凸轮机构设计PPT幻灯片

合集下载

《凸轮机构设计新》课件

《凸轮机构设计新》课件

可实现复杂的运动规律,满足各种不同 的工作需求。
凸轮与从动件之间的接触为点或线,因 此具有较高的传动效率和可靠性。
特点 结构简单,紧凑,设计方便。
凸轮机构的应用领域
01
02
03
04
汽车工业
用于控制气门开启和关闭,以 及汽油机的喷油和点火。
自动化生产线
用于实现各种自动化操作,如 装配、检测、包装等。
廓。
反求设计法适用于对现有设备进 行改造或修复的情况,可以通过 测量实物模型快速准确地设计出
所需的凸轮轮廓。
反求设计法需要使用测量设备和 相关软件进行操作,对测量精度
和数据处理能力要求较高。来自01新型凸轮机构研究
非圆凸轮机构
总结词
非圆凸轮机构是一种新型的凸轮机构,其工作原理与传统的圆形凸轮机构不同 。
01
凸轮机构设计基础
凸轮机构的基本类型
盘形凸轮机构
由凸轮、从动件和机架组 成,凸轮轮廓与从动件之 间形成运动副。
移动凸轮机构
凸轮做直线往复运动,从 动件根据需要设计成各种 运动形式。
圆柱凸轮机构
凸轮做旋转运动,从动件 做复杂的空间曲线运动。
凸轮机构的运动规律
等速运动规律
凸轮以等角速度转动,从动件以 等速度运动,适用于低速轻载场
总结词
汽车发动机配气机构是凸轮机构的重要应用之一,通过凸轮的转动来控制气门的开启和关闭,实现发动机的进气 和排气过程。
详细描述
汽车发动机配气机构中的凸轮设计需要精确控制气门的开启和关闭时间,以确保发动机的正常运转。凸轮的形状 和尺寸对气门的运动轨迹和速度有直接影响,进而影响发动机的性能和效率。
自动化机械手
《凸轮机构设计新》 ppt课件

凸轮机构及其设计PPT精品医学课件

凸轮机构及其设计PPT精品医学课件

思考题 1从动件的常用运动规律是指哪几个物理量的变化规律 ?
位移、速度、加速度
2如何判断某种运动规律从动件是否有冲击?何种性质的冲击?
判断凸轮在某位置时所对应从动件的加速度有无突变。 若加速度存在无穷大突变,则为刚性冲击; 若加速度存在有限值突变,则为柔性冲击
3选择或设计从动件运动规律应考虑那些因素 ?
5.4 凸轮机构基本尺寸的确定
1凸轮轮廓的压力角 从动件的运动方向和凸轮作用于它的法向力 Fn方向之间所夹的 角称为压力角 将从动件受力F分解为:
推杆驱动力 F1=Fcosα; 导路正压力 F2=Fsinα; 产生的最大摩擦力Ff = F“ f 。当存在 关系Ff F‘ 时,机构发生自锁; 有f tanα 1。 压力角a愈大,有效分力Fy愈小。当a角大到某一数值时,会出现Fy<Fx。 不论施加多大的Fn力,都不能使从动件运动,这种现象称为自锁。为 保证凸轮机构正常工作,必须对凸轮机构的压力角进行限制。
5-4-1
一般随压力角α增大,机构的磨损加重、传力性能恶化、效
率降低→与工程实践相一致 。 凸轮机构设计时,应满足:αmax≤[α] 一般许用压 力角[α]的经 验值为:
从动件 推程 回程 移动 [α]= 30~40° 摆动 [α]= 45~50°
[α]=70~80°
凸轮基圆半径r0与其各位置压力角αi 密切相关。增大r0则αi 减小; 减小r0必然导致αi 增大。即结构紧凑与传力性能良好间存在矛盾。 虽然偏距e也能适量减小推程压力角,但却会增大回程压力角。运用时 应注意偏置方位。
5-3-2
作图
取比例尺μ1,先根据已知尺寸作出基圆与偏距圆,然后用 反转法作图设计。逆时针左偏,顺时针右偏
当e=0时,即对心直动尖顶推杆盘形凸轮机构。其设计方法与上述 方法基本相同,不同的是推杆反转时其各导路位置线始终过轴心

第9章 凸轮机构及其设计.ppt

第9章 凸轮机构及其设计.ppt
当根单据击凸轮此机构处的工编作要辑求和母结版构条标件选题定了样其机式构的型式、
基本尺寸、推杆的运动规律和凸轮的转向之后,就可以进行凸轮 轮廓曲线的设计了。
•凸单轮廓击线此设处计的编方辑法母: 作版图文法本和解样析式法 •1.第凸二轮级廓线设计的基本原理
•无第论是三采级用作图法还是解析法设计凸轮廓线,所依据的基本 原理•都例第是偏反四置转级直法动原尖理顶。推杆盘形凸轮机构
可用•来单求摆击动此推处杆的编角辑位母移了版。文本样式 (• 3第)直二动级推杆圆柱凸轮廓线的设计 •3.第用三解级析法设计凸轮的轮廓曲线
律和•用已第解知析的四法机级设构计参凸数轮,廓求线凸,轮就廓是线根的据方工程作式所,要并求精的确推地杆计运算动出规凸 轮廓•线第上各五点级的坐标值。
(1)偏置直动滚子推杆盘形凸轮机构 (2)对心直动平底推杆盘形凸轮机构 (3)摆动滚子推杆盘形凸轮机构
(• 2第)三四角级函数运动规律 •1)第余推五弦程级加时速:度s=运h动[1-规c律os((π简δ /谐δ0)运]/2动规律)
在始、末两瞬时有柔性冲击。
2)正弦加速度运动规律(摆线运动规律)
推程时:s=h[(δ /δ0)-sin(2π δ /δ0) /(2π)]
6
推杆的运动规律(4/4)
既无刚性冲击,又无柔性冲击。
([α]<<αc)
•许第用压三力级角[α]的一般取值为 •推第程四时:级直动推杆[α]=30° • 第五级 摆动推杆[α]=35 °~ 45°
回程时: [α]=70 °~ 80°
13
凸轮机构基本尺寸的确定(3/7)
(21.)单凸凸轮轮击基机圆此构半的处径压的力编确角定与辑基圆母半径版的标关系题样式
r0≥{[(ds/dδ - e)/tan[α] - s]2+e2}1/2

凸轮机构及其设计ppt课件

凸轮机构及其设计ppt课件
动件的压力角相等。
右图可用来推导压力角的计算公式,过程如下: 由ΔBCP得 tanα =CP/BC= CP/(s+s0) (1) 由ΔODC得 s0 = r20 +e2
由瞬心法知,P点是瞬心,有 OP=v/ω=ds/dδ CP=OP-e= ds/dδ-e 代入(1)式得
nv
B
s
D
ω r0 α v
O
s0
作者:潘存云教授
r e C P 0
n
ds/dδ
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
压力角计算公式
增大基圆半径 r0 或增大偏距 e 可减小压力角。
当从动件导路和瞬心点分别位于O点两侧时,
按同样思路可推得压力角计算公式
推程运动方程:
s =h φ/Φ v = hω/Φ
a=0 同理得回程运动方程:
s=h(1-φ/Φ’) v=-hω/Φ’
a=0 运动线图如右图所示。
特点:在运动的起始点存在刚性冲击
s
作者:潘存云教授
Φ v
a +∞
h φ
Φ’
φ
-∞
+∞ φ
2)二次多项式(等加速等减速)运动规律 为了规范事业单位聘用关系,建立和完善适应社会主义市场经济体制的事业单位工作人员聘用制度,保障用人单位和职工的合法权益
行程 ——从动件距凸轮回转中心最近点到最远点的距离h 。
凸轮转角——凸轮以从动件位于最近点作为初始位置而转过的角度φ。 从动件位移——凸轮转过φ 角时,从动件相对于基圆的距离s。 从动件运动规律——从动件的位移、速度、加速度与凸轮转角(或时间)之

凸轮机构设计 27页PPT文档

凸轮机构设计 27页PPT文档

s2
将几种运动规律组合,以改善
h
运动特性。
o
设计:潘存云
δ1
δt vv22
o
δ1
a 2 +∞
o
δ1
-∞
正弦改进等速
§3-3 盘状凸轮轮廓的设计
1.凸轮廓线设计方法的基本原理 2.用作图法设计凸轮廓线
1)对心直动尖顶从动件盘形凸轮
2)滚子直动从动件盘形凸轮 3)对心直动平底从动件盘形凸轮 4)摆动尖顶从动件盘形凸轮机构
提问:对于平底推杆凸轮机构:
α=?0
ω1 O rmin
三、滚子半径与轮廓曲线形状的关系
n
滚子半径的确定
ρa-工作轮廓的曲率半径,ρ-理论轮廓的曲率半
径, rT-滚子半径
rT 内凹
轮廓正常
ρ
ρa=ρ+rT ρa
轮廓变尖
ρ
外凸
轮廓正常
ρ
rT
ρa
ρaρ=>ρr-T rT
轮廓失真 ρ
rT ρa=ρρ=-rTrT=0
二、压力角与基圆半径的关系
由图可知: v2=vB2=vB1tgα=ωrBtgα
2
VB1B2 nαVB2
ds2 /dt=dδ/dt(r0+s2) tgα
r0= (ds2 /dδ)/tgα-s2
VB1
B
s2
ω1
1
O
rmin
设计:潘存云
rmin ↑ →α↓
n
若发现设计结果α〉[α],可增大rmin
v2 n
n
F
α
F’
F”=F’ tg α
F’ 一定时, α↑ → F”↑,
F” B
若α大到一定程度时,会有:

凸轮机构完整ppt课件

凸轮机构完整ppt课件

精品
36
滚子从动件凸轮轮廓曲线的设计步骤:
(1)画出滚子中心的轨
迹(称为理论轮廓曲线)
(2)以理论轮廓上的点为
圆心,滚子半径rT为半径作 一系列的滚子圆,再画滚子
圆的内包络线,则为从动件
β′
凸轮的实际轮廓曲线。
理论轮廓曲线
注意:
n
rT r0
B C
n
实际轮廓曲线
β
(1)理论轮廓与实际轮廓互为等距曲线;
44
(2)压力角的校核
凸轮对从动件的作用力F的方向与从动件上力作用点的速度方
向之间所夹的锐角a称为压力角。
F1Fcoas
F2Fsina
自锁:当α增大到一定程度后,以
至于导路的摩擦阻力大于有效分力 时,无论凸轮给予从动件多大的力, 从动件都不能运动。
精品
45
4.4.2 压力角的校核
推荐压力角数值 移动从动件[a]=30°
精品
0
0 0

26
1.等速运动规律
从动件在起始和终止点速度有突变,使瞬时加 速度趋于无穷大,从而产生无限值惯性力,并 由此对凸轮产生冲击 —— 刚性冲击
因此只适用于低速、轻载的场合。
精品
27
s h
1.等加速-等减速运动规律
h/2
从动件在一个行程h中,前 半行程做等加速运动,后半 行程作等减速运动的运动规 律。
对心移动从动件
偏置移动从动件
精品
13
(一)凸轮机构的应用及分类
3)按从动件的运动形式分: 摆动从动件
精品
14
(一)凸轮机构的应用及分类
4)按凸轮高副的锁合方式分:力锁合
精品
15

第7凸轮机构的运动设计-PPT精品

第7凸轮机构的运动设计-PPT精品

7.2凸轮机构从动件运动规律的设计
s

线图之间的关系
v
v ds ds dt d
2
a
a

dv dt

dv
d
2

ds
d 2
0推程运动 s 角 远休 0' 回程运动 s' 角 近休
从动件推程的运动规律为多项式运动规律
S C 0 C 1 C 2 2 .. .C .n .n
第7章 凸轮机构的运动设计
7.1 凸轮机构的 组成及其应用 凸轮机构主
要由凸轮、从动 件和机架组成
对心直动滚子从动件盘形凸轮机构
摆动滚子从动件盘形凸轮机构
摆动平底从动件盘形凸轮机构
摆动滚子从动件圆柱凸轮机构
槽 凸 轮 机 构
等 径 凸 轮 机 构
等 宽 凸 轮 机 构
共 轭 凸 轮 机 构
待定系数C0,C1,…,Cn可利用从动 件在某些位置的位移、速度和加速度 等边界条件来确定。
取n=5时,可以设立六个边界条件:
δห้องสมุดไป่ตู้
=0时,S=0,v=0,a=0,δ S=h,v=0,a=0 得

0时,
C0,=0,C1=0,C2=0,C3=10h/δ
3 0
C4=-15h/δ
04,C5=6h/δ
5 0
从动件运动规律的选用通常是由 凸轮的应用场合和具体的加工条件确 定的。
7.3 凸轮的轮廓曲线设计
矢量旋转方程(绕坐标原点)
xB yB
c sion1 1 sii
sin1ixB0 co1 si yB 0
一般方法:
1. 建立坐标系。一般将坐标系的原点取在凸轮 的转动中心上,坐标轴的选取以比较容易地写 出矢量的坐标表达式为原则;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

糖纸扭结机械手爪1,在每一个工作循环中要完成三个动作要求。 1. 在圆柱凸轮7的作用下,通过摆动杆8使爪1作开合运动。 2. 在圆柱凸轮5、摆杆6的作用下,使爪1作轴向送进和回退运动。 3. 在大齿轮4和小齿轮3的作用下,爪1作连续旋转运动。
在圆柱凸轮1和移动从动件2的作用下,送料夹头3作轴向往复运动。
在凸轮1的作用下, 通过摆动杠杆2,使 送料夹头的滑块3作 轴向往复运动。 齿轮5隨摆动杠杆2的 摆动而摆动,使齿条 套6及触头7上下移动 ,当棒料送完时,由 于送料夹头回程无阻 力而速度加快,并在 弹簧9的作用下,使 摆动杠杆附加转过一 个角度,从而使触头 7压动微动开关8,使 机床自动停车。
二、凸轮机构的基本分类 1.按凸轮的形状分: 1)盘形凸轮 是一个具有变化向径的盘形构件,推杆行程不能太大,否则 凸轮和径向尺寸变化过大。 2)移动凸轮 当盘形凸轮的回转半径为无穷大时,凸轮相对机架作直线往 复运动。 3)圆柱凸轮 是一个在圆柱面上开有曲线凹槽,或在圆柱端面上作出曲线 轮廓的构件。可得到较大的行程。
2.凸轮廓线的设计: 1) 选择从动件的运动规律。 2) 选择最佳压力角。 3) 确定凸轮的升程和转角。 4) 计算凸轮的基圆半径。
5) 绘制凸轮的理论廓线和实际廓线。 3.设计凸轮的工作图:
1) 一组完整的视图。 2) 确定凸轮的尺寸、制造精度、表面粗糙度、材料和热处理方法等。 3) 绘制凸轮“升程表”或展开图。
三、触头的结构形式选择 尖顶式、滚子式、平底式
尖顶式
滚子式 平底式
结构简单,运动精度高,但易磨损;用于精度要求高,受力不大, 运动速度低和润滑条件好的场合。如钟表、仪器、照相机、制笔等 小型精密的自动机械中。 摩擦小,耐磨损性能好,可承受较大的力,但结构较复杂;用于运 动精度要求不高、中等以上载荷的场合。 压力角为零,受力情况好,高速工作时底面与凸轮间易形成油膜, 减少摩擦、磨损。但运动精度差;凸轮廓线呈凹形时不能用,有时 会出现“失真”现象,即凸轮的实际廓线不能与平底 所有的位置相切。常用于小型、高速凸轮机构中。
不大的控制与调节系统。
举例:
在凸轮1 的推 动下,天平摆 架2 绕心轴3 摆动,使刀具 4 和5 分别对 料6 作切入进 给运动。
在凸轮1的推动下,从动件2作直线往复运动,再通过直角杠杆,驱动主轴 箱3作来回运动。
在平面槽凸轮 机构1、从动 连杆机构2和 偏心轮3、摆 杆机构4的共 同作用下,糖 块推头5按所 需的平面曲线 轨迹Ⅰ → Ⅱ →Ⅲ→Ⅳ 运动。
二、从动杆结构形式的选择 1.从动杆运动方式的选择: 直动从动杆 结构简单,凸轮廓线也简单;但摩擦力大,压力 角太大会产生自锁;故从动杆的悬伸量不宜太大, 且其移动导轨要有足够的长度和跨距。 摆动从动杆 摩擦阻力小,受力情况好,不易自锁,结构简单, 容易制造;凸轮廓线设计较复杂。 一般常选择摆动从动杆。 2.摆动从动杆的杠杆比选择: 可调杠杆比结构通常用于从动件的 工作行程需要变换的场合。有等比 和不等比两种: 杠杆比<1称为行程放大的杠杆比, 杠杆比>1称为行程缩小的杠杆比。 等比杠杆 —— 一般情况 行程放大 —— 工作行程很大 行程缩小 —— 工作行程很小
§2 – 1 概 述
一、凸轮机构在自动机械中的应用 凸轮机构是由凸轮、推杆和机架三个主要构件所组成的高副机构。当凸轮运
动时,通过其曲线轮廓与推杆的高副接触,使推杆得到预期的运动。 优点是:只要适当地设计出凸轮的轮廓曲线,就能使推杆得到各种预期的运动规
律,并且机构简单紧凑、工作可靠、精度稳定、制造成本低和维修容易。 缺点是:凸轮轮廓与推杆之间不点接触或线接触,易磨损。所以一般用在传动力
4.按从动件的运动方式分: 1)移动从动杆。 2)摆动从动杆。
将不同类型的凸轮和推杆组合起来,就可得到各种不同型式的凸轮机构,下图列 出的凸轮机构,可供设计凸轮机构选择类型时参考。
三、凸轮机构的设计步骤
1.凸轮机械的结构设计: 1)凸轮类型的选择。 2)从动件类型的选择。 3)触头型式的选择。 4)触头与凸轮锁合方式的选择。 5)凸轮与轴的连接结构的选择。
δ
R
0
40.000
5
40.052
10
40.394
Байду номын сангаас
15
41.283
20
42.818
25
44.930
30
47.492
35
50.194
40
51.976
45
54.888
50
56.420
55
57.312
60
57.654
65
57.700
技术要求 1.曲线部分及曲线圆弧过渡部分修整平滑。 2.表面淬火HRC40~45。 3.各点的向径R的公差为±0.2 ㎜。 4.调整好后钻锥孔。 5.材料为45号钢。
四、从动件与凸轮的锁合方式选择 1. 重锤式 结构简单,锁合力为等值,但占空间尺寸较大,使用不广泛。 2.弹簧式 外形尺寸小,锁合力有变化,有冲击或振动,弹簧使机构受力 增大,加快凸轮机构的磨损。适用于中低速、中轻载的场合。 3. 凸轮沟槽式 锁合结构,工作可靠,但制造较难,滚子与沟槽的间隙存 在,有附加的冲击和振动。适用于要求从动件工作可靠、 高速、重载的场合。
2.按推杆(从动件)的形状分: 1)尖端推杆 构造最简单,但最易磨损。用于轻载、低速场合。 2)滚子推杆 滚子与凸轮轮廓之间是滚动摩擦,磨损较小。用于重载低速 场合。 3)平底推杆 压力角为零,受力比较平稳。接触面间易形成油膜,传动效 率较高,磨损少,用于高速场合。
3.按凸轮与推杆保持接触的的方式分: 1)力封闭的凸轮机构。 利用重力、弹簧力或其它外力。 2)几何封闭的凸轮机构。 靠凸轮与推杆的特殊几何结构来保持两者接触的。如利用凹槽或定径凸 轮、定宽凸轮等。
§2–2 凸轮机构的结构设计
一、凸轮类型的选择 设计时按执行机构的工艺要求、运动和负载特性、空间位置等因素进行选择。
例:精度要求高 —————— 盘形凸轮。 行程较大 ——————— 圆柱凸轮。 往复运动要求可靠 ——— 槽形凸轮。
又如当凸轮的转速 n≥200r/min时,或当从动件只要求作简单的往复运动, 我们往往选用偏心轮机构。
相关文档
最新文档