中考数学复习专题教案23与圆有关的计算教案

合集下载

九年级数学上人教版《 圆中的有关计算》教案

九年级数学上人教版《 圆中的有关计算》教案

《圆中的有关计算》教案一、教学目标1.掌握圆的相关计算公式,包括半径、直径、周长、面积等。

2.学会使用这些公式解决实际问题。

3.培养学生的数学思维能力和实践能力。

二、教学内容1.圆的半径和直径的计算。

2.圆的周长的计算。

3.圆的面积的计算。

4.圆内接多边形的计算。

三、教学重点与难点重点:掌握圆的相关计算公式,并能熟练应用。

难点:灵活运用圆的计算公式解决实际问题,特别是圆内接多边形的计算。

四、教具和多媒体资源1.黑板和粉笔。

2.投影仪和相关教学软件(如PPT)。

3.教学模型:圆形纸板、圆规、量角器等。

五、教学方法1.激活学生的前知:回顾圆的定义和基本性质。

2.教学策略:通过实例讲解、小组讨论和实际操作,使学生掌握圆的相关计算方法。

3.学生活动:让学生自己动手进行圆的绘制和计算,培养其实践能力。

六、教学过程1.导入:通过问题导入,激发学生的学习兴趣。

例如,“如何计算圆的周长?”引导学生进入圆的相关计算的学习。

2.讲授新课:通过讲解和实例分析,让学生掌握圆的相关计算公式及其应用。

重点是讲解公式及其适用范围,并通过实例演示如何使用公式解决实际问题。

3.巩固练习:通过小组讨论和实际操作,让学生自己动手进行圆的绘制和计算。

教师巡视指导,及时解决学生在操作过程中遇到的问题。

同时,通过小组讨论的形式,鼓励学生互相交流学习心得,提高学习效果。

4.归纳小结:通过总结本节课的重点和难点,使学生明确学习目标,加深对圆的相关计算的理解和应用能力。

同时,通过总结圆的相关计算公式的适用范围和使用方法,帮助学生建立完整的知识体系。

5.布置作业:布置相关练习题和思考题,让学生在家中复习本节课所学内容,加深对圆的相关计算的理解和应用能力。

同时,鼓励学生通过互联网或查阅相关书籍资料的方式,拓展知识面和视野。

七、评价与反馈1.设计评价策略:通过课堂小测验、小组讨论和实际操作等方式,检测学生对圆的相关计算的掌握情况和应用能力。

同时,通过观察学生的表现和交流情况,及时发现学生在学习中存在的问题和困难,并给予相应的指导和帮助。

中考数学专题复习教案圆

中考数学专题复习教案圆

圆综合复习教学目标】1、回顾、思考本章所学的知识及思想方法,并能用自己的方式进行梳理,使所学知识系统化2、进一步丰富对圆及相关结论的认识,并能有条理地、清晰地阐明自己的观点3、通过复习课的教学,感受归纳的思想方法,养成反思的习惯【重点难点】圆的有关概念和性质的应用【课堂活动】一、圆的有关概念和性质二知识点详解(一)、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

(二)、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;(三)、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;(四)、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;A(五)、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥③CE DE =④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

与圆有关的计算复习教案

与圆有关的计算复习教案

与圆有关的计算复习教案第一篇:与圆有关的计算复习教案第三十五课时与圆有关的计算复习内容:冀教版数学九年级上册第二十七章复习目标:1.掌握弧长和扇形面积公式,会计算圆的弧长和扇形面积.2.了解圆锥侧面展开图为一个扇形,会计算圆锥的侧面积和全面积.复习重点:圆的弧长和扇形面积的计算.复习难点:有关弧长和扇形面积的综合应用.复习过程:一、复习回顾考点一弧长的有关计算1.(2011.安徽)如图(1)⊙○的半径为1,A、B、C是圆周上三点,∠BAC=36°,则劣弧BC的长是()π234A. B.π C.π D.π5555思考与解答:弧长公式是_________ 考点二扇形面积的计算2.(2010长沙)已知扇形面积为12π,半径等于6,则该扇形的圆心角等于________.3.已知扇形的弧长为4πcm,半径为3cm,则扇形面积为__________cm2.思考与解答:扇形面积计算公式是__________________ 考点三计算圆锥的侧面积和全面积4.(2011同仁)某盏路灯照射的空间可以看成如图所示的圆锥,它2的高AO=8m,底面半径OB=6m,则圆锥的侧面积是________m.思考与解答:(1)圆锥侧面展开图是一个____形,它的弧长等于圆锥的_________,它的半径长等于圆锥的_________.(2)已知圆锥的底面半径为r,母线为a,则圆锥侧面积是_________,表面积是_________.二探究总结5.如图所示,这是一个零件示意图,A、B、C处都是直角,弧MN是圆心角为90°的弧,AB=BC=7,AM=CN=3,则A.π B.32的长是()π C.2π D.4π6.(2012内江)如图AB是εo的直径,弦CD⊥AB,∠CDB=30°,CD=23,则阴影部分图形的面积为()A.4πB.2πC.πD.4π3思考与解答:解决这道题利用了我们复习过的哪些知识?三拓展提高7.如图是一个用来盛爆米花的圆锥形纸杯,纸杯口圆的直径EF长为10cm,母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A 点,则此蚂蚁爬行的最短路程为________cm.思考与解答:解决这个曲面上的最短路程问题你是怎么想的?8.(2011山西)如图,△ABC是等腰直角三角形,∠ACB=90°,AC =BC.把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是________.(结果保留π)思考与解答:(1)解决问题的关键是知道图形旋转时,图形上各点经过的路线是___________,要明确它的圆心、半径以及圆心角.(2)求不规则图形面积的方法是什么?四反思评价(一)反思(1)你认为这节课重点要掌握哪些知识?请写出来(2)你在哪些方面有所提高?(二)自测9.已知扇形的圆心角是150°,扇形的面积为240π,则该扇形的弧长为()A.5πB.10π C.20π D.40π10.线段AB与⊙O相切于点C,连结OA、OB,OB交⊙O 于点D,已知OA=OB=6cm,AB=63 cm,求:(1)⊙O的半径(2)图中阴影部分的面积.11.(2012广安)如图,Rt△ABC的边BC位于直线MN上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右无滑动地旋转,当点A第3次落在直线MN上时,点A所经过的路线的长为_______(结果用含有π的式子表示)第三十五课时答案1.B2.120°3.6π4.60π5.C6.D7.解析:求在曲面上的最短距离需要转化为平面上两点之间的距离.如图6-3-6所示,将圆锥的侧面展开,连接AE,AE即为蚂蚁爬行的最短路线.再借助于△AOE计算AE之长:AE=OE2+OA2=2418.π4 9.C 10.(1)如图所示,连结OC,∵AB与⊙O相切于点C ∴ OC⊥AB,∵OA=OB,∴AC=BC=12AB=122×63=33 c m.-AC2在Rt△AOC中,OC=OA3cm.(2)在Rt△COB中∵OC==3cm.∴⊙O的半径为12OB,∴∠B=30°,∠COD=60°.2∴扇形OCD的面积为60π⋅3360=32πS⊿OBC=12OC⋅BC=12⨯3⨯33=932 ∴阴影部分的面积为93-3π2cm211.解:∵Rt△ABC中,AC=,∠ACB=90°,∠A=30°,∴BC=1,AB=2BC=2,∠ABC=60°;∵Rt△ABC在直线MN上无滑动的翻转,且点A第3次落在直线MN上时,有3个的长,2个的长,∴点A经过的路线长=×3+)π.×2=(4+)π.故答案为:(4+第二篇:圆的整理与复习教案课题:第四单元圆整理和复习课型:复习学习目标:进一步的理解圆各部分的名称及特征,理解周长和面积的区别。

中考复习之——与圆有关的计算 优秀教案

中考复习之——与圆有关的计算 优秀教案

一、课题:中考复习之——与圆有关的计算二、学习目标:知识与能力:了解正多边形的概念及正多边形和圆的关系;会计算圆的弧长及扇形面积过程与方法:1、指导学生经历观察、猜想、验证、计算,归纳平移、旋转、轴对称、割补、等积变换等方法,掌握平行线、三角形、圆的有关性质定理的运用;2、鼓励学生在认真观察之后进行小组讨论,交流解题方法,探索最优解题途径;3、引导学生利用知识把复杂图形转化成简单几何图形进行求解,掌握转化的思想.情感态度与价值观:培养学生计算认真、细致、耐心的良好品质。

通过自主编题,激发学生学习热情和求知欲望,在探究过程中体会到成功的喜悦和学习的快乐,通过合作交流,培养学生的团队精神。

三、重点、难点:重点:与圆有关的面积计算难点:灵活运用转化思想,将复杂问题(图形)转化为简单问题(图形),提高求综合图形面积的计算能力四、学法、教法:学法:熟练运用公式进行正多边形、弧长、扇形面积的计算;学会运用转化的数学思想探究问题的本质,寻求到解决问题的最优方法。

教法:采用启发式教学,从学生原有知识出发,充分发挥学生的主体作用。

同时注重知识间的联系,类比迁移。

重视分层,使不同层次的学生让学生在主动中学数学、用数学,领悟数学的基本思想方法。

五、教学过程图1 图2 图3②在图2中画出上述的角和线段。

③就这三个图你能否尝试编一道、知识点二:弧长及扇形面积公1,圆内接正六边形、从图中找出一段弧________、一个扇形______________图1 图2 图3你能否计算出你找的弧长,扇形的面积?并思考是否有更简单的图1 图2 图3图4 图5课件准备:C 3πD 9π2图1 图22、如图2,ABCD⊥AB,∠CDB23,则阴影部分的面积为___________★★智力冲浪六、评价分析:为了达到最佳教学效果,在课堂教学中,一方面根据课堂上学生的态度、表情而做出即时性评价。

在评价时,坚持“积极评价”的原则,采用“激励”机制,始终运用以下三种“激励”方法:①预先性激励(期待性激励);②及时性激励;③总结性激励。

初三数学专题复习:与圆有关的计算复习教案

初三数学专题复习:与圆有关的计算复习教案

第23讲与圆有关的计算一、教学目标: 1、理解并掌握正多边形与圆、扇形的弧长和扇形的面积、圆锥的侧面积的有关计算,并能解决相关实际问题。

2、灵活运用公式进行与圆有关的计算,提高分析问题、解决问题的能力;3、在合作学习中增进师生间的交流,关注学困生的学习,使学生感受成功的喜悦。

二、教学重难点:1、灵活运用公式进行与圆有关的计算。

2、灵活运用公式的互化、准确计算是重点,也是难点。

三、教学用具:PP、三角板、彩色粉笔四、学情分析:学生已经具备一定的逻辑分析和计算能力,教学中注重分析计算的合理性和常规解法,教学中要注重培养学生分析的方法和思维的严谨性以及计算的准确性。

五、教学方法:讨论、交流、讲练结合法。

六、教学资源:教学设计、教材、复习练习册七、教学过程:(一)正多边形和圆的有关计算2、填表3、要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直径最小要____cm.2=360n r S π扇形34、如图,四边形ABCD 是⊙O 的内接正方形,若正方形的面积等于4,求⊙O 的面积. 5、如图,M,N 分别是☉O 内接正多边形AB,BC 上的点,且BM=CN . (1)求图①中∠MON=_______;图②中∠MON = ; 图③中∠MON = ;(2)试探究∠MON 的度数与正n 边形的边数n 的(二)、扇形的弧长和扇形的面积公式直接应用:1、已知弧所对的圆心角为60°,半径是4,则弧长为____. 2、已知半径为2cm 的扇形,其弧长为43π ,则这个扇形的面积S 扇=3、已知扇形的圆心角为120°,半径为2,则这个扇形的面积S 扇= .4、已知弧所对的圆周角为90°,半径是4,则弧长为5、如图,☉A 、☉B 、 ☉C 、 ☉D 两两不相交,且半径都是2cm ,则图中阴影部分的面积是5、如图,Rt △ABC 中,∠C =90°, ∠A =30°,BC =2,O 、H 分别为AB 、AC 的中点,将△ABC 顺时针旋转120°到△A 1BC 1的位置,则整个旋转过程中线段OH 所扫过的面积为多少?6、如图,Rt △ABC 的边BC 位于直线l 上,AC , ∠ACB =90°,∠A =30°.若Rt △ABC由现在的位置向右无滑动地翻转,当点A 第3次落在直线l 上时,点A 所经过的路线的长为________(结果用含π的式子表示)2360180n n Rl R ==ππ2=+=S S r rlππ+侧全底 S(三)圆锥的侧面积和全面积1、已知一个圆锥的底面半径为12cm ,母线长为20cm ,则这个圆锥的侧面积为 ,全面积为 .2、一个圆锥的侧面展开图是一个圆心角为120°、弧长为20 的扇形,试求该圆锥底面的半径及它的母线的长.3、 如图,圆锥形的烟囱帽,它的底面直径为80cm,母线为50cm.在一块大铁皮上裁剪时,如何画出这个烟囱帽的侧面展开图?求出该侧面展开图的面积.(思政元素:体会生活中的数学,数学源于生活,又服务于生活,用数学眼光发现生活中的数学)(六)课堂小结:总结本课知识点和常规解法指导。

数学人教版九年级上册与圆有关的计算复习课教案设计

数学人教版九年级上册与圆有关的计算复习课教案设计

《与圆有关的计算》复习课教学设计北兴初级中学李金环一、课题:与圆有关计算的复习课二、学情分析:《与圆有关的计算》复习课这节课的内容是中考选择题或填空题甚至是在大题也要考的知识,这节课的知识对于记住有关的公式非常重要。

结合本校学生的具体情况,本人在教学中不按照传统的教师复习基础知识-学生做练习-教师讲解的模式进行,而是采用练习发现-归纳方法-综合应用-数学思想转化的模式。

这种教法主要是针对初三学生已经具有与圆有关计算的基础知识,但又记忆不清的情况下进行,通过让学生在解题中回忆知识、运用知识,最后把知识系统化、情境化。

让不同层次的学生在这样模式下获得不同程度的成功体验。

三、教学设想:本节课采用练习-归纳-应用-转化的教学思想通过让学生练习,在练习中有目的的回顾旧知识和梳理有关圆计算的知识网络,接着应用知识解决问题,最后回归到数学学习的灵魂——数学转化思想,让学生的数学思维得到进一步的拓展和提升。

四、教学目标:1、熟练掌握弧长、扇形的面积、圆锥侧面积及全面积等有关圆计算的公式2、能应用有关圆的公式进行计算五、重点:有关圆的公式应用六、难点:知识的迁移,变式和综合运用七、教学过程:(一)以题点知:1、已知圆的半径是5cm,则圆的周长是 cm2、已知圆的半径是4cm,则圆的面积是 cm23、半径为6cm的圆中,1200的圆心角所对的弧长为 cm4、已知扇形的半径是4cm,圆心角为450,则扇形的面积是 cm25、扇形的半径R=5cm,弧长是6πcm,则扇形的面积是 cm26、如果圆锥的母线长为5cm,底面半径为2cm,则圆锥的侧面积是cm27、已知圆锥的底面半径为4,母线长为6,则它的全面积是设计意图:让学生先独立完成练习,再进行小组合作议论的形式,让学生回顾学习过的相关公式。

(二)、知识归纳: 名称 公式 名称公式 圆的周长 扇形面积圆的面积 圆锥侧面积弧长圆锥全面积 设计意图:把公式归纳并板书黑板,便于学生更牢固的记住公式。

初三圆的复习教案

初三圆的复习教案

初三圆的复习教案教案标题:初三圆的复习教案教学目标:1. 学生能够理解圆的概念,并能正确使用圆的术语。

2. 学生能够计算圆的周长和面积。

3. 学生能够应用圆的相关概念解决实际问题。

4. 学生能够发展对圆形图形的观察和推理能力。

教学准备:1. 教学PPT或白板。

2. 圆规、直尺和铅笔。

3. 纸板或绘图纸。

4. 练习题和答案。

教学过程:Step 1: 引入1. 在白板上画一个圆形,引导学生回顾圆的定义,并解释相关术语(圆心、半径、直径、弧、弦、切线等)。

2. 提问学生有关圆的特征和性质,激发他们对圆更深入的思考。

Step 2: 计算圆的周长和面积1. 提醒学生关于计算周长和面积的公式(周长=2πr,面积=πr²)。

2. 通过示范,解释如何根据给定的半径或直径计算圆的周长和面积。

3. 给学生一些练习题,让他们独立计算圆的周长和面积,并检查答案。

Step 3: 圆的相关问题1. 提供一些实际问题,要求学生应用所学知识解决。

例如:一个花坛的形状是一个半径为4米的圆,求花坛周围的围墙长度和花坛的面积分别是多少?2. 引导学生思考解决问题的方法,并鼓励他们用图画或数学计算来解决。

Step 4: 圆形图形观察和推理1. 准备一些不同大小和位置的圆形图形,让学生观察并描述它们的特征和相似之处。

2. 引导学生思考圆形图形的一些共同特点,并鼓励他们提出自己的观察和推理。

例如:如何通过测量圆的直径来判断两个圆是否相等?3. 给学生几个挑战性的问题,鼓励他们思考并解决。

Step 5: 小结和反思1. 总结圆的相关概念和计算方法。

2. 要求学生回顾整个课堂内容,自我评价学习效果。

3. 鼓励学生思考如何将所学知识应用到实际生活中。

教学扩展:1. 鼓励学生自行寻找更多关于圆的实际问题并解决。

2. 设计一些有趣的游戏或活动,帮助学生巩固对圆的概念的理解。

教学评估:1. 在课堂上观察学生的参与度和对圆概念的理解程度。

2. 分发练习题和挑战性问题,检查学生对圆的计算和应用能力。

圆复习课教案初中数学

圆复习课教案初中数学

圆复习课教案初中数学教学目标:1. 复习并巩固圆的基本概念、性质和公式;2. 提高学生解决与圆相关的实际问题的能力;3. 培养学生的逻辑思维能力和团队合作精神。

教学内容:1. 圆的基本概念:圆的定义、圆心、半径;2. 圆的性质:圆的对称性、圆的周长和面积公式;3. 与圆相关的实际问题:圆的周长和面积的计算、圆的直径和半径的关系。

教学过程:一、导入(5分钟)1. 复习圆的定义:一个平面上所有点到一个固定点的距离都相等的点的集合;2. 引导学生回顾圆的基本性质,如对称性、周长和面积公式等。

二、自主学习(15分钟)1. 学生自主复习圆的性质,总结圆的周长和面积公式;2. 学生通过练习题巩固圆的性质和公式的应用。

三、合作探究(15分钟)1. 学生分组讨论与圆相关的实际问题,如圆的周长和面积的计算、圆的直径和半径的关系;2. 各小组选取一道实际问题,进行展示和讲解,其他小组成员进行评价和补充。

四、巩固练习(15分钟)1. 学生独立完成练习题,巩固圆的性质和公式的应用;2. 教师选取部分学生的练习题进行讲解和分析,指出错误和不足之处。

五、总结和反思(5分钟)1. 学生总结本节课的收获和不足,制定下一步的学习计划;2. 教师对学生的表现进行评价,鼓励学生继续努力。

教学评价:1. 学生课堂参与度:观察学生在课堂上的发言和练习情况,了解学生的学习状态;2. 学生练习题完成情况:检查学生的练习题,评估学生对圆的性质和公式的掌握程度;3. 学生合作探究能力:评价学生在小组合作中的表现,如沟通、协作、解决问题等能力。

教学资源:1. 圆的性质和公式PPT;2. 与圆相关的实际问题练习题。

中考数学复习第30课时《与圆有关的计算》教案

中考数学复习第30课时《与圆有关的计算》教案

中考数学复习第30课时《与圆有关的计算》教案一. 教材分析《与圆有关的计算》是中考数学的重要内容之一,主要包括圆的周长、面积、弧长、扇形的面积等计算方法。

这部分内容在中考中占有较大比重,是学生必须掌握的知识点。

通过本节课的学习,使学生理解圆的计算方法,提高解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了相似多边形的性质、圆的定义、圆的性质等基础知识。

但部分学生在理解圆的计算方法,尤其是涉及到圆的周长、面积等公式的灵活运用上还存在困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导。

三. 教学目标1.理解圆的周长、面积、弧长、扇形的面积等计算方法。

2.能够灵活运用圆的计算公式解决实际问题。

3.提高学生的数学思维能力和解决问题的能力。

四. 教学重难点1.圆的周长、面积公式的理解和运用。

2.弧长、扇形面积的计算方法。

五. 教学方法1.采用问题驱动法,引导学生主动探究圆的计算方法。

2.利用多媒体辅助教学,直观展示圆的计算过程。

3.采用小组合作学习,培养学生团队合作精神。

4.注重个体差异,针对性地进行辅导。

六. 教学准备1.多媒体教学设备。

2.教学课件。

3.练习题。

七. 教学过程1.导入(5分钟)利用多媒体展示生活中的圆形物体,如硬币、地球等,引导学生关注圆的周长和面积。

提问:你知道这些物体的周长和面积是如何计算的吗?2.呈现(10分钟)讲解圆的周长和面积公式,以及如何运用这些公式解决实际问题。

通过例题,展示圆的周长和面积的计算过程。

3.操练(10分钟)学生独立完成练习题,巩固圆的周长和面积的计算方法。

教师巡回指导,针对性地进行辅导。

4.巩固(5分钟)针对学生练习中出现的问题,进行讲解和辅导。

再次强调圆的周长和面积公式的运用。

5.拓展(10分钟)讲解弧长和扇形面积的计算方法,引导学生运用所学知识解决实际问题。

6.小结(5分钟)对本节课的主要内容进行总结,强调圆的计算方法及其应用。

初中与圆有关计算教案

初中与圆有关计算教案

初中与圆有关计算教案一、教学目标:1. 让学生掌握圆的周长和面积的计算公式。

2. 培养学生运用圆的周长和面积公式解决实际问题的能力。

3. 培养学生对数学的兴趣,提高学生的数学素养。

二、教学内容:1. 圆的周长公式:C = 2πr2. 圆的面积公式:S = πr²三、教学重点与难点:1. 圆的周长公式的推导和应用。

2. 圆的面积公式的推导和应用。

四、教学方法:1. 采用问题驱动法,引导学生思考圆的周长和面积的计算方法。

2. 利用几何画板软件,动态展示圆的周长和面积的计算过程。

3. 开展小组讨论,培养学生合作学习的能力。

五、教学步骤:1. 导入新课:利用生活中的实例,如自行车轮胎、圆形桌面等,引导学生思考圆的周长和面积的计算方法。

2. 探究圆的周长公式:(1)引导学生观察圆的周长与半径的关系。

(2)让学生自己动手测量圆的周长和半径,记录数据。

(3)引导学生发现圆的周长与半径成正比,总结出圆的周长公式:C = 2πr。

3. 探究圆的面积公式:(1)引导学生将圆转化为近似的长方形,观察长方形的面积与圆的面积的关系。

(2)让学生自己动手切割圆,制作近似长方形,测量数据。

(3)引导学生发现长方形的面积与圆的面积成正比,总结出圆的面积公式:S = πr²。

4. 公式应用:(1)让学生运用圆的周长公式计算实际问题,如自行车轮胎的周长。

(2)让学生运用圆的面积公式计算实际问题,如圆形桌面的面积。

5. 巩固练习:设计一些有关圆的周长和面积的计算题,让学生独立完成,检验学习效果。

6. 总结与反思:让学生回顾本节课所学内容,总结圆的周长和面积的计算方法,反思自己在学习过程中的收获和不足。

六、课后作业:1. 请学生运用圆的周长和面积公式,解决一些实际问题。

2. 请学生总结圆的周长和面积公式的推导过程,加深对公式的理解。

3. 请学生收集生活中的圆形物体,测量其周长和面积,增强对圆的周长和面积公式的应用能力。

初中圆复习课教案

初中圆复习课教案

教案:初中圆复习课课程目标:1. 巩固和掌握圆的基本概念、性质和公式;2. 提高学生解决实际问题的能力;3. 培养学生的空间想象能力和逻辑思维能力。

教学内容:1. 圆的基本概念:圆的定义、圆心、半径;2. 圆的性质:圆的对称性、周长和面积的计算公式;3. 圆的方程:圆的标准方程、一般方程;4. 圆的实际应用问题。

教学过程:一、导入(5分钟)1. 复习圆的基本概念:提问学生圆的定义、圆心和半径的概念;2. 复习圆的性质:提问学生圆的对称性、周长和面积的计算公式;3. 复习圆的方程:提问学生圆的标准方程和一般方程的概念。

二、课堂讲解(20分钟)1. 圆的基本概念:详细讲解圆的定义,强调圆心、半径的概念及重要性;2. 圆的性质:讲解圆的对称性,引导学生理解圆的周长和面积的计算公式,并进行例题演示;3. 圆的方程:讲解圆的标准方程和一般方程的定义,引导学生掌握方程的解法。

三、练习与讨论(15分钟)1. 布置练习题:让学生独立完成一些关于圆的性质和方程的练习题,巩固所学知识;2. 学生讨论:让学生分组讨论练习题中的问题,促进学生之间的交流与合作。

四、实际应用问题(10分钟)1. 提出实际应用问题:给出一些与圆相关的实际问题,让学生运用所学知识解决;2. 学生解答:让学生独立或分组解答实际应用问题,培养学生的解决问题能力。

五、总结与反思(5分钟)1. 课堂小结:教师引导学生总结本节课所学的主要内容和知识点;2. 学生反思:让学生反思自己在课堂上的学习情况和收获,提出疑问。

教学评价:1. 课堂讲解的清晰度和连贯性;2. 学生练习和讨论的积极性和参与度;3. 学生解决实际问题的能力和创新思维。

教学资源:1. 教材或教辅资料;2. 练习题;3. 教学PPT或黑板。

教学建议:1. 注重学生基础知识的巩固,加强对圆的基本概念、性质和公式的讲解;2. 鼓励学生积极参与课堂讨论,提高学生的逻辑思维和空间想象能力;3. 结合实际应用问题,培养学生的解决问题能力和创新思维。

圆的复习教学设计(通用8篇)

圆的复习教学设计(通用8篇)

圆的复习教学设计圆的复习教学设计(通用8篇)作为一名人民教师,时常需要编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。

那么问题来了,教学设计应该怎么写?下面是小编收集整理的圆的复习教学设计,仅供参考,希望能够帮助到大家。

圆的复习教学设计篇1教学目标:1.引导学生通过大量的生活实例认识圆,掌握圆的特征,理解直径与半径的相互关系,会用圆规画圆。

2.培养学生观察、分析、抽象概括等思维能力和初步的空间想象力。

教学重点和难点由于学生第一次接触圆规,所以用圆规画圆是难点,掌握圆的特征是重点。

教学过程:一、复习准备在日常生活中,你见过哪些物体是圆形的呢?(指名回答)在日常生活中有很多很多的圆形,如有的钟面是圆形的,当然钟面也可以做成方的;现在的硬币有多边形的,也有圆形的。

唯独车轮子,不管是中国的还是外国的,不管是大车还是小车的车轮子,为什么都要做成圆的呢?(产生疑问,引起争议,激发起学生的学习兴趣。

)这节课我们就来学习“圆的认识”。

通过这节课的学习,我们就可以圆满地解决这个问题。

(板书课题:圆的认识)二、学习新课1.认识圆心、半径、直径。

同学们在操场上做游戏,想画一个比较标准的大圆,可以怎么画?(指名回答)(老师在黑板上演示用绳子画圆)先取一段绳子,把绳子的一端固定在一点上,另一端套在石头和棍棒上,然后拉紧绳子,绕着这个固定的点转一周就画出了一个圆。

老师刚才画圆时,中间的点怎么样?(中间的点不动。

)我们把这个不动的点叫定点。

(板书:定点)粉笔画出的线为什么能首尾相接呢?应该说圆上任意一点到定点的距离都是相等的,我们把这段相等的距离叫定长。

(板书:定长)如果我们在本上画圆,用我们刚才画圆的方法方便吗?(不方便)那可以怎么画?(出示圆规)这是我们画圆的工具——圆规。

圆规有两个脚,一脚带尖,另一脚带笔。

认真看老师怎样用圆规画圆。

画圆时,先定好一点,然后把圆规的两脚分开,定好两脚的距离,把有针尖的一脚固定在这点上,把带有铅笔的一脚旋转一周就画出了一个圆。

人教版初三数学下册中考总复习《与圆有关的计算》教学设计

人教版初三数学下册中考总复习《与圆有关的计算》教学设计

教学设计课题:与圆有关的计算课型:复习课年级:九年级教学目标:1.会计算弧长及扇形的面积.2.了解正多边形的概念及正多边形与圆的关系.3.会利用基本作图作圆的内接正四边形和内接正六边形.教学重点与难点:重点:掌握弧长及扇形的面积的面积公式.难点:灵活运用弧长及扇形的面积的面积公式进行有关计算.课前准备:课件、导学案教学过程:教学过程:一、中考调研,考情播报活动内容:(多媒体出示复习目标)1.会计算弧长及扇形的面积.2.了解正多边形的概念及正多边形与圆的关系.3.会利用基本作图作圆的内接正四边形和内接正六边形.处理方式:利用多媒体出示复习目标.设计意图:在这一环节中,通过目标的揭示,让学生明确了复习内容和要求,为本节课的复习指明了方向.二、基础梳理,考点扫描活动内容:(复习导学案出示回顾内容)考点一正多边形1.正多边形的概念:各边相等,各角也相等的多边形叫做正多边形.2.正多边形与圆的关系可以这样表述:把圆分成n(n≥3)等份,依次连接各分点所得的多边形就是这个圆的内接正n边形.利用这一关系可以判定一个多边形是否是正多边形或作出一个正多边形.这个圆是这个正多边形的外接圆;正多边形的外接圆的圆心叫做这个正多边形的中心;外接圆的半径叫做这个正多边形的半径;正多边形每一边所对的圆心角叫做正多边形的中心角;中心到正多边形一边的距离叫做正多边形的边心距.3.对称性:①正多边形的轴对称性:正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心.②正多边形的中心对称性:边数为偶数的正多边形是中心对称图形,它的中心是对称中心. ③正多边形的旋转对称性:正多边形都是旋转对称图形,最小的旋转角等于中心角. 考点二 弧长及扇形的面积1. 弧长公式:(其中l 为n °的圆心角所对的弧长)2. 扇形的面积公式:213602n R S lR π==考点三 求不规则图形和阴影部分图形面积的几种常见方法(1)公式法; (2)割补法 ;(3)拼凑法; (4)等积变形构造方程法;考点四 图形的变换在图形的翻(旋)转、滚动、翻折中求弧长或面积考点五 圆的计算的综合应用求弧长、求面积以及与函数有关的综合题设计意图:这一节课的知识点较多,如果用课堂时间来看书梳理很占用时间,因此通过“导学案”形式让学生在上课之前回顾整理相关知识,这样既节省时间又培养了学生自主学习的习惯.三、典例分析,导练结合活动内容1:(多媒体出示)考点一:正多边形例1 如图,正六边形ABCDEF 的边长为6cm ,求这个正六边形的外接圆半径R 、边心距r 6、面积S 6.处理方式:学生讨论交流,在导学案上完成后再展示说明,学生之间互相补充.教师适时点评,然后师生共同总结所考查知识点.设计意图:本活动的设计意在引导学生通过自主探究、合作交流,对正多边形的有关知识有更深层次的理解和认识,从而实现由理解到应用的质的跨越.跟踪训练:180n Rl π=n°OBA1. (2013山东滨州)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为 ( )A .6,32 B.32,3 C .6,3 D .62,32 2.圆内接正五边形ABCDE 中,对角线AC 和BD 相交于点P ,则∠APB 的度数是( ).A .36°B .60°C .72°D .108°活动内容2:(多媒体出示)考点二 弧长及扇形的面积例 2 (1) 如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC ,若ABC ∠=120°,OC =3,则BC 的长为( ) A .π B .2π C .3π D .5π(2)在平面内,将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过的面积为____ .处理方式:对于(1)中求弧长,让学生讨论交流怎么办?需要加什么辅助线?教师不要直接给出做法,要适时引导,然后师生共同总结办法.(2)中线段AB 扫过的面积是什么图形?让学生去发现方法.设计意图:圆的切线垂直于过切点的半径,连过切点的半径是圆中常作的辅助线之一;熟记弧长公式180n rl π=是求弧长的基础,设法求出弧所对圆心角的度数是关键;要善于利用数形结合思想画出图形利用公式求解.跟踪训练:(1) 在半径为6cm 的圆中,60º圆心角所对的弧长为 cm .(结果保留π) (2) 一个扇形的圆心角为120°,半径为3,则这个扇形的面积为_____(结果保留π) 处理方式:由两名学生板演,其余学生在导学案上完成.完成后,让学生对板演的同学进行评价,教师及时点评.设计意图:通过巩固训练题组的处理,促使学生将所学知识加以应用,在应用中加深对知识的理解.活动内容3:(多媒体出示)考点三 求不规则图形和阴影部分图形面积的几种常见方法例3 如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD = ,则阴影部分B233π2图形的面积为( )A .4πB .2πC .πD .处理方式:由于题目中的图形不是规则图形,因此要将该图形的面积转化成易求的规则图形来解决,让学生思考:怎样添加辅助线来达到转化的目的?动员学生先尝试解决,然后交流.设计意图:圆的有关性质是中考高频考点,而图形面积也是多数地方必考之处,将它们结合可谓珠联璧合.解答此题需在多处转化:一是将阴影面积转化为扇形面积问题解决;二是由圆周角度数求出圆心角度数;三是发现图中存在的全等三角形,这一点是解题关键.跟踪训练:1.如图,在⊙O 中,直径AB=2,CA 切⊙O 于A ,BC 交⊙O 于D ,若∠C =45°, 则(1)BD 的长是 ; (2)求阴影部分的面积.2.如图,在平行四边形ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是______(结果保留π).处理方式:由两名学生板演,其余学生在导学案上完成,完成后师生共评. 设计意图:通过巩固训练题组的练习,使学生加深对该知识点的理解和掌握.活动内容4:(多媒体出示)考点四 图形的变换例4 (1)如图,Rt △ABC 的边BC 位于直线l 上,AC =3,∠ACB =90o ,∠A =30o ,若Rt △ABC 由现在的位置向右无滑动地翻转,当点A 第3次落在直线上l 时,点A 所经过的路线的长为________________(结果用含л的式子表示).AO B DC30°A'CA A''(2)如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了 ( ) A .2周 B .3周C .4周D .5周处理方式:由学生先分析确定旋转中心、旋转半径以及旋转角度,第(2)题最容易出错的地方就是在顶点处的旋转,难度较大,教师要引导学生动手操作一下,正确答案就出来了.设计意图:解答旋转问题,确定旋转中心、旋转半径以及旋转角度是前提,另外计算连续的弧长问题,注意旋转规律,进行多次循环旋转的有关弧长之和的计算. 跟踪训练:(1)如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为 ( )A .10πB .103C .103π D .π(2)如图,在扇形OAB 中,∠AOB =90°,半径OA =6.将扇形OAB 沿过点B 的直线折叠.点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,求整个阴影部分的周长和面积. 处理方式:要求学生独立完成,但教师要视情况个别辅导. 设计意图:第(1)题考查的知识点有网格中的勾股定理求AC ,第(2)题考查了折叠的性质、扇形面积公式、弧长公式以及直角三角形的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.活动内容5:(多媒体出示)考点五 圆的计算的综合应用例5 如图在△ABC 中,BE 是它的角平分线,∠C =900,D 在AB 边上,以DB 为直径的半圆O 经过点E 交BC 于点F . (1)求证:AC 是⊙O 的切线;(2)已知sin A =12 ,⊙O 的半径为4,求图中阴影部分的面积.AODABC处理方式:教师要引导学生添加正确的辅助线,同时学会转化求阴影部分的面积. 设计意图:本题考查了切线的判定与性质及扇形面积的计算,解题的关键是连接圆心和切点,利用过切点且垂直于过切点的半径来判定切线. 四、回顾反思,提炼升华经过本节课的回顾与复习,你对这部分知识是否有了新的认识?你还存在哪些困惑?和你的同桌交流一下.处理方式:给学生2分钟左右的时间,让学生自主交流课堂实践的经历、感受和收获,然后找2—3名学生尝试谈谈自己的收获.设计意图:教师鼓励学生交流课堂实践的经历、感受和收获;培养学生的归纳能力,使学生形成完整的知识结构,培养学生的自我评价能力、反思意识及总结能力.五、达标检测,反馈提高活动内容:课堂检测(出示多媒体)1.如图,将边长为1 cm 的等边三角形ABC 沿直线l 向右翻动(不滑动),点B 从开始到结束,所经过路径的长度为( )A .32π cmB .(2+23π) cmC .43π cm D .3 cm2.(2014·黔西南州)如图,点B ,C ,D 都在⊙O 上,过C 点作CA ∥BD 交OD 的延长线于点A ,连接BC ,∠B =∠A =30°,BD =2 3. (1)求证:AC 是⊙O 的切线;(2)求由线段AC ,AD 与弧CD 所围成的阴影部分的面积.(结果保留π)处理方式:学生独立完成,对学生错误较多的题目进行讲解. 设计意图:检验学生对本节所复习到的知识的理解能力和运用程度. 六、布置作业 课后促学 《初中复习指导丛书》 强化训练126—128题板书设计。

初中总复习圆教案

初中总复习圆教案

初中总复习圆教案一、教学目标1. 知识与技能目标:使学生掌握圆的基本概念、性质和公式,能够运用圆的知识解决实际问题。

2. 过程与方法目标:通过复习,提高学生的逻辑思维能力、空间想象能力和解决实际问题的能力。

3. 情感、态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的重要性。

二、教学内容1. 圆的基本概念:圆的定义、圆心、半径、直径等。

2. 圆的性质:圆的对称性、圆的周长和面积公式、圆的切线、弧、弦等。

3. 直线与圆的位置关系:相交、相切、相离。

4. 圆的方程:圆的标准方程、圆的一般方程。

5. 圆的应用:解决实际问题,如圆形几何图形的计算、生活中的圆形问题等。

三、教学过程1. 复习导入:回顾直线与圆的位置关系,引导学生思考如何判断直线与圆的位置关系。

2. 知识回顾:引导学生复习圆的基本概念、性质和公式,如圆的周长和面积公式、圆的切线、弧、弦等。

3. 例题讲解:选择典型的例题,讲解解题思路和方法,引导学生运用圆的知识解决实际问题。

4. 练习与讨论:布置练习题,让学生独立完成,然后进行讨论,互相交流解题心得。

5. 总结与反思:对本节课的知识进行总结,引导学生思考如何将圆的知识应用到生活中。

四、教学策略1. 采用问题驱动的教学方法,引导学生通过思考问题,主动回顾和巩固圆的知识。

2. 利用多媒体课件,展示圆的图形,增强学生的空间想象能力。

3. 结合生活实例,让学生感受到数学与生活的紧密联系,提高学生解决实际问题的能力。

4. 鼓励学生进行小组讨论,培养学生的团队合作精神和沟通能力。

五、教学评价1. 课堂参与度:观察学生在课堂上的发言和表现,评价学生的参与程度。

2. 练习题完成情况:检查学生完成的练习题,评价学生的知识掌握程度。

3. 课后反馈:收集学生的课后反馈,了解学生的学习效果和存在的问题。

六、教学资源1. 多媒体课件:展示圆的图形和实例,帮助学生更好地理解和掌握圆的知识。

初三数学复习教案圆的面积与周长

初三数学复习教案圆的面积与周长

初三数学复习教案圆的面积与周长初三数学复习教案第一节:圆的面积教学目标:通过学习,学生将能够正确计算圆的面积。

教学重点:圆的面积公式的应用。

教学难点:通过相关练习,能够熟练运用圆的面积公式。

教学准备:教学课件、复习资料、计算器。

教学过程:Ⅰ.导入(5分钟)通过展示一些圆形物品,如圆球、圆盘等,引出“圆形”这个概念。

询问学生对圆的概念的理解。

Ⅱ.概念讲解(10分钟)1. 回顾圆的定义:圆是平面上所有到一个固定点距离相等的点的轨迹。

2. 讲解圆的直径、半径、弧与圆心角的概念,并给出对应的符号。

Ⅲ.面积公式的引入(10分钟)1. 定义圆的面积为圆内部所有点到圆心的距离之和。

2. 推导出圆的面积公式:A = πr²3. 引导学生发现圆的面积与半径平方成正比,与π成正比。

Ⅳ.解题方法讲解(15分钟)1. 通过例题,演示如何运用圆的面积公式计算圆的面积。

2. 引导学生理解圆的半径与直径之间的关系,并提供计算直径的方法。

Ⅴ.练习(15分钟)1. 指导学生进行相关练习,包括计算圆的面积和半径、直径的转换。

2. 对学生进行相关解答,及时纠正错误,并给予肯定和鼓励。

Ⅵ.拓展(5分钟)通过展示一些应用实例,如设计花坛、制作圆形蛋糕等,引导学生发现圆的面积在实际生活中的应用。

第二节:圆的周长教学目标:通过学习,学生将能够正确计算圆的周长。

教学重点:圆的周长公式的应用。

教学难点:通过相关练习,能够熟练运用圆的周长公式。

教学准备:教学课件、复习资料、计算器。

教学过程:Ⅰ.导入(5分钟)通过出示一些圆形物品,如圆桌、轮胎等,引出“圆形”这个概念。

询问学生对圆的概念的理解。

Ⅱ.概念讲解(10分钟)1. 回顾圆的定义:圆是平面上所有到一个固定点距离相等的点的轨迹。

2. 讲解圆的半径、直径、弧长、圆心角等概念,并给出对应的符号。

Ⅲ.周长公式的引入(10分钟)1. 定义圆的周长为圆上与圆心相连的一段曲线的长度。

2. 推导出圆的周长公式:C = 2πr3. 引导学生理解周长与半径之间的关系,并提供计算直径的方法。

中考数学复习圆专题复习教案

中考数学复习圆专题复习教案

中考数学复习-圆专题复习-教案一、教学目标1. 知识与技能:(1)掌握圆的定义、性质、公式等基本知识;(2)学会运用圆的相关知识解决实际问题。

2. 过程与方法:(1)通过复习,巩固已学过的圆的相关知识;(2)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(2)培养学生团队协作、积极进取的精神。

二、教学内容1. 圆的定义与性质(1)圆的定义;(2)圆的性质:圆心到圆上任意一点的距离相等,圆上任意一点到圆心的连线与圆的切线垂直。

2. 圆的直径与半径(1)直径与半径的定义;(2)直径与半径的关系。

3. 圆的周长与面积(1)周长的计算公式:C = 2πr;(2)面积的计算公式:S = πr²。

4. 圆的方程(1)圆的标准方程:(x h)²+ (y k)²= r²(2)圆的一般方程:x²+ y²+ Dx + Ey + F = 05. 圆与圆的位置关系(1)外切;(2)内切;(3)相离;(4)相交;(5)内含。

三、教学重点与难点1. 重点:圆的定义、性质、公式、方程及位置关系的理解与应用。

2. 难点:圆的方程求解及圆与圆的位置关系的判断。

四、教学方法1. 采用讲解、示范、练习、讨论等多种教学方法,引导学生掌握圆的相关知识;2. 通过例题、习题,培养学生的实际应用能力;3. 组织学生进行小组讨论,提高学生的合作能力。

五、教学过程1. 导入:回顾已学过的圆的相关知识,引导学生进入复习状态;2. 讲解:讲解圆的定义、性质、公式、方程及位置关系,重点讲解圆的方程求解及圆与圆的位置关系的判断;3. 示范:通过示例,展示圆的相关知识的应用;4. 练习:布置练习题,让学生巩固所学知识;5. 讨论:组织学生进行小组讨论,分享解题心得;6. 总结:对本节课的内容进行总结,强调重点知识;7. 作业:布置课后作业,巩固所学知识。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

《与圆有关的计算》复习课教学设计

《与圆有关的计算》复习课教学设计

《与圆有关的计算》复习课教学设计一、知识内容分析本节课是基于沪科版教材九年级下册的《与圆有关的计算》专题复习课。

由于圆本身所具有的数学美、趣味、规则、对称等特点,使得研究圆可以系统、规范、严谨地培养学生的数学思维。

本节课运用弧长、扇形面积、圆锥侧面积与圆的关系解决实际问题。

同时通过本专题的学习,提高学生观察图形、分析、归纳整理信息以及应用转化的数学思想方法解决问题的能力,为后续的深入复习与提高打下良好的基础。

二、学情诊断分析初三学生经过将近三年的学习有一定的数学基础,但是学习层次各有不同大致可分为以下三个层次:1.能通过观察发现图形所具有的特点,并能大概判断解题方向,但对计算公式不熟悉;2.熟悉计算公式,但不知道在什么样的条件下用什么公式和方法将知识综合运用;3.对计算公式熟练,并掌握一定数学思想方法,在解题过程中能较为自如地运用。

由于学生的学习层次不一样,基础差的学生在得不到小组或者教师的支持时可能会放弃学习和讨论,因此教师要充分关注基础差的学生的学习状态,及时给予帮助和指导。

三、教学目标(一)知识与技能:1.掌握弧长和扇形面积公式,会计算圆的弧长和扇形面积.2.了解圆锥侧面展开图为一个扇形,会计算圆锥的侧面积和全面积.(二)过程与方法:1.让学生通过习题训练,加深对弧长公式和扇形面积公式的理解。

2.在探索弧长、扇形面积、圆锥的侧面积和全面积有关计算的过程中,体会转化思想、类比迁移思想在解决问题中的重要性。

(三)情感、态度与价值观:通过本专题的学习,培养学生自主探究与合作交流的能力,收获解题的成功感,并受到数学图形美的熏陶.四、教学重难点:重点:1.圆的弧长和扇形面积的计算;2.掌握圆锥侧面积与全面积的计算难点:有关弧长和扇形面积的综合应用.五、教学方法:通过大量的中考模拟题,采用启发式教学,从学生原有知识出发,充分发挥学生的主体作用。

同时注重知识间的联系,类比迁移。

六、教学手段:采用多媒体辅助教学,使有限的时间成为无限的空间,促进学生自主学习。

数学人教版九年级上册与圆有关的计算(教案)

数学人教版九年级上册与圆有关的计算(教案)
3.重点难点解析:在讲授过程中,我会特别强调圆的周长和面积公式、弧长和扇形面积计算这两个重点。对于难点部分,如圆心角与弧度的关系,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆有关的实际问题,如如何计算一个给定直径的圆的周长。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量一个圆的周长,并验证周长公式。
举例:计算一个给定底面半径和高的圆柱和圆锥的体积。
(4)圆的切线、割线性质:理解切线与圆的位置关系,掌握切线长、割线长的计算;
举例:求一个给定圆的切线长度和割线长度。
2.教学难点
(1)圆心角与弧度的关系:理解圆心角与弧度之间的关系,能进行角度与弧度的互换;
难点举例:将一个给定的圆心角转换为对应的弧度,或反之。
(2)弧长与圆心角的关系:理解弧长与圆心角的比例关系,能根据圆心角求出弧长;
难点举例:已知圆的半径和圆心角,求对应的弧长。
(3)圆柱和圆锥的侧面展开图:理解圆柱和圆锥的侧面展开图形状,能根据展开图计算表面积;
难点举例:根据圆柱或圆锥的侧面展开图,计算其侧面积。
(4)综合应用问题:运用圆的相关知识解决实际问题,如求一段弧的实际长度、计算不完整圆盘的面积等;
三、教学难点与重点
1.教学重点
(1)圆的基本概念:例:圆的周长公式C=2πr,面积公式S=πr²的掌握。
(2)弧长和扇形面积的计算:弧长公式L=θr和扇形面积公式S=θr²/2的应用;
举例:如何计算圆的某一段弧的长度和对应扇形的面积。
(3)圆柱和圆锥的体积计算:圆柱体积公式V=πr²h和圆锥体积公式V=1/3πr²h的应用;
(二)新课讲授(用时10分钟)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七单元圆
第30课时与圆有关的计算教学目标
【考试目标】
1.弧长及扇形面积的计算
2.正多边形的概念
3.正多边形与圆的关系
【教学重点】
1.掌握正多边形与圆之间的关系
2.学会弧长公式与扇形面积的计算
3.掌握圆锥侧面积与全面积的计算
教学过程
一、体系图引入,引发思考
二、引入真题、归纳考点
【例1】(2016年威海)如图,正方形ABCD 内接于⊙O,其边长为
4,则⊙O 的内接正三角形EFG 的边长为 .
【解析】连接AC 、OE 、OF ,作OM⊥E F 于M ,
∵四边形ABCD 是正方形,
∴AB=BC=4,∠ABC=90°,
∴AC 是直径,
∴EM=MF, ∵△EFG 是等边三角形,
∴∠GEF=60°, 在RT△OME 中,
故答案为【例2】如图,□ 在ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于 点E ,与AD 相交于点F ,已知AB=12,∠C=60°,则FE 的长为(C )
【解析】连接OE 、OF ,
由切线和平行线的性质可知∠AOE=90°.
∵四边形ABCD 是平行四边形,
∴∠A=∠C=60°,∴△AOF 是等边三角形,
∴∠EOF=90°-60°=30°,OF=OA=0.5AB=6.
由弧长公式,得l FE
= =π. 【例3】(2016年宁波)如图,圆锥的底面半径r 为6cm ,高h 为8cm , 则圆锥的侧面积为 (C )
A.30π cm 2
B.48π cm 2
C.60π cm 2
D.80π cm 2
306180
π⨯
,圆锥的底面圆周长为
2×π×r=12π(cm).圆锥的侧面展开图是扇形,根据扇形面积公式可
得S=0.5×12π×10=60π(cm2).
三、师生互动,总结知识
先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充. 课后作业
布置作业:同步导练
教学反思
学生对圆的有关计算的掌握情况很好,望多加复习巩固,做到熟练会用.。

相关文档
最新文档