生物除磷的基本过程
生物除磷工艺
生物除磷工艺磷是生物圈中的重要元素之一,是生命活动的一种必需元素,也是一切生物重要的营养元素。
它不仅是生物细胞中的重要组成成分,而且在遗传物质的组成和能量贮存中都是必需的。
在大多数情况下,磷循环是一个单向流动过程,磷被利用后,以污水的形式排入水体,是一种不可再生且面临枯竭的重要自然资源。
城市污水中的磷主要来源于人类排泄物、食物残渣、工商企业、合成洗涤剂和家用清洗剂、农药和化肥。
对其中的磷若不进行处理,则容易引起受纳水体的富营养化。
水体富营养化就意味着藻类(主要是蓝藻中的微囊藻属Microcystis、腔球藻属Coelosphaerium和鱼腥藻属Anabaena)的过量增长,其直接后果就是淡水水体发生“水华”,海洋发生“赤潮”,随后藻类死亡,最后造成水体质量恶化和水生态环境的破坏,严重的则将进一步影响人类健康。
目前,生物除磷技术有两种作用机理:一类是聚磷菌(Polyphosphate accumulating organisms,PAOs)以O2作为电子受体,在好氧条件下完成吸磷;另一类是反硝化聚磷菌(Denitrifying Phosphate Removal Bacteria,DPB)以NO3-作为电子受体,在缺氧条件下完成吸磷。
两者都在厌氧条件下释磷,并吸收水中挥发性脂肪酸(Volatile fatty acids,VFA),完成磷的代谢循环。
1 生物除磷原理1.1 传统的厌氧-好氧除磷原理在厌氧段,兼性细菌通过发酵作用,将污水中溶解性BOD转化为低分子发酵产物挥发脂肪酸(VFA) 。
聚磷菌此阶段分解体内的聚磷酸盐产生ATP,并利用ATP将水中的低分子发酵产物等有机物摄入细胞内,以聚-β-羟基丁酸(PHB) 、聚-β-羟基链烷酸( PHA)及糖原等有机颗粒的形式贮存于体内,所需的能量来自聚磷酸盐的水解及细胞内糖的酵解,同时还将分解聚磷酸盐所产生的磷酸释放到胞外,即厌氧放磷。
在好氧段,聚磷菌又可以利用聚-β-羟基丁酸盐氧化分解所释放的能量来摄取污水中的磷,并把所摄取的磷合成聚磷酸盐贮存于细胞内。
生物脱氮除磷原理及工艺
(2)反应过程 (3)反硝化反应的控制指标
①碳源
污水中的碳源,BOD5/T—N>3-5时,勿需外加 外加碳源,CH3OH(反硝化速率高生成CO2+H2O),
②PH值
当BOD5/T—N<3-5时
适当的PH值(6.5-7.5) ——主要的影响因素
PH>8,或PH<6,反硝化速率下降
8
同化反硝化
+4H
+4H
缓慢搅拌池
沉淀池
21
三、 生物除磷原理
霍米尔(Holmers)提出活性污泥的化学式 C118H170O51N17P 或C:N:P=46:8:1
※ 生物除磷——就是利用聚磷菌一类的的微生物,能够过量 的,在数量上超过其生理需要,从外部摄取磷,并将磷以聚合 形式贮藏在菌体内,形成高磷污泥,排出系统外,达到从废水 中除磷的效果。
设内循环
产生碱度,3.75mg碱度/mgNO3—N 勿需建后曝气池
回流水含有NO3—N(沉淀池污泥反硝化生成)
要提高脱氮率,要增加回流比
(2)影响因素与主要工艺参数
水力停留时间:3 :1; 循环比:200%; MLSS值:大于3000mg/l; 污泥龄:30d; N/MLSS负荷率:0.03gN/gMLSS.d 进水总氮浓度:小于30mg/l。
活性污泥法的传统功能——去除水中溶解性有机物
1、同化作用
污水生物处理中,一部分氮备同化微生物细胞的 组分。按细胞干重计算,微生物中氮的含量约为 12.5%
4
2、氨化反应 与硝化反应 (1)氨化反应
RCHNH2COOH+O2氨化菌 RCOOH+CO2+NH3
3、硝化反应
(1)硝化过程
生物脱氮除磷原理及工艺
生物脱氮除磷原理及工艺 1 引言氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害;然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污废水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物降解,大部分的可溶性含碳有机物被去除;同时产生N NH -3、N NO --3和-34PO 和-24SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准;因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要;2 生物脱氮除磷机理生物脱氮机理污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝态氮,即,将3NH 转化为N NO --2和N NO --3;在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将N NO --2经反亚硝化和N NO --3经反硝化还原为氮气,溢出水面释放到大气,参与自然界氮的循环;水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的1;错误!硝化——短程硝化:O H HNO O NH 22235.1+→+硝化——全程硝化亚硝化+硝化:O H HNO O NH 22235.1+−−−→−+亚硝酸菌错误!反硝化——反硝化脱氮:O H H CO N OH CH CH HNO 2222333][222+++→+ 反硝化——厌氧氨氧化脱氮:O H N HNO NH 22232+→+反硝化——厌氧氨反硫化脱氮:O H S N SO H NH 2242342++→+废水中氮的去除还包括靠微生物的同化作用将氮转化为细胞原生质成分;主要过程如下:氨化作用是有机氮在氨化菌的作用下转化为氨氮;硝化作用是在硝化菌的作用下进一步转化为硝酸盐氮;其中亚硝酸菌和硝酸菌为好氧自养菌,以无机碳化合物为碳源,从+4NH 或-2NO 的氧化反应中获取能量;其中硝化的最佳温度在纯培养中为25-35 ℃,在土壤中为30-40 ℃,最佳pH 值偏碱性;反硝化作用是反硝化菌大多数是异养型兼性厌氧菌,DO< mg/L 在缺氧的条件下,以硝酸盐氮为电子受体,以有机物为电子供体进行厌氧呼吸,将硝酸盐氮还原为2N 或-2NO ,同时降解有机物2;生物除磷原理磷在自然界以2 种状态存在:可溶态或颗粒态;所谓的除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离;废水在生物处理中,在厌氧条件下,聚磷菌的生长受到抑制,为了自身的生长便释放出其细胞中的聚磷酸盐,同时产生利用废水中简单的溶解性有机基质所需的能量,称该过程为磷的释放;进入好氧环境后,活力得到充分恢复,在充分利用基质的同时,从废水中摄取大量溶解态的正磷酸盐,从而完成聚磷的过程;将这些摄取大量磷的微生物从废水中去除,即可达到除磷的目的3;聚磷菌在厌氧条件下,分解体内的多聚磷酸盐产生ATP,利用ATP 以主动运输方式吸收产酸菌提供的三类基质进入细胞内合成PHB;与此同时释放出-34PO 于环境中1; 好氧吸磷过程聚磷菌在好氧条件下,分解机体内的PHB 和外源基质,产生质子驱动力将体外的-34PO 输送到体内合成ATP 和核酸,将过剩的 -34PO 聚合成细胞贮存物:多聚磷酸盐异染颗粒; 3 生物脱氮除磷工艺从生物脱氮除磷的机理分析来看,生物脱氮除磷工艺基本上包括厌氧、缺氧、好氧3 种状态,这3个不同的工作状态可以在空间上进行分离,也可以在时间上进行分离;近年来,随着对生物脱氮除磷的机理研究不断深入,以及各种新材料、新技术、新设备的不断运用,衍生出了许多新的生物脱氮除磷工艺,其中典型的几种处理工艺如下;SBR 工艺SBR 工艺是一种新近发展起来的新型处理废水的工艺,即为序批式好氧生物处理工艺,其去除有机物的机理在于充氧时与普通活性污泥法相同,不同点是其在运行时,进水、反应、沉淀、排水及空载5个工序,依次在一个反应池中周期性运行,所以该法不需要专门设置二沉池和污泥回流系统,系统自动运行及污泥培养、驯化均比较容易;该法处理焦化废水有着独有的优势:一是不要空间分割,时序上就能创造出缺氧和好氧的环境,即具有A /O 的功能,十分有利于氨氮和COD 的去除;二是该法的沉淀是一种静止的沉淀,对污泥沉淀性能不好的废水,固液分离效果非常明显;三是该法可以省去二沉池,其占地面积相对要小一些;自动控制系统的发展和完善,为SBR 工艺的应用提供的物质基础;但因为SBR 是间歇运行的,为了解决连续进水问题,至少需要设置两套SBR 设施,进行切换运行;SBR 工艺流程图见图14;CAST 工艺CAST 实际上是一种循环SBR 活性污泥法,应器中活性污泥不断重复曝气和非曝气过程,生物反应和泥水分离在同一池内完成,与SBR 同样使用滗水器;污水首先进入选择器,污水中溶解性的有机物通过生物作用得到去除,回流污泥中硝酸盐也此时得到反硝化;然后进入厌氧区,此时为微生物释磷提供条件;第三区为主曝气区,主要进行BOD 降解,同时硝化反硝化;CAST 选择器设置在池首,防止了污泥膨胀; 3.3 MSBR 工艺连续流序批式活性污泥法工艺ModifiedSequencing Batch Reactor,简称MSBR;首先,污水进入厌氧池,回流活性污泥中的聚磷菌在此充分释磷,然后混合液进入缺氧池反硝化;反硝化后的污水进入好氧池,有机物在好氧条件下被降解,活性污泥充分吸磷后再进入起沉淀作用的SBR,澄清后上清液排放;此时另一边的SBR 在回流量的条件下进行反硝化、硝化或静置预沉;回流污泥首先进入浓缩池浓缩,上清液直接进入好氧池,而浓缩污泥进入缺氧池;这样,一方面可以进行反硝化,另一方面可先消耗掉回流浓缩污泥中的溶解氧和硝酸盐,为随后进行的厌氧释磷提供更为有利的条件;CAST 综合了以往除磷脱氮工艺的优点,保证了各污染物质降解的最大速率环境,去除有机污染物效率更高,脱氮除磷效果更好A/2工艺OA/2工艺传统OA/2工艺或称AAO工艺,在一个处理系统中同时具有厌氧区、缺氧区、好氧区,能够同时作到脱氮、O除磷和有机物的降解,其工艺流程见图2;污水进入厌氧反应区,同时进入的还有从二沉池回流的活性污泥,聚磷菌在厌氧条件下释磷,同时转化易降解COD、VFA为PHB,部分含氮有机物进行氨化;污水经过第一个厌氧反应器以后进入缺氧反应器,本反应器的首要功能是进行脱氮;硝态氮通过混合液内循环由好氧反应器传输过来,通常内回流量为2~4倍原污水流量,部分有机物在反硝化菌的作用下利用硝酸盐作为电子受体而得到降解去除;混合液从缺氧反应区进入好氧反应区,混合液中的COD浓度已基本接近排放标准,在好氧反应区除进一不降解有机物外,主要进行氨氮的硝化和磷的吸收,混合液中硝态氮回流至缺氧反应区,污泥中过量吸收的磷通过剩余污泥排除;该工艺流程简洁,污泥在厌氧、缺氧、好氧环境中交替运行,丝状菌不能大量繁殖,污泥沉降性能好5;它将厌氧段、缺氧段放在工艺的第一级, 充分发挥了厌氧菌群承受高浓度、高有机负荷能力的优势, 处理效果较好, 产生的污泥较一般的生物法少;可用于处理工业废水比重较大城市污水, 另外, 由于它是在普通活性污泥法的基础上发展起来的, 因而也较容易用于生物法处理的老污水厂的改造;A/2工艺改良O改良O A /2工艺是中国市政工程华北设计研究院提出的,工艺综合了A/O 工艺和改良UCT 工艺的优点,即在厌氧池之前增设厌氧/缺氧池;首先回流污泥和10%的污水进入厌氧/缺氧池进行反硝化以去除回流污泥中的硝酸盐;90%的污水进入厌氧区与回流污泥混合,在兼性厌氧发酵菌的作用下将部分易生物降解的大分子有机物转化为VFA ;聚磷菌释磷,同时吸收VFA 以PHB 的形式贮存于胞内;在缺氧区,反硝化菌利用污水中的有机物和经混合液回流而带来的硝酸盐进行反硝化,同时去碳脱氮;在好氧区,有机物浓度相当低,有利于自养硝化菌生长繁殖,进行硝化反应,同时聚磷菌过量摄磷;通过沉淀、排除剩余污泥达到除磷的目的;该工艺降低回流污泥中硝态氮对后续厌氧池的不利影响,有利于厌氧池的聚磷菌释磷,改善了泥水分离性能6;3.5 UCT 改良工艺改良的UCT 工艺University of Cape Town 脱氮除磷工艺由厌氧池、缺氧1 池、缺氧2 池、好氧池、沉淀池系统组成,有2 个缺氧池;缺氧1 池只接受沉淀池的回流污泥,同时缺氧1 池有混合液回流至厌氧池,以补充厌氧池中污泥的流失;回流污泥携带的硝态氮在缺氧1 池中经反硝化被完全去除;在缺氧2池中接受来自好氧池的混合液回流,同时进行反硝化,缺氧1 池出水中的N NO --3 带进厌氧池使之保持较为严格的厌氧环境,从而提高系统的除磷效率7;立体循环一体化氧化沟氧化沟是一种而有效的污水处理技术,具有稳定的处理效果,是污水生物处理技术之一;特别是用于污水脱氮,氧化沟比其它生物脱氮工艺费用低、TN 去除效率高;然而,与活性污泥法相比,氧化沟占地面积较大,在土地紧张的城市或地区,氧化沟的应用受到限制8;针对常规氧化沟存在的问题,成功地研究出立体循环一体化氧化沟;其特点是:① 氧化沟采用立体循环,在循环过程中完成降解有机物和脱氮过程;与现有氧化沟相比,占地面积可减少约50%;② 沉淀区与氧化沟合建,沉淀的污泥可自动回流到氧化沟内,可节省投资和能耗;③ 结构紧凑,运行操作简便;新型立体循环一体化氧化沟既保留氧化沟设备和运行操作简单等优点,又可减少占地面积; 4 结语污水生物脱氮除磷是当今水处理的热点与难点;新的脱氮除磷理论的提出,为生物脱氮除磷工艺指引了方向;如:SND 同时硝化反硝化工艺、SHARON 工艺、氧限制自氧硝化—反硝化工艺、厌氧氨氧化工艺以及短程硝化—厌氧氨氧化组合工艺等;但是,生物脱氮除磷工艺的发展已不仅仅要求对N,P 去除率,而且要求处理效果稳定,可靠的运行工艺;今后对此技术的研究应集中在以下方面:第一、加深除磷机理的研究;反硝化聚磷菌的出现解决了硝化菌与聚磷菌争夺碳源,污泥龄不同等主要矛盾;为新型同步脱氮除磷工艺提供了理论依据;但是对于反硝化聚磷菌的了解还不够全面,尤其是其除磷机理还待于进一步研究;应突破传统理论,从微生物的角度来调控工艺;第二、随着脱氮除磷工艺的进一步发展,许多研究者在进行小试时,都驯化出颗粒污泥,而颗粒污泥的出现改善了污泥膨胀这一难题;同时发现颗粒污泥对N,P 的去除要远远优于絮状污泥;今后在对颗粒污泥的研究上应更加深入,研究了解颗粒污泥外部的胞外聚合物是否对N,P 有吸附作用,并进一步研究颗粒污泥的形成机理,调整现有反应器的运行参数,从而加速颗粒污泥的形成,提高脱氮除磷效率;。
简述生物除磷的基本原理
简述生物除磷的基本原理生物除磷是指在磷石膏(磷渣)中添加各种微生物菌剂后生物除磷是指在磷石膏(磷渣)中添加各种微生物菌剂后,将其放入脱水的干式转鼓过滤器中,由塔底排出液体(有机碳源)到达回流管上部与澄清石灰乳或氯化钙溶液混合,进行反应生成一种可溶性钙镁磷酸盐沉淀,该沉淀为菌团生长提供所需的营养物质和能量来源,同时生物活性滤层也能截留大多数磷,经过三次循环后,沉淀就变成细小结晶颗粒,完全被吸附在生物除磷过滤床的生物活性滤料表面,然后通过压榨排出沉淀,从而实现无磷排放。
最后剩余少量未被吸收利用的污泥和石膏可以运至其他工厂进行资源化综合利用。
这样既消除了环境污染,又实现了废弃磷石膏的资源化再利用,同时节省了运输成本,节约了能源消耗,减少了设备投资费用。
该技术不仅有效地降低了磷石膏的处理成本,而且使磷石膏的资源化综合利用成为可能。
目前这项技术已在中国南方的四个工厂进行了应用。
其中江西修水某公司处理量超过1万吨/天,创造了极好的经济效益和社会效益,同时也带动了当地养殖业的发展。
产品广泛用于建筑、建材、医药、食品、化工等领域。
如用于建筑业:内外墙粉刷、涂料、砌块、铺路;外墙保温、填充材料;农业:蔬菜大棚、花卉栽培、育苗、果树栽培、水稻育秧、牲畜饲料、大田喷灌;园林绿化:建筑草坪、公园绿化、山体美化、植被恢复、沙漠治理等;食品业:动物饲料、水产饲料、禽类饲料、有机肥料、食品保鲜等。
本研究认为:本工艺比传统方法可节省石膏约70%以上,用煤粉代替电加热,并采用浓缩池作为碳源,用酸碱中和废水,具有很好的经济效益。
某工程日处理100吨磷石膏,采用本研究的生物除磷方法,取得了显著的经济效益和社会效益。
污泥在厌氧发酵槽内发酵,并加入石灰进行脱水,同时回流部分厌氧发酵槽液和污泥;净化槽内依次加入硫酸铝、铁粉、絮凝剂、消毒剂;接触氧化槽内依次加入甲醛、双氧水、含铁石灰、含铁活性炭;后处理净化槽和接触氧化槽混合后,通入空气搅拌均匀,然后加入发酵槽内,发酵槽发酵1小时,污泥脱水机进行脱水,脱水后含水率大概60%左右。
简述生物脱氮和生物除磷的基本原理和过程
生物脱氮和生物除磷是水环境治理中常见的技术手段,其基本原理和过程对于水质净化具有重要意义。
下文将分别对生物脱氮和生物除磷的基本原理和过程进行简要阐述,以便更好地理解和应用这两种技术手段。
一、生物脱氮的基本原理和过程1. 基本原理:生物脱氮是指利用生物的作用将水体中的氮气态化合物转化为氮气排放出去的过程。
其主要包括硝化和反硝化两个过程。
2. 过程:1)硝化作用:首先是硝化细菌将水体中的氨氮转化为亚硝酸盐,然后再将亚硝酸盐转化为硝酸盐的过程。
这一过程主要发生在水中砷、锰等微生物和有机物贪婪性好氧微生物的作用下。
2)反硝化作用:反硝化细菌将水中的硝酸盐还原成氮气气体,从而实现氮的脱除。
这一过程主要发生在水中缺氧或厌氧条件下,反硝化细菌在有机物的作用下进行。
二、生物除磷的基本原理和过程1. 基本原理:生物除磷是指利用生物的作用将水体中的磷物质转化为无机磷沉积或有机磷的过程。
其主要包括磷的吸附和磷的沉淀两个过程。
2. 过程:1)磷的吸附:指微生物在生长过程中,通过细胞活性或胞外聚合物等结合机制,将水体中的磷物质吸附到微生物体表面或细胞内,从而减少水体中的磷含量。
这一过程主要发生在水中的底泥、生物膜等介质上。
2)磷的沉淀:指在适当的环境条件下,微生物可以促进水中磷物质的沉淀作用,将磷固定到底泥中,从而减少水体中的可溶性磷含量。
这一过程主要发生在水中的缺氧或厌氧条件下。
生物脱氮和生物除磷是通过利用微生物的作用,将水体中的氮和磷物质转化为氮气或无机磷沉积的技术手段。
其基本原理和过程涉及硝化、反硝化、微生物吸附和微生物沉淀等生物学过程,在水环境治理中具有重要的应用价值。
希望通过本文的介绍,读者对生物脱氮和生物除磷技术有更深入的了解,并能更好地应用于实际的水质净化工作中。
生物脱氮和生物除磷作为水环境治理的重要手段,对于改善水体质量、保护生态环境具有重要意义。
在实际应用中,为了更好地发挥生物脱氮和生物除磷技术的效果,需要结合具体的水体特点和环境条件,采取相应的措施和管理方式,以确保技术的有效运行和水体的稳定净化。
污水生物脱氮除磷的基本原理
污水生物脱氮除磷的基本原理
污水生物脱氮除磷是一种利用生物的代谢能力来降低污水中氮和磷的浓度的技术。
其基本原理是利用污水中的生物分解形成的氨氮,通过氨氧化、反硝化及硫酸还原这三个生物代谢过程,将氨氮转变成无害物质,并利用磷细菌将磷结合在污泥中,最终将氮和磷从污水中去除。
1、氨氧化过程
氨氧化过程是污水生物处理中脱氮的主要过程,也是把氨氮转变成无害物质的主要过程。
氨氧化的具体过程是把氨氮转变成氮气的过程,真正的氨氧化过程是由被称作氨氧化菌的细菌来承担的。
这些特殊的细菌需要降低水温、提高pH值和添加活性碳等外源物质的供给,才能进行氨氧化反应。
2、反硝化过程
反硝化过程是把亚硝酸氮转变成氮气的过程,它是生物处理中氮的最后一步转变过程,反硝化的最后产物是氮气,也就是说它是将氮从污水中最终去除出去的转变过程。
反硝化过程受反硝化菌的影响较大,反硝化菌属于好氧细菌,反硝化条件包括高氧化性、低温度、较高的pH值等。
3、硫酸还原过程
硫酸还原过程是通过硫酸还原菌将污水中的亚硝酸氮还原成氨氮的过程,它是把水中的氮含量降低的重要手段。
硫酸还原过程还可以与氨氧化过程相结合,从而提高去除氮的效率。
污水处理生物除磷化学除磷工艺介绍
磷在废水中存在的形式是什么?磷是一种活泼元素,在自然界中不以游离状态存在,而是以含磷有机物、无机磷化合物及还原态PH3这三种状态存在。
污水中含磷化合物可分为有机磷与无机磷两类。
无机磷几乎都以各种磷酸盐形式存在,包括正磷酸盐、偏磷酸盐、磷酸氢盐、磷酸二氢盐,以及聚合磷酸盐如焦磷酸盐、三磷酸盐等。
有机磷大多是有机磷农药,如乐果、甲基对硫磷、乙基对硫磷、马拉硫磷等构成,他们大多呈胶体和颗粒状,不溶于水,易溶于有机溶剂。
可溶性有机磷只占30%左右,多以葡萄糖-6-磷酸、2-磷酸-甘油酸及磷肌酸等形式存在。
溶解磷占总磷的1/3 左右,PO4ˉ-P磷中大分子磷占40%。
磷是怎样转化的?影响因素有哪些?水体中的可溶性磷很容易与Ca2+、Fe3+ 、Al3+ 等离子生成难溶性沉淀物,例如AIPO4、FePO4等,沉积于水体底部成为底泥。
聚积于底泥中的磷的存在形式和数量,一方面决定于污染物输入和通过地表与地下径流的排出情况;另一方面决定于水中的磷与底泥中的磷之间的交换情况。
沉积物中的磷通过颗粒态磷的悬浮和水流的湍流扩散再度被稀释到上层水体中,或者当沉积物中的可溶性磷大大超过水体中磷的浓度时,则可能重新释放到水体中。
在水中,磷离子以HPO42ˉ还是以H2PO4ˉ形式存在取决于pH值,当pH 值在2~7时,水中磷酸盐离子多数以H2PO4ˉ形式存在,而pH值在7~12时,则水中的磷酸盐离子多数以HPO42ˉ形式存在。
所有含磷化合物都是首先转化为正磷酸盐(PO43ˉ) 后,再转化为其他形式。
此时测定PO的含量,测定结果即是总磷的含量。
磷的来源是什么?污水中的磷部分来源于化肥和农业废弃物。
同时,生活中含磷洗涤剂的大量使用也使生活污水中磷的含量显著增加。
此外,化工、造纸、橡胶、染料和纺织印染、农药、焦化、石油化工、发酵、医药与医疗及食品等行业排放的废水常含有有机磷化合物。
磷的危害是什么?(1)磷对人体的危害高磷洗衣粉对皮肤有直接刺激作用,严重的会导致接触性皮肤炎、婴儿尿布疹等疾病。
污水生物脱氮除磷原理及工艺
一般用Al2(SO4)3,聚氯化铝(PAC)和铝酸钠(NaAlO2) 2)铁盐除磷:FePO4 、 Fe(OH)3
一般用FeCl2、FeSO4 或 FeCl3 、Fe2(SO4)3
3)石灰混凝除磷:
2 5Ca 2 4OH 3HPO4 Ca5 (OH )(PO4 ) 3 3H 2O
二、生物除磷过程的影响因素
①溶解氧: l厌氧池内:绝对的厌氧,即使是NO3-等也不允许存在; l好氧池内:充足的溶解氧。 ②污泥龄: l剩余污泥对脱磷效果有很大影响,泥龄短的系统产生的剩余
污泥多,可以取得较好的除磷效果;
l 有报道称:污泥龄为 30d ,除磷率为 40%;污泥龄为 17d,
除磷率为50%;而污泥龄为5d时,除磷率高达87%。
一、巴颠甫(Bardenpho)同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要 功能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。 工艺复杂,反应器单元多,运行繁琐,成本高
二、A—A—O(A2/O)同步脱氮除磷工艺
工艺特点: l工艺流程比较简单;总的水力停留时间短 l厌氧、缺氧、好氧交替运行,不利于丝状菌生长,污泥膨胀 较少发生; l无需投药,两个A段只需轻缓搅拌, 只有O段供氧, 运行费用低。
3
2
2 反硝化反应的影响因素
• 碳源:
①废水中有机物,若BOD5/TKN>3~5时,即可; ②外加碳源,多为甲醇; ③内源呼吸碳源—细菌体内的原生物质及其贮存 的有机物。 • 适宜pH:6.5~7.5; • 溶解氧应控制在0.5mg/l以下;
• 适宜温度:20~40C
生物脱氮的基本原理
二、Phostrip除磷工艺——生物除磷和化学除磷相结合
生物除磷实验报告
一、实验名称生物除磷实验二、实验目的1. 了解生物除磷的原理和过程。
2. 掌握生物除磷实验的操作方法。
3. 分析生物除磷的效果,探讨影响因素。
三、实验原理生物除磷是一种利用微生物将磷转化为可沉淀的磷酸盐的工艺。
在好氧条件下,聚磷菌将环境中的溶解性无机磷(如正磷酸盐)吸收到细胞内,并转化为聚磷酸盐储存起来。
当聚磷菌死亡后,其细胞壁会释放出聚磷酸盐,形成磷酸钙沉淀,从而达到除磷的目的。
四、实验器材与试剂1. 实验器材:- 恒温培养箱- 磷标准溶液- 硫酸钾- 硫酸铵- 硫酸钠- 氯化钠- 氯化钙- 氢氧化钠- 氯化铁- 碘化钾- 淀粉- 酚酞指示剂- 碱性氯化铁- 酒精- 烧杯- 移液管- 玻璃棒- 滤纸- pH计- 水浴锅- 电子天平2. 实验试剂:- 磷标准溶液:准确称取0.7494g磷酸二氢钾(K2HPO4),溶解于水中,定容至1000mL,浓度为1000mg/L。
- 硫酸钾:分析纯。
- 硫酸铵:分析纯。
- 硫酸钠:分析纯。
- 氯化钠:分析纯。
- 氯化钙:分析纯。
- 氢氧化钠:分析纯。
- 氯化铁:分析纯。
- 碘化钾:分析纯。
- 淀粉:分析纯。
- 酚酞指示剂:分析纯。
- 碱性氯化铁:分析纯。
- 酒精:分析纯。
五、实验步骤1. 准备实验材料:称取适量的硫酸钾、硫酸铵、氯化钠、氯化钙、氢氧化钠、氯化铁、碘化钾、淀粉等试剂,溶解于水中,配制成一定浓度的溶液。
2. 将配制好的溶液倒入烧杯中,加入适量的磷标准溶液,搅拌均匀。
3. 将溶液pH值调至7.0左右,加入酚酞指示剂,观察溶液颜色变化。
4. 将溶液加热至60℃,维持30分钟,观察溶液颜色变化。
5. 将溶液冷却至室温,用移液管取适量溶液,加入碱性氯化铁溶液,搅拌均匀。
6. 将溶液加入碘化钾溶液,观察溶液颜色变化。
7. 将溶液加入淀粉溶液,观察溶液颜色变化。
8. 记录实验数据,计算磷的去除率。
六、实验结果与分析1. 实验结果:- 磷的去除率:根据实验数据计算得出。
生物脱氮除磷工艺演示过程
生物脱氮除磷工艺演示过程氮和磷是用于废水处理的重要的微生物增长要素。
因此,在所有的生物处理过程中在一定程度上都会出现脱氮除磷。
细胞中含有约百分之十二的氮和百分之二的磷。
处理系统以营养代谢为目的,所谓的生物脱氮除磷,从本质上说组成的两个进程为:生物脱氮和强化生物除磷(EBPR )。
生物脱氮生物脱氮反应的关键过程是硝化和反硝化作用,如(图1 )。
其他相关的反应,包括氨化(有机转换氮氨)和氮素吸收的细胞生长。
硝化硝化是氨氧化成硝酸盐和亚硝酸盐。
参与反应的关键生物体是硝化和亚硝化细菌。
自养微生物通过氧化无机氮化合物获得能源:细胞生长的主要碳源是二氧化碳。
因此,有机质(BOD)是硝化反应的一个先决条件。
亚硝酸盐的积累通常不会在一个完全硝化系统中遇到,因为硝化是越来越慢,但有一些迹象表明,操作无法进行,亚硝酸盐对硝酸的转换可能成为限制因在废水的温度超过25温度到30C素,导致需要增加氯气进行消毒。
据了解,生物体可以通过硝化和反硝化调解硝化过程,因此,氨氧化细菌长期提供基板在BNR系统,硝化过程的控制因素有两个:(1 )AOBs缺乏功能多样性。
他们约占2%的微生物质量。
(2 )AOBs的敏感性要求严格的环境条件。
硝化的影响因素如下:与异养微生物相比,硝化细菌增长速度缓慢(BOD—异养微生物),可靠的硝化作用需要更长的固体停留时间。
硝化与废水温度直接相关。
•温度:硝化反应的速率随温度上升到一定点(30℃至35℃),然后下降。
具体地说,温度由20℃降至10℃,硝化反应将减少约百分之三十,只有提供三倍的MLSS,才能达到正常的出水氨氮浓度,设计系统的硝化作用通常可以应付对氨氮限制。
•溶解氧(DO ):硝化需氧量约4.6mgO2\mg NH4-N。
当溶解氧下降到远低于2 mg / L的延长时间,硝化作用将受到抑制。
•碱度和pH值:硝化作用每氧化1毫克的NH4 – N需要7.1毫克的碱(碳酸钙)。
如果进水碱度不足,硝化作用将受到抑制。
举出生物同步脱氮除磷的工艺流程
举出生物同步脱氮除磷的工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!《生物同步脱氮除磷工艺流程解析》第一部分:介绍。
《生物脱氮除磷》课件
有机物浓度和泥龄对生物除磷的影响也 较大,适宜的有机物浓度和泥龄需要针 对不同的工艺进行优化。
溶解氧浓度对生物除磷的影响较大,适 宜的溶解氧浓度范围为0.5-3mg/L。
温度对生物除磷的影响较大,适宜的温 度范围为10-30℃。
pH值对生物除磷的影响也较大,适宜的 pH值范围为6.5-8.5。
04 生物脱氮除磷技 术案例分析
温度
温度对生物脱氮效率有显著影 响,适宜的温度范围是20-30℃
。
pH值
pH值对硝化细菌和反硝化细菌 的生长和活性有重要影响,适 宜的pH值范围是7.0-8.0。
溶解氧
溶解氧对硝化反应和反硝化反 应均有影响,适宜的溶解氧浓 度是2-4mg/L。
碳源
碳源的种类和浓度对反硝化反 应有重要影响,常用的碳源有
某污水处理厂生物脱氮除磷运行管理
运行管理要点
为确保生物脱氮除磷工艺的稳定运行,需要定期对工艺参数进行监测与调整,如溶解氧、 pH值、温度等。同时,需要加强设备维护与保养,确保设备的正常运行。
应急处理措施
针对可能出现的异常情况,如污泥膨胀、污泥流失等,制定相应的应急处理措施,确保工 艺的可靠性。
人员培训与安全管理
某污水处理厂生物脱氮除磷效果分析
1 2 3
脱氮效果
通过合理的工艺控制,该污水处理厂的生物脱氮 效率较高,总氮去除率达到85%以上,满足国家 排放标微生物的聚磷作用,有效去除 磷元素,总磷去除率达到90%以上,显著降低水 体富营养化的风险。
经济效益与社会效益
该工艺的运行不仅提高了污水处理效果,减少了 污染物排放,同时也为污水处理厂带来了经济效 益和社会效益。
原理
生物脱氮基于硝化反硝化原理,通过好氧硝化和缺氧反硝化过程实现氮的去除 ;生物除磷则通过聚磷菌在厌氧和好氧环境下的代谢作用实现磷的去除。
生物除磷的基本原理
生物除磷的基本原理
生物除磷是一种废水处理技术,其基本原理是利用微生物的生命代谢活动将水体中的磷转化为不溶性磷酸盐,从而达到除磷的目的。
在生物除磷的过程中,主要涉及以下几个环节:
1. 聚磷菌的摄磷过程:聚磷菌是一种能够在厌氧条件下生长的微生物,它们在代谢过程中会将环境中可溶性的有机基质转化为能量,并将多余的磷酸盐聚合成聚磷酸盐颗粒。
这些聚磷酸盐颗粒可以在好氧条件下被释放到环境中,从而将水体中的磷转化为不溶性磷酸盐。
2. 微生物的生长和繁殖:在生物除磷的过程中,需要保证微生物有足够的生长和繁殖空间。
通常是通过控制好氧条件下的营养物负荷来促进微生物的生长和繁殖,从而使其能够更多地摄取水体中的磷。
3. 沉淀和分离:在微生物摄磷过程中,产生的聚磷酸盐会沉淀到反应器的底部。
通过定期排放反应器中的底泥或使用其他分离技术,可以将这些不溶性的聚磷酸盐与水体分离。
生物除磷的原理利用了微生物的生命代谢活动,将水体中的可溶性磷转化为不溶性磷酸盐,从而达到除磷的目的。
同时,通过控制微生物的生长和繁殖,可以进一步提高除磷的效果。
这种技术广泛应用于废水处理、水体富营养化治理等领域。
含磷废水的微生物除磷过程原理
含磷废水的微生物除磷过程原理1.生物吸附阶段:在这个阶段中,底物中的微生物主要依靠表面上成片生长的菌体从废水中吸附磷元素。
这些菌体形成的聚集体被称为污泥颗粒。
这些污泥颗粒表面有大量的微生物,其胞体及胞外多聚物含有丰富的羟基、氨基及羧基,这些官能团可以通过静电作用、硫酸钙等化学反应与磷酸盐形成结合,实现废水中磷的吸附。
2.生物转化阶段:在废水中的磷主要以两种形式存在,即无机磷酸盐和有机磷。
其中,无机磷酸盐是废水中主要的磷形态。
在生物转化阶段,含磷废水中的磷被微生物利用为能源或构建物质,如ATP、DNA和RNA等。
微生物中的酸性磷酸酶催化无机磷酸化合物的水解,将其转化为无机磷酸盐。
这个过程涉及多个微生物种类的共同作用。
3.化学沉淀阶段:在这个阶段中,废水中的无机磷酸盐与一些金属离子(如铁离子或铝离子)发生反应,形成不溶性的磷酸盐沉淀物(如FePO4或AlPO4)。
这些沉淀物凝聚并沉积在污泥颗粒表面,随后通过污泥的沉淀或者微生物的吸附而从废水中去除。
微生物除磷过程的运行需要满足一定的条件,包括温度、pH值、DO (溶解氧)的控制等。
此外,废水中的硝酸盐浓度也会影响除磷效果,高浓度的硝酸盐会影响微生物体系的平衡和产生反向氮和磷的进一步转化。
不同微生物在除磷过程中的作用也不同,其中可以发挥除磷作用的微生物主要有聚磷菌、绿藻菌、硝化细菌等。
总的来说,微生物除磷过程利用微生物的生物学特性,通过生物吸附、生物转化及化学沉淀等阶段的协同作用,将废水中的磷元素转化为无机磷酸盐,并将其沉淀,实现磷的去除。
这种技术在废水处理中具有广泛的应用前景。
污水处理技术之生物除磷的原理及6大影响因素
污水处理技术之生物除磷的原理及6大影响因素废水中磷的存在形态取决于废水的类型,最常见的是磷酸盐、聚磷酸盐和有机磷。
生活废水的含磷量一般在10~15mg/L左右,其中70%是可溶性的。
常规二级生物处理的出水中90%左右的磷以磷酸盐的形式存在。
在传统的活性污泥法中,磷作为微生物正常生长所必需的元素用于微生物菌体的合成,并以生物污泥的形式排出,从而引起磷的去除,能够获得10%~30%的除磷效果。
在某些情况下,微生物吸收的磷量超过了微生物正常生长所需要的磷量,这就是活性污泥的生物超量除磷现象,废水生物除磷技术正是利用生物超量除磷的原理而发展起来的。
(一)生物除磷的原理根据霍尔米(Holmers)提出的化学式,活性污泥的组成是C118H170O51N17P,由此可知,C:N:P=46:8:1。
如果废水中N、P的含量低于此值,则需另行从外部投加;如等于此值,则在理论上应当是能够全部摄取而加以去除的。
生物除磷的基本原理是利用一种被称为聚磷菌(也称为除磷菌、磷细菌等)的细菌在厌氧条件下能充分释放其细胞体内的聚合磷酸盐(该过程称为厌氧释磷);而在好氧条件下又能超过其生理需要从水中吸收磷(该过程称为好氧吸磷),并将其转化为细胞体内的聚合磷酸盐,从而形成富含磷的生物污泥,通过沉淀从系统中排出这种富磷污泥,达到从废水中除磷的效果。
1.在厌氧区内的释磷过程。
在没有溶解氧和硝态氮存在的厌氧条件下,兼性细菌通过发酵作用将溶解性BOD转化为挥发性有机酸(VFA),聚磷菌吸收VFA并进入细胞内,同化合成为胞内碳源的储存物—聚-β-羟基丁酸盐(PHB),所需的能量来源于聚磷菌将其细胞内的有机态磷转化为无机态磷的反应,并导致磷酸盐的释放。
2.在好氧区内的吸磷过程。
聚磷菌的活力得到恢复并以聚磷的形态储存超出生长需要的磷量,通过对PHB的氧化代谢产生能量用于磷的吸收和聚磷的合成,能量以聚磷酸高能键的形式储存起来,磷酸盐从液相去除。
产生的高磷污泥通过剩余污泥的形式得到排放,从而将磷从系统中去除。
生物除磷基本原理
生物除磷基本原理目前被研究人员普遍认同的生物除磷理论为:在厌氧/好氧条件下培养出的聚磷微生物,在经过厌氧段的释磷后,能够在好氧段超其生理需要的吸收磷,并将其以聚合磷的形式储存在体内,形成聚磷污泥,并最终通过污泥的排放达到从污水中除磷的目的,其除磷过程的具体表述为如下几个部分:厌氧释磷:在厌氧段,有机物通过微生物的发酵作用产生挥发性脂肪酸(VFAs),聚磷菌(PAO)通过分解体内的聚磷和糖原产生能量,将VFAs 摄入细胞,转化为内贮物,如PHB( 聚-β-羟丁酸(poly-β-hydroxybutyrate,PHB),是一种存在于许多细菌细胞质内属于类脂性质的碳源类贮藏物,不溶于水,而溶于氯仿,可用尼罗蓝或苏丹黑染色,具有贮藏能量,碳源和降低细胞内渗透压等作用)。
其所需的能量来自聚磷酸盐的水解,并将磷以正磷酸盐的形式释放到污水中。
好氧吸磷:在好氧段,以PHB形式贮存的的碳源物质氧化,同时释放的能量被聚磷微生物利用从污水中吸收过量的正磷酸盐,以合成新的细胞,形成富磷污泥。
生物除磷的影响因素包括:温度、溶解氧、pH 值、厌氧区硝态氮、基质类型。
(1)温度生物除磷微生物包括嗜冷、嗜热和中温异养微生物,所以温度对于生物除磷的影响不大,在一般水温条件下,生物除磷都可以正常运行。
Kang等人的研究表明,在A/O工艺中,当温度在10℃以上时,生物的除磷效果不受温度影响。
(2)溶解氧厌氧区要保持较低的溶解氧值以更利于厌氧菌的发酵产酸,进而使聚磷菌更好的释磷,另外,较少的溶解氧更有利予减少易降解有机质的消耗,进而使聚磷菌合成更多的PHB。
而在好氧区需要较多的溶解氧,以更利于聚磷菌分解储存的PHB类物质获得能量来吸收污水中的溶解性磷酸盐合成细胞聚磷。
(3)p H值在pH在6.5一8.0时,聚磷微生物的含磷量和吸磷率保持稳定,当pH值低于6.5时,吸磷率急剧下降。
当pH值突然降低,无论在好氧区还是厌氧区磷的浓度都急剧上升,pH降低的幅度越大释放量越大,这说明pH降低引起的磷释放不是聚磷菌本身对pH变化的生理生化反应,而是一种纯化学的“酸溶”效应,而且pH下降引起的厌氧释放量越大,则好氧吸磷能力越低,这说明pH下降引起的释放是破坏性的,无效的。
生物除磷的原理和工艺
生物除磷的原理和工艺城市污水所含的磷主要来源于人类活动的排泄物及废弃物、工矿企业、合成洗涤剂和家用清洗剂等,所存在的含磷物质基本上都是不同形式的磷酸盐。
那么它的原理是什么呢?工艺又有哪些呢?一起来了解一下!1、生物除磷的基本原理在废水生物除磷过程中,活性污泥在好氧、厌氧交替条件下时,在活性污泥中可产生所谓的“聚磷菌”,聚磷菌在好氧条件下可超出其生理需要而从废水中过量摄取磷,形成多聚磷酸盐作为贮藏物质。
在生物除磷污水处理厂中,都能观察到聚磷菌对磷的转化过程,即厌氧释放磷酸盐——好氧吸收磷,也就是说,厌氧释放磷是好氧吸收磷和最终除磷的前提条件。
2、生物除磷的影响因素⑴有机物负荷及其性质⑵温度温度对除磷效果的影响不如对生物脱氮过程的影响那么明显,在一定温度范围内,温度变化不是十分大时,生物除磷都能成功运行。
试验表明,生物除磷的温度宜大于10℃,因为聚磷菌在低温时生长速度会减慢。
⑶溶解氧由于磷是在厌氧条件下被释放、好氧条件下被吸收而被去除,因此,溶解氧对磷的去除速率和去除量影响很大。
溶解氧的影响体现在厌氧区和好氧区两个方面。
⑷厌氧区的硝态氮在生物除磷工艺中,硝酸盐的去除是除磷的先决条件。
进入生物除磷系统厌氧区的硝态氮会降低除磷能力。
⑸泥龄由于生物脱磷系统主要是通过排除剩余污泥去除磷的,因此,处理系统中泥龄的长短对污泥摄磷作用及剩余污泥的排放量有直接的影响,从而决定系统的脱磷效果,以除磷为目的的污水处理系统的污泥龄一般控制在3、5~7d。
⑹pH值生物除磷系统合适的pH值范围与常规生物处理相同,为中性和弱碱性。
较高的pH值会导致磷酸钙的沉积,堵塞管道,影响污水厂的正常运行。
3、生物除磷的典型工艺典型工艺为A/O除磷工艺,由活性污泥反应池和二沉池构成。
活性污泥反应池分为厌氧区和好氧区,污水和污泥顺次经厌氧和好氧交替循环流动。
回流污泥进入厌氧池,微生物在厌氧条件下吸收去除一部分有机物,并释放出大量的磷,然后进入好氧池并在好氧条件下摄取比在厌氧条件下所释放的更多的磷,同时废水中有机物得到好氧降解,部分富磷污泥以剩余污泥的'形式排出处理系统,实现磷的去除。
生化池除磷的原理
生化池除磷的原理生化池除磷是指通过生物或化学方式去除水体中的磷,以达到减少或消除水体富营养化的目的。
这是一种重要的污染物处理方式,对于改善水质具有重要的意义。
下面将以生物和化学两个方面来解答生化池除磷的原理。
生物除磷的原理:生物除磷是利用特定的微生物菌株去去除水体中的磷。
有机负荷较高的废水中的磷,主要分为溶解态磷和颗粒态磷。
微生物的基本代谢反应不直接去除磷,但某些具有强磷酸氧化还原能力的细菌或真菌可以将水体中的磷逐渐转变为可沉积的颗粒态磷,并将其沉积于水体底泥中。
生物去除磷的过程主要包括磷的吸附、磷的内源吸收以及磷的沉积。
在废水生物处理系统中,一般采用A2/O(Anaerobic baffled reactor+ Oxic tank)工艺,即发展厌氧/好氧/缺氧的菌群,以实现最佳的除磷效果。
厌氧条件下,废水中的磷以无机磷酸盐的形式进入废水处理系统。
在Anoxic区域与有机物质发生反应,被生物吸收,同时产生磷酸根离子的沉淀。
这种吸附和反应机制被称为生物吸附除磷。
好氧条件下,溶解态的磷被细菌通过吸附、内源吸收和附着胞体沉积的方式去除。
废水进入好氧区后,磷初始去除率较低,但随着好氧条件的作用,水体中的溶解态磷不断转变为颗粒态磷,这种转变过程是通过微生物的吸附和内源吸收过程完成的。
缺氧条件下,水体中的磷被包裹在胞外聚磷体(EBPR)中,随着EBPR的形成和生长,废水中的磷便会逐渐沉积下来。
磷的沉积过程是通过EBPR颗粒聚磷细菌的繁殖和释放胞外聚磷体实现的。
生物除磷的优点是处理效果稳定且成本相对较低,尤其适用于连续运行的废水处理系统,如污水处理厂。
化学除磷的原理:化学除磷是通过加入化学药剂改变水体中磷的形态,并使其沉淀下来。
常见的化学药剂有氢氧化铝、硫酸铝、聚合氯化铝等。
化学除磷的原理是通过化学反应将溶解态磷转变为颗粒态磷,随后沉积到水体底泥中。
在水体中添加化学药剂后,药剂和水中的磷发生反应,生成不溶性的磷酸铝、磷酸铁等盐类,这些盐类难溶于水,磷即沉淀下来。
污水生物法脱氮除磷技术及应用
3.同时生物脱氮除磷典型工艺
混合液回流 Ri 出水 进水 厌氧池 好氧池 沉淀池
缺氧池
回流污泥 R 剩余污泥
图2-23 典型的 好氧池 二沉池 出水
剩余污泥 污泥回流 (a)流程1
混合液回流 进水 前置缺氧池 出水 厌氧池 缺氧池 好氧池 二沉池
⑥有毒物质 硝化与反硝化过程都受有毒物质的影响,硝化菌 更易受到影响。对硝化菌有抑制作用的有毒物质有 Zn、Cu、Hg、Cr、Ni、Pb、CN-、HCN等。
3)生物脱氮的典型工艺
混合液回流
进水
缺氧池
好氧池
二沉池
出水
污泥回流
空气
剩余污泥
图2-20 A/O生物脱氮工艺流程
2.污水生物除磷
1)生物除磷基本原理
③ pH值 硝化菌对pH值变化十分敏感,pH值在7.0~7.8时, 亚硝酸菌的活性最好;而硝酸菌在pH值为7.7~8.1时 活性最好。反硝化最适宜的pH值在7.0~7.5。 ④碳氮比 对于硝化过程,碳氮比影响活性污泥中硝化细菌所 占的比例,过高的碳氮比将降低污泥中硝化细菌的比 例。
⑤泥龄 硝化过程的泥龄一般为硝化菌最小世代时间的2 倍以上。当冬季温度低于10℃,应适当提高泥龄。
剩余污泥 污泥回流
(b)流程2
同时生物脱氮除磷A2/O的变形工艺
4、Bardenpho同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要功 能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。
5、UCT工艺
—含NO3-N的污泥直接回流到厌氧池,会引起反硝化作用, 反硝化菌将争夺除磷菌的有机物而影响除磷效果,因此 提出UCT(Univercity of Cape Town)工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、反硝化反应的影响因素
①碳源:一是原废水中的有机物,当废水的BOD5/TKN大于3~5时,可认为碳源充足;二是外加碳源,多采用甲醇;
②pH值:适宜的pH值是6.5~7.5,pH值高于8或低于6,反硝化速率将大大下降;
③溶解氧:反硝化菌适于在缺氧条件下发生反硝化反应,但另一方面,其某些酶系统只有在有氧条件下才能合成,所以反硝化反应宜于在缺氧、好氧交替的条件下进行,溶解氧应控制在0.5mg/l以下;
④温度:最适宜温度为20~40︒C,低于15︒C其反应速率将大为降低。
4、生物脱氮反应过程中各项生化反应特征
四、新型生物脱氮途径与工艺
1、短程生物脱氮工艺
2、SHARON工艺
3、ANAMMOX工艺
4、SHARON-ANAMMOX组合工艺
5、OLAND工艺
6、CANON工艺
7、同时硝化反硝化(SND)工艺
第四节 废水生物除磷原理
一、磷在废水中的存在形式
通常磷是以磷酸盐(-42PO H 、-24HPO 、-
34PO )、聚磷酸盐和有机磷等的形式存在于废水中;细菌一般是从外部环境摄取一定量的磷来满足其生理需要;有一类特殊的细菌——磷细菌,可以过量地、超出其生理需要地从外部摄取磷,并以聚合磷酸盐的形式贮存在细胞体内,如果从系统中排出这种高磷污泥,则能达到除磷的效果。
二、生物除磷的基本过程
1、除磷菌的过量摄取磷
好氧条件下,除磷菌利用废水中的BOD 5或体内贮存的聚β-羟基丁酸的氧化分解所释放的能量来摄取废水中的磷,一部分磷被用来合成A TP ,另外绝大部分的磷则被合成为聚磷酸盐而贮存在细胞体内。
2、除磷菌的磷释放
在厌氧条件下,除磷菌能分解体内的聚磷酸盐而产生A TP ,并利用ATP 将废水中的有机物摄入细胞内,以聚β-羟基丁酸等有机颗粒的形式贮存于细胞内,同时还将分解聚磷酸盐所产生的磷酸排出体外。
3、富磷污泥的排放
在好氧条件下所摄取的磷比在厌氧条件下所释放的磷多,废水生物除磷工艺是利用除磷菌的这一过程,将多余剩余污泥排出系统而达到除磷的目的。
三、生物除磷过程的影响因素
1、溶解氧:
在除磷菌释放磷的厌氧反应器内,应保持绝对的厌氧条件,即使是NO 3-等一类的化合态氧也不允许存在;在除磷菌吸收磷的好氧反应器内,则应保持充足的溶解氧。
2、污泥龄:
生物除磷主要是通过排除剩余污泥而去除磷的,因此剩余污泥的多少对脱磷效果有很大影响,一般污泥短的系统产生的剩余污泥多,可以取得较好的除磷效果;有报道称:污泥龄为30d ,除磷率为40%;污泥龄为17d ,除磷率为50%;而污泥龄为5d 时,除磷率高达87%。
3、温度:
在5~30︒C的范围内,都可以取得较好的除磷效果;
4、pH值:
除磷过程的适宜的pH值为6~8。
5、BOD5负荷:
一般认为,较高的BOD负荷可取得较好的除磷效果,进行生物除磷的低限是BOD/TP = 20;有机基质的不同也会对除磷有影响,一般小分子易降解的有机物诱导磷的释放的能力更强;磷的释放越充分,磷的摄取量也越大。
6、硝酸盐氮和亚硝酸盐氮
硝酸盐的浓度应小于2mg/l;当COD/TKN > 10,硝酸盐对生物除磷的影响就减弱了。
7、氧化还原电位:
好氧区的ORP应维持在+40~50mV之间;缺氧区的最佳ORP为-160~± 5mV之间。
第五节废水可生化性原理及其判别
一、废水可生化性的定义
生物降解性能是指在微生物的作用下,使某一物质改变原来的化学和物理性质,在结构上引起的变化程度。
二、废水可生化性的分类
可分为三类:
①初级生物降解——指有机物原来的化学结构发生了部分变化,改变了分子的完整性;
②环境可接受的生物降解——指有机物失去了对环境有害的特性;
③完全降解——在好氧条件下,有机物被完全无机化;在厌氧条件下,有机物被完全转化为CH4、CO2等。
有机物生物降解性能的分类:
①易生物降解——易于被微生物作为碳源和能源物质而被利用;
②可生物降解——能够逐步被微生物所利用;
③难生物降解——降解速率很慢或根本不降解。
三、鉴定和评价废水中有机污染物的好氧生物降解性的方法:
1、水质指标法:采用BOD5/COD作为有机物评价指标。
2、瓦呼仪法:根据有机物的生化呼吸线与内源呼吸线的比较来判断有机物的生物降解性能。
测试时,接种物可采用活性污泥,接种量为1~3 gSS/l;
四、影响有机物生物降解性能的因素:
1、与化学物质的种类性质有关的因素(化学组成、理化性质、浓度、与它种基质的共存);
2、与微生物的种类、性质有关的因素(微生物的来源、数量、种属间的关系);
3、与有机物、微生物所处的环境有关的因素(pH值、DO、温度、营养物等)。
此信息来源于:。