有凸缘筒形件拉深设计说明书

合集下载

窄凸缘拉深件课程设计说明书

窄凸缘拉深件课程设计说明书

冷冲模课程设计说明书08AL摘要本次冷冲压模具设计的内容为2045号窄凸缘圆形筒形件工艺分析与模具设计,完成了落料、首次拉深、二次拉深,三次拉深,切边五道工序。

落料和首次拉深复合模具为正装结构,拉深工件先由压边圈将工件从凸模上顶出,再由打杆组成的刚性推出装置推出制件,采用弹性卸料板卸除条料。

由于不能一次拉深出,故要三次拉深出来,第三次拉深。

条料排样方式为单排。

为了便于安装平稳以及方便操作选模座为标准中间导柱圆形模座,模柄为压入式模柄,选用单动压力机。

在落料,拉深成形完成后再完成切边工序以确保制件的形状和尺寸。

查阅相关资料和有关手册,手工绘制装配图和相关的零件图。

关键字:拉深模、正装、单排、后侧导柱、弹性卸料板目录第1章绪论 (1)1.1冲压设计概论 (1)1.2 冲压设计的基本内容 (1)1.3冲压设计的一般工作程序 (1)第2章工艺分析 (3)2.1产品冲裁工艺分析 (3)2.1.1 产品结构形状分析 (3)2.1.2 产品尺寸精度、断面质量分析 (3)2.2产品拉深工艺分析 (4)2.3计算模具压力中心 (5)第3章工艺方案的确定及工艺计算 (6)3.1工艺方案分析 (6)3.2拉深部分主要工艺参数的计算 (6)3.2.1确定修边余量 (6)3.2.3判断能否一次拉成 (6)3.2.4 试确定各工序拉深系数 (7)3.2.5 试确定圆角半径 (7)3.2.6确定各次拉深高度 (7)3.3 确定排样图 (8)3.4确定工艺卡片 (10)4.1落料和首次拉深 (11)4.1.1凸凹模工作尺寸 (11)4.1.2计算冲压力 (13)4.2二次拉深 (14)4.2.1凸凹模工作尺寸 (14)4.2.2计算拉压力 (14)4.3三次拉深 (14)4.3.1凸凹模工作尺寸 (14)4.3.2计算拉压力 (15)4.4切边 (15)第5章模具总体结构设计 (16)5.1模具的典型结构 (16)5.2 定位装置 (17)5.3 卸料装置 (17)5.3.1 条料的卸除 (17)5.3.2 工件的卸除 (17)5.4 其他零件尺寸的确定 (17)5.4.1 卸料弹簧 (17)5.4.2卸料板 (18)5.4.3模座 (18)5.5 压力机的确定 (18)结束语 (20)参考文献 (21)第1章绪论1.1冲压设计概论随着冲压技术的不断进步和冲压生产的迅速发展,对冲压设计工作提出了愈来愈高的要求。

带凸缘拉深件模具设计说明书

带凸缘拉深件模具设计说明书

设计题目:宽凸缘圆筒形件拉深模具设计。

设计与计算步骤:1. 拉深工艺计算(1)修边余量的确定查表4-2(来自《冲压模具课程设计指导与范例》——化学工业出版社,以下所查各表均出自此)得修边余量∆R=4.3(2)毛坯尺寸的计算查表4-4,知222212124342()4d d h r d d r d d ππ+++++-其中1d =72,2d =78,3d =84,4d =109.6,r=3,h=32 计算出D=152mm 。

(3)确定拉深次数和拉深系数查表4-9得工件第一次拉深的最大相对高度11/0.6h d = 查表4-10得第一次拉深时的拉深系数10.51m =/0.487h d =<11/0.6h d =,所以工件可一次拉出。

2. 拉深力的计算查表4-19. 13 3.14722410 1.1203.9l b F d t k KN πσ==⨯⨯⨯⨯=3. 压边力和压边装置的设计查表4-11,确定此拉深工艺需要采用压边圈,采用弹性压边装置td11-推杆; 12-推板;13-紧固螺钉; 14-紧固螺栓; 15-空心垫板; 16-压边圈; 17-螺母; 18-下模座压边力的计算: 221[(2)]4Y A F D d r P π=-+查表4-27、4-28。

计算得:22[152(7229.6)]334.8,49.6Y A F KN π=-+⨯⨯===其中r 4.压力机吨位的选择203.934.8238.7KN F F F >+=+=压拉压力机行程应满足:S>2.5h 100mm =工件 根据表9-9,选择压力机型号J23-80。

其主要技术规格如下。

KN mm mm mm mm⨯公称压力:1000最大装模高度:480工作台尺寸:7101080连杆调节量:100滑块行程:1305.拉深模结构设计(1)拉深凸、凹模圆角半径a.凹模圆角半径r 9.6A === b.凸模圆角半径(0.6~1)0.89.67.68T A r r ==⨯= (2)拉深凸、凹模间隙查表4-32,取单边间隙Z/2=2.2mm(3)凸、凹模工作零件尺寸计算A0.12A max00000T max T0.080.08D(0.75)80d0.75Z75.6DDδδ++---=-∆==-∆-==凹模尺寸凸模尺寸()(80-0-4.4)其中A Tδδ、由表4-34查取。

带凸缘圆筒形件拉深模设计

带凸缘圆筒形件拉深模设计

摘要随着中国工业不断地发展,模具行业也显得越来越重要。

本文针对带凸缘圆筒形零件的拉伸工艺性及拉伸工序过程,列举其中一次拉深并完成模具设计。

介绍了筒形零件冷冲压成形过程,经过对筒形零件的批量生产、零件质量、零件结构以及使用要求的分析、研究,按照不降低使用性能为前提,将其确定为冲压件,用冲压方法完成零件的加工,且简要分析了坯料形状、尺寸,排样、裁板方案,拉深次数,冲压工序性质、数目和顺序的确定。

进行了工艺力、压力中心、模具工作部分尺寸及公差的计算,并设计出模具。

同时具体分析了模具的主要零部件的设计,冲压设备的选用,凸、凹模间隙调整。

列出了模具所需零件的详细清单,并给出了合理的装配图。

关键词冲压件/带凸缘圆筒形拉伸件/拉伸工艺/拉深模设计WITH FLANGE CYLINDRICAL DEEPDRAWING DIE DESIGNABSTRACTAs China's industrial development unceasingly, the mold industry also appears more and more important. This paper belt of flange cylindrical parts stretching manufacturability and stretching process process, list one time deep drawing and complete the mold design. Cold stamping process of cylindrical parts is introduced, after mass production of the cylindrical parts, parts quality, parts structure, and use requirement analysis, research, according to not reduce the usability for the premise, to identify it for stamping parts, complete parts processing, with stamping method and the brief analysis of the blank shape, size, layout, cutting board, deep drawing, stamping process in nature, the determination of number and order. The technology force, pressure center, mold working parts dimension and tolerance of calculation, and design the mold. At the same time, concrete analysis of main components of the mold design, the selection of stamping equipment, convex and concave die clearance adjustment. Lists the mould needs a detailed list of spare parts, and gives the reasonable assembly drawing.KEYWORDS stamping parts, flange cylindrical stretching, stretching, deep drawing die design process目录1 前言 (1)1.1 模具的概论 (1)1.1.1 冲压与冲模 (1)1.1.2 我国冲压现状与发展方向 (2)1.1.3 国外模具发展趋势及行业特点 (2)1.1.4 模具设计及加工技术的现状 (3)1.1.6 冲模的零部件 (4)1.2 冲压件工艺分析 (5)1.2.1 冲压加工的经济性分析 (5)1.2.2 冲压件的工艺性分析 (5)1.3 本设计要求 (6)2 工艺方案 (7)2.1 工艺性分析 (7)2.1.1 拉深件的结构与尺寸 (7)2.1.3拉深件材料 (7)2.2 设计方案的确定 (7)3 主要工艺参数计算 (8)3.1 确定排样、裁板方案 (8)3.1.1 工艺分析 (8)3.1.2 确定修边余量 (8)3.1.3 坯料直径 (8)3.1.4 排样 (9)3.1.5 压力中心的确定 (10)3.2 拉深工艺的计算 (10)3.2.1 压边 (10)3.2.2 总拉深系数 (10)3.2.3 预算拉深次数 (10)3.2.4 确定首次拉深工序件尺寸 (11)3.2.5 确定拉深次数及以后各次拉深的工序件尺寸 (12)3.2.6 第二次拉深直径和高度 (13)3.2.7 第三次拉深直径和高度 (13)3.2.8 修边 (14)3.2.9 拉深速度 (14)3.3 工艺力计算 (14)3.3.1 拉深力 (14)3.3.2 压料力 (15)3.4 压力机的选择 (16)3.4.1 初选压力机 (16)3.4.2拉深功 (16)3.4.3压力机电动机功率 (16)3.4.4功率校核 (17)4 拉深模设计 (17)4.1拉深模具结构设计 (17)4.2模具工作部分尺寸计算 (17)4.2.1 凸凹模间隙 (17)4.2.2 凸凹模圆角半径 (17)4.2.3凸凹模工作尺寸及公差 (17)4.3标准件的选取 (18)4.3.1 模架 (18)4.3.2下模座 (19)4.3.3上模座 (19)4.3.4 导柱、导套 (19)4.3.5 销钉 (19)4.3.6 螺钉 (20)4.3.7 模柄 (20)4.3.8带螺纹推杆(顶杆) (20)4.3.9 打杆 (20)4.3.10 打杆螺母 (21)4.3.11 橡胶的选取 (21)4.3.12 橡胶螺杆 (22)4.3.13 ;螺杆螺母 (22)4.3.14 模柄紧固螺钉 (22)4.4模具非标准件的设计 (22)4.4.1 拉深凸模的设计 (22)4.4.2拉深凹模的设计 (23)4.4.3 凸模固定板设计 (24)4.4.4压料圈的设计 (24)4.4.6 托板的设计 (25)5 压力机的校核 (25)6 模具装配图 (26)结束语 (27)致谢 (28)参考文献 (29)1 前言板料冲压是金属加工的一种基本方法,他用以生产各种板料零件,具有生产效率高、尺寸精度好、重量轻、成本低并易于实现机械化和自动化等特点。

圆筒件首次拉深模设计说明书

圆筒件首次拉深模设计说明书

机械专业综合课程设计说明书圆筒件首次拉深模设计学院(系):专业:学生姓名:学号:指导教师:完成日期:目录第一章绪论 (1)1.1 冲压工艺与模具的发展方向 (1)1.2 我国模具技术的发展趋势 (1)第2章分析零件的工艺性 (4)2.1 工艺分析 (4)2.2 材料分析 (5)2.3 毛坯计算 (5)第3章确定工艺方案和模具总体设计 (7)3.1 确定工艺方案 (7)3.2 模具类型的选择 (7)3.3 送料方式的选择 (7)3.4 定位方式的选择 (7)3.5 卸料、出件方式的选择 (7)3.6 导向方式的选择 (8)第4章拉深模主要工艺参数的计算 (9)4.1 拉深工艺 (9)4.2 初选压力机 (9)4.3计算凸、凹模刃口尺寸及公差 (9)第5章模具主要零件的设计 (11)5.1主要工作零件的设计 (11)5.1.1 凸模的结构设计 (11)5.1.2 凹模的结构设计 (11)5.1.3 定位机构的设计 (12)5.2 模柄及固定零件 (12)5.3 压力机技术参数的校核 (14)参考文献 (16)第一章绪论1.1 冲压工艺与模具的发展方向成形工艺与理论的研究近年来,冲压成形工艺有很多新的进展,特别是精密冲裁、精密成形、精密剪切、复合材料成形、超塑性成形、软模成形以及电磁成形等新工艺日新月异,冲压件的精度日趋精确,生产率也有极大提高,正在把冲压加工提高到高品质的、新的发展水平。

前几年的精密冲压主要市是指对平板零件进行精密冲裁,而现在,除了精密冲裁外还可兼有精密弯曲、拉深、压印等,可以进行复杂零件的立体精密成形。

过去的精密冲裁只能对厚度为5~8mm以下的中板或薄板进行加工,而现在可以对厚度达25mm 的厚板实现精密冲裁,并可对σb >900MPa的高强度合金材料进行精冲。

由于引入了CAE,冲压成形已从原来的对应力应变进行有限元等分析而逐步发展到采用计算机进行工艺过程的模拟与分析,以实现冲压过程的优化设计。

带凸缘筒形件拉深模设计与制造

带凸缘筒形件拉深模设计与制造

正为
D (F凸 1.05F)4 / (8054 1.05 10806 ) 4 / mm
157 mm
初选
,由参考文献查得首次拉深极限拉深系数
[m1]=0.55,取m1=0.55,则首次拉深筒形件直径为
d1 m1D 0.55 157 mm 86.35mm
取首次拉深凸、凹模圆角半径
dF / d 1.1
d2 [m2 ]d1 0.76 86.35 65.63mm
d3 [m3 ]d2 0.79 65.63 51.84mm 56mm
所以零件共需进行3次拉深。调整各次拉深系数,取第二
次实际拉深系数 m2 0.79 ,则拉深后直径应为
d2 m2d1 0.79 86.35mm 68.21mm
第一次拉深的相对高度
h1 d1
35.80 86.35
0.415
,可查得当凸缘相
对直径
dF d1
122 1.41 86.35
,坯料相对厚度
t 100 1.5 100 0.96 时,
D
157
第一次拉深允许的相对高度为 h1 0.45 ~ 0.53 0.415 ,所以预定
d1
的m1是合理的。
(6)计算以后各次拉深的工序件直径 查得以后各次拉深极限拉深系数分别为[ m2]=0.76, [ m3]=0.79,则拉深后筒形件直径分别为
零件的凸缘相对直径 dF 88 214 2.06,可查得修边余量
d
56.5
R 3mm,所以,修正后拉深件凸缘的直径应为122mm。
(2)确定坯料尺寸 查得有凸缘筒形件坯料计算公式为
D d F 2 4dh 3.44rd 1222 4 56.5 45 3.44 5.75 56.5mm

课程设计带凸缘筒形件首次拉深的拉深模设计

课程设计带凸缘筒形件首次拉深的拉深模设计

课程设计带凸缘筒形件首次拉深的拉深模设计一、工艺分析1,冲压工艺方案的设定:考虑到零件的生产批量,经过分析得采用反拉深复合膜生产。

2,先剪切条料→落料→第一次拉深→……第四次拉深→修边。

二、工艺参数的计算 。

如上右图所示的拉深件。

(1) 查表4-6选取修边余量Δd 由d 凸d=7529=2.6 、 d 凸=75mm 得出Δd=2.2实际d 凸=75+2×2.2=79.4≈79 (2),初算毛坯直径。

根据公式(4-9a )得出:D =√d 12+4d 2h +2πr (d 1+d 2)+4πr 2+d 42−d 32,将d 1=20 d 2=29 d 3=38d 4=79 h=40 r=4 代入上式得出D=√202+4×29×40+2×3.14×4(20+29)+4×3.14×42+792−382 =√6472+4797≈106,其中6472为工件不包含凸缘部分的表面积,即零件实际需要拉深部分的面积。

(3),判断能否一次拉出。

由h d =4929=1.69 、d 凸d=7929=2.72 、 t D ×100=1106x100=0.94查表4-14得出h1d 1=0.17﹣0.21、而零件实际需要的为1.69、因此不能一次拉深完成。

(4),计算拉深次数及各工序的拉深直径。

,因此需要用试凑法计算利用表4-14来进行计算,但由于有两个未知数m和d td1拉深直径。

下面用逼近法来确定第一的拉深直径。

的值为由于实际拉深系数应该比极限拉伸系数稍大,才符合要求,所以上表中d td11.5、1.6、1.7的不合适。

因为当d t的值取1.4的时候,实际拉深系数与极限拉深系数接近。

故初定第一次d1拉深直径d1=56.因以后各次拉深,按表4-8选取。

故查表4-8选取以后各次的拉深系数为当m2=0.77时d2=d1×m2=56×0.77=43mm当m2=0.79时d3=d2×m3=43×0.79=34mm当m3=0.81时d4=d3×m4=34×0.81=27mm<29mm因此以上各次拉程度分配不合理,需要进行如下调整。

5 带凸缘筒形件的拉深

5 带凸缘筒形件的拉深
机械工程学院模具教研室
带凸缘筒形件的拉深
3.带凸缘圆筒16 带凸缘圆筒形件首次拉深的极限拉深系数
机械工程学院模具教研室
带凸缘筒形件的拉深
3.带凸缘圆筒形件的拉深系数 首次拉深可能达到的相对高度见表4-17
表4-17 带凸缘圆筒形件首次拉深的极限相对高度
模块五 带凸缘筒形件的拉深
机械工程学院 模具教研室
机械工程学院模具教研室
复习引入
1.简述下图中拉深件模具设计的主要步骤?
工件名称:金属保护筒 生产批量:大批量 材料:08钢 材料厚度:2mm
机械工程学院模具教研室
项目分析
工件名称:带凸缘外壳 生产批量:大批量
材料:08钢
材料厚度:2mm
完成右图中带
项目评价
项目内容 要 求 评定(3、2、1、0)
自评
组评
师评
带凸缘筒形件 了解带凸缘筒形件的拉深方法和工艺特 的拉深 征。
分组讨论 锻炼学生分析问题的思路及解决问题的 能力
项目完成质量 独立完成项目案例
意见与反馈
机械工程学院模具教研室
机械工程学院模具教研室
带凸缘筒形件的拉深
1.拉深方法


生产实际中,宽凸缘圆筒形件需多次拉深时的拉深方 法有两种法(见图4-38) 通过多次拉深,逐渐缩小筒形部分直径和增加其高度 (图4-38a)。这种拉深方法就是直接采用圆筒形件的多次 拉深方法,通过各次拉深逐次减小直径,增加高度,各次 拉伸的凸缘圆角半径和底部圆角半径不变或逐次减小。用 这种方法拉成的零件表面质量不高,其直壁和凸缘上保留 着圆角弯曲和局部变薄的痕迹,需要在最后增加整形工序, 适用于材料较薄,高度大于直径的中小型带凸缘圆筒形件。 采用高度不变法(图4-38b),即首次拉深尽可能取较 大的凸缘圆角半径和底部圆角半径,高度基本拉到零件要 求的尺寸,以后各次拉深时仅减小圆角半径和筒形部分直 径,而高度基本不变。这种方法由于拉伸过程中变形区材 料所受到折弯较轻,所以拉成的零件表面较光滑,没有折 痕。但他只适用于坯料相对厚度较大,采用大圆角过渡不 易起皱的情况。

带凸缘圆筒形件的拉深

带凸缘圆筒形件的拉深
冲压工艺与模具设计
带凸缘圆筒形件的拉深
带凸缘圆筒形件
带凸缘圆筒形件的拉深
1.1 窄凸缘圆筒形件的拉深
窄凸缘圆筒形件第一种拉深方法
带凸缘圆筒形件的拉深
1.1 窄凸缘圆筒形件的拉深
窄凸缘圆筒形件第二种拉深方法
带凸缘圆筒形件的拉深
1.2 宽凸缘圆筒形件的拉深
当 r凸 = r凹 = r 时,宽凸缘圆筒形件毛坯直径 D 为:
根据拉深系数的定义,宽凸缘圆筒形件的拉深系数为:
带凸缘圆筒形件的拉深
1.2 宽凸缘圆筒形件的拉深
宽凸缘圆筒形件的尺寸
带凸缘圆筒形件的拉深
1.2 宽凸缘圆筒形件的拉深
毛坯尺寸的 计算
判断工件是 否一次拉深
成形
凸缘件多次 拉深成形
原则
带凸缘圆筒形件的拉深
1.2 宽凸缘圆筒形件的拉深
这种工件通常采用 减小筒部直径、增加筒部 高度来达到最终尺寸。圆 角半径在整个拉深过程中 基本不变。
8)根据表4-5选取以后各次拉深系数 m2、m3、…、mn,并预算出 各工序的拉深直径 d2=m2d1、d3=m3d2、…、dn=mndn-1。 若 dn<d,按式(4-2)放大 K 值,于是各次拉深直径为:
d2 = m2d1K、d3 = m3d2 K、…、dn = mndn-1 K。
带凸缘圆筒形件的拉深
时,可一次拉成。否则需要多次拉成。 4)根据表4-8选取 m1,计算 d1=m1D。初选第1次拉深的相对凸 缘直径为 dt/d1=1.1,若 m1 选的不合理,选 dt/d1=1.2、1.3…,直 到 m1 选择合理为止。 5)按照式(4-3)、式(4-4)计算第1次拉深模的凹、凸模圆角 半径。 6)根据宽凸缘圆筒件的拉深原则来修正毛坯直径D,并计算首次 拉深半成品高度 h1 为:

拉深模具设计说明书

拉深模具设计说明书

前言冷冲压是建立在金属塑性变形的基础上,在常温下利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得一定形状、尺寸和性能的零件的一种压力加工方法。

在冷冲压加工中,将材料(金属或非金属)加工成零件(或半成品)的一种特殊工艺装备称为冷冲压模具(俗称冷冲模)。

冷冲模在实现冷冲压加工中是必不可少的工艺装备,没有先进的模具技术,先进的冲压工艺就无法实现。

冷冲压的特点有:1,节省材料2,制品有较好的互换性3制品有较好的互换性4生产效率高5操作简单6由于冷冲压生产效率高,材料利用律,故生产的制品成本较低。

冷冲压加工在汽车、拖拉机、电机、电器、仪表和日用品生产中,已占据十分重要的地位,特别是在电子工业产品生产中,已成为不可缺少的主要加工方法之一。

随着科学技术的不断进步和工业生产的迅速发展,冲压及模具技术也在不断革新与发展。

主要表现在以下几个方面:一.工艺分析计算方法现代化现在已开始采用有限变形的弹塑性有限方法,对复杂成形件的成形过程进行应力应变分析的计算机模拟。

二.模具设计制造技术现代化工业发达国家正在大力开展模具计算辅助设计和制造(CAD/CAM)的研究。

采用这一技术,一般可提高模具设计制造效率的2-3倍,应用这一技术,不仅可以缩短模具设计制造周期,还可提高模具质量,减少设计和政治早人员的重复劳动,使设计者有可能把精力用在创新开发上。

三.冲压生产机械化与自动化与柔性化为了适应大批量,高效率生产的需要,在冲压模具和设备上广泛应用了各种自动化的进出料机构。

对于大型冲压件,专门配置了机械手和机器人,这不仅大大的提高了冲压件的生产品质和生产率,而且也增加了冲压工作和冲压工人的安全性。

在中小件的大批量生产方面,现已广泛应用于多工位压力机活、或高速压力机。

在小批量生产方面,正在发展柔性制造系统(FMS)。

四.为了满足产品更新换代快和小批量生产的需要,发展了一些新的成形工艺,简易模具,数控冲压设备和冲压柔性制造技术等。

8、带凸缘筒形件拉深模设计与制造 2解读

8、带凸缘筒形件拉深模设计与制造 2解读

DT (DA Z min ) 0 .95 0.132) 0 .8180 T (156 0.030 mm 156 0.030 mm
h1 35.80 0.415 ,可查得当凸缘相 d1 86.35
t 1.5 100 100 0.96 时, D 157
,坯料相对厚度
第一次拉深允许的相对高度为 的m1是合理的。
h1 0.45 ~ 0.53 0.415 d1
,所以预定
(6)计算以后各次拉深的工序件直径 查得以后各次拉深极限拉深系数分别为[ m2]=0.76, [ m3]=0.79,则拉深后筒形件直径分别为
带凸缘筒形件拉深模设计与制造实例
材料:10钢 料厚:1.5mm
一、工艺性分析
1.材料分析 10钢为优质碳素结构钢,属于深拉深级别钢,具有良好的拉深成形 性能。 2. 结构分析 零件为一形状较复杂的有凸缘筒形件,且凸缘形状为异形。若拉深坯 料直接制备成凸缘的形状,则拉深成形时坯料受力不均匀,零件形状与 精度势必得不到保证,因此,拉深时坯料形状应为圆形,拉深结束后由 切边工序保证凸缘外形。零件凸缘上有3个孔,为了保证孔的精度,其 加工也放在拉深结束后冲裁。对于零件上的底孔则选择在冲压成形结束 后钻孔加工,因为拉深件成型后具有一定的高度,采用冲孔的方法凸模 的长度较长,不利于保证模具寿命。此外,零件底部圆角半径与口部圆 角半径均为R5,满足拉深件底部圆角半径大于一倍料厚、口部圆角半径 大于两倍料厚的要求。 3. 精度分析 零件上只有高度和拉深件直径两个尺寸标注公差,经查表其精度等级 都在IT14级以下,所以普通拉深即可达到零件的精度要求。
F
(2)确定坯料尺寸 查得有凸缘筒形件坯料计算公式为
D d F 4dh 3.44rd 1222 4 56.5 45 3.44 5.75 56.5mm 154.7mm 155mm

带凸缘拉伸件毕业设计说明

带凸缘拉伸件毕业设计说明

机电职业技术学院毕业设计(论文)作者:学号:系部:模具技术系专业:精密模具设计与制造题目:冷冲模(带凸缘拉伸件)指导者:评阅者:2015年5月带凸缘拉深件模具设计摘要拉深是利用模具使平板毛坯变成为开口的空心零件的冲压方法,用拉深工艺可以制成筒形、阶梯形、锥形、抛物面形、盒形和其他不规则形状的薄壁零件,其中又以筒形件简单和多见,而有凸缘筒形件又分为宽凸缘和窄凸缘件。

只有加强拉深变形基础理论的研究,才能提供更加准确、实用、方便的计算方法,才能正确地确定拉深工艺参数和模具工作部分的几何形状与尺寸,解决拉深变形中出现的各种实际问题,从而,进一步提高制件质量。

在拉深工艺设计时,必须知道冲压件能否一次拉出,这就引出了拉深系数的概念。

拉伸系数决定于每次拉深时允许的极限变形程度。

在多次拉深中,对于宽凸缘拉深件,则应在第一次拉深时,就拉成;零件所要求的凸缘直径,而在以后各次拉深中,凸缘直径保持不变。

为了保证以后拉深时凸缘不变形,宽凸缘拉深件首次拉入凹模的材料应比零件最后拉深部分实际所需材料多3%~5%,这些多余材料在以后各次拉深中,逐渐将减少部分材料挤回到凸缘部分,使凸缘增厚,从而避免拉裂。

关键词:筒形,模具设计,拉深,冲压AbstractThe extension is a mould to make the plate blank into the stamping method for hollow parts of the opening, thin-walled parts with deep drawing process can be made into a cylinder shape, ladder shaped, cone, parabolic, box and other irregular shapes, and the case of cylindrical parts simple and rare, and flange cylindrical parts is divided into wide flange and narrow flange.Only by strengthening the basic theory research of deformation calculation method of drawing, can provide more accurate, practical and convenient, can correctly determine the geometry and size of drawing process parameters and working parts of die, to solve the actual problems, drawing deformation in order to further improve the quality of workpieces.In the process design of deep drawing, must know whether a stamping out, this leads to the concept of drawing coefficient. Limit drawing coefficient depends on each drawing the allowable deformation degree. Many in the drawing, for wide flange drawing parts, should be in the first drawing, pull into; the diameter of the flange parts required, and after each time depth, the diameter of the flange remain unchanged. In order to ensure the flange withoutdeformation after drawing, wide flange drawing parts for the first time into the die material should be better than the last part of the actual parts drawing materials needed for multiple 3%~5%, these extra materials after various times of deep, gradually will reduce part material out back to the flange portion, the flange thickened, so as to avoid cracking.Keywords: cylinder, mold design, drawing, stamping目录摘要IIAbstractIII前言0第1章加工零件的工艺分析21.1零件分析21.2冲压件的工艺分析21.3制定冲压工艺方案3第2章模具总体设计52.1模具类型的选择52.2操作方式52.3卸料、出件方式52.3.1卸料方式52.3.2出件方式5第3章模具设计计算63.1工艺参数的确定及计算63.2确定拉伸次数63.3排样及材料的利用率73.3.1排样方法73.3.2材料的利用率8第4章冲压模具设计84.1确定冲压类型及结构形式84.2计算工序压力、选择压力机84.2.1落料力84.2.2卸料力84.2.3拉伸力94.2.4压边力94.3. 计算模具压力中心94.4. 计算模具零件主要工作部分刃口尺寸10第5章模具零件的选用115.1模架的选择115.2冲压设备的选用12第6章模具制造技术要求126.1表面粗糙度及标准126.2配合要求13第7章编写技术条件14第8章设计并绘制模具总装图及选取标准件16 毕业设计小结17结论18参考文献20前言冲压模具在实际工业生产中应用广泛。

带凸缘筒形件的拉深 PPT

带凸缘筒形件的拉深 PPT
图4-36 带凸缘圆
带凸缘筒形件的拉深
带凸缘圆筒形件的拉深看上去很简单,好像是拉深无 凸缘圆筒形件的中间状态。但当其各部分尺寸关系不同 时,拉深中要解决的问题是不同的,拉深方法也不相同。 当拉深件凸缘为非圆形时,在拉深过程中仍需拉出圆形 的凸缘,最后在用切边或其它冲压加工方法完成工件所 需的形状。
当r=R时,坯料的直径为
所以
由上式可以看出,带凸缘圆筒形件的拉深系数取决 于下列三组有关尺寸的相对比值;凸缘的相对直径dt/d; 零件的相对高度H/d,相对圆角半径R/d,其中以dt/d影 响最大;H/d次之,R/d影响较小。
带凸缘筒形件的拉深
3.带凸缘圆筒形件的拉深系数 带凸缘圆筒形件首次拉深的极限拉深系数见表4-16
带凸缘圆筒形件拉深与无凸缘圆筒形件拉深的最大 区别在于首次拉深,现结合实例说明其工序尺寸计算程 序。
项目实施
工件名称:带凸缘外壳
生产mm
项目任务: 1.对右图中的带凸缘筒形件进行拉深工艺分析? 2.确定拉深件的工艺方案,完成工艺计算? 3.完成拉深模具总体设计,初选压力机设备?
1-上模座;2-凹模;3-凸模 ;4推件板;5-打杆;6-模柄 ;7-紧固螺钉M10;
3.带凸缘圆筒形件的拉深系数
带凸缘筒件的拉深系数为:
mt = d/D
式中 mt——带凸缘圆筒形件拉深系数;
D——拉深件筒形部分的直径
d——坯料直径
当拉深件底部圆角半径r与凸缘处圆角半径R相等,当r=R时, 坯料的直径为
带凸缘筒形件的拉深
3.带凸缘圆筒形件的拉深系数 当拉深件底部圆角半径r与凸缘处圆角半径R相等,
表4-16 带凸缘圆筒形件首次拉深的极限拉深系数
带凸缘筒形件的拉深
3.带凸缘圆筒形件的拉深系数 首次拉深可能达到的相对高度见表4-17

带凸缘筒形件的拉深课件

带凸缘筒形件的拉深课件
3
机械工程学院模具教研室
带凸缘筒形件的拉深
下图所示为带凸缘筒形件及其坯料。通常,当 dt/d=1.1~1.4时 ,称为窄凸缘圆筒形件;当dt/d>1.4 时 ,称为宽凸缘圆筒形件。
图4-36 带凸缘圆
4
机械工程学院模具教研室
带凸缘筒形件的拉深
带凸缘圆筒形件的拉深看上去很简单,好像是拉深无 凸缘圆筒形件的中间状态。但当其各部分尺寸关系不同 时,拉深中要解决的问题是不同的,拉深方法也不相同。 当拉深件凸缘为非圆形时,在拉深过程中仍需拉出圆形 的凸缘,最后在用切边或其它冲压加工方法完成工件所 需的形状。
与无凸缘圆筒形件相比,带凸缘圆筒形的拉深系数来反映材料实 际的变形程度大小,而必须将拉伸高度考虑进去。
2)宽凸缘圆筒形件需多次拉伸时,第一次拉深必须将凸 缘尺寸拉到位,以后各次拉深中,凸缘尺寸应保持不变。 这就要求正确的计算拉伸高度和严格的控制凸模进入凹 模的深度。
6
机械工程学院模具教研室
带凸缘筒形件的拉深
1.拉深方法
图4-37 带凸缘圆筒形件的拉深
7
机械工程学院模具教研室
带凸缘筒形件的拉深
1.拉深方法 (2)宽凸缘圆筒形件的拉深 宽凸缘圆筒形件需多次拉 深时,拉深的原则是第一次拉深就必须使凸缘尺寸等于 拉深件的凸缘尺寸(加切边余量),以后各次拉深时凸 缘尺寸保持不变,仅仅依靠筒形部分的材料转移来达到 拉深件尺寸。因为在以后的拉伸工序中,即使凸缘部分 产生很小的变形,也会使筒壁传力区产生很大的拉应力, 从而使底部危险断面拉裂。
径,而高度基本不变。这种方法由于拉伸过程中变形区材
料所受到折弯较轻,所以拉成的零件表面较光滑,没有折
痕。但他只适用于坯料相对厚度较大,采用大圆角过渡不

有凸缘圆筒形件的拉深

有凸缘圆筒形件的拉深

有凸缘圆筒形件的拉深山东建筑大学备课纸三、有凸缘圆筒形件的拉深(一) 一次成形拉深极限,首先要讨论的问题:如何判断有凸缘筒形件能否一次拉出, ,在拉深有凸缘筒形件时,采用相同毛坯直径和相同工件直径时,可拉深出不同凸Dd1缘直径d和不同高度h的工件。

显然,工件t高度和凸缘直径都影响着实际变形程度,当工件凸缘直径越小,高度越大,其变形程度也越大。

因此用一般的m=d/D不能表11 达在拉深不同的d和h时的实际变形程度。

t,,筒形件第一次拉深的许可变形程度可用相应于d/d不同比值的最t1 大相对高度h/d来表示(表4-9)。

11 当工件的相对拉深高度h/d>h1/d1时,则该工件就不能用一道工序拉深出来,需要两次或多次才能拉出。

(二)窄凸缘圆筒形件拉深,d/d=1.1~1.4 t,其拉深系数确定、拉深工艺计算与无凸缘的圆筒形件相同。

,因凸缘很小,可以当作一般圆筒形件进行拉深,只在倒数第二道工序时才拉出凸缘或拉成锥形凸缘,最后校正成水平凸缘。

,若 h/d?1时,则第一次即可拉成口部具有锥形凸缘的圆筒形,最后校正凸缘即可。

(三)宽凸缘圆筒形件的多次拉深, 宽凸缘件的拉深原则:凸缘不能减小,一次成型。

第页山东建筑大学备课纸, 假若零件的拉深系数大于表4-10所给的第一次拉深系数极限值, 则该零件可一次拉成。

,,或者零件的相对高度小于表4-9所给的第一次拉深的最大相对高度值,则该零件可一次拉成。

宽凸缘件多次拉深工艺通常有两种情况:中小型零件( d <200mm): t减小圆筒形直径并增加其高度,r和r基本不变。

pd制成的零件,表面质量较差,容易在筒壁部分和凸缘上残留有中间工序中形成的圆角部分弯曲和厚度的局部变化的痕迹,所以最后要加一道整形工序大型零件( dt ,200mm),厚料改变圆角半径r和r并减小圆筒形直径,高度基本不变。

pd制成的零件表面光滑平整,而且厚度均匀,不存在中间拉深工序中圆角部分的弯曲和局部变薄的痕迹。

宽凸缘圆筒件落料拉深复合模具设计说明书

宽凸缘圆筒件落料拉深复合模具设计说明书

宽凸缘圆筒件落料拉深复合模具设计说明书(总27页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--冲压工艺与模具设计课程设计报告设计题目宽凸缘圆筒件落料拉深复合模具设计学生姓名CYX学生学号专业班级学院名称机械与运载工程学院指导老师2016年 9月 9日摘要随着中国工业不断地发展,模具行业也显得越来越重要。

本文针对宽凸缘圆筒零件的冲裁工艺性和拉深工艺性,分析比较了成形过程的三种不同冲压工艺(单工序、复合工序和连续工序)。

简要分析了坯料形状、尺寸,排样、裁板方案,拉深次数,冲压工序性质、数目和顺序的确定。

进行了工艺力、压力中心、模具工作部分尺寸及公差的计算,并设计出模具。

还具体分析了模具的主要零部件(如凸凹模、卸料装置、拉深凸模、垫板、凸模固定板等)的设计与制造,凸凹模间隙调整。

列出了模具所需零件的详细清单,并给出了合理的装配图和零件图。

关键词:落料;拉深;复合模;凸缘圆筒件目录1 前言............................................................................................. 错误!未定义书签。

冲压模具在制造业的地位................................................... 错误!未定义书签。

拉深工艺概述....................................................................... 错误!未定义书签。

2 工件尺寸及分析......................................................................... 错误!未定义书签。

工件尺寸等基本信息........................................................... 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

J I A N G S U U N I V E R S I T Y本科毕业论文有凸缘筒形件成型工艺与工装设计The process planning of the drawing of the tube-shaped flangepart.学院名称:材料学院专业班级:材料成型052学生姓名:秦亚飞指导教师姓名:刘忠德指导教师职称:教授2009年 5 月目录摘要 (1)引言 (1)第一章有凸缘筒形件拉深工艺分析 (1)§1.1 零件冲压工艺分析 (1)§1.2 拟定工艺方案 (1)1.2.1 冲压工序分析 (1)1.2.2判断拉深次数 (2)1.2.3判断是否需要压边力 (2)1.2.4确定各次拉深系数 (2)1.2.5确定各次拉深圆角半径 (3)1.2.6计算拉深高度 (3)1.2.7拟定工序图 (3)1.2.8拟定工艺方案 (3)§1.3 毛坯尺寸及排样设计 (4)1.3.1毛坯尺寸设计 (4)1.3.2排样设计 (4)第二章通过压力计算初选压力机 (5)§2.1 落料力的计算 (5)§2.2 正拉深相关力的计算 (5)2.2.1拉深力的计算 (5)§2.3 反拉深相关力的计算 (6)2.3.1 拉深力的计算 (6)2.3.2压边力的计算 (6)§2.4 压力机的选择 (6)2.4.1公称压力的计算 (6)2.4.2选择压力机 (6)第三章模具工作部分尺寸计算 (7)§3.1正拉深部分 (7)§3.2反拉深部分 (8)第四章模具结构设计 (9)§4.1复合模 (9)4.1.1 复合模的特点 (9)4.1.2 最小壁厚 (9)§4.2复合模正装与倒装的比较 (10)§4.3模具结构选择 (13)第五章模具主要零部件设计 (15)§5.1 正拉深凸、凹模的设计 (15)5.1.1模壁厚的计算 (15)5.1.2高度的确定 (15)5.1.3强度的校核 (15)5.1.4最大长度校核 (15)5.1.5结构形式 (15)§5.2 凸模的设计 (16)5.2.1长度的计算 (16)5.2.2强度的校核 (16)5.2.3最大长度校核 (16)5.2.4固定形式 (16)5.2.5结构形式 (16)§5.3落料凹模的设计 (17)5.3.1模壁厚的计算 (17)5.3.2刃壁高度 (17)5.3.3模具高度计 (17)5.3.4固定形式 (17)5.3.5结构形式 (17)§5.4落料凸模的设计 (18)5.4.1壁厚的计算 (18)5.4.2高度的计算 (18)5.4.3外缘直径D的计算 (18)5.4.4结构形式 (18)§5.5卸料板的设计 (19)5.5.1直径的计算 (19)5.5.2厚度的计算 (19)§5.6导料板的设计 (19)5.6.1直径的计算 (19)5.6.2厚度的计算 (19)§5.7压料装置的设计 (19)5.7.1结构形式 (19)5.7.2橡胶的设计 (20)§5.8顶料装置的设计 (20)第六章压力机校核及模具安装 (21)§6.1压力机的的选用 (21)§6.2 模具安装 (21)设计小结 (22)致谢 (23)参考文献 (24)有凸缘筒形件拉深工艺分析及工装设计专业班级:材料成型052 学生姓名:秦亚飞指导教师:刘忠德职称:教授摘要:有凸缘筒形件被广泛用在很多领域和场合,例如发动机端盖等。

这种零件结构简单对称,适合冲压加工,而且速度快、效率高。

冲压工艺最重要的是模具,所以模具制造是很重要的部分。

如今模具制造业是一个广阔的市场。

关键词:模具、拉深、工艺Abstract:The tube-shaped flange parts are usually used in many fields and occasion,for example:the end cap of the eletromotor.The shape of these parts is easy and symmetrical.So the drawing craftwork is used to make them and this craftwork is fast and effective.The most important of the drawing crafework is die.So the manufacturing of the die also is a important part.Now,the industry of the die manufacturing is large.Key words: die drawing craftwor引言冲压是通过模具对板材施加压力或拉力,使板材塑性成形,有时对板料施加剪切力而使板料分离,从而获得一定尺寸、形状和性能的一种零件加工方法。

由于冲压加工经常在材料冷状态下进行,因此也称为冷冲压。

冲压加工的原材料一般为板材或带材,故也称为板材冲压。

近年来,随着飞机、汽车、电子、仪表、日用工业品等工业的发展及少无切削加工技术的应用,冲压加工技术得到了高速的发展。

目前,除一般的成形方法以外,又出现了冷、热、温挤压变形,液压变形,强力旋压成形,超塑成形,爆炸成形,以及精密冲裁和高速冲压等加工技术。

冲压技术在现代工业生产中占有十分重要的地位,是国防工业及民用工业生产中必不可少的加工方法。

在电子产品中,冲压件约占80%~85%;在汽车、农业机械产品中,冲压件约占75%~80%;轻工业产品中,冲压件约占90%以上。

此外,航空及航天工业生产中,冲压件也占很大的比例。

冲压加工需要研究冲压工艺和模具两个方面的问题。

根据通用分类方法,冲压工艺可以分成分离工序和成形工序两大类。

其中分离工序包括:落料、冲孔、切断、切边、剖切。

成形工序包括:弯曲、卷圆、扭曲、拉深、变薄拉深、翻孔、翻边、拉弯、胀形、起伏、扩口、缩口、旋压、校形。

冲压虽然以大批量生产为对象,但所使用的模具却是单件生产。

制造模具需要采用精度很高的加工设备、先进的工艺方法,同时还需要有技术熟练的技工配合。

因此,模具的真正价值不只在于它的本身,而且还在于它为社会创造的巨大经济效益。

模具的好坏,将直接影响制件的质量、数量和成本。

第一章有凸缘筒形件拉深工艺分析§1.1 零件冲压工艺分析图1-1为拉深件的零件图。

这是电机罩壳,材料为纯铝,料厚为0.5mm。

纯铝的=90Mpa,具有良好的延展性,适合冲压成型。

抗拉强度σb此零件是轴对称的旋转体,结构简单,零件的最大尺寸为高度方向上的尺寸,为h=12mm,属于小型零件,零件的尺寸全部为自由公差,可看作IT14级,尺寸精度较低,该零件的形状和结构表明它为拉深件,所以拉深为基本工序。

通过对零件结构分析可知,该零件主要通过拉深模具成型,并可获得尺寸精度。

通过初步计算可知该拉深件的拉深次数为2,可考虑通过正、反拉深完成。

因此可知该零件的基本冲压工序为:落料、正拉深、反拉深、修边。

图1-1 零件图§1.2 拟定工艺方案1.2.1 冲压工序分析对图1-1所示零件试分析其工序设计如下:毛坯直径计算公式为:d 0=22256.072.156.072.14r dr dR dR dh d f --+-+,通过计算得d 0=33.14mm ;d d f =1.3,查表5-11】【1得修边余量为1.4mm ; 毛坯直径为D=33.14+1.4=34.5mm;1.2.2判断拉深次数d h =0.77;Dt ⨯100=1.4,查表1-1]4[得拉深次数为2表1-1无凸缘筒形件的最大相对拉深高度拉深次数 毛坯相对厚度t/D*1002-1.5 1.5-1 1-0.6 0.6-0.3 0.3-0.15 0.15-0.081 0.94-0.77 0.84-0.65 0.7-0.57 0.62-0.5 0.52-0.45 0.46-0.382 1.88-1.54 1.6-1.32 1.36-1.1 1.13-0.94 0.96-0.83 0.9-0.7 3 3.5-2.7 2.8-2.2 2.3-1.8 1.9-1.5 1.6-1.3 1.3-1.14 5.6-4.3 4.3-3.5 3.6-2.9 2.9-2.4 2.4-2 2-1.5 5 8.9-6.6 6.6-5.1 5.2-4.1 4.1-3.3 3.3-2.7 2.7-21.2.3判断是否需要压边力D t ⨯100=1.4<1.5,查表1-2]4[可知需要压边力。

表1-2采用或不采用压边圈的条件拉深方法 第一次拉深 第二次拉深t/D*100 拉深系数m t/D*100 拉深系数m用压边圈 <1.5 <0.6 <1 <0.8不用压边圈 >2.0 >0.6 >1.5 >0.81.2.4确定各次拉深系数查表4-6,初定m1=0.53,m2=0.75,则首次拉深后d1=d/m2=20.67mm,考虑到采用正、反拉深工艺,凸凹模模壁厚因满足强度要求,而2.5mm的壁厚显然不能满足要求,因此校正d1=22mm;则校正后的拉深系数应为:m1=0.64;m2=0.70;查表4-9,满足要求。

1.2.5确定各次拉深圆角半径首次拉深凹模圆角半径r1凹=0.8tdD)1-(=2mm;r1凸=0.8 r1凹=1.6mm;对于反拉深的r2凸、r2凹,由于零件有外形尺寸要求,因此其数值必须是零件所要求的尺寸,则:、r2凹=1.5mm;r2凸=1mm;1.2.6计算拉深高度有公式:h1=0.25(112144.3mrddD+-Θ),式中dΘ为凸缘直径;通过计算可得:h1=10mm,h1为首次拉深后的零件高度;1.2.7拟定工序图(a)正拉深(b)反拉深图1.11.2.8拟定工艺方案方案一:落料、第一次拉深、第二次拉深、修边;方案二:落料及第一次拉深、第二次拉深、修边;方案三:落料及正反拉深、修边;两种工艺方案的比较:方案一工艺简单,但需要三副简单模具,成本较高,且不适合大批量生产;方案二工艺稍复杂,需要两副模具完成,第一副模具是落料拉深复合模,第二副模具为简单模;方案三工艺复杂,但只需一副复合模具就能完成,节约模具制造成本,且适合大批量生产;终上所述:采用第三种工艺方案;§1.3 毛坯尺寸及排样设计1.3.1毛坯尺寸设计查表3-20[4],得工件间的间隙值a1=1.2mm,搭边值a=1.5mm;步距A=35.7mm;条料的宽度B=(D+2a)05.0-=37.505.0-mm;1.3.2排样设计图1.2第二章通过压力计算初选压力机§2.1 落料力的计算有公式p0=τ×l×t[4],式中p为落料力,τ为材料的抗剪强度;通过查附表D-24,得τ=80Mpa,t为料厚,l为材料轮廓长度,则:p=80×2π×34.5×0.5=8666.4N§2.2 正拉深相关力的计算2.2.1拉深力的计算有公式p1= k1×π×d1×t×σb[1],式中k1为拉深力的系数,通过查表2-1[4]可得k1=0.72;d1为正拉深零件直径,t为料厚,σb为抗拉强度,通过查附表D-24[4],可得σb =90Mpa,则:p1=0.75×3.14×34.5×0.5×90=7312.3N表2.1 计算拉深力的系数拉深系数m1 0.55 0.57 0.6 0.62 0.65 0.67 K1 1 0.93 0.86 0.79 0.72 0.66 拉深系数m1 0.7 0.72 0.75 0.77 0.8K1 60 0.55 0.5 0.45 0.4拉深系数m2 0.7 0.72 0.75 0.77 0.8 0.85 K2 1 0.95 0.9 0.85 0.8 0.7 拉深系数m2 0.9 0.95 - - -K2 0.6 0.5 - -2.2.2 压料力的计算有公式F1Q =4π[D2-(d1+2r1凹)2]q[4];式中q为单位压边力,查表2-2,可得q=0.8Mpa;将相关数据带入可得:F1Q=323N表2-1 单位压边力材料p(Mpa) 材料p(Mpa)软钢t<0.5 2.5-3.0 铝0.8-1.2软钢t>0.5 2.0-2.5 08钢 2.5-3.0黄铜 1.5-2.0 合金钢 3.0-4.0纯铜 1.0-1.5 耐热钢 2.8-3.5§2.3 反拉深相关力的计算2.3.1 拉深力的计算由于反拉深时拉深力要比正常拉深力大20%,因此需乘以系数1.2,则:p2=1.2×k2×π×d2×t×σb =1.2×1.0×3.14×15.5×0.5×90=2628.2N2.3.2压边力的计算可参见正拉深压料力的计算公式,则:F2Q =4π[d21-(d+2r2凹)2]q=89N§2.4 压力机的选择2.4.1公称压力的计算F=1.3(p0+p1+ F1Q+ p2+ F2Q)=24724.6N≈25KN2.4.2选择压力机选择压力机应该满足以下几个方面的条件:1、公称压力压力机的公称压力应大于成型工艺力和辅助工艺力的总和的1.3倍;2、滑块行程滑块行程应至少大于2倍的工件拉深高度;3、闭合高度压力机的最大闭合高度应大于模具的闭合高度;综上所述,结合以上计算数据,选择J23-10型压力机,该压力机的公称压力位100KN,滑块行程为45mm,最大闭合高度为140mm,工作台尺寸为370×240,模柄孔尺寸为 30mm。

相关文档
最新文档