0)的值是( )A. √32B. √34C. √62D. √6412. 已知a ⃗ =(sin ω2x,sinωx),b ⃗ =(sin ω2x,12),其中ω>0,若函数f(x)=a ⃗ ⋅b ⃗ −12在区间(π,2π)内没有零点,则ω的取值范围是( ) A. (0,18]B. (0,58]C. (0,18]∪[58,1]D. (0,18]∪[14,58]二、填空题(本大题共4小题,共20分)13. 甲、乙两人在相同的条件下各射击10次,它们的环数方差分别为s 甲2=2.1,s 乙2=2.6,则射击稳定程度较高的是______(填甲或乙).14. 执行如图的程序框图,若输入的x =2,则输出的y =______.15. 《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为______平方米.16. 已知点P(4m,−3m)(m <0)在角α的终边上,则2sinα+cosα=______.三、解答题(本大题共6小题,共70分)17.2018年3月19日,世界上最后一头雄性北方白犀牛“苏丹”在肯尼亚去世,从此北方白犀牛种群仅剩2头雌性,北方白犀牛种群正式进入灭绝倒计时.某校一动物保护协会的成员在这一事件后,在全校学生中组织了一次关于濒危物种犀牛保护知识的问卷调查活动.已知该校有高一学生1200人,高二1300人,高三学生1000人.采用分层抽样从学生中抽70人进行问卷调查,结果如下:完全不知道知道但未采取措施知道且采取措施高一8x y高二z133高三712m在进行问卷调查的70名学生中随机抽取一名“知道但未采取措施”的高一学生的概率是0.2.(Ⅰ)求x,y,z,m;(Ⅱ)从“知道且采取措施”的学生中随机选2名学生进行座谈,求恰好有1名高一学生,1名高二学生的概率.18.为增强学生体质,提升学生锻炼意识,我市某学校高一年级外出“研学”期间举行跳绳比赛,共有160名同学报名参赛.参赛同学一分钟内跳绳次数都在区间[90,150]内,其频率直方图如右下图所示,已知区间[130,140),[140,150]上的频率分别为0.15和0.05,区间[90,100),[100,110),[110,120),[120,130)上的频率依次成等差数列.(Ⅰ)分别求出区间[90,100),[100,110),[110,120)上的频率;(Ⅱ)将所有人的数据按从小到大排列,并依次编号1,2,3,4…160,现采用等距抽样的方法抽取32人样本,若抽取的第四个的编号为18.(ⅰ)求第一个编号大小;(ⅰ)从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)上的概率是多少?19.已知a⃗=(1,2),b⃗ =(−3,4).(1)若|k a⃗+b⃗ |=5,求k的值;(2)求a⃗+b⃗ 与a⃗−b⃗ 的夹角.,且α为第二象限角.20.已知sinα=35(1)求sin2α的值;)的值.(2)求tan(α+π4)(x∈R).21.设函数f(x)=4cosx⋅sin(x+π6(1)求函数y=f(x)的最小正周期和单调递增区间;]时,求函数f(x)的最大值.(2)当x∈[0,π2),f(0)=0,且函数f(x) 22.已知f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<|φ|<π2.图象上的任意两条对称轴之间距离的最小值是π2)的值;(1)求f(π8(2)将函数y=f(x)的图象向右平移π个单位后,得到函数y=g(x)的图象,求函数6g(x)的解析式,并求g(x)在x∈[π6,π2]上的最值.答案和解析1.【答案】B【解析】解:角α的终边经过点(1,−√3),则sinα=yr =−√32.故选:B.直接利用任意角的三角函数的定义,求解即可.本题考查任意角的三角函数的定义,考查计算能力.2.【答案】A【解析】解:a⃗=(1,x)和b⃗ =(2x+3,−3),若a⃗⊥b⃗ ,可得:2x+3−3x=0,解得x=3,所以a⃗+b⃗ =(10,0),所以|a⃗+b⃗ |=10.故选:A.利用向量的垂直,求出x,然后求解向量的模.本题考查向量的数量积以及向量的模的求法,向量的垂直条件的应用,是基本知识的考查.3.【答案】C【解析】解:∵已知sin(α+π6)=2√55,∴cos(π3−α)=cos[π2−(α+π6)]=sin(α+π6)=2√55,故选:C.由条件利用诱导公式进行化简所给的式子,可得结果.本题主要考查利用诱导公式进行化简三角函数式,属于基础题.4.【答案】B【解析】解:函数f(x)=sin(2x+φ)的图象向右平移π6个单位后,可得y=sin(2x−π3+φ),∵图象关于原点对称,∴φ−π3=kπ,k∈Z,可得:φ=kπ+π3.当k=0时,可得φ=π3.故选:B.根据图象变换规律,可得解析式,图象关于原点对称,建立关系,即可求解φ值.本题主要考查函数y=Asin(ωx+φ)的图象变换规律和对称问题,属于基础题.5.【答案】A【解析】解:∵直线3x −y +1=0的倾斜角为α,∴tanα=3, ∴12sin2α+cos 2α=12⋅2sinαcosα+cos 2α=sinαcosα+cos 2αsin 2α+cos 2α=tanα+1tan 2α+1=3+19+1=25,故选:A .由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值.本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题. 6.【答案】C【解析】解:设这个班有n 个同学,数据分别是a 1,a 2,…,a i,…,a n , 第i 个同学没登分,第一次计算时总分是(n −1)x −,方差是s 2=1n−1[(a 1−x −)2+⋯+(a i−1−x −)2+(a i+1−x −)2+⋯+(a n −x −)2]第二次计算时,x 1−=(n−1)x −+x−n=x −,方差s 12=1n [(a 1−x −)2+⋯(a i−1−x −)2+(x −x)2+(a i+1−x −)2+⋯+(a n −x −)2]=n−1ns 2, 故s 2>s 12, 故选:C .根据平均数和方差的公式计算比较即可.本题考查了求平均数和方差的公式,是一道基础题. 7.【答案】B【解析】解:由题意知采用系统抽样和分层抽样方法抽取,不用剔除个体; 如果样本容量增加一个,则在采用系统抽样时, 需要在总体中先剔除1个个体, ∵总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n , 分层抽样的比例是n36,抽取的乒乓球运动员人数为n36⋅6=n6, 篮球运动员人数为n36⋅12=n3,足球运动员人数为n36⋅18=n2, ∵n 应是6的倍数,36的约数, 即n =6,12,18.当样本容量为(n +1)时,总体容量是35人, 系统抽样的间隔为35n+1, ∵35n+1必须是整数,∴n 只能取6.即样本容量n =6. 故选:B .由题意知采用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,算出总体个数,根据分层抽样的比例和抽取的乒乓球运动员人数得到n 应是6的倍数,36的约数,由系统抽样得到35n+1必须是整数,验证出n 的值.本题考查分层抽样和系统抽样,是一个用来认识这两种抽样的一个题目,把两种抽样放在一个题目中考查,加以区分,是一个好题. 8.【答案】C【解析】解:运行步骤为:i =1,A =7 i =2,A =15; i =3,A =31; i =4,A =63; i =5,A =127; 故输出i 值为5, 故选:C .根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出变量i 的值,模拟程序的运行过程,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题. 9.【答案】C【解析】【分析】本题考查了向量的加减法则,数量积的运算性质,三角形形状的判断,属于中档题.根据向量的加减运算法则,将已知化简得AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ 2+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ ,得CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0.结合向量数量积的运算性质,可得CA ⊥CB ,得△ABC 是直角三角形.【解答】解:∵△ABC 中,AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ , ∴AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ )+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ , 即AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ 2+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ , ∴CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0, ∴CA ⃗⃗⃗⃗⃗ ⊥CB⃗⃗⃗⃗⃗ ,即CA ⊥CB , ∴△ABC 是直角三角形, 故选C . 10.【答案】B【解析】解:小正方形的边长为4sin750−4cos750=(√6+√2)−(√6−√2)=2√2, 故小正方形与大正方形的面积之比为(2√24)2=12,因此剩下的每个直角三角形的面积与大正方形的面积之比为12÷4=18, ∴飞镖落在区域1或区域2的概率为12+18=58. 故选:B .由已知求出小正方形的边长,得到小正方形及直角三角形与大正方形的面积比,则答案可求.本题考查几何概型概率的求法,求出小正方形及直角三角形与大正方形的面积比是关键,是中档题.11.【答案】C【解析】解:由图知,A=√2,又ω>0,T 4=7π12−π3=π4,∴T=2πω=π,∴ω=2,∴π3×2+φ=2kπ+π(k∈Z),∴φ=2kπ+π3(k∈Z),∵0<ϕ<π2,∴φ=π3,∴f(x)=√2sin(2x+π3),∴f(0)=√2sinπ3=√62.故选:C.由图知,A=√2,由T4=π4,可求得ω,π3ω+φ=2kπ+π(k∈Z),0<ϕ<π2可求得φ,从而可得f(x)的解析式,于是可求f(0)的值.本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求得φ是难点,考查识图能力,属于中档题.12.【答案】D【解析】解:a⃗=(sinω2x,sinωx),b⃗ =(sinω2x,12),其中ω>0,则函数f(x)=a⃗⋅b⃗ −12=sin2(ω2x)+12sinωx−12=12−12cosωx+12sinωx−12=√2sin(ωx−π4),可得T=2πω≥π,0<ω≤2,f(x)在区间(π,2π)内没有零点,结合三角函数可得,{πω−π4≥02πω−π4≤π或{πω−π4≥−π2πω−π4≤0,解得14≤ω≤58或0<ω≤18,故选:D.利用两角和与差的三角函数化简函数的解析式,利用函数的零点以及函数的周期,列出不等式求解即可.本题考查函数的零点个数的判断,三角函数的化简求值,考查计算能力.13.【答案】甲【解析】解:方差越小越稳定,s 甲2=2.1<s 乙2=2.6,故答案为:甲.根据方差的大小判断即可.本题考查了方差的意义,掌握方差越小越稳定是解决本题的关键,是一道基础题. 14.【答案】7【解析】解:由已知中的程序框图可知:该程序的功能是计算并输出y ={2x x >23x +1x ≤2的值,∵输入结果为2,∴y =3×2+1=7. 故答案为:7.由已知中的程序框图可知:该程序的功能是计算并输出y ={2x x >23x +1x ≤2的值,由已知代入计算即可得解.本题主要考查选择结构的程序框图的应用,关键是判断出输入的值是否满足判断框中的条件,属于基础题. 15.【答案】120【解析】解:由题意可得:弧长l =20,半径r =12, 扇形面积S =12lr =12×20×12=120(平方米),故答案为:120.利用扇形面积计算公式即可得出.本题考查了扇形面积计算公式,考查了推理能力与计算能力,属于基础题.16.【答案】25【解析】解:点P(4m,−3m)(m <0)在角α的终边上,∴x =4m ,y =−3m ,r =|OP|=√16m 2+9m 2=−5m , ∴sinα=y r=35,cosα=x r =−45,∴2sinα+cosα=65−45=25,故答案为:25.由题意利用任意角的三角函数的定义,求得sinα和cosα的值,可得2sinα+cosα的值. 本题主要考查任意角的三角函数的定义,属于基础题.17.【答案】解:(Ⅰ)采用分层抽样从3500名学生中抽70人,则高一学生抽24人,高二学生抽26人, 高三学生抽20人.“知道但未采取措施”的高一学生的概率=x70=0.2, ∴x =14,∴y =24−14−8=2,z=26−13−3=10,m=20−12−7=1,∴x=14,y=2,z=10,m=1;(Ⅱ)“知道且采取措施”的学生中高一学生2名用A,B表示,高二学生3名用C,D,E表示,高三学生1名用F表示.则从这6名学生中随机抽取2名的情况有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种,其中恰好1名高一学生1名高二学生的有6种.∴P=615=25,即恰好有1名高一学生,1名高二学生的概率为25.【解析】(Ⅰ)根据分层抽样先求出x,即可求出y,z,m.(Ⅱ)知道且采取措施”的学生中高一学生2名用A,B表示,高二学生3名用C,D,E 表示,高三学生1名用F表示.根据古典概率公式计算即可.本题考查等可能事件的概率,古典概型概率计算公式等知识,属于中档题.18.【答案】解:(Ⅰ)[90,100),[100,110),[110,120)上的频率之和为:1−10×0.035−0.15−0.05=0.45,且前三个频率成等差数列(设公差为d),故[100,110)上的频率为:0.453=0.15,从而2d=0.35−0.15=0.2,解得d=0.1,∴[90,100),[100,110),[110,120)上的频率分别为0.05,0.15,0.25.……(5分) (Ⅱ)(ⅰ)从160人中抽取32人,样本距为5,故第一个编号为18−3×5=3.……(7分) (ⅰ)抽取的32人的编号依次成等差数列,首项为3,公差为5,设第n个编号为a n,则a n=3+(n−1)×5=5n−2,……(9分)由(1)可知区间[90,100),[100,110)上的总人数为160×(0.05+0.15)=32人,[110,120),[120,130)上的总人数为160×(0.25+0.35)=96人,[90,130)共有128人,令33≤a n≤128,解得7≤n≤26,∴在[110,120),[120,130)上抽取的样本有20人,……(11分)故从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)的概率是p=2032=58.……(12分)【解析】(Ⅰ)先求出[90,100),[100,110),[110,120)上的频率之和,再由前三个频率成等差数列,得[100,110)上的频率为0.15,由此能求出[90,100),[100,110),[110,120)上的频率.(Ⅱ)(ⅰ)从160人中抽取32人,样本距为5,由此能求出第一个编号.(ⅰ)抽取的32人的编号依次成等差数列,首项为3,公差为5,设第n个编号为a n,则a n=3+(n−1)×5=5n−2,由此能求出从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)的概率.本题考查频率的求法,考查第一个编号、概率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.19.【答案】解:(1)根据题意,k a⃗+b⃗ =k(1,2)+(−3,4)=(k−3,2k+4),由|k a ⃗ +b ⃗ |=5,得√(k −3)2+(2k +4)2=5,解得:k =0或k =−2;(2)根据题意,设a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的夹角为θ,a ⃗ =(1,2),b ⃗ =(−3,4),则a ⃗ +b ⃗ =(−2,6),a ⃗ −b ⃗ =(4,−2);∴cosθ=40×20=−√22, ∵θ∈[0,π];∴a ⃗ +b ⃗ 与a ⃗ −b ⃗ 夹角为3π4.【解析】(1)根据题意,求出k a ⃗ +b⃗ 的坐标,进而由向量模的计算公式可得√(k −3)2+(2k +4)2=5,解可得k 的值,即可得答案;(2)设a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的夹角为θ,求出a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的坐标,由向量数量积的计算公式可得cosθ的值,结合θ的范围计算可得答案.本题考查向量数量积的坐标计算,关键是掌握向量数量积、模的计算公式. 20.【答案】解:(1)∵sinα=35,且α为第二象限角,∴cosα=−√1−sin 2α=−45, ∴sin2α=2sinαcosα=2×35×(−45)=−2425;(2)由(1)知tanα=sinαcosα=−34, ∴tan(α+π4)=tanα+tan π41−tanαtan π4=−34+11−(−34)=17.【解析】(1)由已知利用平方关系求得cosα,再由二倍角公式求得sin2α的值;(2)由(1)求出tanα,展开两角和的正切求得tan(α+π4)的值.本题考查同角三角函数基本关系式的应用,考查两角和的正切,是基础的计算题. 21.【答案】解:(1)f(x)=4cosx ⋅sin(x +π6)=2√3sinxcosx +2cos 2x=√3sin2x +cos2x +1=2sin(2x +π6)+1,∴函数f(x)的周期T =π,∴当2kπ−π2≤2x +π6≤2kπ+π2时,即kπ−π3≤x ≤kπ+π6,k ∈Z ,函数单调增, ∴函数的单调递增区间为[kπ−π3,kπ+π6](k ∈Z); (2)当x ∈[0,π2]时,2x +π6∈[π6,7π6], ∴sin(2x +π6)∈[−12,1],∴当sin(2x +π6)=1,f(x)max =3.【解析】(1)对f(x)化简,然后利用周期公式求出周期,再利用整体法求出单调增区间; (2)当x ∈[0,π2]时,sin(2x +π6)∈[−12,1],然后可得f(x)的最大值.本题考查了三角函数的化简求值和三角函数的图象与性质,考查了整体思想和数形结合思想,属基础题.22.【答案】解:(1)f(x)=sin(ωx+φ)+cos(ωx+φ)=√2sin(ωx+φ+π4),故2πω=2×π2,求得ω=2.再根据f(0)=sin(φ+π4)=0,0<|φ|<π2,可得φ=−π4,故f(x)=√2sin2x,f(π8)=√2sinπ4=1.(2)将函数y=f(x)的图象向右平移π6个单位后,得到函数y=g(x)=√2sin2(x−π6)=√2sin(2x−π3)的图象.∵x∈[π6,π2],∴2x−π3∈[0,2π3],当2x−π3=π2时,g(x)=√2sin(2x−π3)取得最大值为√2;当2x−π3=0时,g(x)=√2sin(2x−π3)取得最小值为0.【解析】(1)由条件利用两角和差的正弦公式化简f(x)的解析式,由周期求出ω,由f(0)= 0求出φ的值,可得f(x)的解析式,从而求得f(π8)的值.(2)由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再根据正弦函数的定义域和值域求得g(x)在x∈[π6,π2]上的最值.本题主要考查两角和差的正弦公式,由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由f(0)=0求出φ的值,可得f(x)的解析式;函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于中档题.。

2018-2019学年重庆一中高一(下)期末数学试卷

2018-2019学年重庆一中高一(下)期末数学试卷

2018-2019学年重庆一中高一(下)期末数学试卷一、选择题:(本大题共12小题,每小题5分,每小题只有一项符合题目要求) 1.(5分)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5(S = ) A .5B .7C .9D .102.(5分)某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( ) A .40B .36C .30D .203.(5分)已知向量(1,2)a =r ,(3,)b m =r ,m R ∈,则“6m =”是“//()a a b +r r r ”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.(5分)已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//m α,//n α,则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥5.(5分)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则(EB =u u u r) A .3144AB AC -u u ur u u u rB .1344AB AC -u u ur u u u rC .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r6.(5分)在ABC ∆中,60A =︒,2AB =,且ABC ∆,则BC 的长为( )A B C .D .27.(5分)某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( )(注:结余=收入-支出)A .收入最高值与收入最低值的比是3:1B .结余最高的月份是7月C .1至2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元8.(5分)《莱因德纸草书》是世界上最古老的数学著作只之一,书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,问最小一份为( )A .53B .103C .56D .1169.(5分)若42log (34)log a b ab +=,则a b +的最小值是( ) A .623+B .723+C .643+D .743+10.(5分)如图,四棱锥P ABCD -的底面ABCD 为平行四边形,2NB PN =,则三棱锥N PAC -与三棱锥D PAC -的体积比为( )A .1:2B .1:8C .1:6D .1:311.(5分)已知四棱锥P 一ABCD 中,平面PAD ⊥平面ABCD ,其中ABCD 为正方形,PAD ∆为等腰直角三角形,2PA PD ==,则四棱锥P ABCD -外接球的表面积为( ) A .10πB .4πC .16πD .8π12.(5分)在ABC ∆中,已知9AB AC =u u u r u u u r g ,sin cos sin B A C =g ,6ABC S ∆=,P 为线段AB 上的点,且||||CA CBCP x y CA CB =+u u u r u u u ru u u r u u u r u u u r g ,则xy 的最大值为( ) A .1 B .2 C .3 D .4二、填空题:(本大题共4小题,每小题5分)13.(5分)(文科)某校女子篮球队7名运动员身高(单位:厘米)分布的茎叶图如图,已知记录的平均身高为175cm ,但记录中有一名运动员身高的末位数字不清晰,如果把其末尾数记为x ,那么x 的值为 .14.(5分)在各项均为正数的等比数列{}n a 中,321a =-,521a =+,则2326372a a a a a ++等于 .15.(5分)如图所示,在正三棱柱111ABC A B C -中,D 是AC 的中点,1:2:1AA AB =,则异面直线1AB 与BD 所成的角为 .16.(5分)在ABC ∆中,若3cos 3cos 2a B b A b +=,点E ,F 分别是AC ,AB 的中点,则BECF的取值范围为 . 三、解答题:(解答应写出文字说明、证明过程或演算步骤)17.(10分)已知数列{}n a 的前n 项和是n S ,且11()2nn S a n N ++=∈(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设113log (1)()n bn S n N ++=-∈,令12231111n n n T b b b b b b +=++⋯+,求n T . 18.(12分)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,E 、F 分别为11A C 和BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ; (2)求证:1//C F 平面ABE .19.(12分)某网站推出了关于扫黑除恶情况的调查,调查数据表明,扫黑除恶仍是百姓最为关心的热点,参与调查者中关注此问题的约占80%.现从参与关注扫黑除恶的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.(1)求出a 的值;(2)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);20.(12分)如图所示,平面ABCD ⊥平面BCE ,四边形ABCD 为矩形,BC CE =,点F 为CE 的中点.(1)若2BE BC CD ===,求三棱锥D BFC -的体积;(2)点M 为CD 上任意一点,在线段AE 上是否存在点P ,使得PM BE ⊥?若存在,确定点P 的位置,并加以证明;若不存在,请说明理由.21.(12分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,(sin ,sin sin )m A B C =-r,(3n a b =r ,)b c +,且m n ⊥r r .(1)求角C 的值;(2)若ABC ∆为锐角三角形,且1c =3a b -的取值范围.22.(12分)已知数列{}n a ,11a =,28a =,且*21442()n n n a a a n N ++=--∈ (1)设12n n n b a a +=-,证明数列{2}n b -是等比数列,并求数列{}n a 的通项; (2)若1n n c a =,并且数列{}n c 的前n 项和为n T ,不等式45364n kT „对任意正整数n 恒成立,求正整数k 的最小值.(注:当4n …时,则122)n n -…2018-2019学年重庆一中高一(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,每小题只有一项符合题目要求) 1.(5分)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5(S = ) A .5B .7C .9D .10【解答】解:由等差数列{}n a 的性质,及1353a a a ++=, 333a ∴=, 31a ∴=,15535()552a a S a +∴===. 故选:A .2.(5分)某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( ) A .40B .36C .30D .20【解答】解:每个个体被抽到的概率等于9013602701809=++,甲社区有360户低收入家庭,故应从甲社区中抽取低收入家庭的户数为1270309⨯=,故选:C .3.(5分)已知向量(1,2)a =r,(3,)b m =r ,m R ∈,则“6m =”是“//()a a b +r r r ”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【解答】解:Q 向量(1,2)a =r,(3,)b m =r ,∴(4,2)a b m +=+rr,若“//()a a b +r r r ”则2240m +-⨯=,解得:6m =,故“6m =”是“//()a a b +rr r ”的充分必要条件,故选:A .4.(5分)已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//m α,//n α,则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥【解答】解:A .若//m α,//n α,则m ,n 相交或平行或异面,故A 错;B .若m α⊥,n α⊂,则m n ⊥,故B 正确;C .若m α⊥,m n ⊥,则//n α或n α⊂,故C 错;D .若//m α,m n ⊥,则//n α或n α⊂或n α⊥,故D 错.故选:B .5.(5分)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则(EB =u u u r )A .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u r D .1344AB AC +u u ur u u u r 【解答】解:在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,12EB AB AE AB AD =-=-u u u r u u u r u u u r u u u r u u u r11()22AB AB AC =-⨯+u u u r u u u r u u u r3144AB AC =-u u ur u u u r , 故选:A .6.(5分)在ABC ∆中,60A =︒,2AB =,且ABC ∆,则BC 的长为( )A B C .D .2【解答】解:Q 在ABC ∆中,60A =︒,2AB =,且ABC ∆,∴1sin 2AB AC A =g g ,即122AC ⨯⨯=, 解得:1AC =,由余弦定理得:2222cos 1423BC AC AB AC AB A =+-=+-=g g ,则BC = 故选:B .7.(5分)某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( )(注:结余=收入-支出)A.收入最高值与收入最低值的比是3:1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元【解答】解:由图可知,收入最高值为90万元,收入最低值为30万元,其比是3:1,故A 正确,由图可知,结余最高为7月份,为802060-=,故B正确,由图可知,1至2月份的收入的变化率为与4至5月份的收入的变化率相同,故C正确,由图可知,前6个月的平均收入为1(406030305060)456+++++=万元,故D错误,故选:D.8.(5分)《莱因德纸草书》是世界上最古老的数学著作只之一,书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,问最小一份为()A.53B.103C.56D.116【解答】解:设五个人所分得的面包为2a d-,a d-,a,a d+,2a d+,(其中0)d>;则,(2)()()(2)5100a d a d a a d a d a-+-+++++==,20a∴=;由1(2)27a a d a d a d a d++++=-+-,得337(23)a d a d+=-;2411d a∴=,55/6d∴=;所以,最小的1分为110522063a d-=-=.故选:A .9.(5分)若42log (34)log a b ab +=,则a b +的最小值是( ) A .623+B .723+C .643+D .743+【解答】解:340a b +>Q ,0ab >, 0a ∴>.0b >42log (34)log a b ab +=Q , 44log (34)log ()a b ab ∴+=34a b ab ∴+=,4a ≠,0a >.0b >∴304ab a =>-, 4a ∴>,则33(4)121212123(4)72(4)743744444a a ab a a a a a a a a a a -++=+=+=++=-++-+=+-----g …,当且仅当423a =+取等号. 故选:D .10.(5分)如图,四棱锥P ABCD -的底面ABCD 为平行四边形,2NB PN =,则三棱锥N PAC -与三棱锥D PAC -的体积比为( )A .1:2B .1:8C .1:6D .1:3【解答】解:Q 四边形ABCD 是平行四边形,ABC ACD S S ∆∆∴=. D PAC P ACD P ABC V V V ---∴==. 2NB PN =Q ,23NB PB ∴=,23N ABC P ABCV V --∴=,13N PAC P ABC N ABC P ABC V V V V ----∴=-=.∴13N ABC D PAC V V --=. 故选:D .11.(5分)已知四棱锥P 一ABCD 中,平面PAD ⊥平面ABCD ,其中ABCD 为正方形,PAD ∆为等腰直角三角形,2PA PD ==,则四棱锥P ABCD -外接球的表面积为( ) A .10πB .4πC .16πD .8π【解答】解:取AD 的中点E ,Q 平面PAD ⊥平面ABC ,其中ABCD 为正方形,PAD ∆ 为等腰直角三角形,∴四棱锥P ABCD -的外接球的球心为正方形ABCD 的中心O ,设半径为R ,则OE AD ⊥Q ,1PE = 112R ∴=+=,∴四棱锥P ABCD -的外接球的表面积为8π.故选:D .12.(5分)在ABC ∆中,已知9AB AC =u u u r u u u r g ,sin cos sin B A C =g ,6ABC S ∆=,P 为线段AB 上的点,且||||CA CBCP x y CA CB =+u u u r u u u ru u u r u u u r u u u r g ,则xy 的最大值为( ) A .1 B .2 C .3 D .4【解答】解:ABC ∆中设AB c =,BC a =,AC b =sin cos sin B A C =Q g ,sin()sin cos A C C A +=,即sin cos sin cos sin cos A C C A C A += sin cos 0A C ∴=sin 0cos 0A C ≠∴=Q 90C =︒Q 9AB AC =u u u r u u u rg ,6ABC S ∆=cos 9bc A ∴=,1sin 62bc A =4tan 3A ∴=,根据直角三角形可得4sin 5A =,3cos 5A =,15bc =5c ∴=,3b =,4a =以AC 所在的直线为x 轴,以BC 所在的直线为y 轴建立直角坐标系可得(0C ,0)(3A ,0)(0B ,4)P 为线段AB 上的一点,则存在实数λ使得(1)(3CP CA CB λλλ=+-=u u u r u u u r u u u r ,44)(01)λλ-剟 设1||CAe CA =u u u r u r u u ur ,2||CB e CB =u u u ru u r u u u r 则12||||1e e ==u r u u r , 1(1,0)e =u r ,2(0,1)e =u u r,∴(||||CA CBCP x y x CA CB =+=u u u r u u u ru u u r u u u r u u u r g ,0)(0+,)(y x =,)y 可得3x λ=,44y λ=-则4312x y +=, 1243212x y xy =+…,3xy „故所求的xy 最大值为:3. 故选:C .二、填空题:(本大题共4小题,每小题5分)13.(5分)(文科)某校女子篮球队7名运动员身高(单位:厘米)分布的茎叶图如图,已知记录的平均身高为175cm ,但记录中有一名运动员身高的末位数字不清晰,如果把其末尾数记为x ,那么x 的值为 2 .【解答】解:根据茎叶图中的数据知,1170(12451011)1757x +⨯++++++=,即1(33)57x ⨯+=, 即3335x +=, 解得2x =. 故答案为:2.14.(5分)在各项均为正数的等比数列{}n a 中,321a =,521a ,则2326372a a a a a ++等于 8 .【解答】解:在各项均为正数的等比数列{}n a 中, 321a Q ,521a =,2326372a a a a a ∴++2233552a a a a =++235()a a =+2(2121)= 8=.故答案为:8.15.(5分)如图所示,在正三棱柱111ABC A B C -中,D 是AC 的中点,1:2AA AB =,则异面直线1AB 与BD 所成的角为 60︒ .【解答】解:取11A C 的中点1D ,连接11B D ,D Q 是AC 的中点,11//B D BD ∴,11AB D ∴∠即为异面直线1AB 与BD 所成的角.连接1AD ,设AB a =,则12AA a =,13AB a ∴=,113B D ,2213242a AD a a =+=. 22211393144cos 23232a a a AB D a a+-∴∠==⨯⨯, 1160AB D ∴∠=︒.故答案为:60︒16.(5分)在ABC ∆中,若3cos 3cos 2a B b A b +=,点E ,F 分别是AC ,AB 的中点,则BE CF 的取值范围为 1(4,7)8. 【解答】解:设AB c =,AC b =,BC a =, 由题意得,3cos 3cos 2a B b A b +=,则由正弦定理可得:3sin cos 3sin cos 2sin A B B A B +=,即3sin()3sin 2sin A B C B +==,由正弦定理得,32c b =,即32b c =,Q 点E ,F 分别是AC ,AB 的中点,∴由中线长定理得,222221112()2224BE a c b a c =+-=- 222221172()2222CF a b c a c =+-+∴BE CF ==a b c <+Q 且a c b +>,∴1522c a c <<,则1522a c <<, ∴2125()44a c <<, 2742()162a c ∴<+<,则1748, 则BF CF 的取值范围是1(4,7)8. 故答案为:1(4,7)8.三、解答题:(解答应写出文字说明、证明过程或演算步骤)17.(10分)已知数列{}n a 的前n 项和是n S ,且11()2n n S a n N ++=∈(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设113log (1)()n bn S n N ++=-∈,令12231111n n n T b b b b b b +=++⋯+,求n T . 【解答】解:(Ⅰ)当1n =时,11a S =,由111111122S a a a +=+=,得:123a =.当2n …时,11111,122n n n n S a S a --=-=-.则111()2n n n n S S a a ---=-,即11()2n n n a a a -=-,所以11(2)3n n a a n -=….Q 1203a =≠,∴113n n a a -=.故数列{}n a 是以23为首项,13为公比的等比数列.故11*1211()2()()333n n n n a a q n N --===∈g g .(Ⅱ)Q 112n n S a +=,∴112n n S a -=.∴1111331(1)()13n n n b log Slog n ++=-==+.∴11111(1)(2)12n n b b n n n n +==-++++. 所以,1223111111111111()()()233412222(2)n n n nT b b b b b b n n n n +=++⋯+=-+-+⋯+-=-=++++. 18.(12分)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,E 、F 分别为11A C 和BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ; (2)求证:1//C F 平面ABE .【解答】证明:(1)1BB ⊥Q 平面ABC ,AB ⊂平面ABC , 1AB BB ∴⊥又AB BC ⊥,1BB BC B =I ,AB ∴⊥平面11B BCC而AB ⊂平面ABE ,∴平面ABE ⊥平面11B BCC(2)取AC 的中点G ,连结1C G 、FG ,F Q 为BC 的中点,//FG AB ∴又E 为11A C 的中点1//C E AG ∴,且1C E AG =∴四边形1AEC G 为平行四边形,1//AE C G ∴∴平面1//C GF 平面EAB ,而1C F ⊂平面1C GF ,1//C F∴平面EAB.19.(12分)某网站推出了关于扫黑除恶情况的调查,调查数据表明,扫黑除恶仍是百姓最为关心的热点,参与调查者中关注此问题的约占80%.现从参与关注扫黑除恶的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.(1)求出a的值;(2)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);【解答】解:(1)由频率分布直方图的性质得:10(0.0100.0150.0300.010)1a++++=,解得0.035a=.(2)平均数为;200.1300.15400.35500.3600.141.5⨯+⨯+⨯+⨯+⨯=岁,设中位数为x,则100.010100.015(35)0.0350.5x⨯+⨯+-⨯=,解得42.1x=岁.20.(12分)如图所示,平面ABCD⊥平面BCE,四边形ABCD为矩形,BC CE=,点F为CE的中点.(1)若2BE BC CD===,求三棱锥D BFC-的体积;(2)点M 为CD 上任意一点,在线段AE 上是否存在点P ,使得PM BE ⊥?若存在,确定点P 的位置,并加以证明;若不存在,请说明理由.【解答】解:(1)Q 平面ABCD ⊥平面BCE ,四边形ABCD 为矩形,DC BC ⊥,DC ∴⊥平面BCE ,2BE BC CD ===Q ,∴1113(13)2332D BFC BFC V S DC -==⨯⨯⨯⨯=g ; (2)当P 为AE 中点时,有PM BE ⊥.证明如下:取BE 中点H ,连接DP ,PH ,CH ,P Q 为AE 的中点,H 为BE 的中点,//PH AB ∴,又//AB CD ,//PH CD ∴,则P ,H ,C ,D 四点共面. Q 平面ABCD ⊥平面BCE ,平面ABCD ⋂平面BCE BC =, CD ⊂平面ABCD ,CD BC ⊥,CD ∴⊥平面BCE ,又BE ⊂平面BCE ,CD BE ∴⊥,BC CE =Q ,H 为BE 的中点,CH BE ∴⊥,又CD CH C =I ,BE ∴⊥平面DPHC ,又PM ⊂平面DPHC ,BE PM ∴⊥,即PM BE ⊥.21.(12分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,(sin ,sin sin )m A B C =-r,(n a =r ,)b c +,且m n ⊥r r .(1)求角C 的值;(2)若ABC ∆为锐角三角形,且1c =b -的取值范围.【解答】解:(1)Q (sin ,sin sin )m A B C =-r,(n a =-r ,)b c +,且m n ⊥r r,sin ()(sin sin )()0A a B C b c ∴+-+=,利用正弦定理化简得:()()()0a a b c b c ++-=,即222a b c +-=,222cos 22a b c C ab +-∴==, (0,)C π∈Q ,6C π∴=;(2)由(1)得56A B π+=,即56B A π=-, 又ABC ∆为锐角三角形, ∴506202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩,解得:32A ππ<<,1c =Q ,∴由正弦定理得:12sin sin sin sin 6a b c A B C π====, 2sin a A ∴=,2sin b B =,∴2sin 2sin()2sin cos 2cos sin cos 2sin()6666b A B A A A A A A A A ππππ-=-=-+=---=-, Q32A ππ<<,∴663A πππ<-<,∴1sin()26A π<-<12sin()6A π<-<b -的取值范围为.22.(12分)已知数列{}n a ,11a =,28a =,且*21442()n n n a a a n N ++=--∈ (1)设12n n n b a a +=-,证明数列{2}n b -是等比数列,并求数列{}n a 的通项; (2)若1n n c a =,并且数列{}n c 的前n 项和为n T ,不等式45364n kT „对任意正整数n 恒成立,求正整数k 的最小值.(注:当4n …时,则122)n n -…【解答】解:(1)证明:121111222244222222n n n n n n n n n n b a a a a b a a a a ++++++-----===-----, 而124b -={2}n b ∴-是以4为首项2为公比的等比数列,112222n n n n b b ++-==+即11222n n n a a ++-=+,1111222n n n n n a a ++-=+累加法可求出111()222n n n a n -=+- ∴1(21)22n n a n -=+-;(2)111(21)22n n n c a n -==+-, 123111,,826c c c ===1458.09364k T k ⇒剠,2459.1364k T k ⇒剠,3459.41364kT k ⇒剠由条件知当4n …时,122n n -…, 即121111111()(21)22422(22)(21)(21)(21)22121n n c n n n n n n n n n -==<=-+-+-+-+--+„ ∴123451121111899189945()()9.910427217282(21)728364n n n kT c c c c c c c k n n -=+++++⋯++<+-=-<⇒++剠而*k N ∈综上所述k 的最小值为10.。

重庆一中2018年高一下学期期末考试数学试题

重庆一中2018年高一下学期期末考试数学试题

≤≥1重庆一中2018年高一下学期期末考试数学试题.一.选择题:(共10小题,每题5分,共50分.请将唯一正确的选项选出来,并涂在机读卡上的相应位置)1.已知直线的倾斜角为45°,在y 轴上的截距为2,则此直线方程为( ) A .y x =+2. B .y x =-2C .y x =-+2 D .y x =--2 2.下面四个条件中,使a b >成立的充分而不必要的条件是( ) A .1a b >- B .1a b >+ C .22a b > D .33a b >3. 直线被圆22(4)4x y -+=所截得的弦长为( )A.2 B . C .42 D .4.左图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到14次的考试成绩依次记为1214,,,.A A A 右图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是()A .7B .8C .9D .105.三个数20.90.9,ln 0.9,2a b c ===之间的大小关系是( ) A.b c a <<. B.c b a << C.c a b << D .a c b <<6.等比数列{}n a 的各项都是正数,且5916a a =,则216log a =( ) A.4 B.5 C.6D.77. 若20,AB BC AB ABC ⋅+=∆ 则是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形8.直线10(,0)ax by a b ++=>过圆228210x y x y ++++=的圆心,则14a b+的最小值为( )A .8B .12C .16D .209. 设等差数列{}n a 的前n 项和为n S 且满足,0,01615<>S S 则3151212315,,,,S S S S a a a a 中最大的项为( ) A.66a S B.77a S C.88a S D.99a S10.(原创)已知直线1(1)()2m x n y +++=与圆22(3)(5x y -+-=相切,若对任意的,m n R +∈均有不等式2m n k +≥成立,那么正整数k 的最大值是( ) A.3 B.5 C.7 D.9二.填空题:(共5小题,每题5分,共25分.请将最简答案填在答题卷相应的位置)11. 若2a = ,14b = ,a 与b 的夹角为30,则a b ⋅= .12.设ABC ∆的内角,,A B C 所对的边分别为,,a b c .若120a b B ===︒,则角A =.13.人体血液中胆固醇正常值的范围在2.86-5.98mmol/L ,若长期胆固醇过高容易导致心血管疾病.某医院心脏内科随机地抽查了该院治疗过的100名病员血液的胆固醇含量情况,得到频率分布直方图如下图,由于不慎将部分数据丢失,只知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,胆固醇含量在4.6到5.1之间的病员人数为b ,则a b +=.14.设,x y 满足约束条件1020210x y x x y -≥⎧⎪-≥⎨⎪+≤⎩,向量(2,),(1,1)a y x m b =-=- ,且//a b 则m 的最小值为.15.(原创)已知直线41y kx k =-+|1|2y =--恰有一个公共点,则实数k 的取值范围是.三.解答题:(共6小题,其中16~18每小题13分,19~21每小题12分,共75分.请将每题的解答过程写在答题卷相应的答题框内)16.(本题满分13分)已知直线1l :310ax y ++=,2l :(2)0x a y a +-+=. (Ⅰ)若12l l ⊥,求实数a 的值;(2)当12//l l 时,求直线1l 与2l 之间的距离.17.(本题满分13分)设ABC ∆的三个内角分别为,,A B C .向量共线.(Ⅰ)求角C 的大小;(Ⅱ)设角,,A B C 的对边分别是,,a b c ,且满足,试判断的形状.18.(本题满分13分)已知,a b 满足||||1a b == ,且a 与b之间有关系式ka b += a kb -,其中0k >.(Ⅰ)用k 表示a b ⋅;(Ⅱ)求a b ⋅ 的最小值,并求此时a 与b的夹角θ的大小.19.(本题满分12分)已知已知圆C 经过(2,4)A 、(3,5)B 两点,且圆心C 在直线220x y --=上.(Ⅰ)求圆C 的方程;(Ⅱ)若直线3y kx =+与圆C 总有公共点,求实数k 的取值范围.20.(本题满分12分)(原创)已知函数()f x 是二次函数,不等式()0f x ≥的解集为{|23}x x -≤≤,且()f x 在区间[1,1]-上的最小值是4. (Ⅰ)求()f x 的解析式; (Ⅱ)设()5()g x x f x =+-,若对任意的3,4x ⎛⎤∈-∞- ⎥⎝⎦,2()(1)4()()xg g x m g x g m m ⎡⎤--≤+⎣⎦均成立,求实数m 的取值范围.21.(本题满分12分)(原创)设数列{}n b 的前n 项和为n S ,对任意的*n N ∈,都有n b >,且233123n nS b b b =++ ;数列{}n a 满足22*111,(1cos )sin ,22n n n n b b a a a n N ππ+==++∈. (Ⅰ)求12,b b 的值及数列{}n b 的通项公式; (Ⅱ)求证:2624132151912n n a a a a a a a n a -+<+++ 对一切n N +∈成立.重庆一中高一下期期末考试数 学一.选择题:ABBDC ;BBCCA. 二.填空题:11.;12.45°;13.85.27;14. 6-;15.111,,122⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭ . 三.解答题:16. (本题满分13分)(Ⅰ)若12l l ⊥,求实数a 的值;(2)当12//l l 时,求直线1l 与2l 之间的距离.解:(1)由12l l ⊥知3(2)0a a +-=,解得32a =;………………………………………………………6分 (Ⅱ)当12//l l 时,有(2)303(2)0a a a a --=⎧⎨--≠⎩解得3a = ………………………………………………………9分1l :3310x y ++=, 2l :30x y ++=即3390x y ++=,距离为d 3分17.(本题满分13分)解:(Ⅰ)∵与共线∴………………………3分∴C=…………………………………………………………………………6分 (Ⅱ)由已知 根据余弦定理可得:……………………………………8分 联立解得:3C π=,所以△为等边三角形, …………………………………………12分18.(本题满分13分)解:(Ⅰ)223ka b a kb +=-,241b k ka ⋅=+ ,214k b ka +⋅= …………6分;(Ⅱ)211111()4442k b k k k a +⋅==+≥= ,当且仅当1k =时取“=”故b a ⋅的最小值为12……………………………………………………………………………………10分 ||cos 1||2,11cos ,b b a a b a b a ⋅=<>=⨯=⨯<>,1cos ,2a b <>= ,,60a b <>=︒………13分.19. (本题满分12分)解:(1)由于AB 的中点为59(,)22D ,1AB k =,则线段AB的垂直平分线方程为7y x =-+, 而圆心C 是直线7y x =-+与直线220x y --=的交点,由7220y x x y =-+⎧⎨--=⎩解得34x y =⎧⎨=⎩,即圆心(3,4)C,又半径为1=,故圆C 的方程为22(3)(4)1x y -+-=………6分;(2)圆心(3,4)C 到直线3y kx =+的距离1d得2430k k -≤,解得304k ≤≤.………………………………………………………………………12分20. (本题满分12分)解:(Ⅰ)()0f x ≥解集为{|23}x x -≤≤,设2()(2)(3)(6)f x a x x a x x =+-=--,且0a < 对称轴012x =,开口向下,min ()(1)44f x f a =-=-=,解得1a =-,2()6f x x x =-++;……5分(Ⅱ)22()561g x x x x x =++--=-,2()(1)4()()xg g x m g x g m m ⎡⎤--≤+⎣⎦恒成立即2222221(1)14(1)1x x m x m m ⎡⎤---+≤-+-⎣⎦对3,4x ⎛⎤∈-∞- ⎥⎝⎦恒成立 化简22221(4)23m x x x m -≤--,即2214m m -≤2321x x --+对3,4x ⎛⎤∈-∞- ⎥⎝⎦恒成立……8分 令2321y x x =--+,记14,03t x ⎡⎫=∈-⎪⎢⎣⎭,则2321y t t =--+, 二次函数开口向下,对称轴为013t =-,当43t =-时min 53y =-,故221543m m -≤-………………10分22(31)(43)0m m +-≥,解得m ≤m ≥……………………………………………………12分 21. (本题满分12分)解:(1)121,2b b ==;23333233121211,n n n n S b b b b S b b --=++++= ,相减得:23121212)(()n n n b b b b b b b -+-=+++++31212(2)2n n n n b b b b b b -=++++ ,即2112222n n n b b b b b -=++++ (2n ≥) 同理21121222n n n b b b b b ++=++++ ,两式再减112211n n n n n n b b b b b b +++=+⇒--=,n b n =……5分(2)22*111,(1cos )sin ,22n n n n a a a n N ππ+==++∈, 21(10)12a a =++=,32(11)04a a =++=,43(10)15a a =++=一般地,2122212,1m m m m a a a a +-==+,则212122m m a a +-=+有212122(2)m m a a +-+=+,2121222m m a a +-+=+,数列21{2}m a -+是公比为2的等比数列,12112(2)2m m a a --+=+得:1*21232()m m a m N --=-+⋅∈,1*2211132()2m m m a a m N -+==-+⋅∈所以:11212232132n n nn a n +--⎧-+⋅⎪=⎨⎪-+⋅⎩为奇数为偶数 令111112132232111112322322322(132)n n n n n n n c -------+⋅-+⋅+===+=+-+⋅-+⋅-+⋅-+⋅ 而当2n ≥时,2132n --+⋅2≥,故2101132n -<<-+⋅,则22211120132(132)132n n n ---+<<=-+⋅-+⋅+⋅,从而212(132)n -<-+⋅2132n -⋅ *21411(2,)3232n n nc n n N -<+=+≥∈⋅⋅,624152132n n na a a a a a a a T -=+++ 32114414182(1)(1)(1)1(1)14323243212n n n T n -<+++++⋅⋅⋅++=+++⋅-⋅⋅- 2111194191(1)432123212n nn n n -=+++-=+-<+⋅…………………………………………………12分。

重庆市2019年高一下学期期末考试试题 数学 含答案

重庆市2019年高一下学期期末考试试题 数学 含答案
(14)(原创)在 中,角 所对边长分别为 ,若 ,
则b=___________.
(15)已知点P,Q为圆C:x2+y2=25上的任意两点,且|PQ|<6,若PQ中点组成的区域为M,在圆C内任取一点,则该点落在区域M上的概率为__________.
(16)(原创)点C是线段AB上任意一点,O是直线AB外一点, ,
(Ⅱ)成绩在[40,50)分数段内的人数为40×0.05=2,成绩在[90,100]分数段内的人数为40×0.1=4,则记在[40,50)分数段的两名同学为A1,A2,在[90,100]分数段内的同学为B1,B2,B3,B4.
若从这6名学生中随机抽取2人,则总的取法共有15种.
如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10;如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.
则所取2名学生的数学成绩之差的绝对值不大于10的取法有(A1,A2),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4)共7种取法,所以所求概率为P= .
(20)解:(Ⅰ)解:
(Ⅱ)证明: ,
其前n项和Tn= + +…+ ,
Tn= + +…+ + ,
∴Tn- Tn= + + +…+ -
抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上
的数字,差为负数的概率为
(A) (B) (C) (D)
(10)在平行四边形ABCD中,AD=2,∠BAD=60°,E为CD的中点,若 =1,则AB的长为
(A) (B)4(C)5(D)6

重庆市四区2018-2019学年高一数学下学期联合期末考试评估试题(含解析)

重庆市四区2018-2019学年高一数学下学期联合期末考试评估试题(含解析)

5

a2·a6
4

bn log2an ,数列
bn
的前
n
项和为 Sn ,则当
S1 1
S2 1
Sn n
取最大值时,n
的值为(

A. 8
B. 9
C. 8 或 9
D. 17
【答案】C
【解析】
∵ an为等比数列,公比为 q (0,1) ,且 a3 a5 5,a2 a6 4
{a3 a5 5 ∴ a3 a5 4
23 【答案】 3
【解析】 【分析】
利用 a, b, c 成等比数列得到 c2 b2 a2 bc ,再利用余弦定理可得 A 60 ,而根据正弦定
理和
a,
b, c
成等比数列有
c b sin
B
1 sin
A
,从而得到所求之值.
【详解】∵ a, b, c 成等比数列,∴ b2 ac .又∵ a2 c2 ac bc ,∴ c2 b2 a2 bc .
a1

an
a2
an1
a3
an2
2Sn n

6Sn 4
所以 n
,故 n 27 ,选 C.
【点睛】一般地,如果
an
为等差数列,
Sn
为其前
n
项和,则有性质:
(1)若 m, n, p, q N*, m n p q ,则 am an ap aq ;
(2)
Sn
n ak
an1k 2
,k
1, 2,, n
【解析】
【分析】
S6 利用前 n 项和 Sn 的性质可求 S4 的值.
【详解】设 Sn an2 bn ,则

2018-2019学年高一数学下学期期末考试测试试题(含解析)

2018-2019学年高一数学下学期期末考试测试试题(含解析)

2018-2019学年高一数学下学期期末考试测试试题(含解析)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分为150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自已的姓名、考试科目、班级和考生号等信息填写在答题卡上,并用2B 铅笔将考号在答题卡相关的区域内涂黑。

2.选择题每小题选出答案后,用2B铅笔把答题卡对应的答案符号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将答题卡答卷交给监考老师。

第Ⅰ卷(选择题共60分)一、选择题(本题共12小题,每小题5分,共60分,四个选项中,只有一项符合要求)1.直线的倾斜角的大小为().A. B. C. D.【答案】B【解析】由直线方程可知直线的斜率,设直线的倾斜角为,则,又,所以,故选.2.下列四个图各反映了两个变量的某种关系,其中可以看作具有较强线性相关关系的是()A. ①③B. ①④C. ②③D. ①②【答案】B【解析】试题分析::∵两个变量的散点图,若样本点成带状分布,则两个变量具有线性相关关系,∴两个变量具有线性相关关系的图是①和④.考点:变量间的相关关系3.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A. 400,40B. 200,10C. 400,80D. 200,20【答案】A【解析】【分析】由扇形图能得到总数,利用抽样比较能求出样本容量;由分层抽样和条形图能求出抽取的高中生近视人数.【详解】用分层抽样的方法抽取的学生进行调查,样本容量为:,抽取的高中生近视人数为:,故选A.【点睛】该题考查的是有关概率统计的问题,涉及到的知识点有扇形图与条形图的应用,以及分层抽样的性质,注意对基础知识的灵活应用,属于简单题目.4.直线与直线平行,则=()A. B. C. -7 D. 5【答案】D【解析】【分析】由两直线平行的条件计算.【详解】由题意,解得.故选D.【点睛】本题考查两直线平行的条件,直线与平行的条件是:在均不为零时,,若中有0,则条件可表示为.5.若圆和圆相切,则等于( )A. 6B. 7C. 8D. 9【答案】C【解析】【分析】根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得的值并验证即可得结果.【详解】圆的圆心,半径为5;圆的圆心,半径为r.若它们相内切,则圆心距等于半径之差,即=|r-5|,求得r=18或-8,不满足5<r<10.若它们相外切,则圆心距等于半径之和,即=|r+5|,求得r=8或-18(舍去),故选C.【点睛】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题. 两圆半径为,两圆心间的距离为,比较与及与的大小,即可得到两圆的位置关系.6.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=A. B. C. 2 D. 3【答案】D【解析】试题分析:由余弦定理得,解得(舍去),选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!7.中,角所对的边分别为,若,则为( )A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等边三角形【答案】B【解析】【分析】由已知结合正弦定理可得sinC<sinBcosA利用三角形的内角和及诱导公式可得,sin(A+B)<sinBcosA整理可得sinAcosB+sinBcosA<0从而有sinAcosB<0结合三角形的性质可求.【详解】∵A是△ABC的一个内角,0<A<π,∴sinA>0.∵<cosA,由正弦定理可得,sinC<sinBcosA∴sin(A+B)<sinBcosA∴sinAcosB+sinBcosA<sinBcosA∴sinAcosB<0 又sinA>0∴cosB<0 即B为钝角故选:B.8.甲、乙两名运动员,在某项测试中的8次成绩如茎叶图所示,分别表示甲、乙两名运动员这项测试成绩的平均数,,分别表示甲、乙两名运动员这项测试成绩的标准差,则有()A. B.C. D.【答案】B【解析】【分析】根据茎叶图看出两组数据,先求出两组数据的平均数,再求出两组数据的方差,比较两组数据的方差的大小就可以得到两组数据的标准差的大小.【详解】由茎叶图可看出甲的平均数是,乙的平均数是,两组数据的平均数相等.甲的方差是乙的方差是甲的标准差小于乙的标准差,故选:B.【点睛】本题考查两组数据平均数和方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而标准差反映波动的大小,波动越小数据越稳定.9.对于平面、、和直线、、、,下列命题中真命题是( )A. 若,则B. 若,则C. 若则D. 若,则【答案】C【解析】试题分析:对于平面、、和直线、,真命题是“若,,,则”.考点:考查直线与直线,直线与平面,平面与平面的位置关系.10.圆柱形容器内盛有高度为6 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,如图所示.则球的半径是( )A. 1 cmB. 2 cmC. 3 cmD. 4 cm【答案】C【解析】【分析】设出球的半径,根据题意得三个球的体积和水的体积之和,等于柱体的体积,结合体积公式求解即可.【详解】设球半径为,则由,可得,解得,故选C.【点睛】本题主要考查了几何体的体积公式的应用,考查学生空间想象能力以及计算能力,是基础题.11.已知PA,PB是圆C:的两条切线(A,B是切点),其中P是直线上的动点,那么四边形PACB的面积的最小值为( )A. B. C. D.【答案】C【解析】【分析】配方得圆心坐标,圆的半径为1,由切线性质知,而的最小值为C点到的距离,由此可得结论.【详解】由题意圆的标准方程为,∴圆心为,半径为.又,到直线的距离为,∴.故选C.【点睛】本题考查圆切线的性质,考查面积的最小值,解题关键是把四边形面积用表示出来,而的最小值为圆心到直线的距离,从而易得解.12.我国古代数学名著九章算术中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥现有一如图所示的堑堵,,,当堑堵的外接球的体积为时,则阳马体积的最大值为A. 2B. 4C.D.【答案】D【解析】【分析】由已知求出三棱柱外接球的半径,得到,进一步求得AB,再由棱锥体积公式结合基本不等式求最值.【详解】解:堑堵的外接球的体积为,其外接球的半径,即,又,.则..即阳马体积的最大值为.故选:D.【点睛】本题考查多面体的体积、均值定理等基础知识,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,是中档题.第Ⅱ卷(非选择题共90分)二、填空题(本题共4小题,每小题5分,共20分)13.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:根据以上数据估计该射击运动员射击4次至少击中3次的概率为_______.【答案】0.75【解析】【分析】根据随机模拟的方法,先找到20组数据中至少含有2,3,4,5,6,7,8,9中的3个数字的组数,然后根据古典概型求出概率.【详解】由题意知模拟射击4次的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示射击4次击中3次的有:7527,0293,9857,0347,4373,8636,6947,4698,6233,2616,8045 ,3661,9597,7424,4281,共15组随机数,所以所求概率为.【点睛】本题考查随机模拟的应用,考查理解能力和运用能力,解题时读懂题意是解题的关键,然后在此基础上确定基本事件总数和所求概率的事件包含的基本事件的个数,再根据古典概型的概率公式求解.14.若某圆锥的轴截面是面积为的等边三角形,则这个圆锥的侧面积是__________.【答案】【解析】【分析】由轴截面面积求得轴截面边长,从而得圆锥的底面半径和母线长.【详解】设轴截面等边三角形边长为,则,,∴.故答案为.【点睛】本题考查圆锥的侧面积,掌握侧面积计算公式是解题基础.15.已知直线与圆相交于A、B两点,则∠AOB大小为________.【答案】60°【解析】【分析】由垂径定理求得相交弦长,然后在等腰三角形中求解.【详解】圆心到直线的距离为,圆心半径为,∴,∴为等边三角形,.【点睛】本题考查直线与圆相交弦长问题.求直线与圆相交弦长一般用垂径定理求解,即求出弦心距,则有.16.在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成角为60°,E为PC的中点,则异面直线PA与BE所成角的大小为___________.【答案】45°【解析】【分析】先确定直线PA与平面ABCD所成的角,然后作两异面直线PA和BE所成的角,最后求解.【详解】∵四棱锥P-ABCD是正四棱锥,∴就是直线PA 与平面ABCD所成的角,即=60°,∴是等边三角形,AC=PA=2,设BD与AC交于点O,连接OE,则OE是的中位线,即,且,∴是异面直线PA与BE所成的角,正四棱锥P-ABCD中易证平面PAC,∴,中,,∴是等腰直角三角形,∴=45°.∴异面直线PA与BE所成的角是45°.故答案为45°.【点睛】本题考查异面直线所成的角,考查直线与平面所成的角,考查正四棱锥的性质.要注意在求空间角时,必须作出其“平面角”并证明,然后再计算.三、解答题:17.已知的三个顶点为,为的中点.求:(1)所在直线的方程;(2)边上中线所在直线的方程;(3)边上的垂直平分线的方程.【答案】(1)x+2y-4=0.(2)2x-3y+6=0.(3)y=2x+2.【解析】试题分析:(1)直线方程的两点式求出所在直线的方程;(2)先求BC的中点D坐标为(0,2),由直线方程的截距式求出AD所在直线方程;(3)求出直线)BC的斜率,由两直线垂直的条件求出直线DE的斜率,再由截距式求出DE的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CP x
CA
y
CB
, 则 xy 的最大值为(

| CA | | CB |
D. 8 SABC 6 ,P 为线段 AB 上的点,且
A.5
B.4
C.3
D.6
2
二、填空题:(本大题共 4 小题,每小题 5 分) 13.某校女子篮球队 7 名运动员身高(单位:cm)分布的
茎叶图如图,已知记录的平均身高为 175 cm,但记录中
秘密★启用前
2019 年重庆一中高 2021 级高一下期期末考试
数学试题卷 2019.7
数学试题共 4 页。满分 150 分。考试时间 120 分钟。 注意事项:
1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。 2.答选择题时,必须使用 2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡
45k 364
k
9.41
由条件知当 n 4 时, 2n1 2n ,即
cn
(2n
1 1)2 n1
2
4n2
1 2n
2
(2n
1 2)(2n
1)
(2n
1 1)(2n
1)
1 2
(
1 2n 1
1 2n
) 1
Tn
c1
c2
c3
(c4
c5
cn1
cn )
121 104
1 2
(1 7
2n1 1)
899 728
16.(原创)在△ ABC 中,若 3a cos B 3b cos A 2b ,点 E , F 分别是 AC , AB 的中点,
则 BE 的取值范围为

CF
三、解答题:(解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分 10 分)已知数列{an}的前 n 项和是 Sn,且 Sn+12an=1(n∈N*).
n 2(n
2)
18.(1)证明:在三棱柱 ABC ­ A1B1C1 中,BB1⊥底面 ABC, 所以 BB1⊥AB. 又因为 AB⊥BC, 所以 AB⊥平面 B1BCC1. 所以平面 ABE⊥平面 B1BCC1.
5
(2)证明:取 AB 的中点 G,连接 EG,FG. 因为 E,F,G 分别是 A1C1,BC,AB 的中点, 所以 FG∥AC,且 FG=12AC,EC1=12A1C1. 因为 AC∥A1C1,且 AC=A1C1, 所以 FG∥EC1,且 FG=EC1, 所以四边形 FGEC1 为平行四边形, 所以 C1F∥EG.
A.
B.
C.
D.
6.在△ABC 中,A=60°,AB=2,且△ABC 的面积为 3,则 BC 的长为( ) 2
A. 3 2
B. 3
C.2 3
D.2
7.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( )
A. 收入最高值与收入最低值的比是 3:1 B. 结余最高的月份是 7 月份 C.1 至 2 月份的收入的变化率与 4 至 5 月份的收入的变化率相同
1 3
n .
1 n+1
所以 bn= log1 (1-Sn+1)= log1 3
=n+1,
3
3
因为 1 =
1
=1-1,
bnbn+1 (n+1)(n+2) n+1 n+2
所以 Tn=b11b2+b21b3+…+bnb1n+1 Nhomakorabea=
1-1 23

1-1 34
+…+
1-1 n+1 n+2
=1- 1 = 2 n+2
CD⊂平面 ABCD,CD⊥BC.
∴CD⊥平面 BCE,又 BE⊂平面 BCE,
∴CD⊥BE,∵BC=CE,H 为 BE 的中点,∴CH⊥BE,
又 CD∩CH=C,∴BE⊥平面 DPHC,又 PM⊂平面 DPHC,∴BE⊥PM,即 PM⊥BE.
21.
(2)由(1)得
A B
5 6
,即 B
5 6
A ,又 ABC
A.5
B.7
C.9
D.11
2.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭 360 户、270 户、180 户,
若首批经济适用房中有 90 套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户
数,则应从乙社区中抽取低收入家庭的户数为( )
A.40
B.36
C.30
D.20
3.已知向量 a=(1,2),b=(3,m),m∈R,则“m=6”是“a∥(a+b)”的( )
bn
2n1 2 即 an1 2an
2n1
2

an1 2n1
an 2n
1
1 2n
累加法可求出
an 2n
n
1 2
1 2
n
1
an
(2n 1)2n1
2
(2) cn
1 an
(2n
1 1)2
n1
2

c1
1, c2
1 8
,
c3
1 26
T1
45k 364
k
8.09
, T2
45k 364
k
9.1, T3
19.(本小题满分 12 分)某网站推出了关于扫黑除恶情况的调查,调查数据表明,扫黑除恶仍是 百姓最为关心的热点,参与调查者中关注此问题的约占 80% .现从参与关注扫黑除恶的人群 中随机选出 200 人,并将这 200 人按年龄分组:第 1 组[15,25) ,第 2 组[25,35) ,第 3 组[35,45) , 第 4 组[45,55) ,第 5 组[55,65) ,得到的频率分布直方图如图所示. (1)求出 a 的值; (2)求这 200 人年龄的样本平均数(同一组数据用该 区间的中点值作代表)和中位数(精确到小数点后一位);
3
20.(本小题满分 12 分)如图所示,平面 ABCD⊥平面 BCE,四边形 ABCD 为 矩形,BC=CE,点 F 为 CE 的中点. (1)若 BE=BC=CD=2,求三棱锥 D BFC 的体积; (2)点 M 为 CD 上任意一点,在线段 AE 上是否存在点 P,使得 PM⊥BE?若 存在,确定点 P 的位置,并加以证明;若不存在,请说明理由.
有一名运动员身高的末位数字不清晰,如果把其末位数
字记为 x,那么 x 的值为________. 14.在各项均为正数的等比数列{an}中,a3= 2-1,a5= 2+1,则 a23+2a2a6+a3a7=___. 15.如图所示,在正三棱柱 ABC-A1B1C1 中, D 是 AC 的中点,AA1∶AB= 2∶1,则异面 直线 AB1 与 BD 所成的角为________.
A.充分必要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
4.已知 m,n 表示两条不同直线,α表示平面,下列说法正确的是( )
A.若 m∥α,n∥α,则 m∥n
B.若 m⊥α,n ⊂ α,则 m⊥n
C.若 m⊥α,m⊥n,则 n∥α
D.若 m∥α,m⊥n,则 n⊥α
5.在△ABC 中,AD 为 BC 边上的中线,E 为 AD 的中点,则 ( )
合题目要求的.
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 A C A B A B D A D C D C
二、填空题:本大题共 4 小题,每小题 5 分。
题号
13
答案
2
14
15
16
8
3
(1, 7) 48
17.解(1)当 n=1 时,a1=S1,
由 S1+12a1=1,得 a1=23,
当 n≥2 时,Sn=1-12an,Sn-1=1-12an-1,
则 Sn-Sn-1=12(an-1-an),即 an=12(an-1-an),
所以 an=13an-1(n≥2).
故数列{an}是以23为首项,13为公比的等比数列.

an=23·
1 3
n-1 =2·
1 3
n (n∈N*).
(2)因为
1-Sn=12an=
A.1∶2
B.1∶8
C.1∶3
D.1∶6
11.已知四棱锥 P ABCD 中,平面 PAD 平面 ABCD ,其中 ABCD 为正方形,PAD 为等腰直
角三角形, PA PD 2 ,则四棱锥 P ABCD 外接球的表面积为( )
A.10
B. 4
C. 16
12.在△ABC 中,已知 AB AC 9, sin B cos Asin C,
21.(本小题满分 12 分)在 ABC 中,角 A, B,C 所对的边分别为 a,b, c ,m (sin A,sin B sin C) ,
n (a 3b,b c) ,且 m n .
(1)求角 C 的值;
(2)若 ABC 为锐角三角形,且 c 1 ,求 3a b 的取值范围.
22.(原创)(本小题满分 12 分)已知数列{an}, a1 1, a2 8, 且 an2 4an1 4an 2(n N *) (1)设 bn an1 2an ,证明数列{bn 2} 是等比数列,并求数列{an}的通项;
1
D. 前 6 个月的平均收入为 40 万元
(注:结余=收入 支出) 8.《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把 100 个面包
分给 5 个人,使每人所得成等差数列,且使较大的三份之和的1是较小的两份之和,则最小的 7
一份为( )
A.5
B.10
C.5
D.11
3
3
6
皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用 0.5 毫米黑色签字笔,将答案书写在答题卡规定的位置上。 4.所有题目必须在答题卡上作答,在试题卷上答题无效。 一、选择题:(本大题共 12 小题,每小题 5 分,每小题只有一项符合题目要求) 1.设 Sn 是等差数列{an}的前 n 项和,若 a1+a3+a5=3,则 S5=( )
相关文档
最新文档