2.2_二元相图的基本类型
第六章二元相图
2、多相平衡的公切线原理
若G = mAxA+ mBxB,且mi与i 组元含量有关,则可导出:在任意一相的 G - x曲线上,每一点的切线,其两端分别与纵坐标相截,与每一组元的 截距表示该组元在固溶体成分为切点成分时的化学势
说明:
冷却速度越慢,越接近平衡条件,测量结果越准确 纯金属在恒温下结晶,冷却曲线应有一段水平线
其它测定相图的方法:
热膨胀法:利用材料在发生转变时伴随有体积变化的特性,通
过测量试样长度随温度的变化得到临界点,从而作出相图
电阻法:利用材料电阻率随温度的变化来建立相图的 这两种方法适用于测定材料在固态下发生的转变
自由能 ~ 成分关系
(假设A、B组元原子半径相同,晶体结构相同,且无限互溶,则两组元混合前后体积不变; 只考虑最近邻原子间的键能;只考虑两组元不同排列方式的混合熵,不考虑振动熵) xA、xB — A、B组元的摩尔分数,
— 相互作用参数, N A z e AB
x A xB 1
i n i T , P ,r
G
(代表体系内物质传输的驱动力; 等温、等压及其它组元数量不变 的情况下,每增加单位摩尔i 组 元,体系自由能的变化)
组元i 的化学势: (偏摩尔自由能)
ji
如果某组元在各相中的化学势相同,就没有物质的传输,体系处于平衡状态
若体系包含有a,b,……相,对每个相自由能的微分式可写成:
材料组成的层次
组元
加一点盐 完全溶解
二元系相图基本类型介绍及分析(自己整理)
二元系统相图的基本类型相图中用途最大,研究得最多的就是二元相图。
某些多元复杂体系,在一定程度上也可以简化成“赝二元体系”来处理,因此我们在这里对二元体系做一个简单介绍。
相图中有点、线、面,他们分别有如下含义:①点:表示平衡相中某相的“温度”与“成分”,亦称相点。
如:同成分点、临界点、共晶点、包晶点;②线:相转变时温度与“平衡相成分”的关系。
如:固相线、液相线、固溶度线、汇溶线、水平反应线;③面:相型相同的一种状态区域。
如:单相区、两相区、三相区;二元相图中的几何规律:①在二元系相图中,除点接触外相邻相区的相数差永远是“1”(相区接触法则);②在三相点处的相线曲率,必须使其延长线所表示的亚稳相位于其他两条平衡相线之间,而不是任意的(曲率原则);③三相区的形状是一条水平线,其上三点是平衡相的成分点(如何分析这3点很重要!);④若两个三相区中有2个相同相,则两条水平线间必是由这两相组成的两相区;相图的四个普适定律:=-+①相律:对于一个达到相平衡的系统而言,定有:F C P n②杠杆定理:计算两相区内平衡存在的两个相的相对质量。
③相平衡定律:体系中各相的数量并不影响这些相的平衡组成和性质。
④质量作用定律:单位时间从相(1)转化到相(2)的分子数应当与该组分在相(1)中的有效浓度成正比;反向转化的分子数应当与它在相(2)中的有效浓度成正比。
对于相律的几个注意点:①相律推导的条件是平衡状态,故相律是各种相平衡体系都必须遵守的规律;②相律是热力学推论,有普适性和局限性;③相律只表示体系中组分和相的数目,不能指明组分和相的类型、结构、含量以及之间的函数关系等;如相律可以告诉我们在某一平衡条件下,指定系统中有几个相(只是一个数值),却不能指出是哪些具体的物相,这些物相究竟是什么只能用实验去测得;④自由度的值不得小于零;⑤不能预告反应动力学(即反应速度)二元系统是含有二个组元(C=2)的系统,如CaO-SiO2,Na2O-SiO2系统等。
二元相图ppt
当组分固定时,相图中的液相线、固相线位置固定,各相区范围也相对固定。
06
二元相图的未来发展
提高测定精度
采用更精确的测定技术
例如,X射线衍射、中子散射等,以提高二元相图测定精度。
完善实验方案
采用多种实验技术结合,消除误差,提高测定数据的可靠性 和准确性。
探索新的二元相图类型
研究非金属二元体系
液态二元相图通常采用双变量坐标系,其中横坐标表示温度 ,纵坐标表示压力,以表示不同温度和压力下两种液体的平 衡状态。
固态二元相图
固态二元相图表现的是固体两相间平衡关系,通常用于描 述两种固体间的相互溶解度、结晶和分离过程。
固态二元相图通常采用双变量坐标系,其中横坐标表示温 度,纵坐标表示压力,以表示不同温度和压力下两种固体 的平衡状态。
实验测定流程
样品制备
选择合适的原材料,按照一定比例混合、 球磨、干燥等流程制备样品。
数据处理
对实验检测得到的数据进行处理和分析, 提取有用的信息。
样品检测
根据实验目的,选择合适的检测仪器对样 品进行检测。
结果总结
根据数据处理结果,撰写实验报告,总结 实验结果和结论。
实验测定数据的处理
数据整理
整理实验数据,排除异常值和误差 ,确保数据准确性。
温度降低
相图中的液相线、固相线位置会向低温方向移动,各相区范 围也会发生变化。
压力的影响
压力升高
相图中的液相线、固相线位置会向高压方向移动,各相区范围也会发生变化 。
压力降低
相图中的液相线、固相线位置会向低压方向移动,各相区范围也会发生变化 。
组分的影响
组分变化
相图中的液相线、固相线位置会随着组分的变化而移动,各相区范围也会发生变 化。
工程材料-(相图)
T,C
L
L+
L
1.没有共晶反应过程, 而是经过匀晶反应形 成单相固相。
2.要经过脱溶反应, 室温 组织组成物为 + Ⅱ
+ Ⅱ
冷却曲线 t Ⅱ
组织组成物:组织中, 由一定的相构成的, 具有一定形态特征的 组成部分。
由 析出的二次 用Ⅱ 表示。 随温度下降, 和 相的成分分别沿CF线和DG线变
2.2.3 合金的结晶
一、二元相图的建立 二、二元相图的基本类型与分析
– 1、二元匀晶相图 – 2、二元共晶相图 – 3、二元包晶相图 – 4、形成稳定化合物的二元相图 – 5、具有共析反应的二元相图 – 6、二元相图的分析步骤 – 7、相图与合金性能之间的关系
合金的结晶过程比纯金属复杂,常用相图进行分析。 相图是用来表示合金系中各合金在缓冷条件下结晶
三种相, 是溶质Sn在
B
Pb中的固溶体, 是溶 质Pb在Sn中的固溶体。
② 相区:相图中有三个 单相区: L、、;三 个两相区: L+、L+、 + ;一个三相区:即 水平线CED。
③ 液固相线:液相线AEB,固相线ACEDB。A、B 分别为Pb、Sn的熔点。
④ 固溶线: 溶解度
A
点的连线称固溶线。
室温下两相的相对重量百分比是多少?
E' G
FE'
Q
FG
,
Q
FG
Pb-Sn共晶合金组织
③ 亚共晶合金(X3合金)的结晶过程
T,C
183
L
L+
L+
c
e d
+
T,C
1 L L→(+ ) 2 L+ (+ )+
二元相图及其类型
系中一切具有相同的物理性能与化学性
能的均匀部分,与其它有明显界面分开,
超越界面会有性质突变,否则仍为同一
相。
后退 二元相图及其类型
下页
对于合金系统来说,要保持物理性能、 化学性能相同则要满足:成分相同和结 构相同。 ●相变——由一个相转变为了另一相的 过程。
●相律——f=C-P+2
C—系统组元,P——平衡时共存的相数 目,f——自由度
后退
二元相图及其类型
下页
(4)共析反应:在某一恒温下,一定成分 的固相同时分解成两个成分与结构不同的固 相反应。 (5)包析反应:两个不同成分的固相,在 某一恒温下相互作用生成另一固相的反应。
表5-6是对以上反应类型的总结
上页
二元相图及其类型
下页
后退 下页
二元相图及其类型
二元相图的分析方法
后退 下页
●包晶相图
后退
二元相图及其类型
下页
后退
二元相图及其类型
下页
后退
二元相图及其类型
下页
1.包晶型反应有何特点?与 共晶反应相比,你能否总结 其规律?
2.分析其冷凝过程,比较平 衡与非平 衡凝固的异同?
上页
二元相图及其类型
下页
◆起他类型的二元系相图
(1)熔晶反应:一个固相在某一恒温下分 解成一个固相与一个液相的反应。 (2)合晶反应:由两个不同成分的液相在 某一恒温下生成一个一定成分的固相的反。 应。 (3)偏晶反应:在某一恒温下,由一定成 分的液相分解出另一成分的液相,并同时 结晶出一定成分的固相的反应。
1 3
2
三元系
3
2 单相合金,成分和温度都可变
两相平衡,成分、相对量和温度
第三章 二元相图及其类型
于平衡凝固时的终结温度。 组织影响:晶内偏析、 枝晶偏析(dendritic segregation) 性能影响:塑韧性降低、抗腐蚀性降低 消除方法:扩散退火、均匀化退火 固相线下 100-200℃ 长时间保温
4 具有极大点和极小点的匀晶相图
§3.3 共晶相图(eutectic phase diagram) 指冷却过程中有共晶反应的相图(eutectic means easily melted) 如:Pb-Sn、Pb-Sb、Al-Si、Pb-Bi等 1 相图分析(以Sn-Pb合金为例) 点:熔点、共晶点(eutectic point,invariant point)、最大溶解度点 线:液相线、固相线、最大溶解度线(solid solubility limit line, solvus line) LE tE M N 共晶线、共晶反应(eutectic reaction): 区:三个单相区(L、α、β) 、 三个两相区(L+α、L+β、α+β) 一个三相区 共晶线(eutectic isotherm)
3 二元相图的建立 关键:测定给定材料系中若干成分不同的合金的平衡凝固温度和相变温度 方法:热分析法,金相法、硬度法、磁性法等
例:热分析法(thermal analysis)测定二元Cu-Ni合金 1) 配置不同成分的Cu-Ni合金;Cu, 75Cu25Ni, 50Cu50Ni, 25Cu75Ni, Ni 2) 将合金熔化,测定其冷却曲线; 3) 确定冷却曲线上的转折点,它们反应了合金状态的变化(凝固); 4) 将这些数据绘入温度-成分坐标中; 5) 连接意义相同的点;分析相图:点、线、区
phasescoexist10040100100196119401001910019614019196140pseudoeutectic不平衡结晶条件下成分在共晶点附近的合金凝固后仍能获得共晶组织的现象不平衡共晶inonequilibriumeutectic在固溶体最大固溶度点内侧附近的合金在不平衡凝固时由于固相线下降在冷却过程中仍能发生共晶转变的现象离异共晶ii当合金中的先共晶相数量很多而共晶组织的量很少时共晶组织中的一相与先共晶相依附长大把另一相孤立出来形成两相分离的共晶组织34包晶相图peritecticphasediagram两组元在液态无限互溶固态下有限互溶或不互溶并发生包晶反应的相图如
二元相图的基本类型与分析
§4-2二元相图的基本类型与分析一、匀晶相图匀晶相图:组元在液态、固态均能无限互溶所形成的相图。
例如:Cu-Ni Fe-Cr W-Mo相图。
1、点、线、区的意义2、合金K的结晶过程1点以上, 合金为液相L。
1-2之间, 合金发生匀晶反应:L→α,2点以下, 合金全部结晶为α固溶体最终室温组织:单相 固溶体。
3、枝晶偏析固溶体结晶时如果冷却较快, 原子扩散不能充分进行。
先结晶的树枝晶轴含高熔点组元较多, 后结晶的树枝晶枝干含低熔点组元较多。
结果造成在一个晶粒内化学成分的分布不均。
这种现象称为枝晶偏析。
枝晶偏析对材料的机械性能、抗腐蚀性能、工艺性能都不利。
生产上为了消除其影响,常把合金加热到高温(低于固相线100℃左右), 并进行长时间保温, 使原子充分扩散,获得成分均匀的固溶体, 这种处理称为扩散退火。
二、共晶相图共晶相图:两组元在液态下无限溶解,在固态下不能无限溶解,并有共晶转变的相图。
例如:Al-Si Al-Sn Pb-Bi等相图分析:相:α相:Sn溶于Pb中的有限固溶体。
β相:Pb溶于Sn中的有限固溶体。
主要点、线的含义:d点:共晶点cde水平线:共晶反应线cf线:Sn在Pb中的溶解度线(或α相的固溶线)。
合金从高温冷却时,碰到此线,从α相中析出β相。
从固态α相中析出的β相称为β。
IIeg线: Pb在Sn中溶解度线(或β相的固溶线)。
合金从高温冷相。
却时,碰到此线,从β中析出αII1、平衡结晶过程①成分在fc’之间的合金I的平衡结晶过程1点以上:合金为液相L1-2之间:合金发生匀晶反应: L →α,2-3之间:合金全部结晶为α固溶体3点以下:由于Sn 在α中的溶解度沿cf 线降低, 从α中析出βII合金室温组织: α+βII②成分为e 点的合金II 的平衡结晶过程合金冷却到1点温度(T d ):共晶反应:一种液相在恒温下同时结晶出两种固相的反应叫做共晶反应。
共晶反应条件(d 点的含义):温度T d = 183℃ 共晶温度液体成分Sn ﹪ = 61.9﹪ 共晶成分共晶反应产物:(αc + βe )为共晶体;是两相混合物。
二元系相图ppt课件
3. 固溶体的不平衡结晶-D
枝晶偏析程度大小与铸造时冷却条件、原子的扩散能 力,相图形状有密切关系: (1) 在其它条件不变时,V冷越大,晶内偏析程度严重, 但得到枝晶较小。如果冷速极大,致使偏析来不及发 生,反而又能够得到成分均匀的铸态组织。 (2) 偏析元素在固溶体中扩散能力越小,相图上液、 固相线间距离的间隔愈大,形成树枝晶状偏析的倾向 愈大。 ❖ 要消除枝晶偏析采用均匀化退火(扩散退火) (diffusion annealing)。
固溶体的凝固与纯金属的凝固相比有两个显 著特点:
⑴.固溶体合金凝固时结晶出来的固相成分与 原液相成分不同。上述结晶出的晶体与母相化 学成分不同的结晶称为异分结晶(又称选择结 晶);纯金属凝固结晶时结晶出的晶体与母相 化学成分完全一样称为同分结晶
⑵.固溶体凝固需要一定的温度范围,在此温 度范围内,只能结晶出一定数量的固相。
❖ (3) 二元相图中的三相平衡必为一条水平线,表示恒温反 应。在这条水平线上存在3个表示平衡相的成分点,其中两 点在水平线两端,另一点在端点之间,水平线的上下方分别 与3个两相区相接。
❖ (4) 当两相区与单相区的分界线与三相等温线相交则分界 线的延长线应进入另一两相区内,而不会进入单相区。 15
第七章 二元系相图 及其合金凝固
1
本章要求
1. 几种基本相图: 匀晶相图(Cu-Ni合金相图)、 共 晶相图(Pb-Sn合金相图)、包晶相图(Pt-Ag合金 相图)。
2. 相律,杠杆定律及其应用。 3. 二元合金相图中的几种平衡反应: 共晶反应、共析反
应、包晶反应、包析反应 、偏晶反应、熔晶反应、合 晶反应。 4. 二元合金相图中合金的结晶转变过程及转变组织。 5. 熟练掌握Fe-Fe3C相图。熟悉Fe-C合金中各相与组织 的结构。会几种典型Fe-C合金的冷却过程分析 。熟练
2.2_二元相图的基本类型
2.2.2 匀晶相图—学习二元相图的基础
( Binary isomorphous diagrams) •1. 匀晶相图与匀晶转变
•两组元在液态和固态下均可以以任意比例相互溶解,即在固态下形成无限固溶体的 合金相图称为匀晶相图。例如Cu-Ni、Fe-Cr等合金相图均属于此类相图。在这类合 金中,结晶时都是从液相结晶出单相固溶体,这种结晶过程称为匀晶转变。应该指 出,几乎所有的二元合金相图都包含有匀晶转变部分,因此掌握这一类相图是学习 二元合金相图的基础。
用冷却曲线描述K合金的平衡结晶过程,则如图2-8(b)所示。
4.杠杆定律及其应用
图2.9 杠杆定律的证明
•在合金相图中的两相区(如液相和固相)内,若给定某一温度,就能确定在 该温度下两平衡相(如液、固两相)的成分,以及在该温度下两平衡相(如液、 固两相)的相对质量,这就是杠杆定律的内容。 •分析成分为K的Cu-Ni合金,见图2-9 (a),在tx温度时,液相成分为x1, 固相成分为x2(通过tx温度作一水平线,此水平线与液、固相线的交点即为 L相的成分与α相的成分)。现求在该温度下,已结晶出固溶体α和剩余液相 L的质量分数。
phase
•2.2.3 共晶相图——学习二元相图的关键 ( The eutectic phase
diagram-the key to study two-component phase diagram ) diagram )
•2.2.4 包 晶 相 图 特 征 ( Characteristics of peritectic phase
•2.2.5 具 有 稳 定 化 合 物 相 图 (Phase diagrams with stable
compound) reaction)
二元相图
2h
第二节 二元匀晶相图
2 固溶体合金的平衡结晶 (3)与纯金属结晶的比较 相同点:基本过程:形核-长大; ① 相同点:基本过程:形核-长大; 热力学条件: T>0 热力学条件:⊿T>0; 能量条件:能量起伏; 能量条件:能量起伏; 结构条件:结构起伏。 结构条件:结构起伏。 不同点:合金在一个温度范围内结晶(可能性: ② 不同点:合金在一个温度范围内结晶(可能性:相 律分析;必要性:成分均匀化。 律分析;必要性:成分均匀化。) 合金结晶是选分结晶:需成分起伏。 合金结晶是选分结晶:需成分起伏。
(c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
第三节 二元共晶相图及合金凝固
合金的平衡结晶及其组织( Pb-Sn相图为例 相图为例) 2 合金的平衡结晶及其组织(以Pb-Sn相图为例) (3)共晶合金 凝固过程(冷却曲线、相变、组织示意图) ① 凝固过程(冷却曲线、相变、组织示意图)。 共晶线上两相的相对量计算。 ② 共晶线上两相的相对量计算。 室温组织( 及其相对量计算。 ③ 室温组织(α+β+αⅡ+βⅡ)及其相对量计算。
第二节 二元匀晶相图
5 成分过冷及其对晶体生长形态的影响 (4)成分过冷对生长形态的影响 ) 正温度梯度下) 越小 越小, (正温度梯度下)G越小,成分过冷 越大-生长形态:平面状- 越大-生长形态:平面状-胞状 树枝状。 -树枝状。
2.2二元合金相图
三、共晶相图:
二元共晶相图:两组元在液态时无限互溶,固态时 有限互溶,并发生共晶反应所构成的相图称为二元 共晶相图。
共晶反应:是指冷却时由液相同时结晶出两个固相 的复合混合物的反应。
共晶体:共晶反应的产物是共晶体。
共晶组织:共晶体的显微组织是共晶组织。
1、相图分析
(1)共晶点 C点-- α相+β相 (2)共晶线 ECF线-- LC恒→温αE+ ΒF
第五节 二元合金相图
相图:表示在平衡状态下,合金系的相与温度、成分之间关
系的图形。(又称状态图,平衡图)
注:
1、平衡状态是指在十分缓慢加热或冷却条件下,参与加热时 相的转变或冷却时结晶过程中的各相之间的成分及相对量,均 相对稳定所达到的一种平衡。 2、 物系为合金系的情况下,其压力通常视为定值,因此坐标 为温度和成分。
t/s
Ag%
P57图3-20 包晶合金的平衡结晶过程
概括起来,包晶合金平衡结晶过程为:
包晶温度以上: 液态 L42.4 液相线到包晶温度之间: 液态L 包晶温度(1186℃):包晶转变 L66.3 10.5 42.4 包晶温度以下: Ⅱ 室温组织: + Ⅱ
➢包晶偏析——即包晶转变不能充分进行而产生的化学成分不 均匀现象。
冷却过程中不会发生共晶反应。如图合金Ⅳ冷却至1
点时结晶出α1 相,经过2点时全部转变为α1 相,经 过3点时,开始析出βⅡ相,即
L→1 L+α1→2 α1 →3 α1+ βⅡ
同理,F点右侧的合金在冷却过程中也会有β1 相和αⅡ相生成 。最终组织为 β1+αⅡ 。
§2-4 二元包晶相图
一、二元包晶相图分析
二、匀晶相图
两组元在液态和固态均能无限互溶时,结晶时发生匀晶转变(即从 液相中结晶出成分均匀一致的固溶体)所构成的相图称为二元合金相 图。
材料物理化学 二元相图
C
L A
f=1
A B
E
L A B, f
0
I G K
生成一个一致熔化合物的二元相图
相当于两个具 有低共熔点的 简单相图
生成稳定化合物的体系
C = CuCl· FeCl3
Nd2O3-Al2O3 1961
一致熔化合物与不一致熔化合物
• 一致熔化合物是一种
p=2, f=1
析晶路程表示法
液相点
L L B 2 K P LP B C, f 0 f=2 f=1
LC
f=1
固相点
B B C
E LE A C, f 0
C C A
M F D J H
FLASH
生成不稳定化合物的体系
ห้องสมุดไป่ตู้
C=CaF2· CaCl2
Tp:化合物分解
P点组成的液相 B晶体
C Lp+B
p=3, f=0
平衡冷却过程
熔体2
Tk
T,L p=1, f=2
LB p=2, f=1 LP+ B C p=3, f=0
TP
TE 低共熔点 析晶结束 FLASH
液相点在P点不 变,液相量在减 少,同时固相组 成中B晶体在不 断减少,C晶体 在不断增加,至 D点B晶体被回吸 完毕
二元相图
热力学与相平衡第二部分
二元相图的基本类型
二元系统:c=2
相律
f c p 1 3 p
温度、浓度 不可能出现4相 或更多相平衡
pmin 1, f max 2
f min 0, pmax 3
具有一个低共熔点的简单二元相图
液相线 B的熔点
2.2二元相图的基本类型
Basic types of two-component phase diagram
一、相图的建立(Setting-up of phase diagram) 相图:平衡状态下,不同成分的合金, 在不同温度下,合金的状态、显微组织 形成规律的图形。 建立:实验法或理论计算法 图2-8 热分析法建立Cu-Ni相图
三、共晶相图(Eutectic diagram)
定义:两组元在液态下无限互溶,在 固态时有限互溶并发生共晶反应(转 变),形成共晶组织的二元相图。 Pb-Sn、 Pb-Sb、 Al-Si、Ag-Cu等 1、相图分析(Pb-Sn为例)
1)特性线与特性点 characteristic lines and points
b)共晶相图
系
Fig.2-18 合金铸造性能与相图的关系
⑴铸造性能与相图的关系
Relationship between Casting Performance and Phase Diagram
液固相线之间的距离越宽,液体流动性越 差,形成枝晶偏析的倾向越大,分散缩孔越 多,铸造性能越差。
即:固溶体溶质含量越多,铸造性能越差。
室温组织:α+β(αⅡ、βⅡ省略不计) 结晶过程:共晶反应+二次析出反应
3)亚共晶合金(WSn=19%~61.9% hypoeutectic alloy
L 1 L 183C ( ) 2 Ⅱ ( )
温度/℃
400 327.5
A 300
Ⅲ L
L+α
1
200 α
M 183
E
231.9 B
β+αⅡ+(α+β)
α+β
F
G
Pb 10 20 30 40 50 60 70 80 90 Sn WSn / %
第2章-二元合金的相图及结晶
2021/4/9
14
二元相图的建立步骤为:[以Cu-Ni合金(白铜)为例] 1. 配制不同成分的合金,测出各合金的冷却曲线,
找出曲线上的临界点(停歇点或转折点)。 2. 将临界点标在温度-成分坐标中的成分垂线上。 3. 将垂线上相同意义的点连接起来,并标上相应的
数字和字母。
相图中,结晶开始点的连线叫液相线。结晶终了点 的连线叫固相线。
液固相线不仅是相区分 界线, 也是结晶时两相的成 分变化线;匀晶转变是变 温转变。
2021/4/9
19
(2) 杠杆定律
处于两相区的合金,不仅由相图可知道(温度一定)两平衡
相的成分,还可用杠杆定律求出两平衡相的相对重量。
现以Cu-Ni合金为例推导杠杆定律:
① 确定两平衡相的成分:设合金成分为x,过x做成 分垂线。在成分垂线相当于
Cu-Ni置换固溶体
Fe-C间隙固溶体
3
固溶体的分类: a、置换固溶体:溶质原子取代溶剂原子的位置,
但整个结构仍然是溶剂的晶体结构。 b、间隙固溶体:溶质原子位于溶剂原子的间隙
位置中。形成间隙固溶体的溶质元素是原子半径较小的 非金属元素,如C、N、B等,而溶剂元素一般是过渡族 元素。形成间隙固溶体的一般规律为r质/r剂<0.59。
a、有限固溶体:在一定的条件下,溶质在固溶体中存在一 极限浓度,如超过此浓度则有其它相形成。
b、无限固溶体:溶质可以任意比例溶入到溶剂中,最高可 达100%。 (只能是置换固溶体)组成元素原子半径、 电化学特性相近,晶格类型相同的置换固溶体,才有可 能形成无限固溶体。
a 、有序固溶体:溶质原子在固溶体中有规律的分布。 (只能是置换固溶体)
属元素,如C、N、B等, 而溶剂元素一般是过渡 族元素。
二元相图
性质 熔融分解 熔融分解 低共熔 一致熔 双向转变 低共熔 不一致熔 一致熔 双向转变 双向转变 低共熔 不一致熔 固相反应
组成(%) CaO 0.6 28 37 48.2 48.2 54.5 55.5 65 65 65 67.5 73.6 73.6 SiO2 99.4 72 63 51.8 51.8 45.5 44.5 35 35 35 32.5 26.4 26.4
二、二元相图
二元体系相律 F=C-P+2=4-P ,当相数最少时,Pmin=1,自由度数最大,Fmax=3, 相图是三维的,温度、压力、组分浓度。
凝聚体系F=C-P+1=3-P,最少相数Pmin=1,最大自由度数Fmax=2, 温度,组分浓度。
二、二元相图
二元相图组成表示法 质量百分比 摩尔比百分数 杠杆规则
不稳定的化合物,加热 这种化合物到某一温度 便发生分解,分解产物 是一种液相和一种晶相,
二者组成与化合物组成
皆不相同。
④有一个化合物在固相分解的二元系统相图
⑤具有多晶转变的二元系统相图
⑥具有液相分层的二元系统相图
⑦形成连续固溶体的二元系统相图
⑧具有低共熔型的有限(不连续)型固溶体的二元系统相图
二、二元相图
1、十种基本类型二元相图
①具有一个低共熔点的二元相图
②具有一个一致熔化合物的二元系统相图 一致熔化合物:一种 稳定的化合物,它与
正常的纯物质一样,
具有固定的熔点,将 这种化合物加热熔化, 生成液相,其液相组 成与化合物组成相同。
③具有一个不一致熔化合物的二元系统相图
不一致熔化合物:一种
止原料中混入Al2O3,在使用中避免与高铝砖,MA砖接
二元相图的基本类型
0
L
L
1
L
、
L α
α冷
4’ α
却
α
过
k
程
时间→
α——成分沿B4’A变化,先析出含Ni%多;
L——成分沿B1A变化,后析出含Ni%少。
3、杠杆定律及其应用
合金成分x,温度tx xL——液相成分 xα——固相成分 QL——液相重量 Qα——固相重量
温度 →
Ⅰ
L
B
tx
a
A QL
L+α c
b α
Qα
Cu
xL
同时结晶出成分各自固定的两个新固相的 转变过程。
LE 1 8 C 3 MN
相图分析.3
3)特性线与特性点 A——327.5℃,纯Pb的熔点; B——231.9℃;纯Sn的熔点; E——共晶点,WSn=61.9%。
LE 1 8 C 3 MN
相图分析.4
AEB——液相线; AMENB——固相线; MEN——共晶线 ; 成分>M点合金,在此温度线,均发生共
3)亚共晶合金(WSn=19%~61.9%) L 1L 1 8C 3 () 2 Ⅱ ()
温度/℃
400 327.5
A 300
Ⅲ L
L+α
1
200 α
M 183
E
19
2
61.9
100
α+βⅡ+(α+β)
α+βⅡ
F
α+β
Pb 10 20 30 40 50 60 70 WSi / %
231.9 B
WSn<19%的合金
室温组织:α+βⅡ 二次析出反应: 从单一固溶体相中析出单一新固相的反应。 βⅡ的计算:
βⅡ=F4/FG×100% 结晶过程: 匀晶反应+二次析出反应
二元合金相图的基本类型和分析
4.2 二元合金相图的基本类型和分析 一、二元匀晶相图
在液态和固态两组元都能无限互溶的相图称为均晶相图。 二元合金系Cu-Ni、Au-Ag、Fe-Cr、Fe-Ni、W-Mo等具有这类相 图。 1.Cu-Ni相图分析 分析: ① 液相线—曲线Al1B ② 固相线—曲线Aa4B ③ 液相区—液相线以上的液相L区域 ④ 固相区—固相线以下的固a相区域 ⑤ 液相线与固相线之间为液、固两相区(L+a) ⑥ A为Cu的熔点(1083℃),B为Ni的熔点(1452℃)。
LE C B
183 。 C
⑤ 固溶线:CF线及DG线分别为α固溶体和β固溶体的固溶线。
2.合金的结晶过程及组织 合金Ⅰ、合金Ⅱ、合金Ⅲ、合金Ⅳ的结晶过程及其组织如 图所示。 分析: ① 相组成 ② 组织组成物 ③ 属这类相图的合金还 有Pb-Sn、Al-Si、AlSn、Al-Cu、Pb-Sb、 Ag-Cu等。
② 设液、固相含Ni浓度分别为x1、x2,x为试验合金中的平均 含Ni量(%),则
QL x1 Qs x2 x
可得:
x2 x QL x2 x1
;
x x1 Qs x2 x1
用图中线段来表示,即为:
xx2 QL 100 % x1 x2
;
Qs
x1 x 100 % x1 x2
3.共析转变 由图分析可知: ① 从固相中同时析出两种不同新相的反应称为共析反应。 ② 共析反应的产物为共析物。 ③ 由于共析反应在固态进行,所以共析组织比共晶组织要细 得多。
六、二元相图的分析与应用
一元和二元体系相图-2
1. 相律分析、相图表示及杠杆规则
相律: f = c – p + 2 二元体系: c = 2, 对凝聚态体系受压力P影响可忽略, f = 3 – p, 当 p = 1时(最少相数),f = 2 (最大自由度,T、c)
当 p = 2时,
A
压 强
临界点 L C
S
O C’ B g
温度
BO:S = g 平衡线,即升华线,上限为熔点或凝固点;p=2,f = 1; AO:S = L平衡线,熔化曲线或熔点曲线,熔点随压力变化。一般压力增 大,熔点升高,但也有例外,如冰(图示); OC:L = g平衡线,汽化曲线,液相蒸汽压与温度的关系。
冰点:是一个大气压下被空气饱和的水和冰的平衡共存温度; 三相点O:是在它自己的蒸汽压力(4.579mmHg)下的凝固点(0.0099℃)。
结论:
1)在SiO2的多晶转变中,
同级转变:-石英 -鳞石英-方石英 转变很慢,要加 快转变,必须加入矿化剂。 同类转变:-、-和 -型晶体,转变速度非常快。 2)不同的晶型有不同的比重, -石英的最大。 3) SiO2的多晶转变的体积效应: 同级转变V大,-石英 -鳞石英, VMAX=16%
当 p = 3时,
f = 1 (T 或 c)
f = 0 (无变点)
相图表示: T — C 图
思考题:若压力不能忽略时,二元体系相图如何表示?
杠杆规则
如果一个相分解为两个相, 则生成的两个相的数量与 原始相的组成点到两个新 生相的组成点之间的线段 成反比。 注意: 1)对任何两相平衡共存都可 以适用; 2)对两相结合为一相的过程, 杠杆定律也适用。
在>1500℃形成立方晶型固溶体,称稳定化立方ZrO2 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.相图分析
图2.11 Pb-Sn合金相图
(3)特性线与特性点
相图中MEN水平线称为共晶线,E点称为共晶点,E点对应的温度称为共晶温度, 成分对应于共晶点的合金称为共晶合金。成分位于共晶点以左、M点以右的合金 为亚共晶合金。成分位于共晶点以右、N点以左的合金称为过共晶合金。AE、 BE为液相线,AM、BN线为固相线,MF、NG这两条曲线称为固溶线。M、N点 分别表示α、β相的最大溶解度极限,随温度降低,α、β相溶解度分别沿曲线MF、 NG变化。
不平衡结晶 --枝晶偏 析示意图
2.2.3 共晶相图—学习二元相图的关键
Binary eutectic phase diagram
•何谓共晶相图? •两组元在液态下能完全互溶,在固态时相互有限互溶并发生共晶反应(转变)、形成 共晶组织的二元相图称为二元共晶相图。
•1. 相图分析
•(1)共晶相图的形成 共晶相图可以抽象地看作是两匀晶相图重叠结果,如图210所示。其中(a)图示出从液相内结晶出以A组元为基α固溶体;(b)图示为从液相内结 晶出以B为基β固溶体;(c)图为(a)、(b)两相图重合在一起图示。
图2.10 共 晶 相 图 的 形 成
1.相图分析
•以右图Pb-Sn相图为例,对 共晶相图进行分析。
图2.11 Pb-Sn合金相图
•(2)相区与基本相 相图中有三个单相区,即液相L、固溶体α相和β相。α相是
Sn溶于Pb中形成的固溶体,β相是Pb溶于Sn中的固溶体。各个单相区之间有三个 两相区,即L+α、L+β和α+β。在L+α、L+β和α+β两相区之间的水平线MEN表示 α+β+L三相共存区。在三相共存水平线所对应的温度下,成分相当于E点的液相 (LE)同时结晶出与M点相对应的αM和与N点所对应的βN两个相,即形成两个固 LE 溶体的混合物。此转变的反应式是: 183℃M N ,该转变必在恒温下进行,且三个相 成分应为恒定值,在相图上的特征是三个单相区与水平线只有一个接触点,其中液 体单相区在中间、位于水平线之上,两端是两固相单相区。这种在一定温度下,由 一定成分液相同时结晶出成分各自一定的两个新固相的转变,称为共晶转变或共晶 反应。共晶转变的产物为两固相的混合物,称为共晶组织.
二元合金相图与性能之间的关系 (Relationship between
2.2.1 相图的建立 Setting-up of phase diagrams
•相图是表示材料(合金)体系中材料(合金)的状态与温度、成
分间关系的简明图解,它清楚地表明了材料中各种相的存在 范围以及相与相之间的关系。 •相图中的相是指平衡相,它不反映时间因素的影响。 •材料在一定成分和一定温度下的相状态,以及当成分和温 度改变时相状态的变化,可用温度—成分坐标系的图示明确而 系统地表示出来。
图2.10 共 晶 相 图 的 形 成
1. 相图分析
•(1)共晶相图的形成
根据固溶体结晶规律,固溶体α、β结晶时,液相成分 沿着各自液相线变化。当温度降至两条线交点E时,此时E点成分液相既要与M点成 分的α平衡,又要与N点成分β平衡。液相、α与β相必处于三相平衡状态,它只能在 恒温tE下进行。即在此温度下既要从液相中结晶出α相、又要结晶出β相,一直进行 到液相消失为止。 •因此,通过E点作水平线交α固相线于M点、交β固相线于N点,水平线MN即液相 存在的最低温度。在此温度以下,不存在液相,不可能再按匀晶转变继续结晶出α、 β相。通常已结晶出的α或β相可发生溶解度变化(虚线所示)。 •据上所述,二元共晶相图[(d)图示]可分解为三部分,即水平线以上为匀晶转变 部分、以下为脱溶转变部分,水平线上则为共晶转变部分。
图2-7 用热分析法建立Cu-Ni相图
2.2.2 匀晶相图—学习二元相图的基础
( Binary isomorphous diagrams) •1. 匀晶相图与匀晶转变
•两组元在液态和固态下均可以以任意比例相互溶解,即在固态下形成无限固溶体的 合金相图称为匀晶相图。例如Cu-Ni、Fe-Cr等合金相图均属于此类相图。在这类合 金中,结晶时都是从液相结晶出单相固溶体,这种结晶过程称为匀晶转变。应该指 出,几乎所有的二元合金相图都包含有匀晶转变部分,因此掌握这一类相图是学习 二元合金相图的基础。
2.典型合金的平衡结晶过程
•(1)合金I(w(Sn)≤19w%的合金)
• 见图2-11,合金在3点以上的结晶与固溶体合金结晶过程一样,开始结晶出来
的α称为初晶或一次晶。在2~3点间,合金为均匀α单相组织。当温度降至3点以 下时,α相变为过饱和固溶体,过剩Sn以β相形式从α相中析出,随温度下降β相 增多。从固态α相中析出的β相即称为次生相(二次相或二次晶),用符号βⅡ表示。 这种从单一固溶体相中析出的单一新固相的反应,即称为二次析出反应。当冷至 室温时,所析出βⅡ的相对质量分数可用杠杆定律计算出: βⅡ=F4/FG×100%。 由于固态下原子扩散能力小,析出的次生相不易长大,一般都比较细小,分布于 晶界或固溶体中。其室温下组织为α+βⅡ。 •根据以上分析,合金I的结晶由两种性质的反应组成:匀晶反应+二次析出反应。
4.杠杆定律及其应用
•设合金总质量为W(100%即1),液相的质量分数为WL,固相的质量分数为Wα,则 • WL+ Wα=W(即1) (2.1) •若已知液相中镍的质量分数为x1,固溶体中镍的质量分数为x2,合金中镍的质量分 数为x,则 WL· 1+ Wα· 2=W· x x x (2.2) •解(2.1)和(2.2)组成的方程:WL=(x2-x)/(x2-x1);Wα=(x-x1)/(x2-x1)。将分子 和分母都换成相图中的线段,并将 WL和Wα的质量分数用百分数表示时,则 WL=xx2/x1x2×100%,Wα=x1x/x1x2×100%;两相相对质量之比为:WL/ Wα=xx2/x1x。 •由图2-9(b)可以看出,以上所求得的两平衡相相对质量之间的关系与力学中的杠杆 定律颇为相似,因此称为“杠杆定律”。杠杆定律说明:某合金两平衡相的质量分数 (WL与Wα)之比等于该两相成分点到合金成分点距离的反比,即线段xx2与x1x之比。 •杠杆定律仅适用于两相区,用于求两平衡相的成分及其相对质量。
•2.2.1 相图的建立( Setting-up of phase diagrams ) •2.2.2 匀 晶 相 图 —— 学 习 二 元 相 图 的 基 础 ( Isomorphous
diagram-the diagram ) fangdation of studying two-component
单击此处编辑母版标题样式 2.2 二元相图的基本类 型 • 单击此处编辑母版文本样式
• • • •
Basic 第二级 types of two-component phase diagram 第三级 第四级 第五级
2.2
二元相图的基本类型
Basic types of two-component phase diagram
•2.2.5 具 有 稳 定 化 合 物 相 图 (Phase diagrams with stable
compound) reaction)
•2.2.6 具 有 共 析 反 应 的 相 图 (Phase diagrams with eutectoid •2.2.7
properties and phase diagrams of binary alloys)
5.不平衡结晶 —— 枝晶偏析
•在实际结晶过程中,很难保持体系的平衡状态,冷却过程往往是比较快的(即不平 衡结晶),此时原子不能充分进行扩散,这时先结晶出的固相含高熔点组元(镍)较 多,后结晶出的固相含低熔点组元(铜)较多,快冷使这种成分不均匀现象保留下来, 形成了在同一晶粒中的成分偏析,因结晶一般是以树枝状方式进行,先结晶的主干 和后结晶的分支成分不一致,故这种偏析称为枝晶偏析。因这种偏析发生在一个 晶粒内,故又称晶内偏析。 • 枝晶偏析,会使合金的力学性能、耐蚀性和加工工艺性能变坏。为消除枝晶偏析, 可采用高温扩散退火(又称均匀化退火)方法,即将合金铸件加热至固相线以下100~ 200℃长时间保温(一般5~8h),使原子充分扩散,从而达成分均匀化的目的。
•2.相图分析
①特性点:纯铜的熔点A为1083℃,纯镍的熔点B为1455℃。 ②特性线:液相线 ,固相线。 ③相区与基本相:
3.固溶体合金的平衡结晶过程分析
•现以K成分合金为例进行分析。 •当I合金从高温液态缓慢冷却至t1温度时,开始从液相中结晶出固溶体α,此时的α l1 t 1 成分为α1(其含镍量高于I合金的镍含量),即 。随温度下降,结晶出来的α 固溶体量逐渐增多,剩余的液相L量逐渐减少。当温度冷至t2时,固溶体的成分为α2, l2 t2 2 液相的成分为l2(镍含量低于合金的镍含量),即 。为保持相平衡,在t1温度 结晶出来的α1相,必须改变为与α2相一致的成分,液相成分也必须由l1向l2变 化。……一直冷到t4温度时,其相平衡关系 。最后的相平衡,必然使从液相 l4 t4 4 中结晶出来的全部α相都具有α4的成分,并使最后一滴液相的成分达到l4的成分。
2.典型合金的平衡结晶过程
•(2)合金Ⅱ(共晶合金) •当合金Ⅱ由液相冷却至E点时,将发生共晶反应: L ,在恒温(tE)下一 直进行到液相完全消失为止,这时所获得α和β呈层片状交替分布的细密机械混合物 (α+β)就是共晶组织或称共晶体。其共晶体(αM+βN)中αM和βN两相的相对质量分数可 用杠杆定律求出: WαM =EN/MN×100%,WβN=ME/MN×100%。在E点以下,随 温度下降,α和β的溶解度分别沿各自固溶线MF、NG变化,从α中析出βⅡ,从β中 析出αⅡ,但由于αⅡ和βⅡ量小且在显微组织中不易分辨,故一般不予考虑。因此, 其室温组织为(α+β)共晶体。 •合金Ⅱ结晶过程中的反应特征为共晶反应+二次析出反应。