大学物理光学系统

合集下载

大学物理光学总结(二)2024

大学物理光学总结(二)2024

大学物理光学总结(二)引言概述:光学是物理学中一个重要的分支,研究光的传播、成像以及光与物质的相互作用等问题。

本文将从五个重要的大点出发,对大学物理光学的相关内容进行总结与分析,为读者提供一个快速了解光学的途径。

正文:1. 光的干涉和衍射1.1 光的干涉现象1.1.1 杨氏实验1.1.2 干涉条纹的产生原理1.1.3 干涉的条件和分类1.2 光的衍射现象1.2.1 菲涅尔衍射和菲涅耳衍射公式1.2.2 高斯衍射公式1.2.3 衍射的条件和分类2. 光的偏振与散射2.1 光的偏振现象2.1.1 偏振光的产生与检测2.1.2 光的偏振态和偏振光的超精细结构2.1.3 光的偏振与光的传播方向2.2 光的散射现象2.2.1 雷利散射和米氏散射2.2.2 瑞利散射公式和米氏散射公式2.2.3 光的散射与物质的介电性质3. 光的色散与光的成像3.1 光的色散现象3.1.1 光的折射定律3.1.2 不同介质中的光速和折射率3.1.3 瑞利公式和阿贝尔公式3.2 光的成像现象3.2.1 薄透镜成像的基本原理3.2.2 薄透镜成像的光学公式3.2.3 光的几何光学成像和实际成像的区别4. 光的波动和相干性4.1 光的波动现象4.1.1 光的起源和光的波动理论4.1.2 光的波动性质和波动光的衍射4.1.3 光的波动与光的电磁理论4.2 光的相干性现象4.2.1 相干的条件与相干光的特点4.2.2 干涉仪器与相干的应用4.2.3 光的相干性与光的相长相消干涉5. 光的光学仪器与光的应用5.1 光谱仪及其应用5.1.1 分光器的原理和结构5.1.2 分光光度计和光谱仪的构成5.1.3 火焰光谱法和原子吸收光谱法5.2 光的干涉仪器与应用5.2.1 迈克尔逊干涉仪和弗洛姆干涉仪5.2.2 干涉仪的干涉条纹和精密测量的应用5.2.3 波段干涉仪和干涉滤波器的原理与应用总结:本文从干涉和衍射、偏振与散射、色散与成像、波动与相干性以及光学仪器与应用等五个大点,对大学物理光学的相关知识进行了概要总结。

大学物理课件光学-2

大学物理课件光学-2
(1) 如果太阳正位于海域上空,一直升飞机的驾
驶员从机上向下观察,他所正对的油层厚度为460nm,
则他将观察到油层呈什么颜色?
(2) 如果一潜水员潜入该区域水下,又将看到油
层呈什么颜色?
解 (1) Δr 2dn1 k
2n1d , k 1,2,
k
k 1, 2n1d 1104 nm
k 2,
符合能量守恒定律.
11 - 3 薄膜干涉
当光线垂直入射时 i 0
当 n2 n1 时
Δr
2dn2
2
当 n3 n2 n1 时
Δr 2dn2
第十一章 波动光学
n1 n2 n1
n1 n2
n3

11 - 3 薄膜干涉
第十一章 波动光学
例1 一油轮漏出的油(折射率 n1 =1.20)污染了某
海域, 在海水( n2 =1.30)表面形成一层薄薄的油污.
2n
11-4 劈尖 牛顿环
第十一章 波动光学
2)厚度线性增长条纹等间距,厚度非线性增长 条纹不等间距
3)条纹的动态变化分析( n, , 变化时)
11-4 劈尖 牛顿环
第十一章 波动光学
4 )半波损失需具体问题具体分析
n n
n1 n3
n2
n1 n2 n3
11 - 5 迈克耳孙干涉仪
一 迈克耳孙干涉仪
r (k 1)R (k 1,2,3,)
2
r kR (k 0,1,2,)
1)从反射光中观测,中心点是暗点还是亮点? 从透射光中观测,中心点是暗点还是亮点?
2)属于等厚干涉,条纹间距不等,为什么?
3)将牛顿环置于 n 1 的液体中,条纹如何变化?
4)应用例子:可以用来测 量光波波长,用于检测透镜质 量,曲率半径等.

大学物理光学知识点归纳总结

大学物理光学知识点归纳总结

大学物理光学知识点归纳总结光学是物理学的一个重要分支,研究光的传播、反射、折射、干涉、衍射、偏振等现象和定律。

在大学物理教学中,光学是不可或缺的一部分。

本文将对大学物理中的光学知识点进行归纳总结,以帮助读者更好地理解和掌握光学知识。

一、光的传播与光的本质1. 光的传播方式光可以在真空和透明介质中传播,传播方式有直线传播、弯折传播和散射传播等。

2. 光的本质光既有波动性又有粒子性,这一性质被称为光的波粒二象性。

根据不同的实验现象,可以采用波动理论或粒子理论来解释光的行为。

二、光的反射与折射1. 光的反射定律光线入射角等于光线反射角,即入射角等于反射角,这被称为光的反射定律。

2. 光的折射定律光线从一介质射入另一介质时发生弯曲,入射角和折射角之间的关系由折射定律描述。

折射定律表达了光线在界面上的折射规律。

三、光的干涉与衍射1. 光的干涉光的干涉是指两个或多个光波相遇时产生的干涉现象。

干涉现象分为构成干涉条纹的干涉和产生干涉色彩的干涉。

2. 光的衍射光的衍射是指光通过缝隙或障碍物后产生的扩散现象。

衍射使光波传播方向发生改变,并产生与缝隙或障碍物形状有关的特定干涉图样。

四、偏振与光的分析1. 光的偏振光的偏振是指只在一个方向上振动的光,垂直于振动方向的光被滤波器所吸收,只有与振动方向平行的光能够通过。

2. 光的分析光的分析包括偏振片、偏光仪和光的色散等技术手段,它们可以帮助我们了解光的性质和进行相关实验研究。

五、光学仪器与应用1. 透镜和成像透镜是一种用于聚焦和分散光线的光学元件,常见的透镜包括凸透镜和凹透镜。

它们在成像过程中发挥着重要作用。

2. 显微镜和望远镜显微镜和望远镜是通过光学原理实现对微观和远距离观察的仪器。

它们扩展了人类对于世界的认识范围。

3. 激光和光通信激光是一种具有高度定向性、单色性和相干性的光,已广泛应用于医疗、测量、通信和材料加工等领域。

光学作为一门重要的物理学科,对于我们了解光的行为和应用具有重要意义。

大学物理--几何光学

大学物理--几何光学

B
B
B
ndl n dl
A
A
而由公理:两点间直线距离最短 A
B
dl 的极小值为直线AB A
所以光在均匀介质中沿直线传播
2.光的反射定律
Q点发出的光经 反射面Σ到达P点
P’是P点关于Σ 面的对称点。
P,Q,O三点 确定平面Π。
直线QP’与反射 面Σ交于O点。
nQO OP
则易知当i’=i时,QO + OP为光程最短的路径。
•直接用真空中的光速来计算光在不同介质中通过一定 几何路程所需要的时间。
t nl ct cc
•光程表示光在介质中通过真实路程所需时间内,在真空
中所能传播的路程。
分区均匀介质:
k
nili
i 1
,
t
c
1 c
k i 1
nili
连续介质:
ndl (l)
二、费马原理
1.表述:光在空间两定点间传播时,实际光程为一特 定的极值。
'
nl
nl '
n r 2 r s 2 2 r r s cos
n
r 2
s '
2
r
2
r s '
r cos
A
l
i -i` l '
P
-u
-u`
C
P` -s` O
-r
-s
对给定的物点,不同的入射点,对应着不同
的入射线和反射线,对应着不同的 。
由费马原理可知 :当 d PAP' 0 时,
2. 光的折射反射定律:
(1) 光的反射定律:反射线位于入射面内,反射线和 入射线分居法线两侧,反射角等于入射角,即

大学物理光学第一章答案

大学物理光学第一章答案

i1《1的条件下,取小角近似
于是有
sin i1 i1 ,cos i1 cos i2 1
x n 1 i1t n

12如图所示,在水中有两条平行线1和2,光线2射到水和平行平板玻璃的分界面上。
• •
(1)两光线射到空气中是否还平行? (2)如果光线1发生全反射,光线2能否进入空气? 解: 我们先推到一下光线经过几个平行界面的多层媒质时出射光线的方向。 因为界面都是平行的,所以光线在同一媒质中上界面的的折射角与下界面的入射角相等,如下图所示:
• • • • •
解得
S0 R
sin i sin u
S0 ' R
sin i ' sin u '
u u ' (i ' i)
又根据折射定律 进一步得到 由此可见,只在
n sin i n 'sin u
S0 n ' sin i ' R n sin u
以及角度关系
S0 '
f 如设该透镜在空气中和在水中的焦距分别为 f1 ,2 ,按上式有 f2 n 1 L f1 ( nL 1) n0 1.50 1 ( f1 10.0) f1 则 f2 3 1.50 1 4
4 f1 40cm

• •
• •
3用一曲率半径为20cm的球面玻璃和一平玻璃粘合成空气透镜,将其浸入水中(见图),设玻璃壁厚可忽略,水和空气的折射 率分别为4/3和1,求此透镜的焦距f。此透镜是会聚的还是发散的? 1 n 4 r 解:以 nL 1 ,0 3 , 20cm , r2 代入薄透镜焦距公式 f 1 n 1 1 ( L 1)( ) n0 r1 r2 算出该空气薄透镜(置于水中)的焦距为 f= - 80cm ,它是发散透镜。

大学物理_物理光学(二)

大学物理_物理光学(二)

大学物理_物理光学(二)引言概述:物理光学是大学物理课程中的一门重要分支,研究光的传播、干涉、衍射、偏振等现象,深入探讨光的波动性质。

本文将从五个大点出发,分别阐述物理光学的相关理论和实践应用。

1. 光的干涉现象:- 介绍光的干涉现象,包括两束光的干涉、干涉条纹的形成等。

- 讨论干涉的条件和原理,如杨氏双缝实验、牛顿环实验等。

- 解析干涉的应用,例如干涉仪的工作原理和干涉测量技术。

2. 光的衍射现象:- 解释光的衍射现象,包括单缝衍射、双缝衍射等。

- 探讨衍射的内容和原理,如惠更斯-菲涅尔原理等。

- 探索衍射的应用,例如衍射光栅的工作原理和衍射光谱仪的使用方法等。

3. 光和波的偏振:- 介绍光和波的偏振现象,以及光的偏振方式。

- 阐述偏振光的性质和产生机制,如马吕斯定律等。

- 探讨偏振光的应用,例如偏振片的使用和偏光显微镜的工作原理等。

4. 光的相干性和激光:- 讲解光的相干性,如相干长度和相干时间等概念。

- 探讨激光,包括激光的产生原理和特性,如激光的单色性和定向性等。

- 分析激光的应用,例如激光器的工作原理和激光在通信和医学领域的应用等。

5. 光的散射和色散:- 介绍光的散射现象,如瑞利散射和弗伦耳散射等。

- 阐述色散现象,包括光的色散和物质的色散。

- 探讨散射和色散的应用,例如大气散射对天空颜色的影响和光谱分析等。

总结:物理光学是探究光波动性质的重要学科,它涉及光的干涉、衍射、偏振、相干性、激光、散射和色散等多个方面。

本文通过概述以上五个大点,详细介绍了物理光学的相关理论和实践应用,希望能够对读者对物理光学理解有所助益。

《大学物理》第十二章 光学

《大学物理》第十二章  光学
位置 (提示:作为洛埃镜干涉分析)
h
结束 返回
解:
=a
acos2
+
2
=
2asin2
=
2
asin =h
sin =4h
a 2
h
结束 返回
12-5 一平面单色光波垂直照射在厚度 均匀的薄油膜上,油 膜 覆盖在玻璃板上, 所用 单色光的波长可以连续变化,观察到 500nm与700nm这两个波长的光在反射 中消失,油的折射率为 1.30,玻璃的折射 率为1.50。试求油膜的厚度 。
第二级明纹的宽度为
Δx
´=
Δx 2
=2.73 (mm)
结束 返回
12-15 一单色平行光束垂直照射在宽 为 1.0mm 的单缝上,在缝后放一焦距为 20m的会其透镜,已知位于透镜焦面处的 屏幕上的中央明条纹宽度为2.5mm。求入 射光波长。
结束 返回
解:
=
aΔx 2D
=
1.0×2.5 2×2.0×103
sinj
=
k (a+b)
sin =0.1786k-0.5000
在 -900 < j < 900 间,
对应的光强极大的角位置列表如下:
k
sinj j
k
sinj j
0
-0.500 -300
1
2
-0.3232 -0.1464
-18051’ -8025’
3
4
0.0304 0.2072
1045’ 11057’
结束 返回
12-22 一光栅,宽为2.0cm,共有
6000条缝。如用钠光(589.3nm)垂直入射,
中央明纹的位置? 共有几级?如钠光与光

大学物理光学部分总结

大学物理光学部分总结
两束相干光波在空间相遇时,会 在某些位置产生加强,在某些位 置产生减弱的干涉现象。
薄膜干涉
光波在薄膜表面反射和透射时产 生的干涉现象,常用于增反膜和 增透膜的设计。
光的衍射现象
单缝衍射
光波通过一个狭窄的缝隙时,会在屏 上产生明暗相间的衍射条纹。
圆孔衍射
光波通过一个圆孔时,会在屏上产生 明亮的中心和逐渐减弱的衍射条纹。
吸收光谱
物质对不同波长的光的吸收程度 不同,形成了物质的吸收光谱。 通过对吸收光谱的分析,可以了 解物质的组成和性质。
吸收系数
物质对光的吸收能力可以用吸收 系数来表示,吸收系数越大,表 示物质对光的吸收能力越强。
光散射
光的散射现象
当光通过物质时,由于物质中微粒的散射作用,光发生散射现象,散射光的强度和方向 与入射光的波长、微粒的大小和形状有关。
3
光的相干性
同频率、同方向、同相位的光波具有相干性。
光的传播
反射定律
光在平滑界面上按特定角度反射 。
折射定律
光在不同介质间传播时,传播方向 发生变化。
光速
光在真空中的速度是一个恒定的值 ,不随光源或观察者的运动而改变 。
光的干涉
干涉现象
两束或多束相干光波在空间某一点叠加,产生明 暗相间的干涉条纹。
光与物质相互作用时,光作为粒子,其能量与物质中的电子相互作 用,引起电子的跃迁和能级变化,从而改变物质的状态。
光的波粒二象性
光既具有波动性又具有粒子性,在光与物质相互作用时,表现出不同 的性质和效果。
光吸收
光的吸收定律
当光通过物质时,物质吸收光能 并转化为热能或其他形式的能量 ,光的强度随传播距离的增加而 逐渐减弱。
光的偏振现象

大学物理光学课件 (PDF格式)

大学物理光学课件 (PDF格式)
k=+2 k=+1
2.干涉明暗条纹的位置 2.1 波程差的计算
p
1
x
d δ
θ
r
·x
x
r
2
o D
S*
S1 *
k= 0
I
设实验在真空(或空气)中进行,则波程差为:
S2 *
k=-1 k=-2
δ = r2 − r1 ≈ d sin θ ≈ d tg θ = d ⋅
x D
2.2 明暗条纹条件
δ = r2 −r1 ≈d sinθ ≈ d tgθ = d ⋅
r
B
(4)
E
(5)
,条纹的移动: k一 定, e ↑ → i ↑ → rk 膜厚变化时, • 膜厚变化时 : 波长对条纹的影响: • 波长对条纹的影响
k, e 一 定, λ ↑ → i ↓→ rk ↓
利用薄膜干涉使反射光减小, 这样的薄膜称为增透膜。
2 、多层高反射膜
H L H ZnS MgF 2 ZnS MgF 2
AD = AC sin i
δ = 2 n2 AB − n1 AD +
P Q
sin i n2 = sin r n1
n1 n2 n2 > n1
e λ = 2n2 ⋅ − n1 ⋅ 2e ⋅ tan r sin i + cos r 2
= 2e λ ( n − n sin r sin i ) + cos r 2 1 2 2e sin i λ = ( n − n sin 2 r )+ cos r 2 1 sin r 2
2 2 = 2e n2 2 − n1 sin i + λ / 2
δ = 2 n 2 AB − n1 AD + λ 2

大学物理光学知识点

大学物理光学知识点

大学物理光学知识点大学物理光学知识点1大学物理光学知识点光学包括两大部分内容:几何光学和物理光学。

几何光学(又称光线光学)是以光的直线传播性质为基础,研究光在煤质中的传播规律及其应用的学科;物理光学是研究光的本性、光和物质的相互作用规律的学科。

1、基本概念光源发光的物体。

分两大类:点光源和扩展光源。

点光源是一种理想模型,扩展光源可看成无数点光源的集合。

光线——表示光传播方向的几何线。

光束通过一定面积的一束光线。

它是温过一定截面光线的集合。

光速——光传播的速度。

光在真空中速度。

恒为C=3某108m/s。

丹麦天文学家罗默第一次利用天体间的大距离测出了光速。

法国人裴索第一次在地面上用旋转齿轮法测出了光这。

实像——光源发出的光线经光学器件后,由实际光线形成的虚像——光源发出的光线经光学器件后,由发实际光线的延长线形成的。

本影——光直线传播时,物体后完全照射不到光的暗区。

半影——光直线传播时,物体后有部分光可以照射到的半明半暗区域。

2、基本规律(1)光的直线传播规律先在同一种均匀介质中沿直线传播。

小孔成像、影的形成、日食、月食等都是光沿直线传播的例证。

(2)光的独立传播规律光在传播时虽屡屡相交,但互不扰乱,保持各自的规律继续传播。

(3)光的反射定律反射线、人射线、法线共面;反射线与人射线分布于法线两侧;反射角等于入射角。

(4)光的折射定律折射线、人射线、法织共面,折射线和入射线分居法线两侧;对确定的两种介质,入射角(i)的正弦和折射角(r)的正弦之比是一个常数。

介质的折射串n=sini/sinr=c/v。

全反射条件:①光从光密介质射向光疏介质;②入射角大于临界角A,sinA=1/n。

(5)光路可逆原理光线逆着反射线或折射线方向入射,将沿着原来的入射线方向反射或折射。

3、常用光学器件及其光学特性(1)平面镜点光源发出的同心发散光束,经平面镜反射后,得到的也是同心发散光束。

能在镜后形成等大的、正立的虚出,像与物对镜面对称。

《大学物理光学》PPT课件

《大学物理光学》PPT课件

3
光学仪器的发展趋势 随着光学技术的不断发展,光学仪器正朝着高精 度、高灵敏度、高分辨率和自动化等方向发展。
03
波动光学基础
Chapter
波动方程与波动性质
波动方程
描述光波在空间中传播的数学模型,包括振幅、频率、波长等参现象,是波动光学的基础。
偏振现象及其产生条件
干涉仪和衍射仪使用方法
干涉仪使用方法
通过分束器将光源发出的光波分成两束,再经过反射镜反射后汇聚到一点,形成干涉图样。通过调整反射镜的位 置和角度,可以观察不同干涉现象。
衍射仪使用方法
将光源发出的光波通过衍射光栅或单缝等衍射元件,观察衍射现象。通过调整光源位置、衍射元件参数等,可以 研究光的衍射规律。
光的反射与折射现象
光的反射
光在两种介质的分界面上改变传播方向又返回原来 介质中的现象。反射定律:反射光线、入射光线和 法线在同一平面内,反射光线和入射光线分居法线 两侧,反射角等于入射角。
光的折射
光从一种介质斜射入另一种介质时,传播方向发生 改变的现象。折射定律:折射光线、入射光线和法 线在同一平面内,折射光线和入射光线分居法线两 侧,折射角与入射角的正弦之比等于两种介质的折 射率之比。
了解干涉条纹的形成和特点。
衍射光栅测量光谱线宽度
03
使用衍射光栅测量光谱线的宽度,掌握衍射光栅的工作原理和
测量方法。
量子光学实验项目注意事项
单光子源的制备与检测 了解单光子源的概念、制备方法及其检测原理,注意实验 过程中的光源稳定性、探测器效率等因素对实验结果的影 响。
量子纠缠态的制备与观测 熟悉量子纠缠态的基本概念和制备方法,掌握纠缠态的观 测和度量方法,注意实验中的环境噪声、探测器暗计数等 因素对纠缠态的影响。

大学物理光学部分知识点

大学物理光学部分知识点

大学物理光学部分知识点高校物理光学部分学问点一、光的反射1、光源:能够发光的物体叫光源2、光在匀称介质中是沿直线传播的大气层是不匀称的,当光从大气层外射到地面时,光线发了了弯折3、光速光在不同物质中传播的速度一般不同,真空中最快,光在真空中的传播速度:C = 3×108 m/s,在空气中的速度接近于这个速度,水中的速度为3/4C,玻璃中为2/3C4、光直线传播的应用可解释很多光学现象:激光准直,影子的形成,月食、日食的形成、小孔成像等5、光线光线:表示光传播方向的直线,即沿光的传播路线画始终线,并在直线上画上箭头表示光的传播方向(光线是假想的,实际并不存在)6、光的反射光从一种介质射向另一种介质的交界面时,一部分光返回原来介质中,使光的传播方向发生了转变,这种现象称为光的反射7、光的反射定律反射光线与入射光线、法线在同一平面上;反射光线和入射光线分居在法线的两侧;反射角等于入射角可归纳为:“三线一面,两线分居,两角相等”理解:(1) 由入射光线确定反射光线,表达时要“反”字当头(2) 发生反射的条件:两种介质的交界处;发生处:入射点;结果:返回原介质中(3) 反射角随入射角的增大而增大,减小而减小,当入射角为零时,反射角也变为零度8、两种反射现象(1) 镜面反射:平行光线经界面反射后沿某一方向平行射出,只能在某一方向接收到反射光线(2) 漫反射:平行光经界面反射后向各个不同的方向反射出去,即在各个不同的方向都能接收到反射光线留意:无论是镜面反射,还是漫反射都遵循光的反射定律高校物理光学学习方法一、仔细预习,画出疑难。

在这个环节中,必需先行学习教程(提前任课老师两个课时),画出自己理解不清,理解不了的部分。

预习教材后,假如“没有”疑难,那么立刻做教材所配置的练习,关心画出重点和难点。

预习中,自己画出重点和难点,这是特别重要的,是为提高听课效率所应当预备的一个环节。

二、带着问题,进入课堂。

大学物理光学总结

大学物理光学总结
放大倍数、通光口径、焦距等。
望远镜的应用
天文学、观测星空、观测天体等。
望远镜的发展历程
从伽利略望远镜到现代的大型望远镜,望远镜的技术和性能不断得到提升。
显微镜
显微镜的种类
光学显微镜、电子显微镜、扫描隧道显微镜 等。
显微镜的应用
生物学、医学、材料科学等。
显微镜的性能参数
放大倍数、分辨率等。
显微镜的发展历程
超快光学
研究超短脉冲激光的生成、 传输和控制,应用于时间分 辨光谱、激光雷达、光刻等 领域。
非线性光学
研究光与物质相互作用中的 非线性效应,开发新型非线 性光学材料和器件,应用于 光开关、光限幅器等领域。
光量子计算与模拟
利用光子的量子特性进行信 息处理和模拟,实现更高效 、更安全的量子计算和量子 通信。
光的折射定律
总结词
的规律,即折射光线、入射光线和法线都位于同一 平面,且折射角随入射角的改变而改变。
详细描述
当光从一种介质进入另一种介质时,由于介质折射率的差异,光线的传播方向会发生改变,形成折射现象。折射 光线、入射光线和法线三者共面,且折射角随入射角的改变而改变。这一规律也适用于所有波长的光,是光学中 的基本定律之一。
光与物质的相互作用
光的吸收
总结词
描述光的吸收现象及其在物理中的应用 。
VS
详细描述
当光与物质相互作用时,光能量可以被物 质吸收,使物质获得能量并改变其状态。 这种现象在许多物理过程中起着重要作用 ,如光谱分析和激光技术等。
光的散射
总结词
解释光的散射现象及其产生的原因。
详细描述
当光遇到不均匀介质时,它会向各个方向散 射。这种现象通常是由于光与物质中的微小 颗粒相互作用引起的。光的散射在天空颜色 、雾气透明度等方面起着重要作用。

大学物理第5版课件 第11章 光学

大学物理第5版课件 第11章 光学

1
M1 n1 n2
M2 n1
L 2
iD
3
A C

B
E
45
P
d
第十一章 光学
35
物理学
第五版
Δ32

n2
( AB

BC)

n1 AD


2
AB BC d cos γ
AD ACsin i
n2 n1
L
2
P
2d tan sini
1
iD 3
M1 n1 n2
A
C
d
M2 n1
B
C
d
M2 n1
B
E
45
注意:透射光和反 射光干涉具有互补 性 ,符合能量守恒 定律.
第十一章 光学
38
物理学
第五版
当光线垂直入射时 i 0
当 n2 n1 时
Δr

2dn2


2
当 n3 n2 n1 时
Δr 2dn2
第十一章 光学
n1 n2 n1
n1 n2
n3
39
物理学
第五版
四 了解衍射对光学仪器分辨率的影响.
五 了解 x 射线的衍射现象和布拉格公式 的物理意义.
第十一章 光学
7
物理学
第五版
光的偏振
11-0 教学基本要求
一 理解自然光与偏振光的区别.
二 理解布儒斯特定律和马吕斯定律.
三 了解双折射现象.
四 了解线偏振光的获得方法和检验 方法.
第十一章 光学
8
物理学
第五版
第十一章 光学

大学物理课件光学

大学物理课件光学
康普顿效应
当X射线或γ射线与物质相互作用时,光子将部分能量转移 给电子,使电子获得动能并从原子中逸出。康普顿效应进 一步证实了光的粒子性。
02
光的干涉现象及应用
双缝干涉实验及原理
双缝干涉实验装置与步骤
介绍双缝干涉实验的基本装置,包括 光源、双缝、屏幕等,以及实验的操 作步骤。
双缝干涉现象观察
双缝干涉原理分析
光的偏振现象
横波特有的现象,纵波不发生偏振。 光的偏振证明了光是一种横波。
光的量子性描述
光子概念
光是由一份份不连续的能量子组成的,每一份能量子称为 一个光子。光子具有能量ε=hν和动量p=h/λ,其中h为普 朗克常量,ν为光的频率,λ为光的波长。
光电效应 当光照在金属表面时,金属中的电子会吸收光子的能量并 从金属表面逸出,形成光电流。光电效应实验证明了光的 量子性。
大学物理课件光学
目录
• 光学基本概念与理论 • 光的干涉现象及应用 • 光的衍射现象及应用 • 光的偏振现象及应用 • 现代光学技术与发展趋势 • 实验方法与技巧
01
光学基本概念与理论
光的本质和特性
01 光是一种电磁波
光具有波粒二象性,既可以表现为波动性质,也 可以表现为粒子性质。
02 光速不变原理
偏振光
光振动在某一特定方向的光,在垂直于传播方向的平面 上,只沿某个特定方向振动。
马吕斯定律和布儒斯特角
马吕斯定律
描述线偏振光通过检偏器后透射光强与检偏器透振方向夹角的关系,即透射光强与夹角的余弦值的平方成正比。
布儒斯特角
当自然光在两种各向同性媒质分界面上反射、折射时,反射光和折射光都是部分偏振光。反射光中垂直振动多于 平行振动,折射光中平行振动多于垂直振动。当入射角满足某种条件时,反射光中垂直振动的光完全消失,只剩 下平行振动的光,这种光是线偏振光,而此时的入射角叫做布儒斯特角。

大学物理光学基础知识

大学物理光学基础知识

大学物理光学基础知识在我们的日常生活中,光无处不在。

从阳光照亮大地,到灯光照亮房间,再到电子设备屏幕发出的光芒,光以各种形式影响着我们的生活。

而在大学物理中,光学是一个重要的分支,它深入研究了光的本质、传播、折射、反射、干涉、衍射等现象。

接下来,让我们一起走进大学物理光学的基础知识世界。

首先,我们来了解一下光的本质。

光是一种电磁波,具有波粒二象性。

这意味着光既可以表现出像波一样的特性,比如干涉和衍射;又可以表现出像粒子一样的特性,比如光电效应。

光是由电场和磁场相互垂直并同步变化而产生的,其传播速度在真空中约为每秒 299792458 米。

光的传播遵循一定的规律。

在均匀介质中,光沿直线传播,这就是我们常见的影子形成的原因。

当光从一种介质进入另一种介质时,会发生折射现象。

比如,将一根筷子插入水中,看起来筷子好像在水面处折断了,这就是光的折射导致的。

折射定律表明,入射角的正弦与折射角的正弦之比等于两种介质的折射率之比。

折射率是描述介质光学性质的一个重要参数,它取决于介质的性质和光的波长。

光的反射也是我们常见的现象。

当光遇到光滑的表面时,会发生镜面反射,反射光线具有明确的方向性;而当光遇到粗糙的表面时,会发生漫反射,反射光线向各个方向散射。

反射定律指出,反射光线、入射光线和法线在同一平面内,反射光线和入射光线分居法线两侧,反射角等于入射角。

接下来,我们谈谈光的干涉。

干涉是指两列或多列光波在空间相遇时,叠加后产生强度重新分布的现象。

最典型的干涉实验是杨氏双缝干涉实验。

在这个实验中,通过两条狭缝的光在屏幕上形成了明暗相间的条纹,这表明光具有波动性。

干涉现象在光学测量、薄膜技术等领域有着广泛的应用。

衍射也是光的一种重要特性。

当光遇到障碍物或小孔时,会偏离直线传播,在障碍物或小孔的边缘产生弯曲和扩散,形成衍射图样。

比如,单缝衍射实验中,光通过单缝后在屏幕上形成了中央亮纹宽而亮,两侧条纹窄而暗的衍射图案。

衍射现象在光学仪器的分辨率、X 射线衍射分析等方面有着重要意义。

大学物理光学知识点

大学物理光学知识点

大学物理光学知识点光学是物理学的一个重要分支,在大学物理课程中,光学部分涵盖了丰富的知识。

下面让我们一起来了解一下其中的关键知识点。

一、光的本性光具有波粒二象性。

在某些情况下,光表现出粒子的特性,比如光电效应,说明光的能量是一份一份传播的,这些能量子被称为光子。

而在另一些情况下,光又表现出波动的特性,如光的干涉、衍射和偏振现象。

二、光的直线传播光在均匀介质中沿直线传播。

小孔成像就是光沿直线传播的一个典型例子。

但是,当光遇到障碍物时,会出现衍射现象,即光会绕过障碍物传播。

三、光的反射和折射当光射到两种介质的分界面时,一部分光会返回原来的介质,这就是光的反射。

反射定律指出,反射光线、入射光线和法线在同一平面内,反射光线和入射光线分居法线两侧,反射角等于入射角。

光从一种介质斜射入另一种介质时,传播方向会发生改变,这就是光的折射。

折射定律表明,折射光线、入射光线和法线在同一平面内,折射光线和入射光线分居法线两侧,入射角的正弦与折射角的正弦成正比。

四、全反射当光从光密介质射向光疏介质时,入射角增大到一定程度,折射光线会消失,只剩下反射光线,这种现象称为全反射。

发生全反射的条件是入射角大于临界角。

五、光的干涉两列频率相同、振动方向相同、相位差恒定的光相遇时,会发生干涉现象。

干涉条纹的间距与光的波长、双缝间距以及双缝到屏的距离有关。

杨氏双缝干涉实验是证明光的干涉现象的经典实验。

六、光的衍射光在传播过程中遇到障碍物或小孔时,会偏离直线传播,在屏幕上出现明暗相间的条纹,这就是光的衍射。

单缝衍射、圆孔衍射等都是常见的衍射现象。

七、光的偏振光是一种横波,其振动方向与传播方向垂直。

光的偏振现象表明了光是横波。

偏振片可以用来检验光的偏振状态,常见的有线偏振光和圆偏振光。

八、薄膜干涉利用薄膜上下表面反射的光发生干涉,可以制成增透膜和增反膜。

比如,在照相机镜头上镀一层增透膜,可以减少反射光,增加透射光,从而提高成像质量。

九、几何光学主要研究光的直线传播、反射、折射等现象,利用几何作图和数学方法来解决光学问题。

大学物理几何光学(一)2024

大学物理几何光学(一)2024

大学物理几何光学(一)引言概述:大学物理几何光学是光学的基础课程之一,它揭示了光的传播和反射、折射的规律,并研究了透镜、光的像、光的干涉和衍射等现象。

本文将从以下五个大点探讨大学物理几何光学的重要内容。

一、光的传播与反射1. 光的传播:光是电磁波,具有波动性和粒子性。

介绍光传播的特性和光速的性质。

2. 光的反射:介绍光在平面镜和曲面镜上的反射,包括入射角、反射率和反射成像原理。

3. 光的像的构成:探讨从光线追迹法的角度解释光的像的构成原理。

二、光的折射与光的像1. 光的折射:介绍光在不同介质中传播时的折射规律,包括折射定律和折射率的概念。

2. 透镜和光的像:详细阐述透镜的种类和工作原理,讨论光在凸透镜和凹透镜上的折射成像规律。

三、光的干涉与衍射1. 光的干涉:介绍干涉现象的原因和特点,包括光的相干性和双缝干涉实验。

2. 光的衍射:探讨衍射现象产生的原因和条件,例如单缝衍射和光栅衍射。

四、光的波动理论1. 光的波动性:介绍光的波动性和波动光的干涉和衍射现象与波动理论的关系。

2. 光的能量和光强度:解释光的能量和光强度的概念,以及它们与光的振幅和角频率之间的关系。

五、光的偏振与光的色散1. 光的偏振:阐述光的偏振现象的原理和特点,包括线偏振和圆偏振。

2. 光的色散:介绍光在介质中传播时的色散现象,并解释不同频率的光波在介质中传播速度不同的原因。

总结:本文通过概述了大学物理几何光学的重要内容,包括光的传播与反射、光的折射与光的像、光的干涉与衍射、光的波动理论以及光的偏振与光的色散。

理解这些基础知识对于深入学习光学以及应用到光学设备和技术中具有重要的意义。

大学物理光学知识点大一

大学物理光学知识点大一

大学物理光学知识点大一光学是物理学的重要分支之一,主要研究光的传播、干涉、衍射、偏振、光的色散等现象。

作为大学物理的一门核心课程,光学是大学物理学习的重要一环。

本文将介绍大一学生所需要了解的光学知识点,帮助大家更好地理解和掌握光学的基础概念。

一、光的特性1. 光的来源:光的来源有自发辐射和感光材料的激发等。

2. 光的传播:光的传播包括直线传播和波动传播,可以用光线模型和波动模型来描述。

3. 光的能量:光是一种能量的传播形式,可以用能量和功率来描述光的特性。

二、光的干涉和衍射1. 光的干涉:光的干涉是指两束或多束光波叠加产生的干涉现象。

主要包括构成干涉的两个条件和干涉的分类。

2. 光的衍射:光的衍射是指光波通过物体的缝隙或物体的边缘传播时产生的偏折现象。

主要包括菲涅尔衍射和夫琅禾费衍射两种情况。

三、光的偏振1. 光的偏振现象:光的偏振是指特定方向的光振动相对于光传播方向振动的现象。

主要包括线偏振、圆偏振和椭圆偏振。

2. 光的偏振态描述:可用偏振态矢量、偏振滤波器和琥珀石偏振片等来描述光的偏振。

四、光的色散1. 光的色散现象:光的色散是指光波在介质中传播速度不同,导致折射角度发生变化的现象。

主要包括色散的原因和色散的分类。

2. 色散的衍射光栅:色散光栅是利用光的衍射现象,通过一定的结构和参数来实现光的分光。

五、光学仪器1. 凸透镜和凹透镜:凸透镜和凹透镜是光学仪器中最常见的两种光学元件,用于收集和聚焦光线。

2. 显微镜和望远镜:显微镜和望远镜是利用透镜和物镜将光线放大的光学仪器,用于观察微观和远距离的物体。

光学作为物理学的一个重要分支,对于大一学生来说是一门重要的课程。

通过对光学知识点的学习和理解,不仅可以加深对光的本质和特性的认识,还可以为今后的专业学习打下基础。

希望大家能够积极学习光学知识,充实自己的物理学习内容,提升自己在物理领域的能力。

大学物理光学必考知识点

大学物理光学必考知识点

大学物理光学必考知识点光学是物理学的一个重要分支,研究光的传播、发射、反射、折射、干涉和衍射等现象。

作为大学物理学的一门必修课程,光学涉及到许多重要的知识点。

本文将介绍大学物理光学必考的知识点,帮助同学们系统地理解光学的基本原理和应用。

1.光的性质光既具有波动性质,也具有粒子性质。

根据电磁波理论,光是由电磁波组成的,具有波长、频率和速度等特性。

光的粒子性质则可以用光子的概念来解释,光子是光的基本粒子,具有能量和动量。

2.光的传播光在空气、水、玻璃等介质中的传播遵循直线传播的原理。

光在介质中的传播速度与介质的折射率有关,根据斯涅尔定律,光在不同介质之间传播时会发生折射现象。

3.光的反射光的反射是指光线遇到界面时发生反射现象。

根据光的入射角和反射角之间的关系,可以得到光的反射定律,即入射角等于反射角。

4.光的折射光的折射是指光线从一种介质传播到另一种介质时发生的偏折现象。

根据光的入射角、折射角和两种介质的折射率之间的关系,可以得到光的折射定律,即入射角的正弦与折射角的正弦之比等于两种介质的折射率之比。

5.光的干涉光的干涉是指两束或多束光波相互叠加时所产生的干涉现象。

根据光的相干性理论,当两束光波相位差为整数倍时,它们将发生叠加增强,形成明纹;当相位差为半整数倍时,它们将发生叠加抵消,形成暗纹。

6.光的衍射光的衍射是指光通过一个狭缝或物体边缘时所产生的弯曲现象。

根据光的衍射理论,当光通过一个狭缝或物体边缘时,光波将朝各个方向散射,形成衍射图样。

7.光的偏振光的偏振是指光波中的电场振动方向在一个特定平面上的现象。

根据光的偏振理论,只有在特定方向上的光波才具有偏振性,其他方向上的光波则无偏振性。

8.光的色散光的色散是指光在物质中传播时,不同频率的光波具有不同的折射率,从而形成不同颜色的现象。

根据光的色散理论,不同介质对不同频率的光波的折射率不同,导致光的折射角度也不同,进而引起光的色散现象。

总结起来,大学物理光学的必考知识点包括光的性质、传播、反射、折射、干涉、衍射、偏振和色散等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 由此解算出
•所以,从第5级开始,干涉条纹变得无法分辨
• 2/两块平玻璃板的一端相接,另一端用一圆 柱形细金属丝填入两板之间,因此两板间 形成一个劈形空气膜,今用波长为 的单色 光垂直照射板面,板面上显示出完整的明 暗条纹各74条,试求金属丝的直径。
• 解: 利用劈形薄膜光干涉的明暗条纹条件求解。 如图所示,金属丝与两块平行玻璃板之间形成 一劈形空气膜,其上、下表面的反射光相遇而发 生干涉。
光程差为
由于板面形成完整的明、暗条纹各74条,所以该处应为第74条明条纹。
• 由明条纹条件
,式中k=74 。则
N d / e
546 3 d Ne 74 74 2.02 10 cm 2 2

• 3一劈形玻璃末端的厚度为0.05mm ,折射 率为 1.5。今用波长为 700nm的平行单色 光以 30度的入射角射到劈形玻璃的上表面, 试求: (1)在劈形玻璃的上表面所形成的干涉条 纹数目; (2)若以尺寸完全相同的两玻璃片形成的 劈形空气膜代替上述的劈形玻璃,则产生 的条纹数目又为多少?
• 解: (1)光线斜入射时,在劈形玻璃上、 下表面反射的反射光光程差为 •
则相邻干涉条纹对应的玻条纹数目N应 满足: ,由此得
(2)若为劈形空气膜,反射光光程差为
而由折射定律,可得
相邻干涉条纹对应的空气膜厚度差为
1、在杨氏实验装置中,采用加有蓝绿色 滤光片的白色光源, 其波长范围 为 ,平均波长为 。试 估算从第几级开始,条纹将变得无法 分辨?
解:设该蓝绿光的波长范围为
则有
平均波长为

的第k级明条纹位置分别为

• 因此第 k级干涉条纹占有的宽度为
干涉条纹无法分辨的条件为:干涉条纹的宽度大 于等于相应于平均波长的条纹间距,即
相关文档
最新文档