流动阻力及管路特性曲线

合集下载

化工原理实验报告综合经典篇

化工原理实验报告综合经典篇

实验题目:流体流动阻力测定实验一、数据记录1、实验原始数据记录如下表:离心泵型号:MS60/0.55,额定流量:60L/min, 额定扬程:19.5mN,额定功率:0.55kw流体温度2、5 2.4 1.9258 0.00513 41149.8586 2.6487 0.024846 6 2.2 1.7653 0.0061 37720.7038 2.2759 0.029569 7 2 1.6048 0.00593 34291.5489 1.8149 0.028751 8 1.8 1.4443 0.00424 30862.3940 1.5304 0.020508 9 1.6 1.2838 0.00536 27433.2391 1.2164 0.025955 10 1.4 1.12340.005655 24004.08420.94180.0273820.00559绘制粗糙管路的双对数λ-Re 曲线如下图示:根据光滑管实验结果,对照柏拉修斯方程λ=0.3164/(Re0.25),计算其误差,计试验次数 阻力系数λ 雷诺数Re 柏拉修斯方程计算结果 误差1 0.016893 57609.8021 0.02042266 0.1728312 0.017215 54009.1895 0.02075485 0.1705553 0.017332 50408.5768 0.02111594 0.179198 4 0.017282 46807.9642 0.0215108 0.196595 0.018107 43207.3516 0.02194558 0.174914 6 0.017612 39606.7389 0.02242819 0.2147387 0.018552 36006.1263 0.02296902 0.1923038 0.019035 32405.5137 0.02358206 0.192819 9 0.019391 28804.901 0.02428678 0.201582 10 0.019954 25204.2884 0.02511122 0.205375 3 的流速2900d Vu π=(m/s ),雷诺数μρdu =Re ,流体阻力ρ1000⨯∆=P Hf,阻力系数22Lu d H f =λ,ξ=gu2f'Δ2ρP ,并以标准单位换算得光滑管数据处理结果如下表二、结果分析(1)光滑管结果分析:曲线表明,在湍流区内,光滑管阻力系数随雷诺数增大而减小,进入阻力平方区(也称完全湍流区)后,雷诺数对阻力系数的影响却越来越弱,阻力系数基本趋于不变。

化工原理第二章流体输送设备

化工原理第二章流体输送设备

化工原理-第二章-流体输送设备一、选择题1、离心泵开动以前必须充满液体是为了防止发生()。

AA. 气缚现象;B. 汽蚀现象;C. 汽化现象;D. 气浮现象。

2、离心泵最常用的调节方法是()。

BA. 改变吸入管路中阀门开度;B. 改变压出管路中阀门的开度;C. 安置回流支路,改变循环量的大小;D. 车削离心泵的叶轮。

3、离心泵的扬程,是指单位重量流体经过泵后获得的()。

BA. 包括内能在内的总能量;B. 机械能;C. 压能;D. 位能(即实际的升扬高度)。

4、离心泵的扬程是()。

DA. 实际的升扬高度;B. 泵的吸液高度;C. 液体出泵和进泵的压差换算成液柱高度D. 单位重量液体出泵和进泵的机械能差值。

5、某同学进行离心泵特性曲线测定实验,启动泵后,出水管不出水,泵进口处真空计指示真空度很高,他对故障原因作出了正确判断,排除了故障,你认为以下可能的原因中,哪一个是真正的原因()。

CA. 水温太高;B. 真空计坏了;C. 吸入管路堵塞;D. 排出管路堵塞。

6、为避免发生气蚀现象,应使离心泵内的最低压力()输送温度下液体的饱和蒸汽压。

AA. 大于;B. 小于;C. 等于。

7、流量调节,离心泵常用(),往复泵常用()。

A;CA. 出口阀B. 进口阀C. 旁路阀8、欲送润滑油到高压压缩机的气缸中,应采用()。

输送大流量,低粘度的液体应采用()。

C;AA. 离心泵;B. 往复泵;C. 齿轮泵。

9、1m3气体经风机所获得能量,称为()。

AA. 全风压;B. 静风压;C. 扬程。

10、往复泵在启动之前,必须将出口阀()。

AA. 打开;B. 关闭;C. 半开。

11、用离心泵从河中抽水,当河面水位下降时,泵提供的流量减少了,其原因是()。

CA. 发生了气缚现象;B. 泵特性曲线变了;C. 管路特性曲线变了。

12、离心泵启动前____ ,是为了防止气缚现象发生。

DA 灌水;B 放气;C 灌油;D 灌泵。

13、离心泵装置中____ 的滤网可以阻拦液体中的固体颗粒被吸入而堵塞管道和泵壳。

2-5管内流动阻力

2-5管内流动阻力
23:21:03 2-5 流动阻力 (28) 18
实际流动中的阻力计算
分别计算下列情况下,流体流过φ 76×3mm、长10m的水平钢管 的能量损失、压头损失及压力损失。(1)密度为 910kg/m3、粘度 为72cP的油品,流速1.1m/s;(2)20℃的水,流速为2.2 m/s。 解:(1)油品:首先判断流体流动形态 du 0.07 910 1.1 Re 973 2000 3 72 10
0.3164 0.25 Re
1
其适用范围为Re=5×103~105 。
考莱布鲁克(Colebrook)式
2 18.7 1.74 2 log d Re

此式适用于湍流区的光滑管与粗糙管直至完全湍流区。
23:21:03
1-5 流动阻力 (28)
14
管壁的绝对粗糙度和相对粗糙
进口 0.5
出口 1
u
23:21:03
1-5 流动阻力 (28)
22
流体流动系统中的局部阻力
当流体从管子直接排放到管外空间时,若截面取管出口内侧,则 表示流体并未离开管路,此时截面上仍有动能,系统的总能量损失不 包含出口阻力;若截面取管出口外侧,则表示流体已经离开管路,此 时截面上动能为零,而系统的总能量损失中应包含出口阻力。
阻力系数法:克服局部阻力所消耗的机械能,表示为动能的某一倍数
2 u h 'f 2

ζ 称为局部阻力系数,一般由实验测定。 常用管件及阀门的局部阻力系数见教材。
注意:当管截面突然扩大和突然缩小时,速度u均以小管中的速度计。
当流体自容器进入管内 进口 0.5 称为进口阻力系数;
出口 1 当流体自管子进入容器或从管子排放到管外空间, 称为出口阻力系数。

弯头(弯管)阻力系数比较与流动特性分析

弯头(弯管)阻力系数比较与流动特性分析



u2 曩 谣1j R 哑



弯头转龟一。
图6当号一0—5时,r~口变化关系(田中符号意义
¨
o 0


∞∞Inn锄140 180 1W
弯头转角一‘
田7当j=2.5时,f~一变化关系(圈中符号意义同图5)
三维分离点,一般以极限流线来定义。前人的研究结果业已证实,无论是层流还是紊流,当水 流弯曲时,均会产生二次流。
8 Schlichting.H.Boundary--layer Theory.7th ed.New York:McGraw--Hill-1979
9 伊藤英觉.曲昔。流托I=关卡5理论并矿l:实验研究V.东北大学高速力学研究所报告,12卷113号
昭和30年
弯头(弯管)阻力系数比较与流动特性分析
作者: 作者单位: 被引用次数:
寰1口=,(口)
裹z k=,(寺)
3 弯头阻力系数随曲率半径的变化
图2~图3分别绘出几组典型弯头转角情形下,弯头局部阻力系敷与相对曲率半径之
间的关系.即f~专变化关系.
从图2~图4可以看出,弯头局部阻力系数f随曲率半径r/d的增大而以双曲线规律 减小。当r/d<I.0时,各家资料差异较大}当r/d>2.5时,趋于渐近线。文献[3~5]与文 献[1]、[7]结果较为接近,但文献[6]偏离较大。
r=[o_13·+o-m㈩5蠊r

式中:f为弯头局部阻力系数,0为弯角,d为管径,r为轴线曲率半径,
(2) A6paMoB…[1]对于圆形和方形截面推荐下列公式:
f=A·B
(2)
式中:^=,(目),B一,(言)或,(詈),6为弯头的宽度,A,B可分别按下刊公式计算:

几种泵的特性曲线

几种泵的特性曲线
(三)容积式泵与风机性能曲线特性 2.齿轮泵和螺杆泵 用途:用于输送流
量小、输出压强高的高 粘性流体。
在火力发电厂中, 润滑系统常采用齿轮泵, 而螺杆泵则常用作 输送润滑油及调节油,也可作为锅炉燃料油输送泵。
111111
五、泵与风机性能曲线的比较
(三)容积式泵与风机性能曲线特性 2.齿轮泵和螺杆泵
由于吸水池液面压强和循环水管出口处水池液面压强均 为大气压,即 p p 0。则管路系统性能曲线方程为:
g
H c H z h w 2 1 4 .1 9 q V 2 6
111111
H c H z h w 2 1 4 .1 9 q V 2 6
上式中流量的单位是m3/s,而 性能曲线图上流量的单位为m3/h, 故必须换算后方能代入管路性能曲 线方程中。根据计算结果,列出管 道性能曲线上的对应点如下:
=3100m3/h,H =38m, =90%。
所以该循环水泵工作时所需 要的轴功率为:
P s h1 g q 3 V H 0 9.1 2 9 9 0 3 .8 0 .9 0 0 3 30 6 6 1 3 0 0 8 30 0 ( k 5)W 6
111111
Байду номын сангаас
l0=l+le=250+350=600(m) 所以,为克服流动阻力而损失的能量为:
h w l d 0 d q 2 2 V g /4 2 g 8 l d 0 5 q V 2 0 .0 9 3 .88 0 3 6 .1 6 0 0 4 .6 5 q V 0 2 1 .1 9 q V 2 6
已知:管道的直径d =600mm, 管长l=250m,局部阻力的等值长度 le=350m,管道的沿程阻力系数
=0.03,水泵房进水池水面至循环

实验1 流动过程综合实验

实验1  流动过程综合实验

实验1 流动过程综合实验实验1-1 流体阻力测定实验一、实验目的⒈学习直管摩擦阻力△P f 、直管摩擦系数λ的测定方法。

⒉掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。

⒊掌握局部阻力的测量方法。

⒋学习压强差的几种测量方法和技巧。

⒌掌握坐标系的选用方法和对数坐标系的使用方法。

二、实验内容⒈测定实验管路内流体流动的阻力和直管摩擦系数λ。

⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。

⒊在本实验压差测量范围内,测量阀门的局部阻力系数。

三、实验原理⒈直管摩擦系数λ与雷诺数Re 的测定流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。

流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系:h f = ρfP ∆=22u d l λ (1-1)λ=22u P l d f∆⋅⋅ρ (1-2) Re =μρ⋅⋅u d (1-3)式中:-d 管径,m ;-∆f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3;-μ流体的粘度,N ·s / m 2。

直管摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。

在实验装置中,直管段管长l 和管径d 都已固定。

若水温一定,则水的密度ρ和粘度μ也是定值。

所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。

根据实验数据和式(1-2)可计算出不同流速下的直管摩擦系数λ,用式(1-3)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。

⒉局部阻力系数ζ的测定22'u P h ff ζρ=∆=' (1-4) 2'2u P f∆⋅⎪⎪⎭⎫ ⎝⎛=ρζ (1-5)式中:-ζ局部阻力系数,无因次; -∆'f P 局部阻力引起的压强降,Pa ;-'f h 局部阻力引起的能量损失,J /kg 。

流体力学及泵与风机

流体力学及泵与风机
• 减漏环- 减少泵壳内高压区的排出液体返回低压区的流量。 • 密封装置- 防止压力增加时流体的泄漏。 • 轴向力平衡装置- 平衡轴向力。 2)离心式风机的主要部件 • 吸入口和进气箱-进气箱只有当进风口需要转弯时才采用。 • 叶轮-前弯式、后弯式、径向式。
• 机壳-收集来自叶轮的气体,并将部分动压转化为静压,最后将气体 导向出口。
(7)稳定气流能量方程各项的物理意义。 (8)利用流体流动基本方程求解速度和压力。
• 本章难点 (1)连通器的压力计算不仅需要掌握静止液体的静压力方程,也需 要一定的技巧,可能会有一定的难度。
(2)应用流体流动基本方程式求解工程计算问题需要掌握方程的适 用条件,基准面和计算断面的选取有一定的灵活性。巧妙地选取基准 面和计算断面可以减少未知量数目,达到简化计算的目的。有时更需 要进行间接计算,这方面的计算也会有一定困难。在参考例题计算的 基础上多做习题,困难就会很容易解决。
流体力学及泵与风机
04 设备
主要内容
1. 流体与流体机械 2. 流体力学基础 3. 泵与风机的性能 4. 流动阻力及管路特性曲线 5. 泵与风机的运行与调节 6. 管路系统设计与配置
1. 流体与流体机械
• 学习引导 本章介绍流体、流体机械、流体性质及几种主要流体机械的结构。对 流体机械在空调制冷系统中的应用也将通过实践环节进行介绍。
• 导流器-进口风量调节器 • 支撑与传动方式 (2)轴流式泵与风机的工作原理和部件结构
1)轴流泵的工作原理和部件结构
轴流泵的外形就像一根钢管,可以垂直安装、水平或倾斜安装。其主 要部件有吸入喇叭口、叶轮、轴和轴承、导叶、机壳、出水弯管及密 封装置等。
轴流泵的叶轮和泵轴一起安装在圆筒形的机壳中,机壳浸没在液体中。 泵轴的伸出端通过联轴器与电动机连接。当电动机带动叶轮做高速旋 转时,由于叶片对流体的推力作用,迫使进入机壳的流体产生回转及 向前的运动,从而使得流体的压力和速度都有所增加。增速和增压后 的流体经过固定在机壳上的导叶,旋转运动转化为轴向运动,于是旋 转的动能便转化为压力能,然后流体再通过出水口流出。

实验一流体阻力测定实验

实验一流体阻力测定实验

实验一 流体阻力测定实验(1)流体阻力测定一. 实验目的1、 学习直管摩擦阻力以及局部阻力的测定方法2、 测定直管摩擦阻力系数λ和局部阻力系数ξ3、 掌握直管摩擦阻力系数λ与雷诺数Re 和管子的相对粗糙度之间的关系及其变化规律 二、实验内容:1、 测定直管摩擦阻力以及直管摩擦阻力系数λ2、 测定阀门的局部阻力以及局部阻力系数ξ 三、实验原理(1)λ─Re 的计算在被测直管段的两取压口之间列柏努利方程式,可得:△P f =△P ( 1 )△P f L u 2h f =───=λ── ── ( 2 ) ρ d 22d △P f λ=── ── ( 3 ) L ρ u 2du ρ Re =─── ( 4 ) μ 符号意义:d ─管径 (m) L ─管长 (m) u ─流体流速 (m /s) △P f ─直管阻力引起的压降 (N /m 2)ρ─流体密度 (Kg /m 3) μ─流体粘度 (Pa.s) λ─摩擦阻力系数 Re ─雷诺准数测得一系列流量下的△P f 之后,根据实验数据和式(1),(3)计算出不同流速下的λ值。

用式(4)计算出Re 值,从而整理出λ─Re 之间的关系, 在双对数坐标纸上绘出λ─Re 曲线。

(2).局部阻力的计算:H f 局=ΔP 局/ρ=(2ΔP 近-ΔP 远)/ρ=ξ×(u 2/2)22up⨯∆=ρξ 四、实验装置及流程:1.实验设备流程图:水泵8将储水槽9中的水抽出,送入实验系统,首先经玻璃转子流量计2测量流量,然后送入被测直管段5或6测量流体流动的光滑管或粗糙管的阻力,或经7测量局部阻力后回到储水槽, 水循环使用。

被测直管段流体流动阻力△p可根据其数值大小分别采用变送器18或空气—水倒置∪型管10来测量。

1.实验系统流程示意图见图一所示2.压力传感器与直流数字电压表连接方法见图二五、实验方法及步骤:1.向储水槽内注水,直到水满为止。

(有条件最好用蒸馏水,以保持流体清洁)2.直流数字表的使用方法请详细阅读使用说明书。

管路特性曲线实验报告

管路特性曲线实验报告

管路特性曲线实验报告管路特性曲线实验报告概述:管路特性曲线是用来描述流体在管道中流动时的性质和行为的图表。

本实验旨在通过测量不同流量下的压力变化,绘制出管路特性曲线,并分析其对流体流动的影响。

实验步骤:1. 实验前准备:准备好实验所需的设备和材料,包括流量计、压力计、管道等。

确保设备的正常工作状态。

2. 设置实验条件:根据实验要求,调整流量计的流量,记录下不同流量下的数值,并调整管道的直径和长度。

3. 实验测量:按照实验条件,将流体从起点注入管道中,并记录下不同位置处的压力变化。

同时,记录下流体的温度和粘度等参数。

4. 数据处理:根据实验测量得到的数据,计算出不同流量下的流速、雷诺数等参数,并绘制出管路特性曲线。

5. 结果分析:根据管路特性曲线,分析不同流量下管道的阻力特性、流动状态等,并探讨其对流体流动的影响。

实验结果:根据实验数据和计算结果,我们得到了管路特性曲线。

曲线呈现出一定的规律性,随着流量的增加,管道的阻力逐渐增大。

同时,我们观察到在某一特定流量下,管道的阻力达到最小值,这说明在该流量下,流体的流动状态最为稳定。

进一步分析发现,管路特性曲线的形状与管道的几何形状、流体的性质等因素密切相关。

例如,当管道直径较大时,流体的流速较低,阻力较小;而当管道直径较小时,流体的流速较快,阻力较大。

此外,流体的粘度也会对管路特性曲线产生影响,粘度较大的流体在管道中流动时,阻力较大。

结论:通过本次实验,我们成功绘制了管路特性曲线,并对其进行了分析。

我们发现管道的几何形状、流体的性质等因素会对管路特性曲线产生影响。

在实际应用中,了解管路特性曲线对于设计和优化管道系统具有重要意义。

通过合理选择管道的直径、长度等参数,可以降低流体的阻力,提高系统的效率。

同时,本实验也存在一些限制和不足之处。

由于实验条件的限制,我们只能在一定范围内进行测量,不能涵盖所有可能的情况。

此外,实验中还可能存在一些误差,例如仪器的精度限制、实验操作等方面的误差。

化工原理第一章流体力学

化工原理第一章流体力学

反映管路对流体的阻力特性
表示管路中流量与压力损失之间 关系的曲线
管路特性曲线的概念
01
03 02
管路特性曲线及其应用
管路特性曲线的绘制方法 通过实验测定一系列流量下的压力损失数据 将数据绘制在坐标图上,并进行曲线拟合
管路特性曲线及其应用
01 管路特性曲线的应用
02
用于分析管路的工作状态,如是否出现阻塞、泄漏等
流速和流量测量误差分析
• 信号处理误差:如模拟信号转换为数字信 号时的量化误差、信号传输过程中的干扰 等。
流速和流量测量误差分析
管道截面形状不规则
导致实际流通面积与计算流通面积存在偏差。
流体流动状态不稳定
如脉动流、涡街流等导致流量波动较大。
流速和流量测量误差分析
仪表精度限制
仪表本身的精度限制以及长期使用后的磨损等因素导 致测量误差增大。
流体静压强的表示
方法
绝对压强、相对压强和真空受力平衡条件,推导出流体平 衡微分方程。
流体平衡微分方程的物理意义
描述流体在静止状态下,压强、密度和重力 之间的关系。
流体平衡微分方程的应用
用于求解流体静力学问题,如液柱高度、液 面形状等。
重力作用下流体静压强的分布规律
连续介质模型的意义
连续介质模型是流体力学的基础,它 使得我们可以运用数学分析的方法来 研究流体的运动规律,从而建立起流 体力学的基本方程。
流体力学的研究对象和任务
流体力学的研究对象
流体力学的研究对象是流体(包括液体和气体)的平衡、运动及其与固体边界的相互作 用。
流体力学的任务
流体力学的任务是揭示流体运动的内在规律,建立描述流体运动的数学模型,并通过实验和 计算手段对流体运动进行预测和控制。具体来说,流体力学需要解决以下问题:流体的静力

离心风机或泵的管路性能曲线及工作点(精)

离心风机或泵的管路性能曲线及工作点(精)

H 2=SQ
• 所以
2
管路流动特性: H=H1+H 2=
p 2 p1

+H Z+SQ 2。
离心式风机与泵的管路性能曲线及工作点
• 一、管路特性曲线 管路流动特性: H=H +H = p 2 p1 +H +SQ 2。 1 2 Z • 具体地讲,
• S=H2/Q2= H2`/Q`2,“`”表示设计值,如是算出S。
250
500 750 Q(m 3/h)
1000
离心式风机与泵的管路性能曲线及工作点
• 例题讨论: • 1、压力增加了50%,风量相应减少了(690-570)/690=17%。 说明压力急剧增加,风量的减少与压力的增加不成比例。也就是 说当管网计算压力与实际应耗压力有某些偏差时,对实际风量的 影响并不突出。 2、由于管路系统与风机联合运行,实际上的工作流量均不 能等于500 m3/h。 为了使风机供给的风量能够符合实际风量的要求,可采取以 下办法: p 1 ①减少或增加管网的阻力 2 如通过改变管径、阀门调节,使管网特 性改变,进而满足流量要求。图中,1→2, Q 表示管路阻力损失降低。
7 2 9 .7 8 08
(p2-p1)/γ +H Z
• 方法是:将两 • 条特性曲线绘在一 • 张图上,求出交点。
HZ p2
η 泵或风机 η -Q QA
A
2 , 0 8 7 .8 7 5 8
Q
离心式风机与泵的管路性能曲线及工作点
• 例题: • 当某管路系统风量为500m3/h时,系统阻力为300Pa,今预选 一个风机的特性曲线如图。①计算风机实际工作点;②当系统阻 力增加50%时的工作点;③当空气送入有正压 150Pa 的密封舱时 的工作点。 1000

化工原理流体流动实验

化工原理流体流动实验

流体流动综合实验(离心泵与管路特性曲线测定、流量性能测定)一、实验目的及任务1、熟悉离心泵的操作方法。

2、熟悉离心泵的结构与操作方法。

3、测定流量调节阀某一开度下管路特性曲线。

二、实验装置图-1 流动过程综合实验流程示意图1-水箱;2-水泵;3-入口真空表;4-出口压力表;5、16-缓冲罐顶阀;6、14-测局部阻力近端阀;7、15-测局部阻力远端阀;8、17-粗糙管测压阀;9、21-光滑管测压阀;10-局部阻力阀;11-压差传感器左阀;12-压力传感器;13-压差传感器右阀;18 、24-阀门;20-粗糙管阀;22-小转子流量计;23-大转子流量计;25-水箱放水阀;26-倒U型管放空阀;27- 倒U型管;28、30-倒U型管排水阀;29、31-倒U型管平衡阀三、实验原理离心泵特性曲线测定离心泵是最常见的液体输送设备。

在一定的型号和转速下,离心泵的扬程H、轴功率N及效率η均随流量Q而改变。

通常通过实验测出H—Q、N—Q及η—Q 关系,并用曲线表示之,称为特性曲线。

特性曲线是确定泵的适宜操作条件和选用泵的重要依据。

泵特性曲线的具体测定方法如下:(1) H 的测定:在泵的吸入口和排出5之间列柏努利方程出入入出出入入入-+++=+++f H gu g P Z H g u g P Z 2222ρρ (1) ()出入入出入出入出-+-+-+-=f H gu u g P P Z Z H 222ρ (2) 上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力,与柏努力方程中其它项比较,出入-f H 值很小,故可忽略。

于是上式变为:()gu u g P P Z Z H 222入出入出入出-+-+-=ρ (3) 将测得的()入出Z Z -和入出PP -值以及计算所得的出入u u ,代入上式,即可求得H 。

(2) N 测定:功率表测得的功率为电动机的输入功率。

由于泵由电动机直接带动,传动效率可视为1,所以电动机的输出功率等于泵的轴功率。

流体流动阻力及离心泵特性曲线测定

流体流动阻力及离心泵特性曲线测定

流体流动阻力及离心泵特性曲线测定流体流动阻力及离心泵特性曲线测定一.实验目的:1.通过实验学习直管阻力、直管摩擦系数的测定方法,理解并掌握流体流经直管时摩擦系数与雷诺数Re的关系。

2.学习局部阻力、局部阻力系数ζ的测定方法。

3.通过实验理解离心泵的工作原理和操作方法,加深对离心泵性能的了解。

4.掌握管路特性曲线的测量方法。

二.实验原理:1.流体流动阻力流体在管路中流动时,由于内摩擦力和涡流的存在,不可避免的引起能量的损失。

其损失主要有直管阻力损失和局部阻力损失。

(1)直管阻力损失流体在水平等径直管中稳定流动时,其阻力损失为: hf= ΔPf/ρ=(p1-p2)/ρ=λ(L/d)(u2/2) (3-1) λ=2dΔPf/ρLu2 (3-2) 式中 hf——单位质量流体流经Lm直管的机械损失,J/kg; 流体流经Lm直管的压降,Pa;λ——直管阻力摩擦系数,量纲为1; d——直管内径,m;ρ——流体密度,kg/m3 L——直管长度,m;u——流体在管内流动的平均流速,m/s。

层流时,λ=64/Re (3-3) Re=duρ/μ (3-4)式中 Re——雷诺数,量纲为1;μ——流体黏度,Pa*s。

湍流时λ既随雷诺数Re变化,又随相对粗糙度(ε/d)变化,情况比较复杂,需由实验确定。

由式(3-2)可知,欲测定λ,需确定L、d、ρ、μ,并测定ΔPf、u等参数。

L、d为装置参数(表格中给出),ρ、μ通过测定流体温度,再查相关手册而得,u可通过测定流体流量,再由流量方程计算得到。

采用U形管液柱压差计得:ΔPf=(ρ0-ρ)gR (3-5) 式中 R——柱液高度,m;ρ0——指示液密度,kg/m3根据实验装置结构参数L、d,指示液密度ρ0,流体温度t(用于查取流体物性ρ、μ)及实验时测定的流量Vs、液柱压差计得读数R,再通过(3-5)确定ΔPf、式(3-2)确定Re,用式(3-2)求取λ,再将Re和λ的关系绘制在对数坐标图上,从而揭示出不同流动形态的λ——Re关系。

(完整版)化工原理实验思考题答案

(完整版)化工原理实验思考题答案

(完整版)化工原理实验思考题答案实验一流体流动阻力测定1.在对装置做排气工作时,是否一定要关闭流程尾部的出口阀?为什么?答:是的。

理由是:由离心泵特性曲线可知,流量为零时,轴功率最小,电机负荷最小,起到保护电机的作用。

2.如何检测管路中的空气已经被排除干净?答:启动离心泵用大流量水循环把残留在系统内的空气带走。

关闭出口阀后,打开U 形管顶部的阀门,利用空气压强使U 形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。

3.以水做介质所测得的λ-Re 关系能否适用于其它流体?如何应用?答:(1)适用其他种类的牛顿型流体。

理由:从)/(Re,d ελΦ=可以看出,阻力系数与流体具体流动形态无关,只与管径、粗糙度等有关。

(2)那是一组接近平行的曲线,鉴于Re 本身并不十分准确,建议选取中间段曲线,不宜用两边端数据。

Re 与流速、黏度和管径一次相关,黏度可查表。

4.在不同设备上(包括不同管径),不同水温下测定的λ-Re 数据能否关联在同一条曲线上?答:只要/d ε相同,λ-Re 的数据点就能关联在一条直线上。

5.如果测压口、孔边缘有毛刺或安装不垂直,对静压的测量有何影响?答:没有影响.静压是流体内部分子运动造成的.表现的形式是流体的位能.是上液面和下液面的垂直高度差.只要静压一定.高度差就一定.如果用弹簧压力表测量压力是一样的.所以没有影响。

实验二离心泵特性曲线测定1.试从所测实验数据分析,离心泵在启动时为什么要关闭出口阀门?答:由离心泵特性曲线可知,流量为零时,轴功率最小,电机负荷最小,起到保护电机的作用。

2.启动离心泵之前为什么要引水灌泵?如果灌泵后依然启动不起来,你认为可能的原因是什么?答:(1)离心泵不灌水很难排掉泵内的空气,导致泵空转却不排水;(2)泵不启动可能是电路问题或泵本身已经损坏,即使电机的三相电接反,仍可启动。

3.为什么用泵的出口阀门调节流量?这种方法有什么优缺点?是否还有其他方法调节流量?答:(1)调节出口阀门开度,实际上是改变管路特性曲线,改变泵的工作点,从而起到调节流量的作用;(2)这种方法的优点时方便、快捷,流量可以连续变化;缺点是当阀门关小时,会增大流动阻力,多消耗能量,不经济;(3)还可以改变泵的转速、减小叶轮直径或用双泵并联操作。

化工原理实验报告(流体流动阻力测定)

化工原理实验报告(流体流动阻力测定)

化工原理实验报告实验名称:流体流动阻力测定班级:化实1101学号:2011011499*****同组人:陈文汉,黄凤磊,杨波实验日期:2013.10.24一、报告摘要通过测定阀门在不同的开度下的流体流量v q ,以及测定已知长度l 和管径d 的光滑直管和粗糙直管间的压差p ∆,根据公式22u l p d ρλ∆=,(其中ρ为实验温度下流体的密度);流体流速24d q u v π=,以及雷诺数μρdu =Re (μ为实验温度下流体粘度),得出湍流区光滑直管和粗糙直管在不同Re 下的λ值,并通过作Re -λ双对数坐标图,以得出两者的关系示意曲线,以及和光滑管遵循的Blasius 关系式比较关系,并验证了湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数。

由公式222121pu uρζ∆+=-可求出突然扩大管的局部阻力系数,以及由Re 64=λ求出层流时的摩擦阻力系数λ,再和雷诺数Re 作图得出层流管Re -λ关系曲线。

二、实验目的及任务1、掌握测定流体流动阻力实验的一般试验方法;2、测定直管的摩擦阻力系数λ及突然扩大管的局部阻力系数ζ;3、测定层流管的摩擦阻力系数λ;4、验证湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数;5、将所得光滑管的λ-Re 方程与Blas ius 方程相比较。

三、实验原理1、不可压缩液体在圆形直管中做稳定流动时,由于粘性和旋流作用产生摩擦阻力,流体在流过突然扩大,弯头等管件时,由于流体运动的速度和方向突然变化,产生局部阻力。

影响流体的阻力因素较多,在工程上通常采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果。

直管阻力损失函数:f (hf ,ρ,μ, l ,d ,ε, u )=0 应用量纲分析法寻找h f (ΔP /ρ)与各影响因素间的关系 1)影响因素物性:ρ,μ 设备:l ,d ,ε 操作:u (p,Z ) 2)量纲分析ρ[ML -3],μ[ML -1 T -1], l [L] ,d [L],ε[L],u [LT -1], h f [L 2 T -2]3)选基本变量(独立,含M ,L ,T ) d ,u ,ρ(l ,u ,ρ等组合也可以) 4)无量纲化非基本变量μ:π1=μρa u b d c [M 0L 0T 0] =[ML -1 T -1][ML -3]a [LT -1]b [L]c ⇒ a=-1,b=-1,c=-1 变换形式后得:π1=ρud /μl: π2=l/d ε: π3=ε/d h f : π4=h f /u 2 5)原函数无量纲化0,,,2=⎪⎪⎭⎫ ⎝⎛d l d du u h F f εμρ 6)实验22,22u d l u dl d du h f ⋅=⋅⋅⎪⎪⎭⎫ ⎝⎛=λεμρϕ 摩擦系数:()d εϕλRe,= 层流圆直管(Re<2000):λ=φ(Re )即λ=64/Re 湍流水力学光滑管(Re>4000):λ=0.3163/Re0.25湍流普通直管(4000<Re<临界点):λ=φ(Re,ε/d )即⎪⎪⎭⎫ ⎝⎛+-=λελRe 7.182log 274.11d湍流普通直管(Re>临界点):λ=φ(ε/d )即⎪⎭⎫ ⎝⎛-=d ελ2log 274.11对于粗糙管,λ与Re 的关系均以图来表示2、局部阻力损失函数22u h f ζ= 局部阻力系数:(局部结构)ϕζ=考虑流体阻力等因素,通常管道设计液速值取1~3m/s ,气速值取10~30m/s 。

5离心泵的特性曲线及管路特性曲线的测量实验指导书

5离心泵的特性曲线及管路特性曲线的测量实验指导书

实验五 离心泵特性曲线及管路特性曲线测定一、实验目的:1.熟悉离心泵的操作方法。

2.掌握离心泵特性曲线和管路特性曲线的测定方法、表示方法,加深对离心泵性能的了解。

二、实验内容:1.熟悉离心泵的结构与操作方法。

2.测定某型号离心泵在一定转速下的特性曲线。

3.测定流量调节阀某一开度下管路特性曲线。

三、实验原理:1.离心泵特性曲线的测定:离心泵是最常见的液体输送设备。

在一定的型号和转速下,离心泵的扬程H 、轴功率N 及效率η均随流量Q 而改变。

通常通过实验测出H —Q 、N —Q 及η—Q 关系,并用曲线表示之,称为特性曲线。

特性曲线是确定泵的适宜操作条件和选用泵的重要依据。

泵特性曲线的具体测定方法如下: (1) H 的测定:在泵的吸入口和排出口之间列柏努利方程出入入出出入入入-+++=+++f H g u g P Z H g u g P Z 2222ρρ (7)()出入入出入出入出-+-+-+-=f H gu u g P P Z Z H 222ρ (8)上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力,与柏努力方程中其它项比较,出入-f H 值很小,故可忽略。

于是上式变为:()gu u g P P Z Z H 222入出入出入出-+-+-=ρ (9)将测得的()入出Z Z -和入出P P -值以及计算所得的出入u u ,代入上式,即可求得H 。

(2) N 测定:功率表测得的功率为电动机的输入功率。

由于泵由电动机直接带动,传动效率可视为1,所以电动机的输出功率等于泵的轴功率。

即:泵的轴功率 N=电动机的输出功率,kW ;电动机输出功率=电动机输入功率×电动机效率; 泵的轴功率=功率表读数×电动机效率,kW 。

(3) η 测定 NNe=η (10) )(1021000Kw HQ g HQ Ne ρρ== (11)式中:η—泵的效率; N —泵的轴功率,kW ;Ne-泵的有效功率,kW ; H —泵的扬程,m ; Q —泵的流量,m 3/s ; ρ-水的密度,kg/m 3。

管路特性曲线

管路特性曲线

管道水头损失特性曲线是管道的水头损失随管道流量的变化曲线,可表示成
hf=SQ^2
泵水装置的管道系统特性曲线是提升高度与管道水水头损失总和随流量的变化曲线,即H=Ho+hf=Ho+SQ^2
水泵扬程和流量的关系曲线H=Hs+SpQ^2 是一条凹向下的曲线,而管道系统特性曲线是一条凹向上的曲线,对应的坐标与扬程和流量一样地看H跟Q。

扩展资料
什么叫管路特性,由于离心设备(包括压缩气体的离心机和压缩液体的离心泵)总是通过管路系统与外界相连,广其管路系统可能或长或短,或简单,或复杂,因此它表现出来一个特征,流体在管网中的流动阻力与流量的平方成正比。

这个比例系数就叫阻力系数。

同样的机泵,在不同的状况,在不同的单位、地点、系统中表现不完全一样,就是因为各系统的阻力系数不一样,这种特性就叫管路特性。

化工原理重要单元主要公式汇总

化工原理重要单元主要公式汇总

化工原理课程综合复习提纲化工原理重要单元主要公式汇总第1章 流体流动一、机械能衡算方程式 本章内容的核心公式是机械能衡算方程式:g2ud L g 2u g P Z H g 2u g P Z 22222e 2111⎪⎭⎫ ⎝⎛++++=+++∑ζλρρ (单位:J/N=m ) (1-1) 应用公式(1-1)注意以下几点:(1) 稳定流动、不可压缩性流体、自1-1至2-2的控制体内流体连续。

(2) Z 1、Z 2选择同一水平基准面,通常选择地平面或控制体1-1、2-2中的较低的一个。

(3) P 1、P 2同时以绝对压计或同时以表压计,并且注意单位均统一到N/m 2 。

(4) 自高位槽或高压容器向其他地方输送流体时一般不需要流体输送机械,此时,H e =0 。

(5) 公式中的每一项均是单位流体的能量,每牛顿流体的能量焦耳,形式上的单位是米。

H e 是流体输送机械加给每牛顿流体的能量焦耳数,阻力损失项亦是每牛顿流体的能量损失焦耳数。

(6) 根据所取的1-1、2-2截面的性质,灵活地确定u 1、u 2的数值。

(7) 阻力损失项中的流速取产生阻力损失的管段上的流速,有时管段不止一段。

(8) 若控制体内的阀门关闭,1-1、2-2截面上的流体能量便不再有任何关系。

(9) 若在等直径的管段,无流体输送机械,阻力损失可以忽略,(1-1)式变成流体静力学的形式。

应用公式(1-1)可解决以下方面的问题:(1) 在确定的控制体中,达到一定的流量,确定流体输送机械加给每牛顿流体的能量焦耳数及功率。

(2) 在确定的控制体中,达到一定的流量,确定起始截面1-1的高度或压强。

(3) 在确定的控制体中,可达到的流量(流速)。

(4) 在确定的控制体中,达到一定的流量,确定管径。

公式(1-1)的另两种形式:2udL2u P g Z w 2u P g Z 22222e 2111⎪⎭⎫ ⎝⎛++++=+++∑ζλρρ (单位:J/kg ) (1-2) ρζλρρρρρ2ud L 2u P g Z g H 2u P g Z 22222e 2111⎪⎭⎫ ⎝⎛++++=+++∑ (单位:J/m 3=N/m 2) (1-3)因为机械能衡算式中的每一项均是单位流体的能量,故计算流体输送机械的功率时应注意流体的总流量V q (单位:m 3/s)。

流体力学资料复习整理

流体力学资料复习整理

流体复习整理资料第一章 流体及其物理性质1.流体的特征——流动性:在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。

也可以说能够流动的物质即为流体。

流体在静止时不能承受剪切力,不能抵抗剪切变形。

流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。

只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。

运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不是变形的大小(与弹性体的不同之处)。

2.流体的重度:单位体积的流体所的受的重力,用γ表示。

g 一般计算中取9.8m /s 23.密度:=1000kg/,=1.2kg/,=13.6,常压常温下,空气的密度大约是水的1/8003. 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。

通常液体和低速流动的气体(U<70m /s )可作为不可压缩流体处理。

4.压缩系数:弹性模数:21d /d pp E N m ρβρ==膨胀系数:)(K /1d d 1d /d TVV T V V t ==β5.流体的粘性:运动流体内存在内摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。

流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现。

温度升高时,液体的粘性降低,气体粘性增加。

6.牛顿内摩擦定律: 单位面积上的摩擦力为:3/g N m γρ=p V V p V V p d d 1d /d -=-=β21d 1d /d d p V m NV p pρβρ=-=h U μτ=内摩擦力为: 此式即为牛顿内摩擦定律公式。

其中:μ为动力粘度,表征流体抵抗变形的能力,它和密度的比值称为流体的运动粘度ν τ值既能反映大小,又可表示方向,必须规定:公式中的τ是靠近坐标原点一侧(即t -t 线以下)的流体所受的内摩擦应力,其大小为μ du/dy ,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在实际工程计算中,可以简化为:
Recr=2000 Re>2000 为紊流 Re≤2000 为层流
de
第一节 圆管内流动
(3)非圆管内流态的判定 >临界雷诺数仍为2000,雷诺数低于2000为层流流动,雷诺数高于2000则为 紊流流动。然而,雷诺数计算公式中的直径d必须用当量直径 d e 代替。所谓 当量直径是指与非圆形截面管道具有相同流动阻力的圆管内径。
因此,对于层流:
f (Re)
对于紊流:
K f (Re, ) d
第三节 沿程阻力系数
3.2尼古拉兹曲线
第三节 沿程阻力系数
>五个阻力区
第三节 沿程阻力系数
3.3工业管道紊流沿程阻力系数计算 1.莫迪图与当量糙粒高度
第三节 沿程阻力系数
第三节 沿程阻力系数
2.紊流沿程阻力系数 的计算公式 (1)临界区 Re=2000~4000的临界过渡区内,可采用扎依琴柯的
p2 v2 p1 v1 g 2 g g 2 g
但二断面中压力能与动能之和相等,必然就有:
2
2
p1 p2
第一节 圆管内流动
3.管道内流动边界层
>边界层汇合前的阶段,即边界层发展的阶段称为流体进口段 >边界层汇合后的阶段称为流动充分发展阶段
第一节 圆管内流动
4.圆管中的速度分布
层流、紊流,管轴心处的速度均为最大速度,记为 vmax ;管壁处的速度为零。

1

8 sin

2
[(1
A1 2 A ) ] K (tg )1.25 (1 1 ) 2 A2 2 A2
第四节 局部损失计算
3.管径突然收缩
A2 0.5(1 ) A1
4.管径逐渐缩小


8 sin

2
[1 (
A1 2 ) ] A2
第四节 局部损失计算
5.管道进口
1.3边界层基本概念及圆管中的速度分布
1.平板边界层
流场中出现了两个性质不同的流动区域:紧贴固体壁面的薄层,流体受粘 性力的影响极大,速度变化极大,称为边界层
第一节 圆管内流动
2.曲面边界层及其分离观象
取同一水平线上流道截面积逐渐扩大的渐扩流道,如图下图所示,列出上 z1 z hl12 由于 0 下游断面间能量方程。为简化分析,假定 则有: 2
流道截面积 d e 4 RH 4 流道截面上被流体湿润 的周边长度
式中的 R H 称为水力半径。 边长为a和b的矩形管
ab 2ab d e 4 RH 4 2(a b) a b
4ab de a 2b
宽为a、高为b、水流湿润到整个高度的明渠
第一节 圆管内流动
—管段长度,m;
d —管道内径,m;
v—流体平均流速,m/s。
第二节 能量损失
2.2能量损失 >整个管路的能量损失为各管段的沿程损失与各处的局部损失之和
hl h f hm
>用压力形式表示的沿程损失和局部损失分别为
l v 2 pf d 2
pm
v 2
2
第三节 沿程阻力系数
3 紊流光滑区
尼古拉兹光滑区公式:
1

2 lg Re 0.8
0.3164 对于的光滑管流,布劳修斯提出经验公式: Re 0.25
第三节 沿程阻力系数
(3)紊流粗糙区 尼古拉兹粗糙区公式: (4)紊流过渡区 柯列勃洛克根据大量的工业管道实验资料,提出过渡区 计算公式, 简称柯氏公式:
第一节 圆管内流动
2.流动状态的判定 (1)雷诺数
Re=
vd


vd

–平均流速, m/s; v
d -圆管内径,m;
-流体运动粘度,m2/s。
d 一定时,雷诺数只随 当 和 出速度的影响。

而变化,所以在最初的实验中只反映 v
第一节 圆管内流动
(2)临界雷诺数 Re<2000 属层流运动 Re>4000 属紊流运动 2000< Re <4000属过渡流运动
>对于圆管内层流流动
v max v 2
>对于圆管内紊流流动
v 0.8vmax
第二节 能量损失
2.1能量损失 1.沿程损失与局部损失
第二节 能量损失
沿程损失与管道内径成反比,与管段的长度、速度水头成正比。在同一管径 的管段中,沿程损失沿管段均匀分布,即
l v2 hf d 2g

l
—沿程阻力系数,无因次数;
1

2 lg
r 1.74 K
1
K 2.51 2 lg( ) 3.7d Re
第三节 沿程阻力系数
3.洛巴耶夫判别式
光滑区 过渡区 粗糙区
v 11( 11(

K
)

K
) v 445(

K
)
v 445(

K
)

v
断面平均流速 流体运动粘度
6.阀门
第四节 局部损失计算

第四节 局部损失计算
4.1局部阻力系数计算 1.管径突然扩大 管径突然扩大时会形成局部的涡旋,造成局部损失。
v hm 1 1 2g
1 (1
A1 2 ) A2
2
2
v hm 2 2 2g
2 (
A2 1) 2 A1
第四节 局部损失计算
2.管径逐渐扩大 由于管径突然扩大的能量损失较大,一般均采用渐扩管。渐扩管较长,能量 损失包括沿程损失和局部损失两部分,相对于 1的阻力系数公式为:
流动阻力及管路特性曲线
第一节 圆管内流动
1.1雷诺实验
第一节 圆管内流动
1.2流态及流态的判定 1.层流与紊流 >当管内流体运动速度较低时,流体只作轴向运动,而无横向运动。实际 上此时流体在管内的运动是一种分层运动,各层间互不干扰,也互不相 混。这种流动状态称为层流。
>管中流体速度增大到一定程度时,流体在管中的横向运动十分剧烈,流 体间产生了强烈的混合。流体的层状运动被彻底打破,流体在向前流动 时处于无规则的混乱状态。这种流动状态称为紊流。
3.1沿程阻力系数的影响因素
层流流动时雷诺数较小,粘性力起着主导作用。层流的阻力也就是粘性阻力 ,仅仅取决于Re,而与管壁粗糙度无关。粘性阻力仍然取决于雷诺数,而惯 性阻力受壁面粗糙度的影响较大。粗糙度对沿程损失的影响不完全取决于管 壁表面粗糙突起的绝对高度K,而是取决于它的相对高度,即粗糙突起的绝 对高度K与管径d的比值,K/d,称为相对粗糙度。其倒数d/K称为相对光滑度。
相关文档
最新文档